1
|
Wang YY, Wu Y, Yu KW, Xie HY, Gui Y, Chen CR, Wang NH. Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus. JOURNAL OF INTEGRATIVE MEDICINE 2024:S2095-4964(24)00396-0. [PMID: 39547824 DOI: 10.1016/j.joim.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE This study investigates the sleep-modulating effects of ginsenoside Rg1 (Rg1, C42H72O14), a key bioactive component of ginseng, and elucidates its underlying mechanisms. METHODS C57BL/6J mice were intraperitoneally administered doses of Rg1 ranging from 12.5 to 100 mg/kg. Sleep parameters were assessed to determine the average duration of each sleep stage by monitoring the electrical activity of the brain and muscles. Further, orexin neurons in the lateral hypothalamus (LH) and corticotropin-releasing hormone (CRH) neurons in the paraventricular hypothalamic nucleus (PVH) were ablated using viral vector surgery and electrode embedding. The excitability of LHorexin and PVHCRH neurons was evaluated through the measurement of cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-Fos) expression. RESULTS Rg1 (12.5-100 mg/kg) augmented the duration of non-rapid eye movement (NREM) sleep phases, while reducing the duration of wakefulness, in a dose dependent manner. The reduced latency from wakefulness to NREM sleep indicates an accelerated sleep initiation time. We found that these sleep-promoting effects were weakened in the LHorexin and PVHCRH neuron ablation groups, and disappeared in the orexin and CRH double-ablation group. Decreased c-Fos protein expression in the LH and PVH confirmed that Rg1 promoted NREM sleep by inhibiting orexin and CRH neurons. CONCLUSION Rg1 increases the duration of NREM sleep, underscoring the essential roles of LHorexin and PVHCRH neurons in facilitating the sleep-promoting effects of Rg1. Please cite this article as: Wang YY, Wu Y, Yu KW, Xie HY, Gui Y, Chen CR, Wang NH. Ginsenoside Rg1 promotes non-rapid eye movement sleep via inhibition of orexin neurons of the lateral hypothalamus and corticotropin-releasing hormone neurons of the paraventricular hypothalamic nucleus. J Integr Med . 2024; Epub ahead of print.
Collapse
Affiliation(s)
- Yi-Yuan Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ke-Wei Yu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Hong-Yu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Yi Gui
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China
| | - Chang-Rui Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200040, China.
| | - Nian-Hong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040, China; School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhou L, Tan F, Zhang X, Li Y, Yin W. Neuroprotection and mechanisms of ginsenosides in nervous system diseases: Progress and perspectives. IUBMB Life 2024; 76:862-882. [PMID: 38822647 DOI: 10.1002/iub.2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Ginsenosides are the primary component discernible from ginseng, including Rb1, Rb2, Rd, Rg1, Rg2, and compound K, and so forth. They have been shown to have multiple pharmacological activities. In recent years, more and more studies have been devoted to the neuroprotection of various ginsenosides against neurological diseases and their potential mechanisms. This paper comprehensively summarizes and reviews the neuroprotective effects of various ginsenosides on neurological diseases, especially acute and chronic neurodegenerative diseases, and their mechanisms, as well as their potential therapeutic applications to promote neuroprotection in disease prevention, treatment, and prognosis. Briefly, ginsenosides exert effective neuroprotective effects on neurological conditions, including stroke, Alzheimer's disease, Parkinson's disease, and brain/spinal cord injuries through a variety of molecular mechanisms, including anti-inflammatory, antioxidant, and anti-apoptotic. Among them, some signaling pathways play important roles in related processes, such as PI3K/Akt, TLR4/NF-κB, ROS/TXNIP/NLRP3, HO-1/Nrf2, Wnt/β-catenin, and Ca2+ pathway. In conclusion, the present study reviews the research progress on the neuroprotective effects of ginsenosides in the last decade, with the aim of furnishing essential theoretical underpinning and effective references for further research and exploration of the multiple medicinal values of Chinese herbal medicines and their small molecule compounds, including ginseng and panax ginseng. Because there is less evidence in the existing clinical studies, future research should be focused on clinical trials in order to truly reflect the clinical value of various ginsenosides for the benefit of patients.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Feilong Tan
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Xue Zhang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yanhua Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Wenjie Yin
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Ma J, Zhan M, Sun H, He L, Zou Y, Huang T, Karpus A, Majoral JP, Mignani S, Shen M, Shi X. Phosphorus Dendrimers Co-deliver Fibronectin and Edaravone for Combined Ischemic Stroke Treatment via Cooperative Modulation of Microglia/Neurons and Vascular Regeneration. Adv Healthc Mater 2024:e2401462. [PMID: 39101311 DOI: 10.1002/adhm.202401462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
The development of new multi-target combination treatment strategies to tackle ischemic stroke (IS) remains to be challenging. Herein, a proof-of-concept demonstration of an advanced nanomedicine formulation composed of macrophage membrane (MM)-camouflaged phosphorous dendrimer (termed as AK137)/fibronectin (FN) nanocomplexes (NCs) loaded with antioxidant edaravone (EDV) to modulate both microglia and neurons for effective IS therapy is showcased. The created MM@AK137-FN/EDV (M@A-F/E) NCs with a mean size of 260 nm possess good colloidal stability, sustained EDV release kinetics, and desired cytocompatibility. By virtue of MM decoration, the M@A-F/E NCs can cross blood-brain barrier, act on microglia to exert the anti-inflammatory (AK137 and FN) and antioxidative (FN and EDV) effects in vitro for oxidative stress alleviation, microglia M2 polarization, and reduction of pro-inflammatory cytokine secretion, and act on neuron cells to be anti-apoptotic. In a transient middle cerebral artery occlusion rat model, the developed M@A-F/E NCs can exert enhanced antioxidant/anti-inflammatory/anti-apoptotic therapeutic effects to comprehensively regulate the brain microenvironment and promote vascular regeneration to collaboratively restore the blood flow after ischemia-reperfusion. The designed MM-coated NCs composed of all-active ingredients of phosphorous dendrimers, FN, and EDV that can fully regulate the brain inflammatory microenvironment may expand their application scope in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Huxiao Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Liangyu He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
| | - Tianyu Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
- Université Toulouse, 118 Route de Narbonne, CEDEX 4, Toulouse, 31077, France
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal, 9020-105, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, Funchal, 9020-105, Portugal
| |
Collapse
|
4
|
Liu Y, Niu P, Ji H, Chen Z, Zhai J, Jin X, Pang B, Zheng W, Zhang J, Yang F, Pang W. The use of Panax notoginseng saponins injections after intravenous thrombolysis in acute ischemic stroke: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1376025. [PMID: 38898926 PMCID: PMC11185952 DOI: 10.3389/fphar.2024.1376025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Background As a bioactive metabolite preparation widely used in acute ischemic stroke (AIS), the efficacy and safety of Panax notoginseng saponins injections (PNSI) in patients with AIS after intravenous thrombolysis remain to be evaluated. Methods This study included randomized controlled trials published before 26 April 2024 in 8 databases. AIS patients who received intravenous thrombolysis were included. The control group receiving conventional treatment and the treatment group receiving additional PNSI. Primary outcomes were selected as mortality, disability, and adverse events. Secondary outcomes were selected as all-cause mortality, improvement of neurological deficit, quality of life, and cerebral injury indicators. The revised Cochrane Risk of Bias tool was used to assess risk of bias. Risk ratio (RR) and mean differences (MD) were calculated for binary variables and continuous variables, respectively, based on a 95% confidence interval (CI). Results A total of 20 trials involving 1,856 participants were included. None of them reported mortality or disability. There was no significant difference in the adverse events [RR: 1.04; 95% CI: 0.60 to 1.81] and hemorrhagic transformation [RR: 0.99; 95% CI: 0.36 to 2.70] between the two groups. Compared to the control group, the treatment group had a better effect in neurological improvement assessed by National Institutes of Health Stroke Scale [MD: -2.91; 95% CI: -4.76 to -1.06], a better effect in activities of daily living changes in Barthel Index [MD: 9.37; 95% CI: 1.86 to 16.88], and a lower serum neuron-specific enolase level [MD: -2.08; 95% CI: -2.67 to -1.49]. Conclusion For AIS patients undergoing intravenous thrombolysis, the use of PNSI improved neurological deficits and enhanced activity of daily living in the short term without increasing the occurrence rate of adverse events. However, due to the moderate to very low certainty of evidence, it is advisable to conduct high-quality clinical trials to validate the findings of this study. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=466851, Identifier CRD42023466851.
Collapse
Affiliation(s)
- Yaoyuan Liu
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Puyu Niu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongchang Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhe Chen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingbo Zhai
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyao Jin
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenke Zheng
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengwen Yang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wentai Pang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Yang YY, Deng RR, Xiang DX. Naodesheng Pills Ameliorate Cerebral Ischemia Reperfusion-Induced Ferroptosis via Inhibition of the ERK1/2 Signaling Pathway. Drug Des Devel Ther 2024; 18:1499-1514. [PMID: 38716368 PMCID: PMC11074533 DOI: 10.2147/dddt.s443479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| | - Rong-Rong Deng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
6
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
7
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Orellana-Urzúa S, Briones-Valdivieso C, Chichiarelli S, Saso L, Rodrigo R. Potential Role of Natural Antioxidants in Countering Reperfusion Injury in Acute Myocardial Infarction and Ischemic Stroke. Antioxidants (Basel) 2023; 12:1760. [PMID: 37760064 PMCID: PMC10525378 DOI: 10.3390/antiox12091760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Stroke and acute myocardial infarction are leading causes of mortality worldwide. The latter accounts for approximately 9 million deaths annually. In turn, ischemic stroke is a significant contributor to adult physical disability globally. While reperfusion is crucial for tissue recovery, it can paradoxically exacerbate damage through oxidative stress (OS), inflammation, and cell death. Therefore, it is imperative to explore diverse approaches aimed at minimizing ischemia/reperfusion injury to enhance clinical outcomes. OS primarily arises from an excessive generation of reactive oxygen species (ROS) and/or decreased endogenous antioxidant potential. Natural antioxidant compounds can counteract the injury mechanisms linked to ROS. While promising preclinical results, based on monotherapies, account for protective effects against tissue injury by ROS, translating these models into human applications has yielded controversial evidence. However, since the wide spectrum of antioxidants having diverse chemical characteristics offers varied biological actions on cell signaling pathways, multitherapy has emerged as a valuable therapeutic resource. Moreover, the combination of antioxidants in multitherapy holds significant potential for synergistic effects. This study was designed with the aim of providing an updated overview of natural antioxidants suitable for preventing myocardial and cerebral ischemia/reperfusion injuries.
Collapse
Affiliation(s)
- Sofía Orellana-Urzúa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| | | | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile;
| |
Collapse
|
9
|
Hong L, Shi X, Zhao Y, Zhao G, Jiang H, Liu M, Zhang H, Wu H, Wang L, He L, Chen W. Network pharmacology-guided and TCM theory-supported in vitro and in vivo component identification of Naoluoxintong. Heliyon 2023; 9:e19369. [PMID: 37681188 PMCID: PMC10480607 DOI: 10.1016/j.heliyon.2023.e19369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Naoluoxintong (NLXT) has been used to treat ischemic stroke (IS) in China for more than two hundred years. However, the pharmacodynamic material basis of NLXT has not been fully studied. Under the guidance of the former network pharmacological analysis, a rapid and reliable method combining UPLC-Q-TOF-MSE with the novel informatics UNIFI™ platform was established which was used to study the composition of NLXT and its prototype components and metabolites in vivo. A total of 102 compounds were identified. 13 compounds were sourced from "Monarch herb", mainly involving flavonoids and their glycosides. 54 compounds were sourced from "Minister herb", mainly involving triterpenoid saponins, organic acids and lactones. 11 compounds were from the "Assistant herb", mostly containing citric acid and esters of citric acid. 24 compounds were from the "Guide herb", mostly including flavonoids and their glycosides, organic acids and lactones. Moreover, 24 prototype components and 30 metabolites were detected, and in vivo transformation pathways for different types of chemical components were provided. This is a comprehensive report on the identification of major chemical components in NLXT and metabolic components in rats by UPLC-Q-TOF-MS combined with UNIFI platform under the guidance of network pharmacology, which is helpful for the quality control of NLXT and the study of quality markers.
Collapse
Affiliation(s)
- Lu Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Xiaoqian Shi
- Department of Pharmacy, Huaibei People's Hospital, Huaibei, Anhui, 235000, China
| | - Yutong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guodong Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Huihui Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Mingming Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Hanzhi Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Huan Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| | - Ling He
- Key Laboratory of Xin’ an Medicine (Anhui University of Chinese Medicine) Ministry of Education, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
- School of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230038, China
| |
Collapse
|
10
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
11
|
Chen H, Liu Y, Feng J, Wang H, Yang Y, Ai Q, Zhang Z, Chu S, Chen N. CZK, a novel alkaloid derivative from Clausena lansium, alleviates ischemic stroke injury through Nrf2-mediated antioxidant effects. Sci Rep 2023; 13:6053. [PMID: 37055457 PMCID: PMC10101984 DOI: 10.1038/s41598-023-32999-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/05/2023] [Indexed: 04/15/2023] Open
Abstract
Anti-oxidant stress is a potential strategy for the treatment of ischemic stroke. Here, we found a novel free radical scavenger termed as CZK, which is derived from alkaloids contained in Clausena lansium. In this study, we first compared cytotoxicity and biological activity between CZK and its parent's compound Claulansine F. It was found that CZK had lower cytotoxicity and improved anti-oxygen-glucose deprivation/reoxygenation (OGD/R) injury than its parent's compound. Free radical scavenging test showed that CZK had a strong inhibitory effect on hydroxyl free radicals with the IC50 of 77.08 nM. Intravenous injection of CZK (50 mg/kg) significantly alleviated ischemia-reperfusion injury, manifested by reduced neuronal damage and decreased oxidative stress. Consistent with the findings, the activities of superoxide dismutase (SOD) and reduced glutathione (GSH) were increased. Molecular docking predicted that CZK might be combined with nuclear factor erythroid 2-related factor 2 (Nrf2) complex. Our results also confirmed that CZK upregulated the contents of Nrf2 and its target gene products Heme Oxygenase-1 (HO-1), and NAD(P)H: Quinone Oxidoreductase 1 (NQO1). In conclusion, CZK had a potential therapeutic effect for ischemic stroke by activating Nrf2-mediated antioxidant system.
Collapse
Affiliation(s)
- Haodong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yangbo Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Juling Feng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Hongyun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
12
|
Zhang ZY, Yuan X, He HY, He WB, Zhang Z, Chu SF. Upregulation of HBXIP contributed to the anti-DND by ginsenoside Rg1 after global cerebral ischemia-reperfusion. J Pharm Pharmacol 2023; 75:437-444. [PMID: 36734364 DOI: 10.1093/jpp/rgac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/05/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Ginsenoside Rg1 (Rg1) has been well-documented to be effective against ischemic/reperfusion (I/R) injury. However, whether it has therapeutic effect on delayed neuronal death is still unclear. The aim of this study is to investigate the effect of Rg1 on delayed neuronal death and elucidate its underlying mechanism. METHODS Delayed neuronal death model was prepared by global cerebral ischemia-reperfusion in rats, Rg1 was intravenously administered once a day. Nissl and Fluoro Jade B staining were carried out to evaluate the effect of Rg1 on delayed neuronal death. Western blot and qPCR were used to investigate the levels of HBXIP and Survivin. HBXIP/Survivin complex was observed by co-immunoprecipitation. AAV-CMV-shRNA (HBXIP) was used to observe the role of HBXIP on delayed neuronal death improved by Rg1. KEY FINDINGS Rg1 attenuated delayed neuronal death at the dose of 20 mg/kg, which also improved the mRNA and protein levels of HBXIP, as well as Survivin. Moreover, administration of Rg1 promoted the formation of HBXIP/Survivin complex, which contributed to the reduction of caspases signaling pathway. Knockdown of HBXIP abolished the alleviation of DND and inhibition of caspase cascade induced by Rg1. CONCLUSIONS Rg1 alleviated delayed neuronal death by promoting anti-apoptosis effect by HBXIP/Survivin complex.
Collapse
Affiliation(s)
- Zhi-Yong Zhang
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing100191, China
| | - Hong-Yuan He
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan 030024, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- Department of Neurology, Beijing Geriatric Hospital, Beijing 100095, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
13
|
Liu Y, Peng J, Leng Q, Tian Y, Wu X, Tan R. Effects of Aloe-Emodin on the Expression of Brain Aquaporins and Secretion of Neurotrophic Factors in a Rat Model of Post-Stroke Depression. Int J Mol Sci 2023; 24:5206. [PMID: 36982280 PMCID: PMC10048947 DOI: 10.3390/ijms24065206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Post-stroke depression (PSD) is a common complication of stroke that can damage patients' brains. More and more studies have been conducted on PSD in recent years, but the exact mechanism is still not understood. Currently, animal models provide an alternative approach to better understand the pathophysiology of PSD and may also pave the way for the discovery of new treatments for depression. This study investigated the therapeutic effect and mechanism of aloe-emodin (AE) on PSD rats. Previous studies have shown that AE positively affects PSD in rats by improving depression, increasing their activities and curiosities, enhancing the number of neurons, and ameliorating damage to brain tissue. Meanwhile, AE could up-regulate the expression of brain-derived neurotrophic factor (BDNF) and neurotrophic 3 (NTF3), but it could also down-regulate the expression of aquaporins (AQP3, AQP4, and AQP5), glial fibrillary acidic protein (GFAP), and transient receptor potential vanilloid 4 (TRPV4), which is helpful in maintaining homeostasis and alleviating encephaledema. AE may be a prospective solution in the future for the treatment of PSD patients.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqing Wu
- College of Life Science and Engineering, Southwest Jiao tong University, Chengdu 610031, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiao tong University, Chengdu 610031, China
| |
Collapse
|
14
|
Wu F, Lai S, Fu D, Liu J, Wang C, Feng H, Liu J, Li Z, Li P. Neuroprotective Effects and Metabolomics Study of Protopanaxatriol (PPT) on Cerebral Ischemia/Reperfusion Injury In Vitro and In Vivo. Int J Mol Sci 2023; 24:ijms24021789. [PMID: 36675303 PMCID: PMC9861888 DOI: 10.3390/ijms24021789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Stroke, one of the leading causes of disability and death worldwide, is a severe neurological disease that threatens human life. Protopanaxatriol (PPT), panaxatriol-type saponin aglycone, is a rare saponin that exists in Panax ginseng and Panax Noto-ginseng. In this study, we established an oxygen-glucose deprivation (OGD)-PC12 cell model and middle cerebral artery occlusion/reperfusion (MCAO/R) model to evaluate the neuroprotective effects of PPT in vitro and in vivo. In addition, metabolomics analysis was performed on rat plasma and brain tissue samples to find relevant biomarkers and metabolic pathways. The results showed that PPT could significantly regulate the levels of LDH, MDA, SOD, TNF-α and IL-6 factors in OGD-PC12 cells in vitro. PPT can reduce the neurological deficit score and infarct volume of brain tissue in rats, restore the integrity of the blood-brain barrier, reduce pathological damage, and regulate TNF-α, IL-1β, IL-6, MDA, and SOD factors. In addition, the results of metabolomics found that PPT can regulate 19 biomarkers involving five metabolic pathways, including amino acid metabolism, arachidonic acid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. Thus, it could be inferred that PPT might serve as a novel natural agent for MCAO/R treatment.
Collapse
Affiliation(s)
- Fulin Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Sihan Lai
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dongxing Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Juntong Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Feng
- College of Basic Medicine Sciences, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (P.L.); Tel.: +86-0431-8561-9803 (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (Z.L.); (P.L.); Tel.: +86-0431-8561-9803 (P.L.)
| |
Collapse
|
15
|
Bai Y, He Z, Duan W, Gu H, Wu K, Yuan W, Liu W, Huang H, Li Y. Sodium formononetin-3'-sulphonate alleviates cerebral ischemia-reperfusion injury in rats via suppressing endoplasmic reticulum stress-mediated apoptosis. BMC Neurosci 2022; 23:74. [PMID: 36482320 PMCID: PMC9733209 DOI: 10.1186/s12868-022-00762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sodium formononetin-3'-sulphonate (Sul-F) may alleviate I/R injury in vivo with uncertain mechanism. Endoplasmic reticulum (ER) stress-mediated apoptosis participates in the process of cerebral ischemia-reperfusion (I/R) injury. Our aim is to figure out the effect of Sul-F on cerebral I/R injury and to verify whether it works through suppressing ER stress-mediated apoptosis. RESULTS The cerebral lesions of middle cerebral artery occlusion (MCAO) model in SD rats were aggravated after 24 h of reperfusion, including impaired neurological function, increased infarct volume, intensified inflammatory response and poor cell morphology. After intervention, the edaravone (EDA, 3 mg/kg) group and Sul-F high-dose (Sul-F-H, 80 mg/kg) group significantly alleviated I/R injury via decreasing neurological score, infarct volume and the serum levels of inflammatory factors (TNF-α, IL-1β and IL-6), as well as alleviating pathological injury. Furthermore, the ER stress level and apoptosis rate were elevated in the ischemic penumbra of MCAO group, and were significantly blocked by EDA and Sul-F-H. In addition, EDA and Sul-F-H significantly down-regulated the ER stress related PERK/eIF2α/ATF4 and IRE1 signal pathways, which led to reduced cell apoptosis rate compared with the MCAO group. Furthermore, there was no difference between the EDA and Sul-F-H group in terms of therapeutic effect on cerebral I/R injury, indicating a therapeutic potential of Sul-F for ischemic stroke. CONCLUSIONS Sul-F-H can significantly protects against cerebral I/R injury through inhibiting ER stress-mediated apoptosis in the ischemic penumbra, which might be a novel therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Yue Bai
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Zhiwei He
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Weisong Duan
- grid.452702.60000 0004 1804 3009Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - He Gu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Kefeng Wu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Wei Yuan
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Wenkang Liu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Huaipeng Huang
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Yanan Li
- grid.256883.20000 0004 1760 8442Department of Clinical Laboratory Diagnosis, Shijiazhuang Pingan Hospital, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| |
Collapse
|
16
|
Zeng M, Zhang R, Yang Q, Guo L, Zhang X, Yu B, Gan J, Yang Z, Li H, Wang Y, Jiang X, Lu B. Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed Pharmacother 2022; 155:113696. [PMID: 36116247 DOI: 10.1016/j.biopha.2022.113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuyue Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
17
|
Zhang Y, Zhang T, Jia J, Jin C, Li Y. Analysis of differential gene expression profiles uncovers mechanisms of Xuesaitong injection against cerebral ischemia-reperfusion injury. PHYTOMEDICINE 2022; 103:154224. [PMID: 35691081 DOI: 10.1016/j.phymed.2022.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/30/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Xuesaitong injection (XST), a well-known traditional Chinese patent medicine, has been widely used in the treatment of cardiovascular and cerebrovascular diseases. The exact mechanisms of XST in ischemic stroke remain to be thoroughly elucidated. PURPOSE This study aims to characterize the candidate differentially expressed genes (DEGs) and pathways of XST in ischemic stroke by bioinformatics analysis, and to explore new clues for the underlying mechanisms of XST. METHODS A dataset (GSE61616) was performed to screen out DEGs for deep analysis. Series Test of Cluster analysis for DEGs was carried out. For all DEGs, Gene Ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for visualization. The screened hub gene expression characteristics were verified in middle cerebral artery occlusion (MCAO) rats. In vivo studies have demonstrated the mechanisms of XST against cerebral ischemia-reperfusion (CIR) injury. RESULTS A total of 8066 DEGs were screened out and the expression of genes in profile 8 was suggested to have clinical significance. The MAPK signaling pathway was indicated as the most significantly enriched pathway in profile 8. Bdnf was identified as the most significant hub gene according to node degree. Animal experiments demonstrated that XST attenuated CIR injury. XST increased brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TrkB) levels in MCAO. Furthermore, the knockdown of BDNF by siRNA abolished the in vivo effects of XST on brain injury, neurodegeneration and apoptosis after CIR. CONCLUSION The integrated strategy, based on bioinformatics analyses with experimental verification, provides a novel cellular mechanism by which XST alleviates CIR injury. The BDNF-TrkB pathway was highly thought to play a vital role in the neuroprotective effects of XST.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Jia
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Chaohui Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Zhao A, Liu N, Yao M, Zhang Y, Yao Z, Feng Y, Liu J, Zhou G. A Review of Neuroprotective Effects and Mechanisms of Ginsenosides From Panax Ginseng in Treating Ischemic Stroke. Front Pharmacol 2022; 13:946752. [PMID: 35873557 PMCID: PMC9302711 DOI: 10.3389/fphar.2022.946752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke has been considered one of the leading causes of mortality and disability worldwide, associated with a series of complex pathophysiological processes. However, effective therapeutic methods for ischemic stroke are still limited. Panax ginseng, a valuable traditional Chinese medicine, has been long used in eastern countries for various diseases. Ginsenosides, the main active ingredient of Panax ginseng, has demonstrated neuroprotective effects on ischemic stroke injury during the last decade. In this article, we summarized the pathophysiology of ischemic stroke and reviewed the literature on ginsenosides studies in preclinical and clinical ischemic stroke. Available findings showed that both major ginsenosides and minor ginsenosides (such as Rg3, Rg5, and Rh2) has a potential neuroprotective effect, mainly through attenuating the excitotoxicity, Ca2+ overload, mitochondria dysfunction, blood-brain barrier (BBB) permeability, anti-inflammation, anti-oxidative, anti-apoptosis, anti-pyroptosis, anti-autophagy, improving angiogenesis, and neurogenesis. Therefore, this review brings a current understanding of the mechanisms of ginsenosides in the treatment of ischemic stroke. Further studies, especially in clinical trials, will be important to confirm the clinical value of ginseng and ginsenosides.
Collapse
Affiliation(s)
- Aimei Zhao
- Department of Acupuncture and Moxibustion, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Nan Liu
- Beijing Increasepharm Safety and Efficacy Co., Ltd., Beijing, China
| | - Mingjiang Yao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zengyu Yao
- Department of Acupuncture and Moxibustion, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yujing Feng
- Department of Anesthesiology, Punan Hospital, Shanghai, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianxun Liu, ; Guoping Zhou,
| | - Guoping Zhou
- Department of Acupuncture and Moxibustion, Neuroscience Centre, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Jianxun Liu, ; Guoping Zhou,
| |
Collapse
|
19
|
Long Y, Xiang Y, Liu S, Zhang Y, Wan J, Ci Z, Cui M, Shen L, Li N, Guan Y. Macrophage membrane modified baicalin liposomes improve brain targeting for alleviating cerebral ischemia reperfusion injury. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102547. [PMID: 35292367 DOI: 10.1016/j.nano.2022.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Baicalin (BA) has a good intervention effect on encephalopathy. In this study, macrophage membrane was modified on the surface of baicalin liposomes (BA-LP) by extrusion method. Macrophage membrane modified BA-LP (MM-BA-LP) was characterized by various analytical techniques, and evaluated for brain targeting. The results presented MM-BA-LP had better brain targeting compared with BA-LP. Pharmacokinetic experiments showed that MM-BA-LP improved pharmacokinetic parameters and increased the residence time of BA. Pharmacodynamic of middle cerebral artery occlusion (MCAO) rat model was studied to verify the therapeutic effect of MM-BA-LP on cerebral ischemia reperfusion injury (CIRI). The results showed that MM-BA-LP could significantly improve the neurological deficit, cerebral infarction volume and brain pathological state of MCAO rats compared with BA-LP. These results suggested that MM-BA-LP could significantly enhance the brain targeting and improve the circulation of BA in blood, and had a significantly better neuroprotective effect on MCAO rats than BA-LP.
Collapse
Affiliation(s)
- Yu Long
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yan Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Zhimin Ci
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Mingquan Cui
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Lin Shen
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yongmei Guan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
20
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Zhang Z, Yang K, Mao R, Zhong D, Xu Z, Xu J, Xiong M. Ginsenoside Rg1 inhibits oxidative stress and inflammation in rats with spinal cord injury via Nrf2/HO-1 signaling pathway. Neuroreport 2022; 33:81-89. [PMID: 34954769 DOI: 10.1097/wnr.0000000000001757] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In this study, our objective was to investigate the underlying mechanism of the neuroprotective role of ginsenoside Rg1 in attenuating spinal cord injury (SCI). METHODS A rat SCI model was established and treated with ginsenoside Rg1 and nuclear factor erythroid 2-related factor2(Nrf2) inhibitor all-trans retinoic acid (ATRA). The protective effects of ginsenoside Rg1 were evaluated by Basso, Beattie and Bresnahan (BBB) scale, hematoxylin/eosin staining, ELISA assay, western blotting and quantitative reverse transcription PCR (RT-qPCR). RESULTS Ginsenoside Rg1 alleviated neuronal edema and bleeding in the injured spinal cord, reduced inflammatory cell infiltration and cell necrosis, further repaired the injured spinal cord structure, improved BBB motor score in the SCI rat model and improved hind limb motor function. Meanwhile, ginsenoside Rg1 significantly increased the content of antioxidant enzymes superoxide dismutase and glutathione, and inhibited the production of oxidative marker malondialdehyde. In addition, ginsenoside Rg1also significantly inhibits the activities of the inflammatory factors tumor necrosis factor-α, interleukin-1β (IL-1β) and interleukin-6 (IL-6) to reduce the inflammatory response after trauma. Furthermore, western blot and RT-qPCR also suggested that ginsenoside Rg1 could activate the protein expression of Nrf2 and heme oxygenase-1 (HO-1) after SCI, and the inhibition of ATRA on these improvements further verified the neuroprotective effect of Nrf2 and HO-1 in ginsenoside Rg1 on SCI. CONCLUSION Ginsenoside Rg1 has a neuroprotective effect on SCI and can improve motor dysfunction caused by injury. The underlying mechanism may play antioxidative stress and anti-inflammatory effect by regulating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
| | | | - Rui Mao
- Neurology, Sinopharm Dongfeng General Hospital
| | | | | | - Jie Xu
- Department of Institute of Clinical Medcine, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | |
Collapse
|
22
|
Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacol Res 2022; 177:106099. [DOI: 10.1016/j.phrs.2022.106099] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 12/15/2022]
|
23
|
Liu H, Dai Q, Yang J, Zhang Y, Zhang B, Zhong L. Zuogui Pill Attenuates Neuroinflammation and Improves Cognitive Function in Cerebral Ischemia Reperfusion-Injured Rats. Neuroimmunomodulation 2022; 29:143-150. [PMID: 34736255 DOI: 10.1159/000519010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Cerebral ischemia and reperfusion (CI/R) injury is a devasting cerebrovascular disease, accompanied with ischemia stroke, cerebral infarction. Zuogui Pill (ZGP), as a Chinese traditional medicine, is proved to be effective in many diseases and cancers. Our study aimed to detect the roles of ZGP in CI/R injury. METHODS Neural stem cells were isolated from rats and induced by oxygen and glucose deprivation and recovery. CCK-8 and flow cytometry were applied to assess the function of ZGP on cell viability and apoptosis. Rat CI/R injury models were established by the middle cerebral artery occlusion and reperfusion. The function of ZGP on CI/R injury was identified via evaluating modified neurological severity score, infarct area, and cognitive impairment. RESULTS Compared to the control, the cell viability was obviously decreased in the oxygen and glucose deprivation and recovery (OGD/R) group, while the adverse influence on cells was reversed by cultured plus 10% ZGP serum. Consistently, ZGP attenuated the influence of OGD/R on cell apoptosis. More importantly, ZGP could alleviate CI/R injury of rats by reducing neurological damage and infarct area and promoting cognitive function. CONCLUSION This study provided protective roles of ZGP on cell viability and apoptosis induced by OGD/R. In addition, ZGP played protective roles on neuroinflammation and cognitive function in rats.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
- Postdoctoral Program, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiaomei Dai
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuwei Zhang
- Department of Physiology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bo Zhang
- Department of Neurobiology, Research Institute of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lili Zhong
- Department of Pathology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Zhou M, Zhang T, Zhang B, Zhang X, Gao S, Zhang T, Li S, Cai X, Lin Y. A DNA Nanostructure-Based Neuroprotectant against Neuronal Apoptosis via Inhibiting Toll-like Receptor 2 Signaling Pathway in Acute Ischemic Stroke. ACS NANO 2021; 16:1456-1470. [PMID: 34967217 DOI: 10.1021/acsnano.1c09626] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is a main cause of cognitive neurological deficits and disability worldwide due to a plethora of neuronal apoptosis. Unfortunately, numerous neuroprotectants for neurons have failed because of biological toxicity, severe side effects, and poor efficacy. Tetrahedral framework nucleic acids (tFNAs) possess excellent biocompatibility and various biological functions. Here, we tested the efficacy of a tFNA for providing neuroprotection against neuronal apoptosis in ischemic stroke. The tFNA prevented apoptosis of neurons (SHSY-5Y cells) caused by oxygen-glucose deprivation/reoxygenation through interfering with ischemia cascades (excitotoxicity and oxidative stress) in vitro. It effectively ameliorated the microenvironment of the ischemic hemisphere by upregulating expression of erythropoietin and inhibiting inflammation, which reversed neuronal loss, alleviated cell apoptosis, significantly shrank the infarction volume from 33.9% to 2.7%, and attenuated neurological deficits in transient middle cerebral artery occlusion (tMCAo) rat models in vivo. In addition, blocking the TLR2-MyD88-NF-κB signaling pathway is a potential mechanism of the neuroprotection by tFNA in ischemic stroke. These findings indicate that tFNA is a safe pleiotropic nanoneuroprotectant and a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- College of Biomedical Engineering, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
25
|
Lin CH, Lin YA, Chen SL, Hsu MC, Hsu CC. American Ginseng Attenuates Eccentric Exercise-Induced Muscle Damage via the Modulation of Lipid Peroxidation and Inflammatory Adaptation in Males. Nutrients 2021; 14:nu14010078. [PMID: 35010953 PMCID: PMC8746757 DOI: 10.3390/nu14010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
Abstract
Exercise-induced muscle damage (EIMD) is characterized by a reduction in functional performance, disruption of muscle structure, production of reactive oxygen species, and inflammatory reactions. Ginseng, along with its major bioactive component ginsenosides, has been widely employed in traditional Chinese medicine. The protective potential of American ginseng (AG) for eccentric EIMD remains unclear. Twelve physically active males (age: 22.4 ± 1.7 years; height: 175.1 ± 5.7 cm; weight: 70.8 ± 8.0 kg; peak oxygen consumption [V˙O2peak] 54.1 ± 4.3 mL/kg/min) were administrated by AG extract (1.6 g/day) or placebo (P) for 28 days and subsequently challenged by downhill (DH) running (−10% gradient and 60% V˙O2peak). The levels of circulating 8-iso-prostaglandin F 2α (PGF2α), creatine kinase (CK), interleukin (IL)-1β, IL-4, IL-10, and TNF-α, and the graphic pain rating scale (GPRS) were measured before and after supplementation and DH running. The results showed that the increases in plasma CK activity induced by DH running were eliminated by AG supplementation at 48 and 72 h after DH running. The level of plasma 8-iso-PGF2α was attenuated by AG supplementation immediately (p = 0.01 and r = 0.53), 2 h (p = 0.01 and r = 0.53) and 24 h (p = 0.028 and r = 0.45) after DH running compared with that by P supplementation. Moreover, our results showed an attenuation in the plasma IL-4 levels between AG and P supplementation before (p = 0.011 and r = 0.52) and 72 h (p = 0.028 and r = 0.45) following DH running. Our findings suggest that short-term supplementation with AG alleviates eccentric EIMD by decreasing lipid peroxidation and promoting inflammatory adaptation.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Physical Education Office, Yuan Ze University, Taoyuan 32003, Taiwan;
| | - Yi-An Lin
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Shu-Li Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan;
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| | - Cheng-Chen Hsu
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Correspondence: (M.-C.H.); (C.-C.H.); Tel.: +886-7-312-1101 (ext. 2285) (M.-C.H.); +886-2-2736-1661 (ext. 3259) (C.-C.H.)
| |
Collapse
|
26
|
Miao L, Yang Y, Li Z, Fang Z, Zhang Y, Han CC. Ginsenoside Rb2: A review of pharmacokinetics and pharmacological effects. J Ginseng Res 2021; 46:206-213. [PMID: 35509822 PMCID: PMC9058830 DOI: 10.1016/j.jgr.2021.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ginsenoside Rb2 is an active protopanaxadiol-type saponin, widely existing in the stem and leave of ginseng. Rb2 has recently been the focus of studies for pharmaceutical properties. This paper provides an overview of the preclinical and clinical pharmacokinetics for Rb2, which exhibit poor absorption, rapid tissue distribution and slow excretion through urine. Pharmacological studies indicate a beneficial role of Rb2 in the prevention and treatment of diabetes, obesity, tumor, photoaging, virus infection and cardiovascular problems. The underlying mechanism is involved in an inhibition of oxidative stress, ROS generation, inflammation and apoptosis via regulation of various cellular signaling pathways and molecules, including AKT/SHP, MAPK, EGFR/SOX2, TGF-β1/Smad, SIRT1, GPR120/AMPK/HO-1 and NF-κB. This work would provide a new insight into the understanding and application of Rb2. However, its therapeutic effects have not been clinically evaluated. Further studies should be aimed at the clinical treatment of Rb2.
Collapse
Affiliation(s)
- Longxing Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yijun Yang
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zhongwen Li
- Department of Pharmacy, Shandong Medical College, Jinan, China
| | - Zengjun Fang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, China
| | - Yongqing Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| | - Chun-chao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, China
- Corresponding author. School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China. Tel.: +86 531 82613129; Fax: +86 86 531 82613129.
| |
Collapse
|
27
|
Emerging immune and cell death mechanisms in stroke: Saponins as therapeutic candidates. Brain Behav Immun Health 2021; 9:100152. [PMID: 34589895 PMCID: PMC8474497 DOI: 10.1016/j.bbih.2020.100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The complexity of the ischemic cascade is based on the integrated crosstalk of every cell type in the neurovascular unit. Depending on the features of the ischemic insult, several cell death mechanisms are triggered, such as apoptosis, necroptosis, ferroptosis/oxytosis, ETosis or pyroptosis, leading to reactive astrogliosis. However, emerging evidence demonstrates a dual role for the immune system in stroke pathophysiology, where it exerts both detrimental and also beneficial functions. In this review, we discuss the relevance of several cell death modalities and the dual role of the immune system in stroke pathophysiology. We also provide an overview of some emerging immunomodulatory therapeutic strategies, amongst which saponins, which are promising candidates that exert multiple pharmacological effects. Several cell death mechanisms coexist in stroke pathophysiology. Neurons are more vulnerable to necroptosis than glial cells. Inhibitors of receptor-interacting protein kinases and of ferroptosis induce neuroprotection. Saponins exert modulatory effects on inflammation and neuronal cell death in stroke.
Collapse
|
28
|
Liang P, Mao L, Ma Y, Ren W, Yang S. A systematic review on Zhilong Huoxue Tongyu capsule in treating cardiovascular and cerebrovascular diseases: Pharmacological actions, molecular mechanisms and clinical outcomes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114234. [PMID: 34044079 DOI: 10.1016/j.jep.2021.114234] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular and cerebrovascular diseases have become a severe threat for human health worldwide, however, optimal therapeutic options are still developed. Zhilong Huoxue Tongyu capsule (ZL capsule) is mainly composed of Astragalus membranaceus, Leech, Earthworm, Cinnamomum cassia and Sargentodoxa cuneata, having functions of replenishing qi and activating blood, dispelling wind and reducing phlegm. It is an expanded application on the basis of traditional uses of above TCMs, acquiring a satisfactory curative effect on cardiovascular and cerebrovascular diseases over twenty years. AIM OF THE STUDY To comprehensively summarize the main components of ZL capsule, understand the mechanisms of ZL capsule, and conclude clinical regimens of ZL capsule for cardiovascular and cerebrovascular diseases. MATERIALS AND METHODS We selected network pharmacology technology to analyze main active compounds and predict underlying mechanism of ZL capsule against atherosclerosis. Molecular docking was performed to simulate the interaction pattern between the active components of ZL capsule and putative targets. Further, PubMed, Web of Science, China National Knowledge Infrastructure and Google Scholar were used to search literatures, with the key words of "Zhilong Huoxue Tongyu capsule", "cardiovascular and cerebrovascular diseases", "atherosclerosis", "clinical study" and their combinations, mainly from 2000 to 2020. RESULTS Both network pharmacology analysis, molecular docking and animal experiments studies confirmed that mechanisms of ZL capsule plays the role of anti-inflammatory, anti-apoptosis and promoting angiogenesis in treating cardiovascular and cerebrovascular diseases by multi-components acting on multi-targets via multi-pathways. Over 1000 clinical cases were benefited from the treatment of ZL capsule, suggesting a holistic concept of "the same therapy for different myocardial and cerebral diseases". CONCLUSIONS For the first time, this systematic review may supply meaningful information for further studies to explore material basis and pharmacodynamics of ZL capsule and also provide a basis for sharing the "Chinese patent medicine" for cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Ma
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Drug Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
29
|
Artemether confers neuroprotection on cerebral ischemic injury through stimulation of the Erk1/2-P90rsk-CREB signaling pathway. Redox Biol 2021; 46:102069. [PMID: 34303216 PMCID: PMC8327154 DOI: 10.1016/j.redox.2021.102069] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 04/01/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability among adults. Despite the economic burden of the disease, available treatment options are still very limited. With the exception of anti-thrombolytics and hypothermia, current therapies fail to reduce neuronal injury, neurological deficits and mortality rates, suggesting that the development of novel and more effective therapies against ischemic stroke is urgent. In the present study, we found that artemether, which has been used in the clinic as an anti-malarial drug, was able to improve the neurological deficits, attenuate the infarction volume and the brain water content in a middle cerebral artery occlusion (MCAO) animal model. Furthermore, artemether treatment significantly suppressed cell apoptosis, stimulated cell proliferation and promoted the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), P90rsk and cAMP responsive element-binding protein (CREB). Artemether protective effect was attenuated by PD98059, an ERK1/2 inhibitor, administration. Similarly, in oxygen-glucose deprivation/reperfusion (OGD/RP) cell models, artemether pre-treatment induced the suppression of the intracellular ROS, the down-regulation of LDH activity, the reduction of caspase 3 activity and of the apoptosis cell rate and reversed the decrease of mitochondrial membrane potential. As with MCAO animal model, artemether promoted the activation of Erk1/2-P90rsk-CREB signaling pathway. This effect was blocked by the inhibition or knock-down of ERK1/2. The present study provides evidences of the neuroprotective effect of artemether unravelling its potential as a new therapeutic candidate for the prevention and treatment of stroke. Artemether conferred neuroprotection in a middle cerebral artery occlusion (MCAO) animal model. Artemether conferred neuroprotection on oxygen-glucose deprivation/reperfusion-induced cell injury model. Artemether promoted the activation of Erk1/2-P90rsk-CREB signaling pathway in vitro and in vivo.
Collapse
|
30
|
Autophagy in vascular dementia and natural products with autophagy regulating activity. Pharmacol Res 2021; 170:105756. [PMID: 34237440 DOI: 10.1016/j.phrs.2021.105756] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023]
Abstract
Chronic Cerebral Hypoperfusion(CCH)-induced vascular dementia(VD) is a common neurodegenerative disease which seriously affects the patient's quality of life. Therefore, it is critical to find an effective treatment of VD. Autophagy is a natural regulated mechanism that can remove dysfunctional proteins and organelles, however, over-activation or under-activation can of autophagy can induce the apoptosis of cells. Although autophagy plays a role in the central nervous system is unquestionable, the effects of autophagy in the ischemic brain are still controversial. Some autophagy regulators have been tested, suggesting that both activation and inhibition of autophagy can improve the cognitive function. This article reviews the role of autophagy in CCH-induced VD to discuss whether autophagy has the potential to become a target for drug development and provides several potential compounds for treating vascular dementia.
Collapse
|
31
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
32
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
33
|
Classical Active Ingredients and Extracts of Chinese Herbal Medicines: Pharmacokinetics, Pharmacodynamics, and Molecular Mechanisms for Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8868941. [PMID: 33791075 PMCID: PMC7984881 DOI: 10.1155/2021/8868941] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/08/2021] [Accepted: 02/28/2021] [Indexed: 12/17/2022]
Abstract
Stroke is a leading cause of death and disability worldwide, and approximately 87% of cases are attributed to ischemia. The main factors that cause ischemic stroke include excitotoxicity, energy metabolism disorder, Ca+ overload, oxidative damage, apoptosis, autophagy, and inflammation. However, no effective drug is currently available for the comprehensive treatment of ischemic stroke in clinical applications; thus, there is an urgent need to find and develop comprehensive and effective drugs to treat postischemic stroke. Traditional Chinese medicine (TCM) has unique advantages in treating ischemic stroke, with overall regulatory effects at multiple levels and on multiple targets. Many researchers have studied the effective components of TCMs and have achieved undeniable results. This paper reviews studies on the anticerebral ischemia effects of TCM monomers such as tetramethylpyrazine (TMP), dl-3-n-butylphthalide (NBP), ginsenoside Rg1 (Rg1), tanshinone IIA (TSA), gastrodin (Gas), and baicalin (BA) as well as effective extracts such as Ginkgo biloba extract (EGB). Research on the anticerebral ischemia effects of TCMs has focused mostly on their antioxidative stress, antiapoptotic, anti-inflammatory, proangiogenic, and proneurogenic effects. However, the research on the use of TCM to treat ischemic stroke remains incompletely characterized. Thus, we summarized and considered this topic from the perspective of pharmacokinetics, pharmacological effects, and mechanistic research, and we have provided a reference basis for future research and development on anticerebral ischemia TCM drugs.
Collapse
|
34
|
Liu H, Lu X, Hu Y, Fan X. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy. Pharmacol Res 2020; 161:105263. [PMID: 33127555 DOI: 10.1016/j.phrs.2020.105263] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
Panax ginseng (Meyer) and Panax notoginseng (Burkill), belonging to the family Araliaceae, are used worldwide as medicinal and functional herbs. Numerous publications over the past decades have revealed that both P. notoginseng and P. ginseng contain important bioactive ingredients such as ginsenosides and exert multiple pharmacological effects on nervous system and immune diseases. However, based on traditional Chinese medicine (TCM) theory, their applications clearly differ as ginseng reinforces vital energy and notoginseng promotes blood circulation. In this article, we review the similarities and differences between ginseng and notoginseng in terms of their chemical composition and pharmacological effects. Their chemical comparisons indicate that ginseng contains more polysaccharides and amino acids, while notoginseng has more saponins, volatile oil, and polyacetylenes. Regarding pharmacological effects, ginseng exhibits better protective effects on cardiovascular disease, nerve disease, cancer, and diabetes mellitus, whereas notoginseng displays a superior protective effect on cerebrovascular disease. The evidence presented in this review facilitates further research and clinical applications of these two herbs, and exploration of the relationship between the chemical components and disease efficacy may be the critical next step.
Collapse
Affiliation(s)
- Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yang Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Yang F, Ma Q, Matsabisa MG, Chabalala H, Braga FC, Tang M. Panax notoginseng for Cerebral Ischemia: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1331-1351. [PMID: 32907361 DOI: 10.1142/s0192415x20500652] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Panax notoginseng is the most widely used Chinese medicinal herb for the prevention and treatment of ischemic diseases. Its main active ingredients are saponins, including ginsenoside Rb1, ginsenoside Rg1, and notoginsenoside R1, among others. This review provides an up-to-date overview on the pharmacological roles of P. notoginseng constituents in cerebral ischemia. The saponins of P. notoginseng induce a variety of pharmacological effects in the multiscale mechanisms of cerebral ischemic pathophysiology, including anti-inflammatory activity, reduction of oxidative stress, anti-apoptosis, inhibition of amino acid excitotoxicity, reduction of intracellular calcium overload, protection of mitochondria, repairing the blood-brain barrier, and facilitation of cell regeneration. Regarding cell regeneration, P. notoginseng not only promotes the proliferation and differentiation of neural stem cells, but also protects neurons, endothelial cells and astrocytes in cerebral ischemia. In conclusion, P. notoginseng may treat cerebrovascular diseases through multiple pharmacological effects, and the most critical ones need further investigation.
Collapse
Affiliation(s)
- Fei Yang
- Tongchuan People's Hospital, Tongchuan, Shaanxi Province, P. R. China
| | - Qing Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Motlalepula G Matsabisa
- Department of Pharmacology, School of Medicines Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Hlupheka Chabalala
- IK-Based Technology Innovations Department of Science and Technology Brummeria, Pretoria 0001, South Africa
| | - Fernão Castro Braga
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Minke Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, P. R. China
| |
Collapse
|
36
|
Chen C, Chu SF, Ai QD, Zhang Z, Chen NH. CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. Int Immunopharmacol 2020; 85:106577. [PMID: 32446198 DOI: 10.1016/j.intimp.2020.106577] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chemokine-like factor 1 (CKLF1) is a chemokine increased significantly in ischemic brain poststroke. It shows chemotaxis effects on various immune cells, but the mechanisms of CKLF1 migrating neutrophils are poorly understood. Recent studies have provided evidence that CC chemokine receptor 5 (CCR5), a receptor of CKLF1, is involved in ischemic stroke. PURPOSES To investigate the effects of HIF-1α guided AAV in ischemic brain, investigating the outcome of stroke, and examining the involvement of CKLF1/CCR5 axis in recruitment of neutrophils. RESULTS HIF-1α guided AAV knocked down CKLF1 in ischemic area and alleviated brain damage of rats. CKLF1 migrated neutrophils through CCR5, worsening inflammatory responses. Akt/GSK-3β pathway may involve in CKLF1/CCR5 axis guided neutrophils chemotaxis. CONCLUSIONS CKLF1/CCR5 axis is involved in neutrophils migration of rats with transient cerebral ischemia. CKLF1/CCR5 axis may be a useful target for stroke therapy.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qi-di Ai
- Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hunan University of Traditional Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
37
|
Ginsenoside Rg1 and the control of inflammation implications for the therapy of type 2 diabetes: A review of scientific findings and call for further research. Pharmacol Res 2020; 152:104630. [DOI: 10.1016/j.phrs.2020.104630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/30/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
|
38
|
Fan X, Yan C, Ma Y, Li L, Zhang M, Zhan J. Effect and mechanism of ginsenoside Rg1 on synaptic plasticity of oxygen-glucose deprivation/reoxygenation-induced neuronal injury. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_541_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Effects of Phytochemicals on Blood Pressure and Neuroprotection Mediated Via Brain Renin-Angiotensin System. Nutrients 2019; 11:nu11112761. [PMID: 31739443 PMCID: PMC6893458 DOI: 10.3390/nu11112761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The renin-angiotensin system (RAS) in the brain plays a crucial role in maintaining blood pressure as well as neuroprotection. This study compared the effects of curcumin, quercetin, and saponin on blood pressure, the brain RAS, and cholinergic system using perindopril, an angiotensin converting enzyme inhibitor (ACEI), as a positive control. Methods: Five-week-old male mice were stabilized and randomly assigned into a control group (n = 8), three phytochemical-treated groups (curcumin (n = 8), quercetin (n = 8), and saponin (n = 8)), and a positive control group (n = 8). The groups treated with the phytochemical were orally administered daily at a dose of 50 mg/kg body weight of phytochemicals. During the experiments, the weight and dietary intakes were measured regularly. After experiments, the brain tissue was homogenized and centrifuged for an additional assay. The concentrations of ACE, angiotensin II (AngII), and aldosterone levels were measured, and the mRNA expressions of renin and ACE were measured. As biomarkers of neuroprotection, the concentrations of acetylcholine (ACh) as well as the concentration and activity of acetylcholine esterase (AChE) were measured. Results: After 4 weeks of treatment, the perindopril group showed the lowest blood pressure. Among the groups treated with the phytochemicals, treatment with curcumin and saponin significantly reduced blood pressure, although such effect was not as high as that of perindopril. Among phytochemicals, curcumin treatment significantly inhibited the concentration and activity of ACE, concentration of AngII, and mRNA expression of ACE. All phytochemical treatments significantly increased the concentration of ACh. The levels of AChE activity in groups exposed to curcumin or saponin (not quercetin) were significantly inhibited, Conclusion: Curcumin administration in rats reduced blood pressure by blocking the brain RAS components and protected the cholinergic system in brain by inhibiting the activity of AChE.
Collapse
|
40
|
Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur J Pharmacol 2019; 856:172418. [DOI: 10.1016/j.ejphar.2019.172418] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
|
41
|
Chen C, Chu SF, Ai QD, Zhang Z, Guan FF, Wang SS, Dong YX, Zhu J, Jian WX, Chen NH. CKLF1 Aggravates Focal Cerebral Ischemia Injury at Early Stage Partly by Modulating Microglia/Macrophage Toward M1 Polarization Through CCR4. Cell Mol Neurobiol 2019; 39:651-669. [PMID: 30982091 DOI: 10.1007/s10571-019-00669-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
CKLF1 is a chemokine with increased expression in ischemic brain, and targeting CKLF1 has shown therapeutic effects in cerebral ischemia model. Microglia/macrophage polarization is a mechanism involved in poststroke injury expansion. Considering the quick and obvious response of CKLF1 and expeditious evolution of stroke lesions, we focused on the effects of CKLF1 on microglial/macrophage polarization at early stage of ischemic stroke (IS). The present study is to investigate the CKLF1-mediated expression of microglia/macrophage phenotypes in vitro and in vivo, discussing the involved pathway. Primary microglia culture was used in vitro, and mice transient middle cerebral artery occlusion (MCAO) model was adopted to mimic IS. CKLF1 was added to the primary microglia for 24 h, and we found that CKLF1 modulated primary microglia skew toward M1 phenotype. In mice transient IS model, CKLF1 was stereotactically microinjected to the lateral ventricle of ischemic hemisphere. CKLF1 aggravated ischemic injury, accompanied by promoting microglia/macrophage toward M1 phenotypic polarization. Increased expression of pro-inflammatory cytokines and decreased expression of anti-inflammatory cytokines were observed in mice subjected to cerebral ischemia and administrated with CKLF1. CKLF1-/- mice were used to confirm the effects of CKLF1. CKLF1-/- mice showed lighter cerebral damage and decreased M1 phenotype of microglia/macrophage compared with the WT control subjected to cerebral ischemia. Moreover, NF-κB activation enhancement was detected in CKLF1 treatment group. Our results demonstrated that CKLF1 is an important mediator that skewing microglia/macrophage toward M1 phenotype at early stage of cerebral ischemic injury, which further deteriorates followed inflammatory response, contributing to early expansion of cerebral ischemia injury. Targeting CKLF1 may be a novel way for IS therapy.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qi-Di Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & Hunan University of Chinese Medicine First-class Disciple Construction Project of Chinese Materia Medica, Changsha, 410208, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, NHFPC, Peking Union Medicine College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan, 030619, China
| | - Yi-Xiao Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jie Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100050, China
| | - Wen-Xuan Jian
- DME Center, Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces & Hunan University of Chinese Medicine First-class Disciple Construction Project of Chinese Materia Medica, Changsha, 410208, China.
| |
Collapse
|
42
|
Fluoxetine suppresses inflammatory reaction in microglia under OGD/R challenge via modulation of NF-κB signaling. Biosci Rep 2019; 39:BSR20181584. [PMID: 30944203 PMCID: PMC6487262 DOI: 10.1042/bsr20181584] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/28/2019] [Accepted: 03/31/2019] [Indexed: 12/15/2022] Open
Abstract
We aimed to investigate the anti-inflammatory role of fluoxetine, a selective serotonin reuptake inhibitor, in microglia (MG) and the mechanisms under oxygen glucose deprivation/reoxygenation (OGD/R). An OGD/R model on BV-2 cells was used for the study of microglia under ischemia/reperfusion injury in ischemic stroke. Lentiviral transfection was applied to knock down IκB-α. Enzyme-linked immunosorbent assay (ELISA) was used for detecting levels of TNF-α, IL-1β, and IL-6, and real-time PCR was used to assess the expression of IκB-α protein. Western blotting was applied to analyze NF-κB-signaling related proteins and Cell Counting Kit-8 (CCK-8) was used for assessing cell viability. Molecular docking and drug affinity responsive target stability (DARTS) assay were used for the detection of the interaction between IκB-α and fluoxetine. We found that fluoxetine decreased the levels of TNF-α, IL-1β, and IL-6 in supernatant as well as NF-κB subunits p65 and p50 in BV-2 cells under OGD/R. Fluoxetine significantly increased the level of IκB-α through the inhibition of IκB-α ubiquitylation and promoted the bonding of IκB-α and fluoxetine in BV-2 cells under OGD/R. Knocking down IκB-α attenuated the decreasing effect of TNF-α, IL-1β, and IL-6 as well as p65 and p50 in BV-2 cells under OGD/R led to by fluoxetine. In conclusion, our present study demonstrated the anti-inflammatory role of fluoxetine and its mechanisms related to the modulation of NF-κB-related signaling in MG under ischemia/reperfusion challenge.
Collapse
|
43
|
Liu L, Anderson GA, Fernandez TG, Doré S. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke. Front Neurosci 2019; 13:294. [PMID: 31068769 PMCID: PMC6491687 DOI: 10.3389/fnins.2019.00294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Stroke is one of the leading causes of death and long-term disability worldwide. However, effective therapeutic approaches are still limited. The disruption of blood supply triggers complicated temporal and spatial events involving hemodynamic, biochemical, and neurophysiologic changes, eventually leading to pathological disturbance and diverse clinical symptoms. Ginseng (Panax ginseng), a popular herb distributed in East Asia, has been extensively used as medicinal and nutritional supplements for a variety of disorders worldwide. In recent years, ginseng has displayed attractive beneficial effects in distinct neurological disorders including stroke, involving multiple protective mechanisms. In this article, we reviewed the literature on ginseng studies in the experimental stroke field, particularly focusing on the in vivo evidence on the preventive or therapeutic efficacy and mechanisms of ginseng and ginsenosides in various stroke models of mice and rats. We also summarized the efficacy and underlying mechanisms of ginseng and ginsenosides on short- and long-term stroke outcomes.
Collapse
Affiliation(s)
- Lei Liu
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Gigi A Anderson
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Tyler G Fernandez
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Pharmaceutics, and Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
44
|
Fan X, Zhang C, Niu S, Fan B, Gu D, Jiang K, Li R, Li S. Ginsenoside Rg1 attenuates hepatic insulin resistance induced by high-fat and high-sugar by inhibiting inflammation. Eur J Pharmacol 2019; 854:247-255. [PMID: 31002778 DOI: 10.1016/j.ejphar.2019.04.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/22/2023]
Abstract
Ginsenoside Rg1 is the active ingredient of Chinese herbal medicine ginseng and sanqi, which has remarkable effects on anti-inflammation and anti-diabetes. In this study, we explored the molecular mechanism of ginsenoside Rg1 against diabetes in rat subjected to insulin resistance induced by high-fat and high-sugar (HFHS). Biochemical analysis revealed that ginsenoside Rg1 significantly decreased the serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, total cholesterol, triglyceride, low-density lipoprotein and increased the serum levels of high-density lipoprotein, which indicated ginsenoside Rg1 improved the extent of hepatic steatosis. Furthermore, ginsenoside Rg1 suppressed the expression of IL-1β, IL-6,TNF-α,NF-κB and G6Pase, however, p-Akt was up-regulated. These results suggested that ginsenosideRg1 improved insulin resistance through suppressing inflammatory response and glucose output, which may be a potential therapeutic strategy in protecting hepatic steatosis.
Collapse
Affiliation(s)
- Xiaoming Fan
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan, 455000, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Chao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Shiwei Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Biao Fan
- The Center of Basic Experiment, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Danshan Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Kerong Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China
| | - Ruonan Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, 650011, PR China.
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, Yunnan, 650500, PR China; Yunnan Province Key Laboratory for Nutrition and Food Safety in Universities, Kunming, Yunnan, 650011, PR China.
| |
Collapse
|
45
|
Fan X, Tao J, Zhou Y, Hou Y, Wang Y, Gu D, Su Y, Jang Y, Li S. Investigations on the effects of ginsenoside-Rg1 on glucose uptake and metabolism in insulin resistant HepG2 cells. Eur J Pharmacol 2019; 843:277-284. [DOI: 10.1016/j.ejphar.2018.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023]
|
46
|
Kim DH, Kim DW, Jung BH, Lee JH, Lee H, Hwang GS, Kang KS, Lee JW. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J Ginseng Res 2018; 43:326-334. [PMID: 30976171 PMCID: PMC6437470 DOI: 10.1016/j.jgr.2018.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/21/2018] [Accepted: 12/07/2018] [Indexed: 12/04/2022] Open
Abstract
Background The objective of our study was to analyze the neuroprotective effects of ginsenoside derivatives Rb1, Rb2, Rc, Rd, Rg1, and Rg3 against glutamate-mediated neurotoxicity in HT22 hippocampal mouse neuron cells. Methods The neuroprotective effect of ginsenosides were evaluated by measuring cell viability. Protein expressions of mitogen-activated protein kinase (MAPK), Bcl2, Bax, and apoptosis-inducing factor (AIF) were determined by Western blot analysis. The occurrence of apoptotic and death cells was determined by flow cytometry. Cellular level of Ca2+ and reactive oxygen species (ROS) levels were evaluated by image analysis using the fluorescent probes Fluor-3 and 2′,7′-dichlorodihydrofluorescein diacetate, respectively. In vivo efficacy of neuroprotection was evaluated using the Mongolian gerbil of ischemic brain injury model. Result Reduction of cell viability by glutamate (5 mM) was significantly suppressed by treatment with ginsenoside Rb2. Phosphorylation of MAPKs, Bax, and nuclear AIF was gradually increased by treatment with 5 mM of glutamate and decreased by co-treatment with Rb2. The occurrence of apoptotic cells was decreased by treatment with Rb2 (25.7 μM). Cellular Ca2+ and ROS levels were decreased in the presence of Rb2, and in vivo data indicated that Rb2 treatment (10 mg/kg) significantly diminished the number of degenerated neurons. Conclusion Our results suggest that Rb2 possesses neuroprotective properties that suppress glutamate-induced neurotoxicity. The molecular mechanism of Rb2 is by suppressing the MAPKs activity and AIF translocation.
Collapse
Affiliation(s)
- Dong Hoi Kim
- Convergence Research Center for Dementia, KIST, Seoul, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry, College of Dentistry, Gangneung Wonju National University, Gangneung, Republic of Korea
| | - Bo Hyun Jung
- Department of Oral Anatomy, College of Dentistry, Gangneung Wonju National University, Gangneung, Republic of Korea
| | - Jong Hun Lee
- Department of Oral Anatomy, College of Dentistry, Gangneung Wonju National University, Gangneung, Republic of Korea
| | - Heesu Lee
- Department of Oral Anatomy, College of Dentistry, Gangneung Wonju National University, Gangneung, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gacheun University, Seongnam, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gacheun University, Seongnam, Republic of Korea
| | - Jae Wook Lee
- Convergence Research Center for Dementia, KIST, Seoul, Republic of Korea.,Natural Constituent Research Center, KIST, Gangneung, Republic of Korea
| |
Collapse
|
47
|
Xie W, Zhou P, Sun Y, Meng X, Dai Z, Sun G, Sun X. Protective Effects and Target Network Analysis of Ginsenoside Rg1 in Cerebral Ischemia and Reperfusion Injury: A Comprehensive Overview of Experimental Studies. Cells 2018; 7:cells7120270. [PMID: 30545139 PMCID: PMC6316103 DOI: 10.3390/cells7120270] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemia-reperfusion is a complicated pathological process. The injury and cascade reactions caused by cerebral ischemia and reperfusion are characterized by high mortality, high recurrence, and high disability. However, only a limited number of antithrombotic drugs, such as recombinant tissue plasminogen activator (r-TPA), aspirin, and heparin, are currently available for ischemic stroke, and its safety concerns is inevitable which associated with reperfusion injury and hemorrhage. Therefore, it is necessary to further explore and examine some potential neuroprotective agents with treatment for cerebral ischemia and reperfusion injury to reduce safety concerns caused by antithrombotic drugs in ischemic stroke. Ginseng Rg1 (G-Rg1) is a saponin composed of natural active ingredients and derived from the roots or stems of Panax notoginseng and ginseng in traditional Chinese medicine. Its pharmacological effects exert remarkable neurotrophic and neuroprotective effects in the central nervous system. To explore and summarize the protective effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury, we conducted this review, in which we searched the PubMed database to obtain and organize studies concerning the pharmacological effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury. This study provides a valuable reference and clues for the development of new agents to combat ischemic stroke. Our summarized review and analysis show that the pharmacological effects of and mechanisms underlying ginsenoside Rg1 activity against cerebral ischemia and reperfusion injury mainly involve 4 sets of mechanisms: anti-oxidant activity and associated apoptosis via the Akt, Nrf2/HO-1, PPARγ/HO-1, extracellular regulated protein kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) pathways (or mitochondrial apoptosis pathway) and the caspase-3/ROCK1/MLC pathway; anti-inflammatory and immune stimulatory-related activities that involve apoptosis or necrosis via MAPK pathways (the JNK1/2 + ERK1/2 and PPARγ/HO-1 pathways), endoplasmic reticulum stress (ERS), high mobility group protein1 (HMGB1)-induced TLR2/4/9 and receptor for advanced glycation end products (RAGE) pathways, and the activation of NF-κB; neurological cell cycle, proliferation, differentiation, and regeneration via the MAPK pathways (JNK1/2 + ERK1/2, PI3K-Akt/mTOR, PKB/Akt and HIF-1α/VEGF pathways); and energy metabolism and the regulation of cellular ATP levels, the blood-brain barrier and other effects via N-methyl-D-aspartic acid (NMDA) receptors, ERS, and AMP/AMPK-GLUT pathways. Collectively, these mechanisms result in significant neuroprotective effects against cerebral ischemic injury. These findings will be valuable in that they should further promote the development of candidate drugs and provide more information to support the application of previous findings in stroke clinical trials.
Collapse
Affiliation(s)
- Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Yifan Sun
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China.
| | - Xiangbao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Ziru Dai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| |
Collapse
|
48
|
Wu P, Yan XS, Zhang Y, Huo DS, Song W, Fang X, Wang H, Yang ZJ, Jia JX. The protective mechanism underlying total flavones of Dracocephalum (TFD) effects on rat cerebral ischemia reperfusion injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1199-1206. [PMID: 30457456 DOI: 10.1080/15287394.2018.1504385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previously, total flavones of Dracocephalum (TFD), derived from Dracocephalum, were found to exert protective effects in cerebral ischemia reperfusion injury (CIRI) in middle cerebral artery occlusion (MCAO) rat model. However, the mechanisms underlying these observed effects of TFD on MCAO-induced rats still remain to be determined. Therefore, the aim of this study was to examine whether TFD alleviated MCAO through mechanisms involving anti-inflammatory and anti-apoptotic using MCAO rats. The following parameters were measured: (1) percentage (%) area of brain infarction; (2) serum levels of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and (3) expression protein levels of caspase-3 and AMP-activated protein kinase (AMPK). Results showed that MCAO significantly increased the % area of brain infarction, while TFD administration in these animals markedly reduced % area of brain infarction. A significant elevation on serum levels of TNF-α and IL-6 was noted with MCAO which was markedly reduced by TFD. In addition, MCAO produced a significant rise in protein expression levels of caspase-3 and AMPK. In contrast, TFD markedly lowered protein expression levels of caspase-3 and AMPK. Data suggest that the protective effects of TFD in MCAO model animals may involve inhibition of inflammatory mediator release associated with apoptosis through down regulation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Peng Wu
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xu-Sheng Yan
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Yu Zhang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Dong-Sheng Huo
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Wei Song
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Xin Fang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - He Wang
- b School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Zhan-Jun Yang
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| | - Jian-Xin Jia
- a Department of Human Anatomy , Baotou Medical College , Inner Mongolia , China
| |
Collapse
|
49
|
Wu P, Yan XS, Zhang Y, Huo DS, Song W, Fang X, Wang H, Yang ZJ, Jia JX. The protective mechanism underlying total flavones of Dracocephalum (TFD) effects on rat cerebral ischemia reperfusion injury. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1108-1115. [PMID: 30430924 DOI: 10.1080/15287394.2018.1503073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previously, total flavones of Dracocephalum (TFD), derived from Dracocephalum, were found to exert protective effects in cerebral ischemia reperfusion injury (CIRI) in middle cerebral artery occlusion (MCAO) rat model. However, the mechanisms underlying these observed effects of TFD on MCAO-induced rats still remain to be determined. Therefore, the aim of this study was to examine whether TFD alleviated MCAO through mechanisms involving anti-inflammatory and anti-apoptotic using MCAO rats. The following parameters were measured: (1) percentage (%) area of brain infarction; (2) serum levels of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) and (3) expression protein levels of caspase-3 and AMP-activated protein kinase (AMPK). Results showed that MCAO significantly increased the % area of brain infarction, while TFD administration in these animals markedly reduced % area of brain infarction. A significant elevation on serum levels of TNF-α and IL-6 was noted with MCAO which was markedly reduced by TFD. In addition, MCAO produced a significant rise in protein expression levels of caspase-3 and AMPK. In contrast, TFD markedly lowered protein expression levels of caspase-3 and AMPK. Data suggest that the protective effects of TFD in MCAO model animals may involve inhibition of inflammatory mediator release associated with apoptosis through down regulation of AMPK signaling pathway.
Collapse
Affiliation(s)
- Peng Wu
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Xu-Sheng Yan
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Yu Zhang
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Dong-Sheng Huo
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Wei Song
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Xin Fang
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - He Wang
- b School of Health Sciences , University of Newcastle , Newcastle , Australia
| | - Zhan-Jun Yang
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| | - Jian-Xin Jia
- a Department of Human Anatomy , Baotou Medical College , Baotou , Inner Mongolia , China
| |
Collapse
|