1
|
Garcia MR, Ferreres F, Mineiro T, Videira RA, Gil-Izquierdo Á, Andrade PB, Seabra V, Dias-da-Silva D, Gomes NGM. Mexican calea (Calea zacatechichi Schltdl.) interferes with cholinergic and dopaminergic pathways and causes neuroglial toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118915. [PMID: 39389391 DOI: 10.1016/j.jep.2024.118915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of "Mexican calea" (Calea zacatechichi Schltdl.) in ritualistic ceremonies, due to its dream-inducing effects, was until recently limited to indigenous communities in Mexico. However, the plant has recently gained popularity in Western societies being commonly used in recreational settings. Despite the traditional and recreational uses, mechanisms underlying its reported oneirogenic effects remain unknown, with no data available on its neurotoxic profile. AIM OF THE STUDY The scarcity of toxicological data and the unknown role of major neurotransmitter systems in the dream-inducing properties of the plant prompted us to investigate which neurotransmitters might be affected upon its consumption, as well as the potential cytotoxic effects on neurons and microglial cells. Furthermore, we aimed to explore a relationship between the recorded effects and specific constituents. MATERIALS AND METHODS Effects on cholinergic and monoaminergic pathways were investigated using enzymatic assays, with the latter also being conducted in neuronal SH-SY5Y cells along with the impact on glutamate-induced excitotoxicity. Investigation of the neurotoxic profile was approached in neuronal SH-SY5Y and microglial BV-2 cells, evaluating effects on metabolic performance and membrane integrity using MTT and LDH leakage assays, respectively. Potential interference with oxidative stress was monitored by assessing free radical's levels, as well as 5-lipoxygenase mediated lipid peroxidation. Phenolic constituents were identified through HPLC-DAD-ESI(Ion Trap)MSn analysis. RESULTS Based on the significant inhibition upon acetylcholinesterase (p < 0.05) and tyrosinase (IC50 = 60.87 ± 7.3 μg/mL; p < 0.05), the aqueous extract obtained from the aerial parts of C. zacatechichi interferes with the cholinergic and dopaminergic systems, but has no impact against monoamine oxidase A. Additionally, a notable cytotoxic effect was observed in SH-SY5Y and BV-2 cells at concentrations as low as 125 and 500 μg/mL (p < 0.05), respectively, LDH leakage suggesting apoptosis may occur at these concentrations, with necroptosis observed at higher ones. Despite the neurocytotoxic profile, these effects appear to be independent of radical stress, as the C. zacatechichi extract scavenged nitric oxide and superoxide radicals at concentrations as low as 62.5 μg/mL, significantly inhibiting also 5-lipoxygenase (IC50 = 72.60 ± 7.3 μg/mL; p < 0.05). Qualitative and quantitative analysis using HPLC-DAD-ESI(Ion Trap)MSn enabled the identification of 28 constituents, with 24 of them being previously unreported in this species. These include a series of dicaffeoylquinic, caffeoylpentoside, and feruloylquinic acids, along with 8 flavonols not previously known to occur in the species, mainly 3-O-monoglycosylated derivatives of quercetin, kaempferol, and isorhamnetin. CONCLUSIONS Our findings regarding the neuroglial toxicity elicited by C. zacatechichi emphasize the necessity for a thorough elucidation of the plant's toxicity profile. Additionally, evidence is provided that the aerial parts of the plant inhibit both acetylcholinesterase and tyrosinase, potentially linking its psychopharmacological effects to the cholinergic and dopaminergic systems, with an apparent contribution from specific phenolic constituents previously unknown to occur in the species. Collectively, our results lay the groundwork for a regulatory framework on the consumption of C. zacatechichi in recreational settings and contribute to elucidating previous contradictory findings regarding the mechanisms underlying the dream-inducing effects of the plant.
Collapse
Affiliation(s)
- Maria Rita Garcia
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal; UCIBIO, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Federico Ferreres
- Molecular Recognition and Encapsulation (REM) Group, Department of Food Technology and Nutrition, Universidad Católica de Murcia, 30107, Murcia, Spain.
| | - Tiago Mineiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100, Murcia, Spain.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| | - Vítor Seabra
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Diana Dias-da-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal; UCIBIO, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal; LAQV/REQUIMTE, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Krgović N, Radović Selgrad J, Ilić T, Arsenijević J, Ranđelović V, Radan M, Živković J, Šavikin K, Kundaković Vasović T. Endemic Plant Rumex balcanicus: Phenolic Composition, Antioxidant Activity, Enzyme Inhibitory Potential and Molecular Docking Analysis. Chem Biodivers 2024:e202401488. [PMID: 39373260 DOI: 10.1002/cbdv.202401488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Although the nutritional and health benefits of Rumex species are well known, little is known about the chemical composition and pharmacological activities of Rumex balcanicus Rech. fil. (Polygonaceae), an endemic plant of the Balkan Peninsula. To the best of our knowledge, this paper represents the first attempt to comparatively analyse phenolic composition, as well as in vitro pharmacological activites of dry hydromethanol extracts of R. balcanicus fruit (RBF), leaf (RBL) and root (RBR), collected in Serbia. The maximum total phenolic content was found in RBF (386.6 mg GAE/g). The RBF was characterized by high amounts of miquelianin (28.8 mg/g) and procyanidin B1 (28.1 mg/g). The RBL was the richest in quercitrin (18.4 mg/g) and miquelianin (15.0 mg/g), while nepodin (54.1 mg/g) and procyanidin B2 (40.6 mg/g) were the major compounds in RBR. The RBF exhibited significant antioxidant activity, evaluated by DPPH (IC50=4.9 μg/mL), ABTS (IC50=0.8 μg/mL) and FRAP (5.9 mmol Fe2+/g) assays. Moreover, RBF showed strong α-glucosidase inhibitory activity (IC50=1.8 μg/mL), in addition to notable anti-α-amylase, anti-acetylcholinesterase and anti-tyrosinase activities. Molecular docking analysis predicted miquelianin and procyanidin B2 as the greatest inhibitors of these enzymes. Overall, R. balcanicus fruits stood out as the most promising plant material worth further research.
Collapse
Affiliation(s)
- Nemanja Krgović
- Institute for Medicinal Plants Research Dr. Josif Pančić, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Jelena Radović Selgrad
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Tijana Ilić
- Department of Bromatology, University of Belgrade-Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Jelena Arsenijević
- Department of Pharmacognosy, University of Belgrade-Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Vladimir Ranđelović
- Department of Biology and Ecology, University of Niš-Faculty of Sciences and Mathematics, 18000, Niš, Serbia
| | - Milica Radan
- Institute for Medicinal Plants Research Dr. Josif Pančić, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research Dr. Josif Pančić, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research Dr. Josif Pančić, Tadeuša Košćuška 1, 11000, Belgrade, Serbia
| | | |
Collapse
|
3
|
Afshin N, Mushtaq N, Ahmed M, Sher N, Alhag SK, Khalil FMA, Al-Shuraym LA, Hameed H, Badshah F, Hussain R. Biogenic synthesis of AgNPs via polyherbal formulation: Mechanistic neutralization and toxicological impact on acetylcholinesterase from Bungarus sindanus venom. Microsc Res Tech 2024. [PMID: 39367638 DOI: 10.1002/jemt.24701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 09/08/2024] [Indexed: 10/06/2024]
Abstract
This study aims to examine the biogenic production, characterization, and anti-acetylcholinesterase (AAChE) properties of polyherbal formulation PHF-extract-synthesized silver nanoparticles (PHF-AgNPs). The Elapidae snake Bungarus sindanus has extremely dangerous venom for humans and contains a high amount of AChE (acetylcholinesterase). Inhibiting AChE leads to acetylcholine buildup, affecting neurotransmission. The study tested silver nanoparticles as AChE inhibitors using kinetics. Their production was confirmed through ultraviolet (UV) spectrometry at 425 nm (SPR peak of 1.94), and stabilizing functional groups were identified via Fourier transform infrared spectroscopy (FT-IR). The average length of 20 nm was confirmed by analyzing the scanning electron microscopy (SEM) data. Energy-dispersive X-ray spectroscopy (EDX) identified silver as the primary component of PHF-AgNPs (26%). Statistical analysis showed that the activity of AChE in krait venom decreased by up to 45% and 37% at a given dose of ACh (0.5 mM) by PHF and AgNPs, respectively. Utilizing the Lineweaver-Burk plot for kinetic analysis, a competitive type of inhibition is found. RESEARCH HIGHLIGHTS: Successfully synthesized PHF-extract-induced silver nanoparticles (PHF-AgNPs) demonstrated through UV spectrometry and characterized as crystalline with an average size of 45 nm by X-ray diffraction. PHF-AgNPs effectively inhibited acetylcholinesterase (AChE), an enzyme critical in neurotransmission, reducing its activity in krait venom by up to 45% at certain concentrations. Kinetic analysis revealed that the inhibition mechanism of AChE by PHF-AgNPs is competitive, offering potential for therapeutic applications in neurologically related conditions.
Collapse
Affiliation(s)
- Noshaba Afshin
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| | - Nadia Mushtaq
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology Bannu-KPK, Pakistan
| | - Naila Sher
- Department of Biotechnology, University of Science and Technology Bannu-KPK, Pakistan
| | - Sadeq K Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser, Saudi Arabia
| | | | - Laila A Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hajra Hameed
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Farhad Badshah
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Riaz Hussain
- Department of Botany, University of Science and Technology Bannu-KPK, Pakistan
| |
Collapse
|
4
|
Piragine E, De Felice M, Germelli L, Brinkmann V, Flori L, Martini C, Calderone V, Ventura N, Da Pozzo E, Testai L. The Citrus flavanone naringenin prolongs the lifespan in C. elegans and slows signs of brain aging in mice. Exp Gerontol 2024; 194:112495. [PMID: 38897393 DOI: 10.1016/j.exger.2024.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Aging is one of the main risk factors for neurodegenerative disorders, which represent a global burden on healthcare systems. Therefore, identifying new strategies to slow the progression of brain aging is a compelling challenge. In this article, we first assessed the potential anti-aging effects of the Citrus flavanone naringenin (NAR), an activator of the enzyme sirtuin-1 (SIRT1), in a 3R-compliant and short-lived aging model (i.e., the nematode C. elegans). Then, we investigated the preventive effects of a 6-month treatment with NAR (100 mg/kg, orally) against brain aging and studied its mechanism of action in middle-aged mice. We demonstrated that NAR (100 μM) extends lifespan and improves healthspan in C. elegans. In the brain of middle-aged mice, NAR promotes the activity of metabolic enzymes (citrate synthase, cytochrome C oxidase) and increases the expression of the SIRT1 enzyme. Consistently, NAR up-regulates the expression of downstream antioxidant (Foxo3, Nrf2, Ho-1), anti-senescence (p16), and anti-inflammatory (Il-6, Il-18) markers. Our findings support NAR supplementation to slow the signs of brain aging.
Collapse
Affiliation(s)
- Eugenia Piragine
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | | | | | - Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.
| | | | - Claudia Martini
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Italy; Interdepartmental Research Center "Biology and Pathology of Ageing", University of Pisa, Italy; Interdepartmental Research Center "Nutrafood-Nutraceuticals and Food for Health", University of Pisa, Italy.
| |
Collapse
|
5
|
Zhang H, Liu Y, Zhang L, Tian Z, Zhang H, Jiang H. Rapid identification of chemical components and screening of acetylcholinesterase inhibitors from Dalbergia odorifera based on mass defect and diagnostic ion filtering strategy, affinity ultrafiltration, and liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2400288. [PMID: 39034832 DOI: 10.1002/jssc.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Dalbergia odorifera is a natural product rich in pharmacological ingredients, but the comprehensive characterization and rapid profiling of active components remain a challenge. Thus, an integrated data mining and identification strategy was exploited to efficiently identify the chemical constituents and screen acetylcholinesterase inhibitors (AChEIs) through affinity ultrafiltration and ultra-high-performance liquid chromatography-mass spectrometry (AUF-UHPLC-MS). As a result, polygonal mass defect filtering, diagnostic product ions, and neutral loss rules were created for rapid structural classification and component identification. A total of 140 flavonoids were tentatively characterized, including 41 isoflavonoids, 23 flavanones, 21 isoflavans, 19 flavones and flavonols, 13 neoflavonoids, 11 isoflavanones, seven flavone glycosides, and five chalcones. Subsequently, six natural AChEIs including tectorigenin, fisetin, dalbergin, pterostilbene, isoliquiritigenin, and biochanin A were screened out using AUF-UHPLC-MS and molecular docking. Meanwhile, the AChE inhibitory activities of the six compounds were assessed in vitro, tectorigenin, fisetinand, and dalbergin have moderate inhibitory activity. In conclusion, a novel strategy for systematic characterization and further screening of active compounds in natural products was established, which provides a material basis for quality control of Dalbergia odorifera.
Collapse
Affiliation(s)
- Hongbin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuecheng Liu
- Institute of Traditional Chinese Medicine Analysis, Shandong Academy of Chinese Medicine, Jinan, China
| | - Ling Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenhua Tian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Province Cardiovascular Disease TCM Precision Treatment Engineering Research Centre, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Cao Y, Chen Y, Zhou Y, Chen X, Peng J. Direct detection of acetylcholinesterase by Fe(HCOO) 2.6(OH) 0.3. H 2O nanosheets with oxidase-like activity on a smartphone platform. Talanta 2024; 274:126074. [PMID: 38608632 DOI: 10.1016/j.talanta.2024.126074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2024]
Abstract
Monitoring acetylcholinesterase (AChE) is crucial in clinical diagnosis and drug screening. Traditional methods for detecting AChE usually require the addition of intermediates like acetylthiocholine, which complicates the detection process and introduces interference risks. Herein, we develop a direct colorimetric assay based on alkaline iron formate nanosheets (Fe(HCOO)2.6(OH)0.3·H2O NSs, Fef NSs) for the detection of AChE without any intermediates. The as-prepared Fef NSs exhibit oxidase-like activity, catalyzing the generation of O2·-, 1O2 and ·OH, which leads to a color change from colorless to blue when exposed to 3,3',5,5'-tetramethylbenzidine. AChE directly inhibits the oxidase-like activity of Fef NSs, resulting in a hindered color reaction, enabling the detection of AChE. The biosensor has a linear detection range of 0.1-30 mU/mL, with a minimum detection limit of 0.0083 mU/mL (S/N = 3), representing a 100-fold improvement in detection sensitivity over the traditional Ellman's method. Satisfactory results were obtained when analyzing real AChE samples. Attractively, a method for the quantitative detection of AChE by a smartphone is established based on the Fef NSs. This method enables instant acquisition of AChE concentrations, achieving real-time visualized detection.
Collapse
Affiliation(s)
- Yongbin Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yuanyuan Chen
- Department of Pharmacology, Medical College, Wuhan University of Science and Technology, Wuhan, 430022, China
| | - Yue Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaohua Chen
- Department of Laboratory Medicine, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Jian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan, 430070, China; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
7
|
Al-Qudah MA, Al-Zereini WA, Al-Jaber HI, Alhamzani AG, Bataineh TT, Abu-Orabi ST, Al-Mustafa AH. Isolation of a new flavonoid from Prasium majus L. with evaluation of its potential biological activities. Nat Prod Res 2024:1-14. [PMID: 38907699 DOI: 10.1080/14786419.2024.2364368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024]
Abstract
In line with the importance of Prasium majus L. (Lamiaciatae) in traditional medicine as a calming and sedative remedy, the present study was designed to reveal its chemical constituents and bioactivity potentials. Thus, after extraction and fractionation of the plant material, the obtained butanol fraction (BPm) was subjected to conventional chromatographic separation of its constituents in addition to LC-MS/MS evaluation versus some authentic standards. The study resulted in the isolation and characterisation of 8 compounds, including one new chrysoeriol derivative, majusiode (1). Structural elucidation of all isolated compounds was based on detailed investigation of their spectral data (NMR (1 & 2D), ESI-MS, IR and UV-Vis). HPLC-MS/MS analysis versus authentic samples lead to the detection of 31 constituents, including all 8 isolated compounds. The new compound (1) showed moderate AChE inhibition power (IC50: 163.3 ± 3.4 µg/mL) as compared to the positive control galanthamine (91.4 ± 5.2 µg/mL) and moderate DPPH•/ABTS•+ scavenging power.
Collapse
Affiliation(s)
- Mahmoud A Al-Qudah
- Department of Chemistry, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Wael A Al-Zereini
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - Hala I Al-Jaber
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Abdulrahman G Alhamzani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Tareq T Bataineh
- Department of Chemistry, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Sultan T Abu-Orabi
- Department of Medical Analysis, Faculty of Science, Tishk international University, Erbil, Iraq
| | - Ahmed H Al-Mustafa
- Department of Biological Sciences, Faculty of Science, Mutah University, Al-Karak, Jordan
| |
Collapse
|
8
|
Frazão DF, Martins-Gomes C, Díaz TS, Delgado F, Gonçalves JC, Silva AM. Labdanum Resin from Cistus ladanifer L. as a Source of Compounds with Anti-Diabetic, Neuroprotective and Anti-Proliferative Activity. Molecules 2024; 29:2222. [PMID: 38792084 PMCID: PMC11124373 DOI: 10.3390/molecules29102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Labdanum resin or "gum" can be obtained from Cistus ladanifer L. by two different extraction methods: the Zamorean and the Andalusian processes. Although its main use is in the fragrance and perfumery sectors, ethnobotanical reports describe its use for medicinal purposes in managing hyperglycemia and mental illnesses. However, data concerning the bioactivities and pharmacological applications are scarce. In this work, it was found that the yield of labdanum resin extracted by the Andalusian process was 25-fold higher than the Zamorean one. Both resins were purified as absolutes, and the Andalusian absolute was purified into diterpenoid and flavonoid fractions. GC-EI-MS analysis confirmed the presence of phenylpropanoids, labdane-type diterpenoids, and methylated flavonoids, which are already described in the literature, but revealed other compounds, and showed that the different extracts presented distinct chemical profile. The potential antidiabetic activity, by inhibition of α-amylase and α-glucosidase, and the potential neuroprotective activity, by inhibition of acetylcholinesterase, were investigated. Diterpenoid fraction produced the higher α-amylase inhibitory effect (~30% and ~40% at 0.5 and 1 mg/mL, respectively). Zamorean absolute showed the highest α-glucosidase inhibitory effect (~14% and ~24%, at 0.5 and 1 mg/mL, respectively). Andalusian absolute showed the highest acetylcholinesterase inhibitory effect (~70% and ~75%, at 0.5 and 1 mg/mL, respectively). Using Caco-2 and HepG2 cell lines, Andalusian absolute and its purified fractions showed moderate cytotoxic/anti-proliferative activity at 24 h exposure (IC50 = 45-70 µg/mL, for Caco-2; IC50 = 60-80 µg/mL, for HepG2), whereas Zamorean absolute did not produce cytotoxicity (IC50 ≥ 200.00 µg/mL). Here we show, for the first time, that labdanum resin obtained by the Andalusian process, and its fractions, are composed of phytochemicals with anti-diabetic, neuroprotective and anti-proliferative potential, which are worth investigating for the pharmaceutical industry. However, toxic side-effects must also be addressed when using these products by ingestion, as done traditionally.
Collapse
Affiliation(s)
- David F. Frazão
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Mediterranean Institute for Agriculture, Environment and Development (MED), Centre of Agronomic and Agro-Industrial Biotechnology of Alentejo (CEBAL), 7801-908 Beja, Portugal
| | - Carlos Martins-Gomes
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
| | - Teresa Sosa Díaz
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain;
| | - Fernanda Delgado
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal
| | - José C. Gonçalves
- Plant Biotechnology Center of Beira Interior (CBPBI), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal; (F.D.); (J.C.G.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Castelo Branco (IPCB), Quinta da Senhora de Mércules, Apartado 119, 6001-909 Castelo Branco, Portugal
| | - Amélia M. Silva
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal; (D.F.F.); (C.M.-G.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
9
|
Newairy ASAS, Hamaad FA, Wahby MM, Ghoneum M, Abdou HM. Neurotherapeutic effects of quercetin-loaded nanoparticles and Biochanin-A extracted from Trifolium alexandrinum on PI3K/Akt/GSK-3β signaling in the cerebral cortex of male diabetic rats. PLoS One 2024; 19:e0301355. [PMID: 38683825 PMCID: PMC11057738 DOI: 10.1371/journal.pone.0301355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3β and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1β, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3β, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.
Collapse
Affiliation(s)
| | - Fatma Ahmad Hamaad
- Faculty of Science, Department of Biochemistry, Alexandria University, Alexandria, Egypt
| | - Mayssaa Moharm Wahby
- Faculty of Science, Department of Biochemistry, Alexandria University, Alexandria, Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, United States of America
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Heba Mohamed Abdou
- Faulty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Oldoni AA, Bacchi AD, Mendes FR, Tiba PA, Mota-Rolim S. Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review. Brain Sci 2024; 14:426. [PMID: 38790404 PMCID: PMC11119155 DOI: 10.3390/brainsci14050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Lucid dreaming (LD) is a physiological state of consciousness that occurs when dreamers become aware that they are dreaming, and may also control the oneiric content. In the general population, LD is spontaneously rare; thus, there is great interest in its induction. Here, we aim to review the literature on neuropsychopharmacological induction of LD. First, we describe the circadian and homeostatic processes of sleep regulation and the mechanisms that control REM sleep with a focus on neurotransmission systems. We then discuss the neurophysiology and phenomenology of LD to understand the main cortical oscillations and brain areas involved in the emergence of lucidity during REM sleep. Finally, we review possible exogenous substances-including natural plants and artificial drugs-that increase metacognition, REM sleep, and/or dream recall, thus with the potential to induce LD. We found that the main candidates are substances that increase cholinergic and/or dopaminergic transmission, such as galantamine. However, the main limitation of this technique is the complexity of these neurotransmitter systems, which challenges interpreting results in a simple way. We conclude that, despite these promising substances, more research is necessary to find a reliable way to pharmacologically induce LD.
Collapse
Affiliation(s)
- Abel A. Oldoni
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - André D. Bacchi
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis 78736-900, Brazil;
| | - Fúlvio R. Mendes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Paula A. Tiba
- Center for Mathematics, Computing and Cognition, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil; (A.A.O.); (P.A.T.)
| | - Sérgio Mota-Rolim
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
11
|
Kanon AP, Giezenaar C, Roy NC, Jayawardana IA, Lomiwes D, Montoya CA, McNabb WC, Henare SJ. Effects of Green and Gold Kiwifruit Varieties on Antioxidant Neuroprotective Potential in Pigs as a Model for Human Adults. Nutrients 2024; 16:1097. [PMID: 38674790 PMCID: PMC11055029 DOI: 10.3390/nu16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.
Collapse
Affiliation(s)
- Alexander P. Kanon
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Alpha-Massey Natural Nutraceutical Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - Caroline Giezenaar
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Food Experience and Sensory Testing Laboratory, School of Food and Advanced Technology, Palmerston North 4410, New Zealand
| | - Nicole C. Roy
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Isuri A. Jayawardana
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| | - Dominic Lomiwes
- Immune Health and Physical Performance, Nutrition and Health Group, The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4410, New Zealand;
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- Smart Foods and Bioproducts, AgResearch Ltd., Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand
| | - Warren C. McNabb
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Sharon J. Henare
- School of Health Sciences, College of Health, Massey University, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North 4442, New Zealand; (C.G.); (N.C.R.); (I.A.J.); (C.A.M.); (W.C.M.)
| |
Collapse
|
12
|
Ibrahim WW, Sayed RH, Abdelhameed MF, Omara EA, Nassar MI, Abdelkader NF, Farag MA, Elshamy AI, Afifi SM. Neuroprotective potential of Erigeron bonariensis ethanolic extract against ovariectomized/D-galactose-induced memory impairments in female rats in relation to its metabolite fingerprint as revealed using UPLC/MS. Inflammopharmacology 2024; 32:1091-1112. [PMID: 38294617 PMCID: PMC11006746 DOI: 10.1007/s10787-023-01418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Erigeron bonariensis is widely distributed throughout the world's tropics and subtropics. In folk medicine, E. bonariensis has historically been used to treat head and brain diseases. Alzheimer's disease (AD) is the most widespread form of dementia initiated via disturbances in brain function. Herein, the neuroprotective effect of the chemically characterized E. bonariensis ethanolic extract is reported for the first time in an AD animal model. Chemical profiling was conducted using UPLC-ESI-MS analysis. Female rats underwent ovariectomy (OVX) followed by 42 days of D-galactose (D-Gal) administration (150 mg/kg/day, i.p) to induce AD. The OVX/D-Gal-subjected rats received either donepezil (5 mg/kg/day) or E. bonariensis at 50, 100, and 200 mg/kg/day, given 1 h prior to D-Gal. UPLC-ESI-MS analysis identified 42 chemicals, including flavonoids, phenolic acids, terpenes, and nitrogenous constituents. Several metabolites, such as isoschaftoside, casticin, velutin, pantothenic acid, xanthurenic acid, C18-sphingosine, linoleamide, and erucamide, were reported herein for the first time in Erigeron genus. Treatment with E. bonariensis extract mitigated the cognitive decline in the Morris Water Maze test and the histopathological alterations in cortical and hippocampal tissues of OVX/D-Gal-subjected rats. Moreover, E. bonariensis extract mitigated OVX/D-Gal-induced Aβ aggregation, Tau hyperphosphorylation, AChE activity, neuroinflammation (NF-κBp65, TNF-α, IL-1β), and apoptosis (Cytc, BAX). Additionally, E. bonariensis extract ameliorated AD by increasing α7-nAChRs expression, down-regulating GSK-3β and FOXO3a expression, and modulating Jak2/STAT3/NF-ĸB p65 and PI3K/AKT signaling cascades. These findings demonstrate the neuroprotective and memory-enhancing effects of E. bonariensis extract in the OVX/D-Gal rat model, highlighting its potential as a promising candidate for AD management.
Collapse
Affiliation(s)
- Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | | | - Enayat A Omara
- Pathology Department, National Research Center, Dokki, Cairo, 12622, Egypt
| | - Mahmoud I Nassar
- Natural Compounds Chemistry Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Abdelsamed I Elshamy
- Natural Compounds Chemistry Department, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Sherif M Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
13
|
Funahashi R, Matsuura F, Ninomiya M, Okabe S, Takashima S, Tanaka K, Nishina A, Koketsu M. Hybrid pharmacophore design and synthesis of donepezil-inspired aurone derivative salts as multifunctional acetylcholinesterase inhibitors. Bioorg Chem 2024; 145:107229. [PMID: 38401360 DOI: 10.1016/j.bioorg.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Flavonoids, a ubiquitous group of plant polyphenols, are well-known for their beneficial effects on human health. Their phenylchromane skeletons have structural similarities to donepezil [the US FDA-approved drug used to treat Alzheimer's disease (AD)]. The objective of this study was to design and synthesize valuable agents derived from flavonoids for relieving the symptoms of AD. A variety of flavonoid derivative salts incorporating benzylpyridinium units were synthesized and several of them remarkedly inhibited acetylcholinesterase (AChE) activity in vitro. Additionally, aurone derivative salts protected against cell death resulting from t-BHP exposure in rat pheochromocytoma PC12 cells and slightly promoted neurite outgrowth. Furthermore, they potently suppressed the aggregation of amyloid-β (Aβ1-42). Our findings highlight the effectiveness of donepezil-inspired aurone derivative salts as multipotent candidates for AD.
Collapse
Affiliation(s)
- Rei Funahashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Fumiaki Matsuura
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sayo Okabe
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Atsuyoshi Nishina
- College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-0062, Japan; School of Health and Nutrition, Tokai Gakuen University, Tenpaku, Nagoya, Aichi 468-8514, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
14
|
Szumny D, Kucharska AZ, Czajor K, Bernacka K, Ziółkowska S, Krzyżanowska-Berkowska P, Magdalan J, Misiuk-Hojło M, Sozański T, Szeląg A. Extract from Aronia melanocarpa, Lonicera caerulea, and Vaccinium myrtillus Improves near Visual Acuity in People with Presbyopia. Nutrients 2024; 16:926. [PMID: 38612968 PMCID: PMC11013737 DOI: 10.3390/nu16070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Presbyopia is a global problem with an estimated 1.3 billion patients worldwide. In the area of functional food applications, dietary supplements or herbs, there are very few reports describing the positive effects of their use. In the available literature, there is a lack of studies in humans as well as on an animal model of extracts containing, simultaneously, compounds from the polyphenol group (in particular, anthocyanins) and iridoids, so we undertook a study of the effects of a preparation composed of these compounds on a condition of the organ of vision. Our previous experience on a rabbit model proved the positive effect of taking an oral extract of Cornus mas in stabilizing the intraocular pressure of the eye. The purpose of this study was to evaluate the effect of an orally administered ternary compound preparation on the status of physiological parameters of the ocular organ. The preparation contained an extract of the chokeberry Aronia melanocarpa, the honeysuckle berry Lonicera caerulea L., and the bilberry Vaccinium myrtillus (hereafter AKB) standardized for anthocyanins and iridoids, as bioactive compounds known from the literature. A randomized, double-blind, cross-over study lasting with a "wash-out" period of 17 weeks evaluated a group of 23 people over the age of 50, who were subjects with presbyopia and burdened by prolonged work in front of screen monitors. The group of volunteers was recruited from people who perform white-collar jobs on a daily basis. The effects of the test substances contained in the preparation on visual acuity for distance and near, sense of contrast for distance and near, intraocular pressure, and conjunctival lubrication, tested by Schirmer test, LIPCOF index and TBUT test, and visual field test were evaluated. Anthocyanins (including cyanidin 3-O-galactoside, delphinidin 3-O-arabinoside, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-arabinoside) and iridoids (including loganin, sweroside, loganic acid) were identified as substances present in the extract obtained by HPLC-MS. The preliminary results showed that the composition of AKB applied orally does not change visual acuity in the first 6 weeks of administration. Only in the next cycle of the study was an improvement in near visual acuity observed in 92.3% of the patients. This may indicate potential to correct near vision in presbyopic patients. On the other hand, an improvement in conjunctival wetting was observed in the Schirmer test at the beginning of week 6 of administration in 80% of patients. This effect was weakened in subsequent weeks of conducting the experiment to 61.5%. The improvement in conjunctival hydration in the Schirmer test shows the potential beneficial effect of the AKB formulation in a group of patients with dry eye syndrome. This is the first study of a preparation based on natural, standardized extracts of chokeberry, honeysuckle berry, and bilberry. Preliminary studies show an improvement in near visual acuity and conjunctival hydration on the Schirmer test, but this needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Dorota Szumny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
| | - Alicja Zofia Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.Z.K.); (K.B.)
| | - Karolina Czajor
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Karolina Bernacka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.Z.K.); (K.B.)
| | - Sabina Ziółkowska
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
| | - Patrycja Krzyżanowska-Berkowska
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Jan Magdalan
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
| | - Marta Misiuk-Hojło
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
| |
Collapse
|
15
|
Sankaran S, Dubey R, Gomatam A, Chakor R, Kshirsagar A, Lohidasan S. Deciphering the multi-functional role of Indian propolis for the management of Alzheimer's disease by integrating LC-MS/MS, network pharmacology, molecular docking, and in-vitro studies. Mol Divers 2024:10.1007/s11030-024-10818-8. [PMID: 38466554 DOI: 10.1007/s11030-024-10818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/27/2024] [Indexed: 03/13/2024]
Abstract
The conventional one-drug-one-disease theory has lost its sheen in multigenic diseases such as Alzheimer's disease (AD). Propolis, a honeybee-derived product has ethnopharmacological evidence of antioxidant, anti-inflammatory, antimicrobial and neuroprotective properties. However, the chemical composition is complex and highly variable geographically. So, to leverage the potential of propolis as an effective treatment modality, it is essential to understand the role of each phytochemical in the AD pathophysiology. Therefore, the present study was aimed at investigating the anti-Alzheimer effect of bioactive in Indian propolis (IP) by combining LC-MS/MS fingerprinting, with network-based analysis and experimental validation. First, phytoconstituents in IP extract were identified using an in-house LC-MS/MS method. The drug likeness and toxicity were assessed, followed by identification of AD targets. The constituent-target-gene network was then constructed along with protein-protein interactions, gene pathway, ontology, and enrichment analysis. LC-MS/MS analysis identified 16 known metabolites with druggable properties except for luteolin-5-methyl ether. The network pharmacology-based analysis revealed that the hit propolis constituents were majorly flavonoids, whereas the main AD-associated targets were MAOB, ESR1, BACE1, AChE, CDK5, GSK3β, and PTGS2. A total of 18 gene pathways were identified to be associated, with the pathways related to AD among the topmost enriched. Molecular docking analysis against top AD targets resulted in suitable binding interactions at the active site of target proteins. Further, the protective role of IP in AD was confirmed with cell-line studies on PC-12, in situ AChE inhibition, and antioxidant assays.
Collapse
Affiliation(s)
- Sandeep Sankaran
- Department of Quality Assurance Techniques, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Anish Gomatam
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, Maharashtra, 400098, India
| | - Rishikesh Chakor
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Ashwini Kshirsagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Sathiyanarayanan Lohidasan
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India.
| |
Collapse
|
16
|
Park JY, Kang SD, Son YG, Kim JY, Lee G, Kim KD, Lee SW, Kim JY. Eucalyptus globulus leaf-isolated isorhapontin serves as a natural insecticide via acetylcholinesterase inhibition. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105834. [PMID: 38582576 DOI: 10.1016/j.pestbp.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 04/08/2024]
Abstract
Acetylcholinesterase (AChE) inhibitors cause insect death by preventing the hydrolysis of the neurotransmitter acetylcholine, which overstimulates the nervous system. In this study, isorhapontin, isolated from E. globulus leaves, was evaluated as a natural insecticide with AChE inhibition at 12.5 μM. Using kinetic analyses, we found that isorhapontin acted as a competitive inhibitor that binds to the active site of AChE. The inhibition constant (Ki) was 6.1 μM. Furthermore, isorhapontin and resveratrol, which have basic skeletons, were predicted to bind to the active site of AChE via molecular docking. A comparison of the hydrogen bonding between the two stilbenes revealed characteristic differences in their interactions with amino acids. In isorhapontin, Trp83, Gly149, Tyr162, Tyr324, and Tyr370 interacted with the sugar moiety. These results suggest that with further development, isorhapontin can be used as an insecticide alternative.
Collapse
Affiliation(s)
- Jae Yeon Park
- Department of Pharmaceutical Engineering, IALS, ABC-RLRC, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Seong Doo Kang
- Department of Pharmaceutical Engineering, IALS, ABC-RLRC, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Yun Gon Son
- Department of Pharmaceutical Engineering, IALS, ABC-RLRC, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ju Yeon Kim
- Department of Pharmaceutical Engineering, IALS, ABC-RLRC, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Gihwan Lee
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Four), ABC-RLRC, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sang Won Lee
- Department of Pharmaceutical Engineering, IALS, ABC-RLRC, Gyeongsang National University, Jinju 52725, Republic of Korea.
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, IALS, ABC-RLRC, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
17
|
Ivanov A, Shamagsumova R, Larina M, Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer's Disease Drug Determination. BIOSENSORS 2024; 14:93. [PMID: 38392012 PMCID: PMC10886970 DOI: 10.3390/bios14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Neurodegenerative diseases and Alzheimer's disease (AD), as one of the most common causes of dementia, result in progressive losses of cholinergic neurons and a reduction in the presynaptic markers of the cholinergic system. These consequences can be compensated by the inhibition of acetylcholinesterase (AChE) followed by a decrease in the rate of acetylcholine hydrolysis. For this reason, anticholinesterase drugs with reversible inhibition effects are applied for the administration of neurodegenerative diseases. Their overdosage, variation in efficiency and recommendation of an individual daily dose require simple and reliable measurement devices capable of the assessment of the drug concentration in biological fluids and medications. In this review, the performance of electrochemical biosensors utilizing immobilized cholinesterases is considered to show their advantages and drawbacks in the determination of anticholinesterase drugs. In addition, common drugs applied in treating neurodegenerative diseases are briefly characterized. The immobilization of enzymes, nature of the signal recorded and its dependence on the transducer modification are considered and the analytical characteristics of appropriate biosensors are summarized for donepezil, huperzine A, rivastigmine, eserine and galantamine as common anti-dementia drugs. Finally, the prospects for the application of AChE-based biosensors in clinical practice are discussed.
Collapse
Affiliation(s)
- Alexey Ivanov
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Rezeda Shamagsumova
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
| | - Marina Larina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (R.S.); (G.E.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
18
|
Huo Y, Zhao C, Wang Y, Wang S, Mu T, Du W. Roles of Apigenin and Nepetin in the Assembly Behavior and Cytotoxicity of Prion Neuropeptide PrP106-126. ACS Chem Neurosci 2024; 15:245-257. [PMID: 38133816 DOI: 10.1021/acschemneuro.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Development of potential inhibitors to prevent prion protein (PrP) fibrillation is a therapeutic strategy for prion diseases. The prion neuropeptide PrP106-126, a research model of abnormal PrP (PrPSc), presents similar physicochemical and biochemical characters to PrPSc, which is also a target of potential inhibitors against prion deposition. Many flavones have antioxidant, anti-inflammatory, and antibacterial properties, and they are applied in treating prion disorder and other amyloidosis as well. However, the inhibition mechanism of flavones on PrP106-126 fibrillation is still unclear. In the current work, apigenin and nepetin were used to suppress the aggregation of PrP106-126 and to alleviate the peptide-induced cytotoxicity. The results showed that apigenin and nepetin impeded the fibril formation of PrP106-126 and depolymerized the preformed fibrils. They were bound to PrP106-126 predominantly by hydrophobic and hydrogen bonding interactions. In addition, both flavones upregulated cell viability and decreased membrane leakage through reducing peptide oligomerization. The differences in inhibition and cell protection between the two small molecules were presumably attributed to the substitution of hydroxyl and methoxy groups in nepetin, which demonstrated the significant structure-function relationship of flavones with prion neuropeptide and the prospect of flavonoids as drug candidates against prion diseases.
Collapse
Affiliation(s)
- Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Cong Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shao Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
19
|
Poslu AH, Aslan ŞE, Koz G, Senturk E, Koz Ö, Senturk M, Nalbantsoy A, Öztekin A, Ekinci D. Synthesis and biological evaluation of novel salicylidene uracils: Cytotoxic activity on human cancer cell lines and inhibitory action on enzymatic activity. Arch Pharm (Weinheim) 2024; 357:e2300374. [PMID: 37902389 DOI: 10.1002/ardp.202300374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/31/2023]
Abstract
A series of salicylidene uracil (1-18) derived from 5-aminouracil and substituted salicylaldehydes were analyzed for cytotoxic activity and enzyme inhibitory potency. Nine out of eighteen derivatives (6-8, 10, 12-15, 18) are novel molecules synthesized for the first time in this work, and other derivatives were previously synthesized by our group. The compounds were characterized by Proton nuclear magnetic resonance, carbon nuclear magnetic resonance, fourier transform infrared spectroscopy, and elemental analysis. All compounds were tested for their in vitro cytotoxicity against PC-3 (human prostate adenocarcinoma), A549 (human alveolar adenocarcinoma), and SHSY-5Y (human neuroblastoma) cancer cell lines and the nontumorigenic HEK293 (human embryonic kidney cells) cell line. The 3,5-di-tert-butylsalicylaldehyde derived compound (8) was toxic to PC-3 human prostate adenocarcinoma cells, showing a promising IC50 value at 7.05 ± 0.76 μM. The present study also aimed to evaluate the inhibitory effects of the compounds against several key enzymes, namely carbonic anhydrase I and II (CA I and CA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione reductase (GR), which are implicated in various global disorders, such as Alzheimer's disease, epilepsy, cancer, malaria, diabetes, and glaucoma. The inhibitory profiles of the tested compounds were assessed by determining their Ki values, which ranged from 2.96 to 9.24 nM for AChE, 3.78 to 12.57 nM for BChE, 8.42 to 25.74 nM for CA I, 7.24 to 19.74 nM for CA II, and 0.541 to 1.124 μM for GR. Molecular docking studies were also performed for all compounds. Most derivatives exhibited much more effective inhibitory action compared with clinically used standards. Thus, our findings indicate that the salicylidene derivatives presented in this study are promising drug candidates that need further evaluation.
Collapse
Affiliation(s)
- Ayşe Halıç Poslu
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Şafak Esra Aslan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
- Technology Transfer Office, Giresun University, Giresun, Turkey
| | - Gamze Koz
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Esra Senturk
- Department of Physiology, Faculty of Medicine, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ömer Koz
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Turkey
| | - Murat Senturk
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Aykut Öztekin
- Health Services of Vocational School, Agri Ibrahim Cecen University, Agri, Turkey
| | - Deniz Ekinci
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
20
|
Goyal R, Mittal G, Khurana S, Malik N, Kumar V, Soni A, Chopra H, Kamal MA. Insights on Quercetin Therapeutic Potential for Neurodegenerative Diseases and its Nano-technological Perspectives. Curr Pharm Biotechnol 2024; 25:1132-1141. [PMID: 37649295 DOI: 10.2174/1389201025666230830125410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023]
Abstract
The neurodegeneration process begins in conjunction with the aging of the neurons. It manifests in different parts of the brain as Aβ plaques, neurofibrillary tangles, Lewy bodies, Pick bodies, and other structures, which leads to progressive loss or death of neurons. Quercetin (QC) is a flavonoid compound found in fruits, tea, and other edible plants have antioxidant effects that have been studied from subcellular compartments to tissue levels in the brain. Also, quercetin has been reported to possess a neuroprotective role by decreasing oxidative stress-induced neuronal cell damage. The use of QC for neurodegenerative therapy, the existence of the blood-brain barrier (BBB) remains a significant barrier to improving the clinical effectiveness of the drug, so finding an innovative solution to develop simultaneous BBB-crossing ability of drugs for treating neurodegenerative disorders and improving neurological outcomes is crucial. The nanoparticle formulation of QC is considered beneficial and useful for its delivery through this route for the treatment of neurodegenerative diseases seems necessary. Increased QC accumulation in the brain tissue and more significant improvements in tissue and cellular levels are among the benefits of QC-involved nanostructures.
Collapse
Affiliation(s)
- Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Garima Mittal
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Suman Khurana
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
- Amity Institute of Pharmacy, Amity University Haryana, Panchgaon (Manesar), 122413; Haryana, India
- Amity Institute of Pharmacy, Amity University Haryana, Panchgaon (Manesar), 122413; Haryana, India
| | - Neelam Malik
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Vivek Kumar
- Janta College of Pharmacy, Butana, (Sonipat), 131001, Hayana, India
| | - Arti Soni
- Panipat Institute of Engineering and Technology, Samalkha, (Panipat), 132102, Haryana, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh
- Enzymoics, NSW; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
21
|
Lin X, Meng X, Lin J. The possible role of Wnt/β-catenin signalling in vitiligo treatment. J Eur Acad Dermatol Venereol 2023; 37:2208-2221. [PMID: 36912722 DOI: 10.1111/jdv.19022] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Vitiligo is a common chronic skin disease which has an adverse impact on patients' life. Its pathogenesis is complex, involving autoimmunity and oxidative stress (OS). Autoimmunity leads to the loss of epidermal melanocytes and the formation of the depigmented patches of the disease. Treatment of vitiligo should control the exaggerated immune response to arrest the progress of active disease, and then promote melanocytes to repigmentation. Wnt/β-catenin signalling pathway has been of recent interest in vitiligo. Wnt/β-catenin signalling pathway is downregulated in vitiligo. Upregulation of Wnt/β-catenin signalling possibly control vitiligo autoimmune response by protecting melanocyte from OS damage, inhibiting CD8+ T cell effector cell differentiation and enhancing Treg. Wnt/β-catenin signalling plays a critical role in the melanocyte regeneration by driving the differentiation of melanocyte stem cells (McSCs) into melanocytes. Promoting Wnt/β-catenin signalling can not only arrest the progress of active disease of vitiligo but also promote repigmentation. Some of the main effective therapies for vitiligo are likely to work by activating Wnt/β-catenin signalling. Agents that can enhance the effect of Wnt/β-catenin signalling may become potential candidates for the development of new drugs for vitiligo treatment.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, Oaks, Pennsylvania, USA
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Milutinović V, Petrović P, Petković M, Klaus A, Ušjak L, Niketić M, Petrović S. Investigation of Anticholinesterase Activity of Chemically Characterised Hieracium s. str. Methanol Extracts and Their Selected Metabolites. Chem Biodivers 2023; 20:e202301044. [PMID: 37772689 DOI: 10.1002/cbdv.202301044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
The composition and anticholinesterase activity of the dried MeOH extracts of Hieracium scheppigianum and H. naegelianum underground parts (rhizomes and roots), as well as the anticholinesterase activity of the dried, previously chemically characterised MeOH extracts of the flowering aerial parts of these two and 26 other Hieracium species in the strict sense (s. str.), were investigated. Furthermore, the anticholinesterase activity of 12 selected secondary metabolites of these extracts was evaluated. Using semi-preparative LC-MS, five caffeoylquinic acids and the sesquiterpene lactone crepiside E were isolated from H. scheppigianum underground parts extract. All these compounds were also identified in the underground parts extract of H. naegelianum. Quantitative LC-MS analysis showed that the analysed underground parts extracts were rich in both caffeoylquinic acids (139.77 and 156.62 mg/g of extract, respectively) and crepiside E (126.88 and 116.58 mg/g). In the Ellman method, the tested extracts showed an interesting anti-AChE and/or anti-BChE activity (IC50 =0.56-1.58 mg/mL), which can be explained, at least partially, by the presence of some of their constituents. Among the metabolites tested, the best activity was revealed for the flavonoids apigenin, luteolin and diosmetin, and the sesquiterpene lactone 8-epiixerisamine A (IC50 =68.09-299.37 μM).
Collapse
Affiliation(s)
- Violeta Milutinović
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Predrag Petrović
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11060, Belgrade, Serbia
| | - Miloš Petković
- Department of Organic Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Anita Klaus
- Institute for Food Technology and Biochemistry, University of Belgrade - Faculty of Agriculture, Nemanjina 6, 11080, Belgrade, Serbia
| | - Ljuboš Ušjak
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marjan Niketić
- Natural History Museum, Njegoševa 51, 11000, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000, Belgrade, Serbia
| | - Silvana Petrović
- Department of Pharmacognosy, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
23
|
Peron G, Moafpoorian R, Faggian M, Realdon N, Zengin G, Zarshenas MM, Dall'Acqua S. Linking traditional medicine to modern phytotherapy: Chemical characterization and assessment of antioxidant and anticholinesterase effects in vitro of a natural Persian remedy for dementia. J Pharm Biomed Anal 2023; 235:115674. [PMID: 37634357 DOI: 10.1016/j.jpba.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Several natural remedies are used in the Traditional Persian Medicine (TPM) to prevent dementia, but their efficacy is debated. In this work, an improved "Safoof-e-Nesyān" formulation described in the "Qarābādin-e-Azam" pharmacopoeia was developed, and its chemical composition and antioxidant and anti-cholinesterase properties were assessed. The formulation contains a mixture (FM) of Cinnamomum cassia (CC), C. verum (CV), Pistacia lentiscus (PL), Rheum palmatum (RP), Syzygium aromaticum (SA), and Zingiber officinalis (ZO) powdered plants. Its total phenolic content is 110.45 mg GAE/g, while the total flavonoid content is 6.28 mg RE/g. 66 secondary metabolites (mainly tannins, flavonoids, anthraquinones, and gingerols) were identified by UPLC-QToF-MS analysis. FM exerts antioxidant effects by scavenging radicals, and by reducing and chelating metals such as Mb, Cu and Fe. The anticholinesterase activity of one gram of the FM equals that of 3.60 mg of the reference drug galantamine, on both acetyl- and butyryl-cholinesterase. Correlations between specific compounds and bioactivities were highlighted by multivariate analysis of data: lyoniresinol 9'-glucoside strongly correlates with antiradical activities on DPPH and ABTS and reducing activity on Cu, and with anti-AChE effects. Most of the identified flavonoids and the ellagic acid derivatives positively correlate with the reducing activity on Fe and Mb, and with anti-BChE effects. Finally, a tablet formulation of the FM was developed, and its physical properties were preliminarily assessed. Overall, our results indicate that the FM may be a useful natural remedy for dementia, although further safety and efficacy assessments in vivo are required.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Reza Moafpoorian
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Marta Faggian
- Unired Srl, Via Niccolò Tommaseo 69, Padova 35131, Italy
| | - Nicola Realdon
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
24
|
Sayuti NH, Zulkefli N, Tan JK, Saad N, Baharum SN, Hamezah HS, Bunawan H, Ahmed QU, Parveen H, Mukhtar S, Alsharif MA, Sarian MN. Ethanolic Extract of Polygonum minus Protects Differentiated Human Neuroblastoma Cells (SH-SY5Y) against H 2O 2-Induced Oxidative Stress. Molecules 2023; 28:6726. [PMID: 37764502 PMCID: PMC10535396 DOI: 10.3390/molecules28186726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neuronal models are an important tool in neuroscientific research. Hydrogen peroxide (H2O2), a major risk factor of neuronal oxidative stress, initiates a cascade of neuronal cell death. Polygonum minus Huds, known as 'kesum', is widely used in traditional medicine. P. minus has been reported to exhibit a few medicinal and pharmacological properties. The current study aimed to investigate the neuroprotective effects of P. minus ethanolic extract (PMEE) on H2O2-induced neurotoxicity in SH-SY5Y cells. LC-MS/MS revealed the presence of 28 metabolites in PMEE. Our study showed that the PMEE provided neuroprotection against H2O2-induced oxidative stress by activating the Nrf2/ARE, NF-κB/IκB and MAPK signaling pathways in PMEE pre-treated differentiated SH-SY5Y cells. Meanwhile, the acetylcholine (ACH) level was increased in the oxidative stress-induced treatment group after 4 h of exposure with H2O2. Molecular docking results with acetylcholinesterase (AChE) depicted that quercitrin showed the highest docking score at -9.5 kcal/mol followed by aloe-emodin, afzelin, and citreorosein at -9.4, -9.3 and -9.0 kcal/mol, respectively, compared to the other PMEE's identified compounds, which show lower docking scores. The results indicate that PMEE has neuroprotective effects on SH-SY5Y neuroblastoma cells in vitro. In conclusion, PMEE may aid in reducing oxidative stress as a preventative therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.P.); (S.M.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.P.); (S.M.)
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| |
Collapse
|
25
|
Lemoui R, Cheriet T, Kahlouche F, Noman L, Seghiri R, Abudunia A. LC-MS profile, in vitro acetylcholinesterase inhibitory, antibacterial and hemostatic properties of Ranunculus bullatus extract. Nat Prod Res 2023; 37:2911-2915. [PMID: 36263957 DOI: 10.1080/14786419.2022.2136661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 01/03/2023]
Abstract
The ethanol extract from aerial parts of Ranunculus were investigated for its chemical composition by LC-ESI-MS/MS technique, which allowed to identify a series of glycosylated flavonoids and one phenolic acid. RBEE extract showed acetyl-cholinesterase inhibition higher than the reference compound Galantamine at a concentrationof 200 µg/mL. A moderate antibacterial activity of the extract was also obtained against Staphylococcus aureus ATCC43300, Citrobacter freundii ATCC8090, and Proteus vulgaris ATCC29905 at a concentration 100 µg. Additionally, a good reduction in plasma coagulation time at 200 μL was also observed for RBEE.
Collapse
Affiliation(s)
- Redouane Lemoui
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri Constantine, Constantine, Algeria
- École normal supérieure Assia Djebar, Constantine, Algérie
| | - Thamere Cheriet
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri Constantine, Constantine, Algeria
- Département de Chimie, Faculté des Sciences, Université Mohammed Boudiaf-M'sila, M'Sila, Algérie
| | - Foulla Kahlouche
- Laboratoire de toxicologie et pharmacologie, institut des sciences veterinaries, Constantine, Algérie
| | - Labib Noman
- Faculty of Clinical Pharmacy, 21 September University for Medical and Applied Sciences, Sana'a, Yemen
| | - Ramdane Seghiri
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri Constantine, Constantine, Algeria
| | - Abdulmalik Abudunia
- Faculty of Clinical Pharmacy, 21 September University for Medical and Applied Sciences, Sana'a, Yemen
| |
Collapse
|
26
|
El-Zeftawy M, Ghareeb D. Pharmacological bioactivity of Ceratonia siliqua pulp extract: in vitro screening and molecular docking analysis, implication of Keap-1/Nrf2/NF-ĸB pathway. Sci Rep 2023; 13:12209. [PMID: 37500735 PMCID: PMC10374561 DOI: 10.1038/s41598-023-39034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Inflammation is interfaced with various metabolic disorders. Ceratonia siliqua (CS) has a higher pharmaceutical purpose. The research aimed to investigate the biofunction of CS pulp aqueous extract (CS-PAE) with an emphasis on its integrated computational approaches as opposed to different specific receptors contributing to inflammation. The extract was assessed for its chemical and phenolic components via GC-MS, LC-MS, HPLC, and total phenolic and flavonoid content. In vitro, bioactivities and molecular docking were analyzed. Findings indicate that CS-PAE demonstrated higher scavenging activities of nitric oxide, 1,1-diphenyl-2-picrylhydrazyl radical, superoxide anion, hydrogen peroxide, and anti-lipid peroxidation (IC50 values were 5.29, 3.04, 0.63, 7.35 and 9.6 mg/dl, respectively). The extract revealed potent inhibition of RBCs hemolysis, acetylcholine esterase, monoamine oxidase-B, and α-glucosidase enzymes (IC50 was 13.44, 9.31, 2.45, and 1.5 mg/dl, respectively). The extract exhibited a cytotoxic effect against prostate cancer Pc3, liver cancer HepG2, colon cancer Caco2, and lung cancer A549 cell lines. Moreover, CS-PAE owned higher antiviral activity against virus A and some bacteria. When contrasting data from molecular docking, it was reported that both apigenin-7-glucoside and rutin in CS-PAE have a good affinity toward the Keap-1/Nrf2/ NF-ĸB pathway. In conclusion, CS-PAE showed promise in therapeutic activity in metabolic conditions.
Collapse
Affiliation(s)
- Marwa El-Zeftawy
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley, Egypt.
| | - Doaa Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Silva AM, Preto M, Grosso C, Vieira M, Delerue-Matos C, Vasconcelos V, Reis M, Barros L, Martins R. Tracing the Path between Mushrooms and Alzheimer's Disease-A Literature Review. Molecules 2023; 28:5614. [PMID: 37513486 PMCID: PMC10384108 DOI: 10.3390/molecules28145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is well-known among neurodegenerative diseases for the decline of cognitive functions, making overall daily tasks difficult or impossible. The disease prevails as the most common form of dementia and remains without a well-defined etiology. Being considered a disease of multifactorial origin, current targeted treatments have only managed to reduce or control symptoms, and to date, only two drugs are close to being able to halt its progression. For decades, natural compounds produced by living organisms have been at the forefront of research for new therapies. Mushrooms, which are well-known for their nutritional and medicinal properties, have also been studied for their potential use in the treatment of AD. Natural products derived from mushrooms have shown to be beneficial in several AD-related mechanisms, including the inhibition of acetylcholinesterase (AChE) and β-secretase (BACE 1); the prevention of amyloid beta (Aβ) aggregation and neurotoxicity; and the prevention of Tau expression and aggregation, as well as antioxidant and anti-inflammatory potential. Several studies in the literature relate mushrooms to neurodegenerative diseases. However, to the best of our knowledge, there is no publication that summarizes only AD data. In this context, this review aims to link the therapeutic potential of mushrooms to AD by compiling the anti-AD potential of different mushroom extracts or isolated compounds, targeting known AD-related mechanisms.
Collapse
Affiliation(s)
- Ana Margarida Silva
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
| | - Marco Preto
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
- TBIO—Centro de Investigação em Saúde Translacional e Biotecnologia Médica, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Mariana Reis
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Lillian Barros
- CIMO, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- CISA, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
28
|
Tan J, Wang D, Lu Y, Wang Y, Tu Z, Yuan T, Zhang L. Metabolic enzyme inhibitory abilities, in vivo hypoglycemic ability of palmleaf raspberry fruits extracts and identification of hypoglycemic compounds. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Fathi Hafshejani S, Lotfi S, Rezvannejad E, Mortazavi M, Riahi‐Madvar A. Correlation between total phenolic and flavonoid contents and biological activities of 12 ethanolic extracts of Iranian propolis. Food Sci Nutr 2023; 11:4308-4325. [PMID: 37457164 PMCID: PMC10345684 DOI: 10.1002/fsn3.3356] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 07/18/2023] Open
Abstract
Propolis is a resinous substance produced by honey bees that is very popular as a natural remedy in traditional medicine. The current research is the first study on the biological properties of ethanolic extracts of propolis (EEP) from several different regions (12) of Iran. Total phenolic and flavonoid contents (TPC and TFC) of Iranian EEPs were variable between 26.59-221.38 mg GAE/g EEP and 4.8-100.03 mg QE/g EEP. The DPPH scavenging assay showed all the studied EEP samples, except for the sample with the lowest TPC and TFC (P6), have suitable antioxidant activity. All the EEPs inhibited both cholinesterase enzymes (acetylcholinesterase: AChE, butyrylcholinesterase: BuChE) but most of them exhibited a distinct selectivity over BuChE. Evaluation of the antibacterial activity of the EEP samples using four pathogenic bacteria (B. cereus, S. aureus, A. baumannii, and P. aeruginosa) demonstrated that the antibacterial properties of propolis are more effective on the gram-positive bacterium. Spearman correlation analysis showed a strong positive correlation between TPC and TFC of the Iranian EEPs and their antioxidant, anticholinesterase, and antibacterial activities. Considering that there is ample evidence of anticholinesterase activity of flavonoids and a significant correlation between the anticholinesterase activity of the studied Iranian EEPs and their total flavonoid content was observed, the interaction of 17 well-known propolis flavonoids with AChE and BuChE was explored using molecular docking. The results indicated that all the flavonoids interact with the active site gorge of both enzymes with high affinity. Summing up, the obtained results suggest that Iranian propolis possesses great potential for further studies.
Collapse
Affiliation(s)
- Shahnaz Fathi Hafshejani
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Safa Lotfi
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Elham Rezvannejad
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
| | - Ali Riahi‐Madvar
- Department of Molecular and Cell Biology, Faculty of Basic SciencesKosar University of BojnordBojnordIran
| |
Collapse
|
30
|
Plekratoke K, Boonyarat C, Monthakantirat O, Nualkaew N, Wangboonskul J, Awale S, Chulikhit Y, Daodee S, Khamphukdee C, Chaiwiwatrakul S, Waiwut P. The Effect of Ethanol Extract from Mesua ferrea Linn Flower on Alzheimer's Disease and Its Underlying Mechanism. Curr Issues Mol Biol 2023; 45:4063-4079. [PMID: 37232728 DOI: 10.3390/cimb45050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The effects of Mesua ferrea Linn flower (MFE) extract on the pathogenic cascade of Alzheimer's disease (AD) were determined by an in vitro and cell culture model in the search for a potential candidate for the treatment of AD. The 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay exhibited that the MFE extract had antioxidant activities. According to the Ellman and the thioflavin T method's result, the extracts could inhibit acetylcholinesterase and β-amyloid (Aβ) aggregation. Studies on neuroprotection in cell culture found that the MFE extract could reduce the death of human neuroblastoma cells (SH-SY5Y) caused by H2O2 and Aβ. Western blot analysis exhibited that the MFE extract alleviated H2O2-induced neuronal cell damage by downregulating the pro-apoptotic proteins, including cleaved caspase-3, Bax, and by enhancing the expression of anti-apoptotic markers including MCl1, BClxl, and survivin. Moreover, MFE extract inhibited the expression of APP, presenilin 1, and BACE, and increased the expression of neprilysin. In addition, the MFE extract could enhance scopolamine-induced memory deficit in mice. Overall, results showed that the MFE extract had several modes of action related to the AD pathogenesis cascade, including antioxidants, anti-acetylcholinesterase, anti-Aβ aggregation, and neuroprotection against oxidative stress and Aβ. Therefore, the M. ferrea L. flower might be a possibility for further development as a medication for AD.
Collapse
Affiliation(s)
- Kusawadee Plekratoke
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jinda Wangboonskul
- Faculty of Pharmaceutical Sciences, Thummasart University, Bangkok 10330, Thailand
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Charinya Khamphukdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchada Chaiwiwatrakul
- Department of English, Faculty of Humanities and Social Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
31
|
Hassan AHE, Kim HJ, Park K, Choi Y, Moon S, Lee CH, Kim YJ, Cho SB, Gee MS, Lee D, Park JH, Lee JK, Ryu JH, Park KD, Lee YS. Synthesis and Biological Evaluation of O6-Aminoalkyl-Hispidol Analogs as Multifunctional Monoamine Oxidase-B Inhibitors towards Management of Neurodegenerative Diseases. Antioxidants (Basel) 2023; 12:antiox12051033. [PMID: 37237899 DOI: 10.3390/antiox12051033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative catabolism of monoamine neurotransmitters by monoamine oxidases (MAOs) produces reactive oxygen species (ROS), which contributes to neuronal cells' death and also lowers monoamine neurotransmitter levels. In addition, acetylcholinesterase activity and neuroinflammation are involved in neurodegenerative diseases. Herein, we aim to achieve a multifunctional agent that inhibits the oxidative catabolism of monoamine neurotransmitters and, hence, the detrimental production of ROS while enhancing neurotransmitter levels. Such a multifunctional agent might also inhibit acetylcholinesterase and neuroinflammation. To meet this end goal, a series of aminoalkyl derivatives of analogs of the natural product hispidol were designed, synthesized, and evaluated against both monoamine oxidase-A (MAO-A) and monoamine oxidase-B (MAO-B). Promising MAO inhibitors were further checked for the inhibition of acetylcholinesterase and neuroinflammation. Among them, compounds 3aa and 3bc were identified as potential multifunctional molecules eliciting submicromolar selective MAO-B inhibition, low-micromolar AChE inhibition, and the inhibition of microglial PGE2 production. An evaluation of their effects on memory and cognitive impairments using a passive avoidance test confirmed the in vivo activity of compound 3bc, which showed comparable activity to donepezil. In silico molecular docking provided insights into the MAO and acetylcholinesterase inhibitory activities of compounds 3aa and 3bc. These findings suggest compound 3bc as a potential lead for the further development of agents against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeon Jeong Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Suyeon Moon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| |
Collapse
|
32
|
Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer's disease. Nanomedicine (Lond) 2023; 18:145-168. [PMID: 36938800 DOI: 10.2217/nnm-2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Ar Rass, 51921, Saudi Arabia
| | | | - Muhammad Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.,Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
33
|
The Combination of Baicalein and Memantine Reduces Oxidative Stress and Protects against β-amyloid-Induced Alzheimer’s Disease in Rat Model. Antioxidants (Basel) 2023; 12:antiox12030707. [PMID: 36978955 PMCID: PMC10045767 DOI: 10.3390/antiox12030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Alzheimer’s disease (AD) is a neuronal condition causing progressive loss of memory and cognitive dysfunction particularly in elders. An upsurge in the global old age population has led to a proportionate increase in the prevalence of AD. The current treatments for AD are symptomatic and have debilitating side effects. A literature review and current research have directed scientists to explore natural products with better safety and efficacy profiles as new treatment options for AD. Baicalein, belonging to the flavone subclass of flavonoids, has been reported for its anti-oxidant, anti-inflammatory, AChE enzyme inhibitory activity and anti-amyloid protein aggregation activity, which collectively demonstrates its benefits as a neuroprotective agent. Presently, memantine, a NMDAR antagonist, is one of the important drugs used for treatment of Alzheimer’s disease. The current study aims to investigate the effect of baicalein in combination with memantine in β-amyloid-induced AD in albino Wistar rats. Baicalein (10 mg/kg) alone, 5 mg/kg and 10 mg/kg in combination with memantine (20 mg/kg) was administered for 21 days. Treatment with baicalein in combination with memantine showed significant improvement in behavioural studies. The combination treatment decreased oxidative stress, β-amyloid plaque formation and increased the expression of brain-derived neurotrophic factor (BDNF) in the brain. From the results, it can be concluded that treatment with baicalein and memantine could be beneficial for reducing the progression of neurodegeneration in rats. Baicalein has an additive effect in combination with memantine, making it a potential option for the treatment of AD.
Collapse
|
34
|
Zengin G, Cziáky Z, Jekő J, Kang KW, Lorenzo JM, Sivanesan I. Phytochemical Composition and Biological Activities of Extracts from Early, Mature, and Germinated Somatic Embryos of Cotyledon orbiculata L. PLANTS (BASEL, SWITZERLAND) 2023; 12:1065. [PMID: 36903925 PMCID: PMC10005620 DOI: 10.3390/plants12051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Cotyledon orbiculata L. (Crassulaceae)-round-leafed navelwort-is used worldwide as a potted ornamental plant, and it is also used in South African traditional medicine. The current work aims to assess the influence of plant growth regulators (PGR) on somatic embryogenesis (SE) in C. orbiculata; compare the metabolite profile in early, mature, and germinated somatic embryos (SoEs) by utilizing ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS); and determine the antioxidant and enzyme inhibitory potentials of SoEs. A maximum SoE induction rate of 97.2% and a mean number of SoEs per C. orbiculata leaf explant of 35.8 were achieved on Murashige and Skoog (MS) medium with 25 µM 2,4-Dichlorophenoxyacetic acid and 2.2 µM 1-phenyl-3-(1,2,3,-thiadiazol-5-yl)urea. The globular SoEs were found to mature and germinate best on MS medium with gibberellic acid (4 µM). The germinated SoE extract had the highest amounts of both total phenolics (32.90 mg gallic acid equivalent/g extract) and flavonoids (1.45 mg rutin equivalent/g extract). Phytochemical evaluation of SoE extracts by UHPLC-MS/MS reveals the presence of three new compounds in mature and germinated SoEs. Among the SoE extracts tested, germinated SoE extract exhibited the most potent antioxidant activity, followed by early and mature somatic embryos. The mature SoE extract showed the best acetylcholinesterase inhibitory activity. The SE protocol established for C. orbiculata can be used for the production of biologically active compounds, mass multiplication, and conservation of this important species.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, 42130 Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary
| | - Kyung Won Kang
- Babo Orchid Farm, Namyangju-si 472-831, Republic of Korea
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Facultade de Ciencias, Universidade de Vigo, Área de Tecnoloxía dos Alimentos, 32004 Ourense, Spain
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
35
|
Bendjedou H, Benamar H, Bennaceur M, Rodrigues MJ, Pereira CG, Trentin R, Custódio L. New Insights into the Phytochemical Profile and Biological Properties of Lycium intricatum Bois. (Solanaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:996. [PMID: 36903857 PMCID: PMC10004830 DOI: 10.3390/plants12050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This work aimed to boost the valorisation of Lycium intricatum Boiss. L. as a source of high added value bioproducts. For that purpose, leaves and root ethanol extracts and fractions (chloroform, ethyl acetate, n-butanol, and water) were prepared and evaluated for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, ferric reducing antioxidant power (FRAP), and metal chelating potential against copper and iron ions. Extracts were also appraised for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), type-2 diabetes mellitus (T2DM, α-glucosidase), obesity/acne (lipase), and skin hyperpigmentation/food oxidation (tyrosinase). The total content of phenolics (TPC), flavonoids (TFC), and hydrolysable tannins (THTC) was evaluated by colorimetric methods, while the phenolic profile was determined by high-performance liquid chromatography, coupled to a diode-array ultraviolet detector (HPLC-UV-DAD). Extracts had significant RSA and FRAP, and moderate copper chelation, but no iron chelating capacity. Samples had a higher activity towards α-glucosidase and tyrosinase, especially those from roots, a low capacity to inhibit AChE, and no activity towards BuChE and lipase. The ethyl acetate fraction of roots had the highest TPC and THTC, whereas the ethyl acetate fraction of leaves had the highest flavonoid levels. Gallic, gentisic, ferulic, and trans-cinnamic acids were identified in both organs. The results suggest that L. intricatum is a promising source of bioactive compounds with food, pharmaceutical, and biomedical applications.
Collapse
Affiliation(s)
- Houaria Bendjedou
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Houari Benamar
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Malika Bennaceur
- Faculty of Natural Sciences and Life, Department of Biology, University of Oran1, El M’Naouer, P.O. Box 1524, Oran 31000, Algeria
- Laboratory of Research in Arid Areas, University of Science and Technology Houari Boumediene, P.O. Box 32, Algiers 16111, Algeria
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Riccardo Trentin
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
- Department of Biology, University of Padova, Via U. Bassi, 58/B 35131 Padova, Italy
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR), Faculdade de Ciências e Tecnologia, Universidade do Algarve, Ed. 7, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
36
|
Fernández-Galleguillos C, Jiménez-Aspee F, Mieres-Castro D, Rodríguez-Núñez YA, Gutiérrez M, Guzmán L, Echeverría J, Sandoval-Yañez C, Forero-Doria O. Phenolic Profile and Cholinesterase Inhibitory Properties of Three Chilean Altiplano Plants: Clinopodium gilliesii (Benth.) Kuntze [Lamiaceae], Mutisia acuminata Ruiz & Pav. var. hirsuta (Meyen) Cabrera, and Tagetes multiflora (Kunth) [Asteraceae]. PLANTS (BASEL, SWITZERLAND) 2023; 12:819. [PMID: 36840166 PMCID: PMC9960489 DOI: 10.3390/plants12040819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
This research aimed to identify the phenolic profile and composition of the aerial parts of three native species used in traditional medicine in the Andean Altiplano of northern Chile: Clinopodium gilliesii (Benth.) Kuntze [Lamiaceae] (commonly known as Muña-Muña), Mutisia acuminata Ruiz & Pav. var. hirsuta (Meyen) Cabrera [Asteraceae] (commonly known as Chinchircoma), and Tagetes multiflora (Kunth), [Asteraceae] (commonly known as Gracilis), as well as to evaluate their potential inhibitory effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Polyphenolic enriched-extracts (PEEs) of the species were prepared and analyzed and the main components were quantified using HPLC-DAD. In total, 30 phenolic compounds were identified and quantified in all species, including simple phenolics, hydroxycinnamic acids, flavan-3-ols (monomers and polymers), flavanones, and flavonols. In addition, other main phenolics from the extracts were tentatively identified by ESI-MS-MS high-resolution analysis. T. multiflora extract showed the greatest anti-AChE and BChE activity in comparison with C. gilliesii and M. acuminata extracts, being the anti-AChE and BChE activity weak in all extracts in comparison to galantamine control. To comprise to better understand the interactions between cholinesterase enzymes and the main phenolics identified in T. multiflora, molecular docking analysis was conducted.
Collapse
Affiliation(s)
| | - Felipe Jiménez-Aspee
- Institute of Nutritional Sciences, Department of Food Biofunctionality (140b), Garbenstr. 28, 70599 Stuttgart, Germany
| | - Daniel Mieres-Castro
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile
| | - Yeray A. Rodríguez-Núñez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, Republica 275, Santiago 8370146, Chile
| | - Margarita Gutiérrez
- Laboratorio de Síntesis y Actividad Biológica, Instituto de Química de Recursos Naturales, Universidad de Talca, 1 Poniente No. 1141, Talca 3460000, Chile
| | - Luis Guzmán
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Claudia Sandoval-Yañez
- Grupo de Investigación Química y Bioquímica Aplicada a la Biotecnología, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 2541, Santiago 8320000, Chile
| | - Oscar Forero-Doria
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile
| |
Collapse
|
37
|
Punmiya A, Prabhu A. Structural fingerprinting of pleiotropic flavonoids for multifaceted Alzheimer's disease. Neurochem Int 2023; 163:105486. [PMID: 36641110 DOI: 10.1016/j.neuint.2023.105486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease has emerged as one of the most challenging neurodegenerative diseases associated with dementia, loss of cognitive functioning and memory impairment. Despite enormous efforts to identify disease modifying technologies, the repertoire of currently approved drugs consists of a few symptomatic candidates that are not capable of halting disease progression. Moreover, these single mechanism drugs target only a small part of the pathological cascade and do not address most of the etiological basis of the disease. Development of therapies that are able to simultaneously tackle all the multiple interlinked causative factors such as amyloid protein aggregation, tau hyperphosphorylation, cholinergic deficit, oxidative stress, metal dyshomeostasis and neuro-inflammation has become the focus of intensive research in this domain. Flavonoids are natural phytochemicals that have demonstrated immense potential as medicinal agents due to their multiple beneficial therapeutic effects. The polypharmacological profile of flavonoids aligns well with the multifactorial pathological landscape of Alzheimer's disease, making them promising candidates to overcome the challenges of this neurodegenerative disorder. This review presents a detailed overview of the pleiotropic biology of flavonoids favourable for Alzheimer therapeutics and the structural basis for these effects. Structure activity trends for several flavonoid classes such as flavones, flavonols, flavanones, isoflavones, flavanols and anthocyanins are comprehensively analyzed in detail and presented.
Collapse
Affiliation(s)
- Amisha Punmiya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Arati Prabhu
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.
| |
Collapse
|
38
|
Andole S, Sd H, Sudhula S, Vislavath L, Boyina HK, Gangarapu K, Bakshi V, Devarakonda KP. 3D QSAR based Virtual Screening of Flavonoids as Acetylcholinesterase Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1424:233-240. [PMID: 37486499 DOI: 10.1007/978-3-031-31982-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
In an attempt to develop therapeutic agents to treat Alzheimer's disease, a series of flavonoid analogues were collected, which already had established acetylcholinesterase (AChE) enzyme inhibition activity. For each molecule we also collected biological activity data (Ki). Then, 3D-QSAR (quantitative structure-activity relationship model) was developed which showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 and q2. This SAR data can explain the key descriptors which can be related to AChE inhibitory activity. Using the QSAR model, pharmacophores were developed based on which, virtual screening was done and a dataset was obtained which loaded as a prediction set to fit the developed QSAR model. Top 10 compounds fitting the QSAR model were subjected to molecular docking. CHEMBL1718051 was found to be the lead compound. This study is offering an example of a computationally-driven tool for prioritisation and discovery of probable AChE inhibitors. Further, in vivo and in vitro testing will show its therapeutic potential.
Collapse
Affiliation(s)
- Sowmya Andole
- School of Pharmacy, Department of Pharmacology, Anurag University, Hyderabad, Telangana, India
| | - Husna Sd
- School of Pharmacy, Department of Pharmacology, Anurag University, Hyderabad, Telangana, India
| | - Srija Sudhula
- School of Pharmacy, Department of Pharmacology, Anurag University, Hyderabad, Telangana, India
| | - Lavanya Vislavath
- School of Pharmacy, Department of Pharmacology, Anurag University, Hyderabad, Telangana, India
| | - Hemanth Kumar Boyina
- School of Pharmacy, Department of Pharmacology, Anurag University, Hyderabad, Telangana, India
| | - Kiran Gangarapu
- School of Pharmacy, Department of Pharmaceutical Analysis, Anurag University, Hyderabad, Telangana, India
| | - Vasudha Bakshi
- School of Pharmacy, Department of Pharmacology, Anurag University, Hyderabad, Telangana, India
| | | |
Collapse
|
39
|
Zheng YY, Guo ZF, Chen H, Bao TRG, Gao XX, Wang AH, Jia JM. Diterpenoids from Sigesbeckia glabrescens with anti-inflammatory and AChE inhibitory activities. PHYTOCHEMISTRY 2023; 205:113503. [PMID: 36356673 DOI: 10.1016/j.phytochem.2022.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Fourteen previously undescribed diterpenoids, including seven ent-pimarane-type diterpenoids and seven phytane-type diterpenes, together with five known ones, were isolated from the aerial parts of Sigesbeckia glabrescens. The structures and absolute configurations of undescribed compounds were elucidated based on extensive spectroscopic techniques, ECD calculations, Mo2(OAC)4-induced ECD, Rh2(OCOCF3)4-induced ECD, calculated 13C NMR, and chemical methods. In the anti-inflammatory bioassay, siegetalis H showed potent inhibitory effect on LPS-induced NO production in RAW264.7 murine macrophages with an IC50 value at 17.29 μM. Furthermore, siegetalis H suppressed the protein expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. Mechanistically, siegetalis H suppressed the phosphorylation and degradation of IκBα, as well as the activation of the NF-κB signaling pathway. In addition, the AChE inhibition assay displayed that 3-O-acetyldarutigenol had a remarkable inhibitory effect against AChE with an IC50 value at 7.02 μM. Kinetic study on 3-O-acetyldarutigenol indicated that it acted as a mixed-type inhibitor, and the binding mode was explored by molecular docking.
Collapse
Affiliation(s)
- Ying-Ying Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Feng Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hu Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Te-Ren-Gen Bao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xu Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - An-Hua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
40
|
Silva JG, Borgati TF, Lopes SM, Heise N, Hoenke S, Csuk R, Barbosa LC. New amides derived from sclareolide as anticholinesterase agents. Bioorg Chem 2023; 130:106249. [DOI: 10.1016/j.bioorg.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
41
|
Gurung P, Shrestha R, Lim J, Thapa Magar TB, Kim HH, Kim YW. Euonymus alatus Twig Extract Protects against Scopolamine-Induced Changes in Brain and Brain-Derived Cells via Cholinergic and BDNF Pathways. Nutrients 2022; 15:nu15010128. [PMID: 36615789 PMCID: PMC9823662 DOI: 10.3390/nu15010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
In the current study, the therapeutic and preventive effects of Euonymus alatus (EA) twig extract were investigated in a mouse model of cognitive deficit and B35 cells. Twig extract 1 was extracted with 70% ethanol and later twig extract 2 was extracted through liquid-liquid extraction with 70% ethanol and hexane. EA twig 2 (300 mg/kg) along with the standard drug donepezil (5 mg/kg) were orally administered to the mice for 34 days. Scopolamine was given intraperitoneally for 7 days. Administration of EA twig extract 2 significantly improved the passive avoidance test (PAT) in mice. EA twigs extract also restored the scopolamine-reduced brain-derived neurotrophic factor (BDNF)/extracellular regulated kinase (ERK)/cyclic AMP responsive element binding protein (CREB) signaling in B35 cells and the mouse hippocampus. In addition, EA twig extract significantly inhibited the acetylcholine esterase (AChE) activity in B35 cells in a dose-dependent manner. Chromatography and ESI MS analysis of EA twig extract revealed the presence of flavonoids; epicatechin, taxifolin, aromadendrin, and naringenin with catechin being the most abundant. These flavonoids exerted protective effects alone and had the possibility of synergistic effects in combination. Our work unmasks the ameliorating effect of EA twig extract 2 on scopolamine-associated cognitive impairments through the restoration of cholinergic systems and the BDNF/ERK/CREB pathway.
Collapse
Affiliation(s)
- Pallavi Gurung
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Rajeev Shrestha
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | - Junmo Lim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
| | | | - Han-Hyuk Kim
- Medical Convergence Textile Center, Gyeongbuk Technopark, Gyeongsan 38412, Republic of Korea
| | - Yong-Wan Kim
- Dongsung Cancer Center, Dongsung Biopharmaceutical, Daegu 41061, Republic of Korea
- Correspondence:
| |
Collapse
|
42
|
Gomes-Copeland KKP, Meireles CG, Gomes JVD, Torres AG, Sinoti SBP, Fonseca-Bazzo YM, Magalhães PDO, Fagg CW, Simeoni LA, Silveira D. Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) Ethanol Extract Activity on Acetylcholinesterase and PPAR-α/γ Receptors. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223179. [PMID: 36432907 PMCID: PMC9693985 DOI: 10.3390/plants11223179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 05/14/2023]
Abstract
Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) is an endemic plant species from the Brazilian savannah with biological and pharmacological potential. This study evaluated the effects of ethanol extract from H. stapfianum leaves on acetylcholinesterase enzyme activity and the action on nuclear receptors PPAR-α and PPAR-γ. A gene reporter assay was performed to assess the PPAR agonist or antagonist activity with a non-toxic dose of H. stapfianum ethanol extract. The antioxidant capacity was investigated using DPPH• scavenging and fosfomolybdenium reduction assays. The identification of H. stapfianum's chemical composition was performed by gas chromatography-mass spectrometry (GC-MS) and HPLC. The ethanol extract of H. stapfianum activated PPAR-α and PPAR-γ selectively, inhibited the acetylcholinesterase enzyme, and presented antioxidant activity in an in vitro assay. The major compounds identified were lycorine, 7-demethoxy-9-O-methylhostasine, and rutin. Therefore, H. stapfianum is a potential source of drugs for Alzheimer's disease due to its ability to activate PPAR receptors, acetylcholinesterase inhibition activity, and antioxidant attributes.
Collapse
Affiliation(s)
- Kicia Karinne Pereira Gomes-Copeland
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| | - Cinthia Gabriel Meireles
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - João Victor Dutra Gomes
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Amanda Gomes Torres
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Simone Batista Pires Sinoti
- Laboratory of Molecular Pharmacology, Health Sciences Faculty, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Yris Maria Fonseca-Bazzo
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Pérola de Oliveira Magalhães
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | | | - Luiz Alberto Simeoni
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
| | - Dâmaris Silveira
- Laboratory of Natural Products, Faculty of Health Sciences, University of Brasilia, Brasília 70910-900, DF, Brazil
- Correspondence: (K.K.P.G.-C.); (D.S.); Tel.: +55-61-31071939 (D.S.)
| |
Collapse
|
43
|
Ojo AB, Gyebi GA, Alabi O, Iyobhebhe M, Kayode AB, Nwonuma CO, Ojo OA. Syzygium aromaticum (L.) Merr. & L.M.Perry mitigates iron-mediated oxidative brain injury via in vitro, ex vivo, and in silico approaches. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Álvarez-Berbel I, Espargaró A, Viayna A, Caballero AB, Busquets MA, Gámez P, Luque FJ, Sabaté R. Three to Tango: Inhibitory Effect of Quercetin and Apigenin on Acetylcholinesterase, Amyloid-β Aggregation and Acetylcholinesterase-Amyloid Interaction. Pharmaceutics 2022; 14:2342. [PMID: 36365159 PMCID: PMC9699245 DOI: 10.3390/pharmaceutics14112342] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/13/2023] Open
Abstract
One of the pathological hallmarks of Alzheimer's disease (AD) is the formation of amyloid-β plaques. Since acetylcholinesterase (AChE) promotes the formation of such plaques, the inhibition of this enzyme could slow down the progression of amyloid-β aggregation, hence being complementary to the palliative treatment of cholinergic decline. Antiaggregation assays performed for apigenin and quercetin, which are polyphenolic compounds that exhibit inhibitory properties against the formation of amyloid plaques, reveal distinct inhibitory effects of these compounds on Aβ40 aggregation in the presence and absence of AChE. Furthermore, the analysis of the amyloid fibers formed in the presence of these flavonoids suggests that the Aβ40 aggregates present different quaternary structures, viz., smaller molecular assemblies are generated. In agreement with a noncompetitive inhibition of AChE, molecular modeling studies indicate that these effects may be due to the binding of apigenin and quercetin at the peripheral binding site of AChE. Since apigenin and quercetin can also reduce the generation of reactive oxygen species, the data achieved suggest that multitarget catechol-type compounds may be used for the simultaneous treatment of various biological hallmarks of AD.
Collapse
Affiliation(s)
- Irene Álvarez-Berbel
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Antonio Viayna
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy, Institute of Theoretical and Computational Chemistry (IQTCUB) and Institute of Biomedicine (IBUB), Campus Torribera, University of Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Ana Belén Caballero
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB) and NanoBIC, University of Barcelona, 08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Patrick Gámez
- Department of Inorganic and Organic Chemistry, Faculty of Chemistry, Institute of Nanoscience and Nanotechnology (IN2UB) and NanoBIC, University of Barcelona, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Francisco Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy, Institute of Theoretical and Computational Chemistry (IQTCUB) and Institute of Biomedicine (IBUB), Campus Torribera, University of Barcelona, Prat de la Riba 171, 08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabaté
- Department of Pharmacy and Pharmaceutical Technology and Physical-Chemistry, School of Pharmacy and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
45
|
Han N, Wen Y, Liu Z, Zhai J, Li S, Yin J. Advances in the roles and mechanisms of lignans against Alzheimer’s disease. Front Pharmacol 2022; 13:960112. [PMID: 36313287 PMCID: PMC9596774 DOI: 10.3389/fphar.2022.960112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a serious neurodegenerative disease associated with the memory and cognitive impairment. The occurrence of AD is due to the accumulation of amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain tissue as well as the hyperphosphorylation of Tau protein in neurons, doing harm to the human health and even leading people to death. The development of neuroprotective drugs with small side effects and good efficacy is focused by scientists all over the world. Natural drugs extracted from herbs or plants have become the preferred resources for new candidate drugs. Lignans were reported to effectively protect nerve cells and alleviate memory impairment, suggesting that they might be a prosperous class of compounds in treating AD. Objective: To explore the roles and mechanisms of lignans in the treatment of neurological diseases, providing proofs for the development of lignans as novel anti-AD drugs. Methods: Relevant literature was extracted and retrieved from the databases including China National Knowledge Infrastructure (CNKI), Elsevier, Science Direct, PubMed, SpringerLink, and Web of Science, taking lignan, anti-inflammatory, antioxidant, apoptosis, nerve regeneration, nerve protection as keywords. The functions and mechanisms of lignans against AD were summerized. Results: Lignans were found to have the effects of regulating vascular disorders, anti-infection, anti-inflammation, anti-oxidation, anti-apoptosis, antagonizing NMDA receptor, suppressing AChE activity, improving gut microbiota, so as to strengthening nerve protection. Among them, dibenzocyclooctene lignans were most widely reported and might be the most prosperous category in the develpment of anti-AD drugs. Conclusion: Lignans displayed versatile roles and mechanisms in preventing the progression of AD in in vitro and in vivo models, supplying potential candidates for the treatment of nerrodegenerative diseases.
Collapse
|
46
|
Phytochemical profiling, in vitro biological activities, and in-silico molecular docking studies of Typha domingensis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
47
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. A new hyper-thermostable carboxylesterase from Anoxybacillus geothermalis D9. Int J Biol Macromol 2022; 222:2486-2497. [DOI: 10.1016/j.ijbiomac.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
48
|
Rotimi DE, Ben-Goru GM, Evbuomwan IO, Elebiyo TC, Alorabi M, Farasani A, Batiha GES, Adeyemi OS. Zingiber officinale and Vernonia amygdalina Infusions Improve Redox Status in Rat Brain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9470178. [PMID: 36199544 PMCID: PMC9529415 DOI: 10.1155/2022/9470178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
The study investigated the effects of Zingiber officinale root and Vernonia amygdalina leaf on the brain redox status of Wistar rats. Twenty-four (24) rats weighing 160 ± 20 g were randomly assigned into four (4) groups, each with six (6) rats. Animals in Group 1 (control) were orally administered distilled water (1 mL), while the test groups were orally administered 5 mg/mL of either Z. officinale, V. amygdalina infusion, or a combination of both, respectively, for 7 days. The rats were sacrificed at the end of treatments and blood and tissue were harvested and prepared for biochemical assays. Results showed that administration of V. amygdalina and Z. officinale, as well as their coadministration, reduced the levels of malondialdehyde (MDA), nitric oxide (NO), acetylcholinesterase (AChE), and myeloperoxidase (MPO) in rat brain tissue compared with the control group. Conversely, coadministration of V. amygdalina and Z. officinale increased the levels of reduced glutathione (GSH) in rat brain tissue compared with the control group. However, the administration of the infusions singly, as well as the combination of both infusions, did not have any effect on the rat brain levels of glutathione peroxidase (GPx) and catalase (CAT) antioxidant enzymes compared to the control. Taken together, the findings indicate that the V. amygdalina and Z. officinale tea infusions have favorable antioxidant properties in the rat brain. The findings are confirmatory and contribute to deepening our understanding of the health-promoting effects of V. amygdalina and Z. officinale tea infusions.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Goodnews Mavoghenegbero Ben-Goru
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Ikponmwosa Owen Evbuomwan
- Department of Microbiology, Cellular Parasitology Unit, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Tobiloba Christiana Elebiyo
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
| | - Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdullah Farasani
- Department of Medical Laboratory Technology, Biomedical Research Unit, Medical Research Center, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran 251101, Kwara State, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi 989-6711, Sendai, Japan
| |
Collapse
|
49
|
Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemisia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents. Molecules 2022; 27:molecules27185886. [PMID: 36144622 PMCID: PMC9500874 DOI: 10.3390/molecules27185886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Artemisia verlotiorum Lamotte is recognized medicinally given its long-standing ethnopharmacological uses in different parts of the world. Nonetheless, the pharmacological properties of the leaves of the plant have been poorly studied by the scientific community. Hence, this study aimed to decipher the phytochemicals; quantify through HPLC-ESI-MS analysis the plant’s biosynthesis; and evaluate the antioxidant, anti-tyrosinase, amylase, glucosidase, cholinesterase, and cytotoxicity potential on normal (NIH 3T3) and human liver and human colon cancer (HepG2 and HT 29) cell lines of this plant species. The aqueous extract contained the highest content of phenolics and phenolic acid, methanol extracted the most flavonoid, and the most flavonol was extracted by ethyl acetate. The one-way ANOVA results demonstrated that all results obtained were statistically significant at p < 0.05. A total of 25 phytoconstituents were identified from the different extracts, with phenolic acids and flavonoids being the main metabolites. The highest antioxidant potential was recorded for the aqueous extract. The best anti-tyrosinase extract was the methanolic extract. The ethyl acetate extract of A. verlotiorum had the highest flavonol content and hence was most active against the cholinesterase enzymes. The ethyl acetate extract was the best α-glucosidase and α-amylase inhibitor. The samples of Artemisia verlotiorum Lamotte in both aqueous and methanolic extracts were found to be non-toxic after 48 h against NIH 3T3 cells. In HepG2 cells, the methanolic extract was nontoxic up to 125 µg/mL, and an IC50 value of 722.39 µg/mL was recorded. The IC50 value exhibited in methanolic extraction of A. verlotiorum was 792.91 µg/mL in HT29 cells. Methanolic extraction is capable of inducing cell cytotoxicity in human hepatocellular carcinoma without damaging normal cells. Hence, A. verlotiorum can be recommended for further evaluation of its phytochemical and medicinal properties.
Collapse
|
50
|
Yuwong Wanyu B, Emégam Kouémou N, Sotoing Taiwe G, Temkou Ngoupaye G, Tamanji Ndzweng L, Lambou Fotio A, Nguepi Dongmo MS, Ngo Bum E. Dichrocephala integrifolia Aqueous Extract Antagonises Chronic and Binges Ethanol Feeding-Induced Memory Dysfunctions: Insights into Antioxidant and Anti-Inflammatory Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1620816. [PMID: 36110196 PMCID: PMC9470300 DOI: 10.1155/2022/1620816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/07/2022] [Indexed: 11/28/2022]
Abstract
Ethanol consumption is widely accepted despite its addictive properties and its mind-altering effects. This study aimed to assess the effects of Dichrocephala integrifolia against, memory impairment, on a mouse model of chronic and binges ethanol feeding. Mice were divided, into groups of 8 animals each, and received distilled water, Dichrocephala integrifolia aqueous extract (25; 50; 100; or 200 mg/kg) or memantine (200 mg/kg) once a day, while fe, with Lieber-DeCarli control (sham group only) or Lieber-DeCarli ethanol diet ad libitum for 28 days. The Y maze and the novel object recognition (NOR) tests were used to evaluate spatial short-term and recognition memory, respectively. Malondialdehyde, nitric oxide, glutathione levels, and proinflammatory cytokines (Il-1β, TNF-α, and Il-6) were evaluated in brain homogenates following behavioral assessments. The results showed that chronic ethanol administration in mice was associated with a significant (p < 0.001) reduction in the spontaneous alternation percentage and the discrimination index, in the Y maze and the NOR tests, respectively. It significantly (p < 0.01) increased oxidative stress and inflammation markers levels in the brain. Dichrocephala integrifolia (100 and 200 mg/kg) as well as memantine (200 mg/kg) significantly (p < 0.001) increased the percentage of spontaneous alternation and the discrimination index, in the Y maze and NOR tests, respectively. Dichrocephala integrifolia (100 and 200 mg/kg) likewise memantine (200 mg/kg) significantly (p < 0.01) alleviated ethanol-induced increase, in the brain malondialdehyde level, nitric oxide, Il-1β, TNF-α, and Il-6. From these findings, it can be concluded that Dichrocephala integrifolia counteracted memory impairment, oxidative stress, and neuroinflammation induced by chronic ethanol consumption in mice.
Collapse
Affiliation(s)
- Bertrand Yuwong Wanyu
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Nadège Emégam Kouémou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Gwladys Temkou Ngoupaye
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Linda Tamanji Ndzweng
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Agathe Lambou Fotio
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 52, Maroua, Cameroon
| |
Collapse
|