1
|
Vincent S, Stanely SP, Ponnian SMP. Protective effects of 3, 4-dihydroxybenzoic acid on myocardial infarction induced by isoproterenol in rats. J Biochem Mol Toxicol 2024; 38:e23773. [PMID: 39030868 DOI: 10.1002/jbt.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
Despite considerable advances in interventions and treatment, there is a high mortality rate in patients with myocardial infarction (MI). This is the first study to investigate the protective effects of 3, 4-dihydroxybenzoic acid against isoproterenol induced MI in rats. MI was induced by isoproterenol (100-mg/kg body weight) in rats. Then, rats were treated with 3, 4-dihydroxybenzoic acid (16-mg/kg body weight) for 2 weeks. Serum creatine kinase-MB, cardiac troponin-T, cardiac troponin-I, and heart thiobarbituric acid reactive substances were significantly (p < 0.05) increased and heart superoxide dismutase and catalase activities were significantly (p < 0.05) reduced in isoproterenol-induced myocardial infarcted rats. Isoproterenol induction significantly (p < 0.05) elevated the plasma homocysteine and serum high sensitivity-C-reactive protein levels. Furthermore, an enzyme-linked immunosorbent assay, reverse transcription polymerase chain study, and immunohistochemical (IHC) staining revealed significantly (p < 0.05) elevated levels and expression of serum/myocardial nuclear factor-κB, tumor necrosis factor-alpha, interleukin-1 beta, and Interleukin-6 and significantly (p < 0.05) reduced levels/expression of serum/myocardial interleukin-10 in myocardial infarcted rats. Nevertheless, isoproterenol-induced rats treated with 3, 4-dihydroxybenzoic acid considerably (p < 0.05) attenuated all the biochemical, molecular, and IHC parameters investigated and inhibited oxidative stress and inflammation and protected the heart, through its antioxidant and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Sikha Vincent
- Medicinal and Biomolecular Chemistry Laboratory, Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| | - Shervin Prince Stanely
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Stanely Mainzen Prince Ponnian
- Medicinal and Biomolecular Chemistry Laboratory, Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, India
| |
Collapse
|
2
|
Ding B, Jiang L, Zhang N, Zhou L, Luo H, Wang H, Chen X, Gao Y, Zhao Z, Wang C, Wang Z, Guo Z, Wang Y. Santalum album L. alleviates cardiac function injury in heart failure by synergistically inhibiting inflammation, oxidative stress and apoptosis through multiple components. Chin Med 2024; 19:98. [PMID: 39010069 PMCID: PMC11251102 DOI: 10.1186/s13020-024-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Heart failure (HF) is a complex cardiovascular syndrome with high mortality. Santalum album L. (SAL) is a traditional Chinese medicine broadly applied for various diseases treatment including HF. However, the potential active compounds and molecular mechanisms of SAL in HF treatment are not well understood. METHODS The active compounds and possible mechanisms of action of SAL were analyzed and validated by a systems pharmacology framework and an ISO-induced mouse HF model. RESULTS We initially confirmed that SAL alleviates heart damage in ISO-induced HF model. A total of 17 potentially active components in SAL were identified, with Luteolin (Lut) and Syringaldehyde (SYD) in SAL been identified as the most effective combination through probabilistic ensemble aggregation (PEA) analysis. These compounds, individually and in their combination (COMB), showed significant therapeutic effects on HF by targeting multiple pathways involved in anti-oxidation, anti-inflammation, and anti-apoptosis. The active ingredients in SAL effectively suppressed inflammatory mediators and pro-apoptotic proteins while enhancing the expression of anti-apoptotic factors and antioxidant markers. Furthermore, the synergistic effects of SAL on YAP and PI3K-AKT signaling pathways were further elucidated. CONCLUSIONS Mechanistically, the anti-HF effect of SAL is responsible for the synergistic effect of anti-inflammation, antioxidation and anti-apoptosis, delineating a multi-targeted therapeutic strategy for HF.
Collapse
Affiliation(s)
- Bojiao Ding
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Li Jiang
- Key Laboratory of Phytomedicinal Resources Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Na Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Li Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Huiying Luo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Haiqing Wang
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China
| | - Xuetong Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China
| | - Yuxin Gao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
| | - Zezhou Zhao
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China
- Key Laboratory of Phytomedicinal Resources Utilization, Ministry of Education, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chao Wang
- National Key Laboratory On Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Zhenzhong Wang
- National Key Laboratory On Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangsu Kanion Pharmaceutical Co. Ltd., Lianyungang, 222002, Jiangsu, China
| | - Zihu Guo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China.
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China.
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China.
| | - Yonghua Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, 710069, Shaanxi, China.
- Jiuwei Institute of Life Sciences, Yangling, 712100, Shaanxi, China.
- Shaanxi Qinling Qiyao Collaborative Innovation Center Co. Ltd., Xianyang, 712100, Shaanxi, China.
- College of Pharmacy, Heze University, Heze, 274015, Shandong, China.
| |
Collapse
|
3
|
Manakkadan V, Haribabu J, Palakkeezhillam VNV, Rasin P, Vediyappan R, Kumar VS, Garg M, Bhuvanesh N, Sreekanth A. Copper-mediated cyclization of thiosemicarbazones leading to 1,3,4-thiadiazoles: Structural elucidation, DFT calculations, in vitro biological evaluation and in silico evaluation studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124117. [PMID: 38461559 DOI: 10.1016/j.saa.2024.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.
Collapse
Affiliation(s)
- Vipin Manakkadan
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile; Chennai Institute of Technology (CIT), Chennai 600069, India
| | | | - Puthiyavalappil Rasin
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India
| | - Ramesh Vediyappan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Vaishnu Suresh Kumar
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India; Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Mohit Garg
- Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani-333031 Rajasthan, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, TX 77842, USA
| | - Anandaram Sreekanth
- Department of Chemistry, National Institute of Technology-Tiruchirappalli, Tamil Nadu, 620015, India.
| |
Collapse
|
4
|
Jaiswal S, Anjum MM, Arya DK, Thakur S, Pandey P, Deepak P, Kanaujiya S, Anand S, Kaushik AS, Mishra V, Rajinikanth PS. Surface entrenched β-sitosterol niosomes for enhanced cardioprotective activity against isoproterenol induced cardiotoxicity in rats. Int J Pharm 2024; 653:123872. [PMID: 38336178 DOI: 10.1016/j.ijpharm.2024.123872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Cardiotoxicity (CT) is a severe condition that negatively impacts heart function. β-sitosterol (BS) is a group of phytosterols and known for various pharmacological benefits, such as managing diabetes, cardiac protection, and neuroprotection. This study aims to develop niosomes (NS) containing BS, utilizing cholesterol as the lipid and Tween 80 as the stabilizer. The research focuses on designing and evaluating both conventional BS-NS and hyaluronic acid (HA) modified NS (BS-HA-NS) to enhance the specificity and efficacy of BS within cardiac tissue. The resulting niosomal formulation was spherical, with a size of about 158.51 ± 0.57 nm, an entrapment efficiency of 93.56 ± 1.48 %, and a drug loading of 8.07 ± 1.62 %. To evaluate cytotoxicity on H9c2 heart cells, the MTT assay was used. The cellular uptake of BS-NS and BS-HA-NS was confirmed by confocal microscopy on H9c2 cardiac cells. Administering BS-NS and BS-HA-NS intravenously at a dose of 10 mg/kg showed the ability to significantly decrease the levels of cardiac troponin-I (cTn-I), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and lipid peroxidation (MDA). Tissue histopathology indicated a substantial potential for repairing cardiac tissue after treatment with BS-NS and BS-HA-NS and strong cardioprotection against ISO induced myocardial tissue damages. Thus, enhancing BS's therapeutic effectiveness through niosome surface modification holds promise for mitigating cardiac damage resulting from CT.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sunita Thakur
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | | |
Collapse
|
5
|
Ponnian SMP, Stanely SP, Roy AJ. Cardioprotective effects of p-coumaric acid on tachycardia, inflammation, ion pump dysfunction, and electrolyte imbalance in isoproterenol-induced experimental myocardial infarction. J Biochem Mol Toxicol 2024; 38:e23668. [PMID: 38439645 DOI: 10.1002/jbt.23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Cardiovascular diseases cause a large number of deaths throughout the world. No research was conducted earlier on p-coumaric acid's effect on tachycardia, inflammation, ion pump dysfunction, and electrolyte imbalance. Hence, we appraised the above-said parameters in isoproterenol-induced myocardial infarcted rats. This investigation included 24 male albino Wistar rats in 4 groups. Normal control Group 1, p-coumaric acid (8 mg/kg body weight) alone treated Group 2, Isoproterenol (100 mg/kg body weight) induced myocardial infarcted Group 3, p-coumaric acid (8 mg/kg body weight) pretreated isoproterenol (100 mg/kg body weight) induced Group 4. After 1 day of the last dose of isoproterenol injection (day 10), rats were killed and blood and heart were taken and inflammatory markers, lipid peroxidation, nonenzymatic antioxidants, ion pumps, and electrolytes were measured. The heart rate, serum cardiac troponin-T, serum/plasma inflammatory markers, and heart proinflammatory cytokines were raised in isoproterenol-induced rats. Isoproterenol also enhanced plasma lipid peroxidation, lessened plasma nonenzymatic antioxidants, and altered heart ion pumps and serum and heart electrolytes. In this study, p-coumaric acid pretreatment orally for 7 days to isoproterenol-induced myocardial infarcted rats prevented changes in the above-cited parameters. p-Coumaric acid's anti-tachycardial, anti-inflammatory, anti-ion pump dysfunction and anti-electrolyte imbalance properties are the mechanisms for these cardioprotective effects.
Collapse
Affiliation(s)
- Stanely Mainzen Prince Ponnian
- Department of Biochemistry and Biotechnology, Medicinal and Biomolecular Chemistry Laboratory, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Shervin Prince Stanely
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Abhro Jyoti Roy
- Department of Biochemistry and Biotechnology, Medicinal and Biomolecular Chemistry Laboratory, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
6
|
Wen D, Meng C, Feng Y, Shen L, Liu Y, Sun W, Chen G, Wu C. Syringaldehyde Exhibits Antibacterial and Antioxidant Activities against Mycobacterium marinum Infection. Microorganisms 2024; 12:348. [PMID: 38399751 PMCID: PMC10893232 DOI: 10.3390/microorganisms12020348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Tuberculosis (TB) is caused by infection with Mycobacterium tuberculosis (Mtb), which has a unique resistance to many antimicrobial agents. TB has emerged as a significant worldwide health issue because of the rise of multidrug-resistant strains causing drug-resistant TB (DR-TB). As a result, the development of new drugs or effective strategies is crucial for patients with TB. Mycobacterium marinum (Mm) and Mtb are both species of mycobacteria. In zebrafish, Mm proliferates and forms chronic granulomatous infections, which are similar to Mtb infections in lung tissue. Syringaldehyde (SA) is a member of the phenolic aldehyde family found in various plants. Here, we investigated its antioxidative and antibacterial properties in Mm-infected cells and zebrafish. Our results demonstrated that SA inhibits Mm-infected pulmonary epithelial cells and inhibits the proliferation of Mm in Mm-infected zebrafish, suggesting that SA provides an antibacterial effect during Mm infection. Further study demonstrated that supplementation with SA inhibits the production of malondialdehyde (MDA) and reactive oxygen species (ROS) and increases the levels of reduced glutathione (GSH) in Mm-infection-induced macrophages. SA inhibits the levels of MDA in Mm-infected zebrafish, suggesting that SA exerts antioxidative effects in vivo. Additionally, we found that SA promotes the expression of NRF2/HO-1/NQO-1 and the activation of the AMPK-α1/AKT/GSK-3β signaling pathway. In summary, our data demonstrated that SA exerts antioxidative and antibacterial effects during Mm infection both in vivo and in vitro and that the antioxidative effects of SA may be due to the regulation of NRF2/HO-1/NQO-1 and the AMPK-α1/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Da Wen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Chaoqun Meng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Yazhi Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Lin Shen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Yiyao Liu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Wei Sun
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
7
|
Zhuang H, Zhang X, Wu S, Yong P, Niu X. Complexation study of syringaldehyde complexed with serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123533. [PMID: 37871524 DOI: 10.1016/j.saa.2023.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
As a major flavonoid polyphenolic compound in the stem of Hibiscus taiwanensis, syringaldehyde (SA) has numerous pharmacological effects. Nevertheless, owing to its less in-depth study, its application is limited. Within this work, the interactions between serum albumin and SA were elucidated by multispectral studies. The results of ultraviolet/visible absorption spectroscopy suggest that the conformation of serum albumin can be altered by binding with SA. Fluorescence spectroscopy indicates that SA forms complexes with serum albumin, quenching its fluorescence. This suggests that the fluorescent residues of serum albumin are situated at or near the binding site. Additionally, FT-IR results confirm that SA alters the secondary structure of BSA, specifically affecting the positions of both amide I and amide II bands. Via the computational biology analyses, it was confirmed that SA binds at the active site of serum albumin and nine residues form hydrophobic interactions. In addition, the cytotoxicity of SA to BRL-3A cells was also studied, and SA had almost no toxicity to the growth of BRL-3A cells. The complex has a higher α-amylase inhibition capacity than SA alone. To sum up, this work reveals that the interaction of SA with BSA induces a conformational alteration in BSA. It also proved that SA inhibits α-amylase more significantly and has great potential in hypoglycemia.
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
8
|
Jghef MM, Boukholda K, Chtourou Y, Fiebich BL, Kebieche M, Soulimani R, Chigr F, Fetoui H. Punicalagin attenuates myocardial oxidative damage, inflammation, and apoptosis in isoproterenol-induced myocardial infarction in rats: Biochemical, immunohistochemical, and in silico molecular docking studies. Chem Biol Interact 2023; 385:110745. [PMID: 37806379 DOI: 10.1016/j.cbi.2023.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Punicalagin (PU), the major ellagitannin found in pomegranates, is characterized by multiple antioxidant activities. The aim of this study is to assess the protective effects of PU against isoproterenol (ISO)-induced acute myocardial damage and to investigate its underlying vascular mechanisms using rat model. METHODS: Rats were randomly divided into five groups and were treated orally (p.o.) with PU (25 and 50 mg/kg) for 14 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 15th and 16th days to induce Myocardial infarction. Cardiac markers, oxidative stress markers, and inflammatory cytokines levels were determined in the heart tissue. Immunohistochemistry analysis was performed to determine the protein expression pathways of inflammation, apoptosis and oxidative stress (Nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (HO-1) in all the groups. In silico study was carried out to evaluate the molecular interaction of PU with some molecular targets. RESULTS: Our results showed that ISO-induced cardiac tissue injury was evidenced by increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH), associated with several histopathological changes. ISO also induced an increase of MDA, PCO, NO, and 8-hydroxy-2-deoxyguanosine (8-OHdG), along with a decrease of antioxidant enzyme activities in the myocardial tissues. In addition, an increase of TNF-α, NF-κB, IL-6, IL-1β, iNOS, Nrf2 and (HO-1) was observed. Pre-treatment with PU reduced myocardial infract area, ameliorated histopathological alterations in myocardium, and decreased activities of myocardial injury marker enzymes in ISO-induced rats. In addition, PU remarkably restored ISO-induced elevation of lipid peroxidation and decrease of antioxidants, significantly reduced myocardial pro-inflammatory cytokines concentrations in this animal model. Molecular docking analysis of PU with protein targets showed potent interactions with negative binding energies. In conclusion, PU can protect the myocardium from oxidative injury, inflammatory response, and cell death induced by ISO by upregulating Nrf2/HO-1 signaling and antioxidants.
Collapse
Affiliation(s)
- Muthana M Jghef
- Department of Radiology, Medical Technical College, Alkitab University, Alton Kubri, Kirkuk, Iraq; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
| | - Mohammed Kebieche
- Faculty of Natural and Life Sciences, LMAGECA and BMBP Research Laboratories, University of Batna2, Route de Constantine, 05078, Fesdis, Batna2, Algeria.
| | - Rachid Soulimani
- Université de Lorraine, LCOMS/Neurotoxicologie Alimentaire et Bioactivité, 57000, Metz, France.
| | - Fatiha Chigr
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco.
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
9
|
Lin KH, Ramesh S, Agarwal S, Kuo WW, Kuo CH, Chen MYC, Lin YM, Ho TJ, Huang PC, Huang CY. Fisetin attenuates doxorubicin-induced cardiotoxicity by inhibiting the insulin-like growth factor II receptor apoptotic pathway through estrogen receptor-α/-β activation. Phytother Res 2023; 37:3964-3981. [PMID: 37186468 DOI: 10.1002/ptr.7855] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023]
Abstract
Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-β activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| | - Sakshi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Pei-Chen Huang
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
10
|
Yan Q, Liu S, Sun Y, Chen C, Yang S, Lin M, Long J, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N, Yang Y. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J Transl Med 2023; 21:519. [PMID: 37533007 PMCID: PMC10394930 DOI: 10.1186/s12967-023-04361-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023] Open
Abstract
Cardiovascular diseases (CVDs) continue to exert a significant impact on global mortality rates, encompassing conditions like pulmonary arterial hypertension (PAH), atherosclerosis (AS), and myocardial infarction (MI). Oxidative stress (OS) plays a crucial role in the pathogenesis and advancement of CVDs, highlighting its significance as a contributing factor. Maintaining an equilibrium between reactive oxygen species (ROS) and antioxidant systems not only aids in mitigating oxidative stress but also confers protective benefits on cardiac health. Herbal monomers can inhibit OS in CVDs by activating multiple signaling pathways, such as increasing the activity of endogenous antioxidant systems and decreasing the level of ROS expression. Given the actions of herbal monomers to significantly protect the normal function of the heart and reduce the damage caused by OS to the organism. Hence, it is imperative to recognize the significance of herbal monomers as prospective therapeutic interventions for mitigating oxidative damage in CVDs. This paper aims to comprehensively review the origins and mechanisms underlying OS, elucidate the intricate association between CVDs and OS, and explore the therapeutic potential of antioxidant treatment utilizing herbal monomers. Furthermore, particular emphasis will be placed on examining the cardioprotective effects of herbal monomers by evaluating their impact on cardiac signaling pathways subsequent to treatment.
Collapse
Affiliation(s)
- Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care, Changsha, People's Republic of China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
11
|
Li T, Liu X, Han P, Aimaier A, Zhang Y, Li J. Syringaldehyde ameliorates mouse arthritis by inhibiting dendritic cell maturation and proinflammatory cytokine secretion. Int Immunopharmacol 2023; 121:110490. [PMID: 37339567 DOI: 10.1016/j.intimp.2023.110490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Syringaldehyde (SD), a kind of flavonoid polyphenolic small molecule compound, has the antioxidant and anti-inflammatory properties. But it is unknown whether SD has properties on the treatment of rheumatoid arthritis (RA) by modulating dendritic cells (DCs). We explored the effect of SD on the maturation of DCs in vitro and in vivo. The results showed that SD significantly down-regulated the expression of CD86, CD40 and MHC II, decreased the secretion of TNF-α, IL-6, IL-12p40 and IL-23, and increased IL-10 secretion and antigen phagocytosis in vitro induced by lipopolysaccharides in a dose-dependent manner through reducing the activation of MAPK/NF-κB signaling pathways. SD also significantly inhibited the expression of CD86, CD40 and MHC II on DCs in vivo. Moreover, SD suppressed the expression of CCR7 and the in vivo migration of DCs. In arthritis mouse models induced by λ-carrageenan and complete Freund's adjuvant, SD significantly alleviated paw and joint oedema, reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 and increased the level of IL-10 in serum. Interestingly, SD significantly decreased the numbers of type I helper T cells (Th1), Th2, Th17 and Th17/Th1-like (CD4+IFN-γ+IL-17A+), but increased the numbers of regulatory T cells (Tregs) in spleens of mice. Importantly, the numbers of CD11c+IL-23+ and CD11c+IL-6+ cells were negatively correlated with the numbers of Th17 and Th17/Th1-like. These results suggested that SD ameliorated mouse arthritis through inhibiting the differentiation of Th1, Th17 and Th17/Th1-like and promoting the generation of Tregs via regulation of DC maturation.
Collapse
Affiliation(s)
- Teng Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yaosheng Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
12
|
Yalameha B, Nejabati HR, Nouri M. Cardioprotective potential of vanillic acid. Clin Exp Pharmacol Physiol 2023; 50:193-204. [PMID: 36370144 DOI: 10.1111/1440-1681.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Nowadays, cardiovascular diseases (CVDs) are a global threat to public health, accounting for almost one-third of all deaths worldwide. One of the key mechanistic pathways contributing to the development of CVDs, including cardiotoxicity (CTX) and myocardial ischaemia-reperfusion injury (MIRI) is oxidative stress (OS). Increased generation of reactive oxygen species (ROS) is closely associated with decreased antioxidant capacity and mitochondrial dysfunction. Currently, despite the availability of modern pharmaceuticals, dietary-derived antioxidants are becoming more popular in developed societies to delay the progression of CVDs. One of the antioxidants derived from herbs, fruits, whole grains, juices, beers, and wines is vanillic acid (VA), which, as a phenolic compound, possesses different therapeutic properties, including cardioprotective. Based on experimental evidence, VA improves mitochondrial function as a result of the reduction in ROS production, aggravates antioxidative status, scavenges free radicals, and reduces levels of lipid peroxidation, thereby decreasing cardiac dysfunction, in particular CTX and MIRI. Considering the role of OS in the pathophysiology of CVDs, the purpose of this study is to comprehensively address recent evidence on the antioxidant importance of VA in the cardiovascular system.
Collapse
Affiliation(s)
- Banafsheh Yalameha
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Zhang X, Seshadri VD, Jiang Q. Ameliorative Effects of Ponicidin Against the Isoproterenol-induced Acute Myocardial Infarction in Rats. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221139010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Background Cardiovascular disease (CVD) is a group of heart disorders, which is a major cause of noncommunicable disease-related mortalities worldwide. Myocardial infarction (MI) is an acute disorder due to the poor supply of oxygen and blood to the myocardium. MI is the foremost form of CVD, which is the primary cause of mortality worldwide. Objectives Here, we intended to discover the ameliorative properties of the ponicidin against the isoproterenol (ISO)-stimulated MI in rats. Methodology About 85 mg/kg of ISO was administered to the rats to trigger the MI and then treated with 25 and 50 mg/kg of ponicidin. The body weight and heart weight of all rats were determined. The total protein, c-reactive protein (CRP), and uric acid levels were examined. The activities of cardiac function markers such as creatine kinase (CK), ALT, AST, and gamma-glutamyl transferase (GGT) were examined. The antioxidants such as glutathione (GSH), GST, and GPx were examined by the previous methods. The status of Na+/K+, Mg2+, and Ca2+ ATPase activities was assessed using kits. The status of Na+, K+, and Ca2+ ions and inflammatory makers such as TNF-α and IL-6 were investigated using respective kits. The histopathological analysis was performed on the heart tissues to detect the histological changes. Results The results revealed that ponicidin increased body weight and decreased heart weight in MI rats. The status of CRP and uric acid was decreased and total protein was augmented in the ponicidin-treated MI rats. The AST, ALT, CK, and GGT activities were appreciably decreased in serum and elevated in the cardiac tissues of the ponicidin-administered MI rats. Furthermore, the ponicidin improved the antioxidant levels, decreased the TNF-α and IL-6, and regulated the Na+, K+, and Ca2+ ion transports in the MI rats. The activities of Na+/K+, Mg2+, and Ca2+ ATPase enzymes were remarkably increased in the heart tissues by the ponicidin-treated MI rats. Ponicidin treatment also ameliorated the ISO-stimulated histological alterations in the heart tissue of the MI rats. Conclusion Ponicidin treatment appreciably improved the antioxidants, Na+/K+, Mg2+, and Ca2+ ATPase enzyme activities, decreased the inflammatory markers, and regulated the cardiac marker enzyme activities in the MI rats. Hence, it can be a talented therapeutic candidate in the future to treat MI.
Collapse
|
14
|
Ren J, Ren M, Mo Z, Lei M. Study on Anti-Inflammatory Mechanism of Angelica pubescens Based on Network Pharmacology and Molecular Docking. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221146616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
References and data show that AP has a certain effect on alleviating inflammation. Based on the methods of network pharmacology and molecular docking, this paper predicts the potential mechanism of anti-inflammatory effect of the effective components. Methods: Active components and target genes of AP were screened out by SymMap, an associated database of TCM syndromes. First, screen out the active components according to the setting conditions, and its molecular structure file was obtained from the PubChem database. The target genes of anti-inflammatory effect were obtained from GeneCards database with “anti-inflammation effect” as the keyword, and then the common gene targets between AP and anti-inflammatory effect were screened. The PPI network diagram was constructed with Cytoscape 3.80 software to screen the core genes. The GO function and KEGG pathway of the core genes were enriched and analyzed by David database; 3D view of proteins encoded by the core gene from the PDB database, conduct molecular docking between the active components and the core proteins in Auto Dock Vina software, and made a heat map with binding free energy. Results: The main anti-inflammatory components were O-Acetylcolumbianetin, isoindigo, Nodakenetin, Marmesin, Diphencyprone; The core targets are TNF, VEGFA, IL6, TP53, IL1B, ESR1, MMP9, PPARG, Jun, CASP3, PTGS2. AP participated in cytokine-mediated signaling pathway, response to drug, positive regulation of gene expression, and other processes by regulating the combination of extracellular space, cell surface with protein and enzyme, and then exert anti-inflammatory activity. The signal pathways mainly involved IL-17 signaling pathway, hepatitis B, TNF signaling pathway, inflammatory bowel disease, rheumatoid arthritis, etc.; Through molecular docking, it was found that the key targets were MMP9, TNF, PTGS2, ESR1, JUN, and PPARG, while the active components which ha,d a strong effect on these genes were O-Acetylcolumbianetin, isoindigo, Nodakenetin, Marmesin, Diphencyprone. Conclusion: This study used network pharmacology and molecular docking methods to predict the potential active components, target genes, and signal pathways of the anti-inflammatory effect of AP, so as to provide a theoretical reference for the follow-up experimental research and clinical treatment of AP.
Collapse
Affiliation(s)
- Jianwei Ren
- Tibet University Medical College, Lhasa, China
| | - Minghui Ren
- Tibet University Medical College, Lhasa, China
| | | | - Ming Lei
- Department of Science and Technology of Tibet Autonomous Region, Lhasa, China
| |
Collapse
|
15
|
Yin Y, Wang L, Chen G, You H. Effect of Fraxetin on Oxidative Damage Caused by Isoproterenol-Induced Myocardial Infarction in Rats. Appl Biochem Biotechnol 2022; 194:5666-5679. [PMID: 35802243 DOI: 10.1007/s12010-022-04019-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
At present, cardiovascular disorders are the most prominent factors for the high morbidity rate globally. The occurrence of myocardial infarction followed by myocardial ischemia is the important cause of high death rates. Various medical treatments are available, yet the mortality and morbidity rate is high. In the present investigation, the cardioprotective property of fraxetin (Fx) is evaluated in myocardial infarction-induced experimental rats. Fraxetin, a phytochemical known as coumarin isolated from Fraxinus rhynchophylla. Fraxetin has numerous pharmacological activities including antioxidant, apoptosis inhibitor, anti-inflammatory, and antimicrobial agent. The experimental mice were split into 4 groups each comprising six animals. Group I was considered the control group; 0.1% NaCl solution was given as dosage. Group II received only Fx; group III was treated with ISO. Group IV was treated with Fx followed by ISO to induce myocardial infarction. In ISO administrated rats, there were changes in the heart weight, activities of cardiac markers, transmembrane protein activity, antioxidant enzymes, pro-inflammatory proteins, lipid profile, and myocardial structures. Pre-treatment of fraxetin in group IV experimental rats resulted in decreased cardiac weight, diminished level of cardiac markers (cardiac troponin T (cTnT), creatine kinase, creatine kinase-MB, and cardiac troponin I (cTnI)), reduced level of oxidative stress biomarkers (LOOH and TBARS) in the plasma and cardiac tissue, amplified level of enzymes in antioxidant defense system (catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPx)) in the plasma and heart tissue, and elevated level of ATPase activities. The histopathological studies also revealed the potent activity of fraxetin in protecting the cardiac tissues from inflammation and damage. ISO-administrated experimental rats treated with fraxetin exhibit increased antioxidants activity and decreased free radicals. Our study revealed that the administration of fraxetin significantly reduced the extent of myocardial damage during myocardial infarction in rats caused by isoproterenol. Thus, the results prove the cardioprotective effect of fraxetin in MI-induced rats.
Collapse
Affiliation(s)
- Yu Yin
- Department of Medical Insurance, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Lihui Wang
- Department of Internal Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Guifang Chen
- Department of Integrated Traditional Chinese and Western Medicine & Rheumatology and Immunology, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Hongwen You
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwuweiqi Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
16
|
Wu J, Fu YS, Lin K, Huang X, Chen YJ, Lai D, Kang N, Huang L, Weng CF. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed Pharmacother 2022; 153:113339. [PMID: 35780614 DOI: 10.1016/j.biopha.2022.113339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
To better understand the pharmacological characters of syringaldehyde (SA), which is a key-odorant compound of whisky and brandy, this review article is the first to compile the published literature for molecular docking that were subsequently validated by in vitro and in vivo assays to predict and develop insights into the medicinal properties of SA in terms of anti-oxidation, anti-inflammation, and anti-diabetes. The molecular docking displayed significantly binding affinity for SA towards tumor necrosis factor-α, interleukin-6, and antioxidant enzymes when inflammation from myocardial infarction and spinal cord ischemia. Moreover, SA nicely docked with dipeptidyl peptidase-IV, glucagon-like peptide 1 receptor, peroxisome proliferator-activated receptor, acetylcholine M2 receptor, and acetylcholinesterase in anti-diabetes investigations. These are associated with (1) an increase glucose utilization and insulin sensitivity to an anti-hyperglycemic effect; and (2) to potentiate intestinal contractility to abolish the α-amylase reaction when concurrently reducing retention time and glucose absorption of the intestinal tract to achieve a glucose-lowering effect. In silico screening of multi-targets concomitantly with preclinical tests could provide a potential exploration for new indications for drug discovery and development.
Collapse
Affiliation(s)
- Jingyi Wu
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Kaihuang Lin
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Xin Huang
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Yi-Jing Chen
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Dong Lai
- Medical Research Center, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, Fujian, China.
| | - Liyue Huang
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China.
| |
Collapse
|
17
|
Yarmohammadi F, Hayes AW, Karimi G. Targeting PPARs Signaling Pathways in Cardiotoxicity by Natural Compounds. Cardiovasc Toxicol 2022; 22:281-291. [DOI: 10.1007/s12012-021-09715-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023]
|
18
|
Dash MK, Joshi N, Dubey VS, Dwivedi KN, Gautam DNS. Screening of anti-cancerous potential of classical Raudra rasa and modified Raudra rasa modified with hiraka bhasma (nanodiamond) through FTIR & LC-MS analysis. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:669-682. [PMID: 35106982 DOI: 10.1515/jcim-2021-0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/29/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Raudra rasa is an ayurvedic medicine explicitly prescribed for the treatment of arbuda (cancer), whereas hiraka bhasma has the potential to promote cancer healing properties. Together, these two medicines provide multifunction benefits. This paper analyses the functional groups of Raudra rasa modified with hiraka bhasma and compares it with the classically prepared raudra rasa. To identify the functional group, organic ligands, and active compounds present in samples of raudra rasa (CRR) and modified raudra rasa with hiraka bhasma (MRR) contributing to cancer alleviation by using Fourier transform infrared spectroscopy (FTIR) & LC-MS analysis. METHODS Classical raudra rasa (CRR), its ingredients, shadguna kajjali (SK); decoction of Piper betel Linn. (PBD); Amaranthus spinosus Linn. (ASD); Boerhaavia diffusa Linn. (BDD); Piper longum Linn. (PLD); cow urine (GM), & similarly modified raudra rasa (MRR), its ingredients, hiraka bhasma (HB); shadguna rasasindura (SHR); water-soluble extract of Piper betel Linn. (PBE); Amaranthus spinosus Linn. (ASE); Boerhaavia diffusa Linn. (BDE); cow urine ark (GA); Piper Longum Linn. (PLE) were subjected to FTIR and LC-MS analysis. RESULTS Among all 15 samples studied, maximum numbers of peaks (21) were seen in MRR indicating a greater number of functional groups. Further, in MRR, a maximum peak in the double bond region is suggestive of its higher stability compared to CRR. Both the compound is preliminarily a mixture of the number of functional groups like; fluoro, methyl, amino, hydroxy, nitro, methylamino, carbonyl, and iodo groups, having known anti-proliferative activities. By the FT-IR analysis, the biologically active compounds in aqueous and methanol extract of CRR & MRR were identified that have anti-cancerous compounds. In the present study, a total of 40 major compounds like alkaloids, amino acid, carboxylic acid, Flavonoids, Nucleoside, Nucleotide, phenylpropanoid, Sphingosine, stilbenoid, sugar, phosphate, terpenoids, vitamin from aqueous & methanol extract of CRR & MRR were identified by LC-MS. CONCLUSIONS This research paper highlights the presence of different functional groups and bioactive compounds known to have anti-cancer activities. Thus, this review suggests future recommendations for the design and development of improved anticancer drugs with higher efficacy.
Collapse
Affiliation(s)
- Manoj Kumar Dash
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Namrata Joshi
- Department of Rasashastra, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | - Vd Sushil Dubey
- Department of Kriya Sarira, Faculty of Ayurveda, IMS, BHU, Varanasi, India
| | | | | |
Collapse
|
19
|
Feng H, Li S, Hu Y, Zeng X, Qiu P, Li Y, Li W, Li Z. Quality assessment of Succus Bambusae oral liquids based on gas chromatography/mass spectrometry fingerprints and chemometrics. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9200. [PMID: 34532912 DOI: 10.1002/rcm.9200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Succus Bambusae is consumed as a kind of herbal medicine and natural beverage in China. However, the current quality standards for Succus Bambusae are low and lack safety indicators, which makes it difficult to effectively guarantee its quality. Therefore, it is of great significance to study the identification and quality control technology for the product. METHODS We have developed a set of qualitative and quantitative methods based on gas chromatography/mass spectrometry (GC/MS) for the analysis of volatile components in Succus Bambusae oral liquid (SBOL). Combining GC/MS fingerprint analysis and related chemometrics algorithms, with similarity evaluation, Hotelling T2 and distance to Model X (DModX) as criteria, the quality consistency of different batches was evaluated, and SBOL samples from different manufacturers were differentiated. RESULTS Twenty-nine volatile components were preliminarily identified from 40 batches of SBOL samples from six manufacturers, and six Q-markers (Quality Markers) for the SBOLs were discussed and determined using GC/MS. The products from different manufacturers were distinguished using chemometrics. CONCLUSIONS The results showed that the quality of the SBOL samples from different batches and different manufacturers fluctuated greatly, which suggested that research into the raw materials and manufacturing techniques should be strengthened to improve the quality of SBOL and ensure its quality consistency.
Collapse
Affiliation(s)
- Huimin Feng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shunan Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunfei Hu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyao Zeng
- Hunan Zhengqing Pharmaceutical Group Co., Ltd, Huaihua, Hunan, China
| | - Ping Qiu
- Hunan Zhengqing Pharmaceutical Group Co., Ltd, Huaihua, Hunan, China
| | - Yuanxiang Li
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, Hunan, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Demir M, Altinoz E, Elbe H, Bicer Y, Yigitturk G, Karayakali M, Ballur AFH. Effects of pinealectomy and crocin treatment on rats with isoproterenol-induced myocardial infarction. Drug Chem Toxicol 2021; 45:2576-2585. [PMID: 34538161 DOI: 10.1080/01480545.2021.1977025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The present study aimed to analyze the effects of pinealectomy and crocin treatment in isoproterenol-induced myocardial damage. Seventy rats were divided into seven groups: control, sham control, pinealectomy (PNX), isoproterenol (ISO; 85 mg/kg on the 29th and 30th days of the experiment, subcutaneous injection), PNX + ISO, PNX + crocin (50 mg/kg/day for 30 days, intragastric administration), and PNX + ISO + crocin. PNX procedure was performed on the first day of the study. A significant increase was observed in serum cardiac damage markers (CK-MB, Troponin I) after ISO administration. ISO administration led to a significant increase in cardiac oxidative stress parameters, such as malondialdehyde (MDA) and total oxidant status (TOS), while it led to a decrease in antioxidant defense system parameters, such as reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and total antioxidant status (TAS) when compared to control groups. Elevated MDA and TOS levels were observed, while reduced SOD and CAT activities, and decreased GSH and TAS levels were observed in the group that underwent PNX and ISO administration when compared to the PNX group. Furthermore, in the PNX + ISO + Crocin group, SOD and CAT activities, and GSH and TAS levels ameliorated and MDA and TOS levels were reduced with the crocin treatment when compared to the PNX + ISO group. Also, marked increases were observed in serum cardiac markers, histopathological and immunohistochemical findings after the crocin treatment. All findings demonstrated that crocin could be employed as a cardioprotective agent due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Arwa Fadıl Haqi Ballur
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
21
|
Pullaiah CP, Nelson VK, Rayapu S, G V NK, Kedam T. Exploring cardioprotective potential of esculetin against isoproterenol induced myocardial toxicity in rats: in vivo and in vitro evidence. BMC Pharmacol Toxicol 2021; 22:43. [PMID: 34266475 PMCID: PMC8281642 DOI: 10.1186/s40360-021-00510-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Esculetin is a natural coumarin derivative from various plants with multiple pharmacological effects. Hence, the present study was undertaken to explore the cardio protective potential of esculetin against isoproterenol induced myocardial toxicity in rats. METHODS The treatment schedule was fixed for 28 days and the rats were divided into five groups of six each. Rats of group I received the normal saline and served as normal control, group II was received ISO (100 mg/kg body weight) for last two consecutive days of the study and served as disease control. Groups III and IV received esculetin 10 and 20 mg/kg body weight respectively once a day per oral for 28 days along with ISO for last two consecutive days of the study. Cardiac biomarkers such as CK-MB and LDH, membrane bound Na+ /K+ ATPases activity, myocardial lysosomal enzymes activity and tissue antioxidants status were estimated in the heart tissue samples. The histopathological changes in the myocardium were also assessed. Further, DPPH assay was done to evaluate the free radicals scavenging potential of esculetin. Cytoxicity assay, intracellular ROS levels by DCFDA assay and m-RNA expression of TNF-α, IL-6 and NF-κB by quantitative RT-PCR in H9c2 cell lines. RESULTS The increased levels of CK-MB, LDH, LPO, myocardial lysosomal enzymes and membrane bound Na+ /K+ ATPase levels by ISO administration was significantly increased with concomitant decrease in tissue antioxidant enzymes such as GSH, Catalase, and SOD. Pre-treatment with esculetin for 28 days has significantly decreased the levels of cardiac bio-markers, lysosomal enzymes, membrane bound Na+ /K+ ATPase levels as well as Lipid peroxides which is in contrary to the ISO group. Amelioration of the antioxidant levels were also found in esculetin treated groups. Histopathological examination of heart reveals that myocardial degeneration, mononuclear cell infiltration was noticed in ISO treated rats, whereas the same was restored with esculetin treatment. In H9C2 cell lines esculetin could effectively reduced intracellular ROS inhibition and m-RNA expression of pro-inflammatory cytokines including TNF-α, IL-6 and NF-κB to prevent apoptosis or cell necrosis. CONCLUSION The study provides the evidence of cardioprotective potentials of esculetin against isoproterenol induced myocardial infarction by antioxidant and myocardial membrane stabilization along with in vitro protection from arsenic induced ROS cell necrosis or apoptosis in H9C2 cells.
Collapse
Affiliation(s)
- Chitikela P Pullaiah
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt of India, Chennai, 600106, India.
- Department of Biochemistry and College of Pharmaceutical Sciences, S V University, Tirupati, 517502, India.
| | - Vinod K Nelson
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, 844102, India.
| | - Sushma Rayapu
- Department of Pharmacology, Sri Padmavathi School of Pharmacy, Tirupati, 517503, India
| | - Narasimha Kumar G V
- Department of Pharmacology, Dr Anjali Chatterjee Regional Institute of Homeopathy, Kolkata, 700035, India
| | - Thyagaraju Kedam
- Department of Biochemistry and College of Pharmaceutical Sciences, S V University, Tirupati, 517502, India
| |
Collapse
|
22
|
Quintal Martínez JP, Segura Campos MR. Cnidoscolus Aconitifolius (Mill.) I.M. Johnst.: A Food Proposal Against Thromboembolic Diseases. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Acetylcholinesterase Inhibitory and Antioxidant Activity of the Compounds Isolated from Vanda roxburghii. Adv Pharmacol Pharm Sci 2021; 2021:5569054. [PMID: 33855299 PMCID: PMC8019628 DOI: 10.1155/2021/5569054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022] Open
Abstract
Vanda roxburghii has been used in traditional medicine to treat nervous system disorders including Alzheimer's disease (AD). We reported earlier a high acetylcholinesterase inhibitory and antioxidant activity in the chloroform fraction of this plant. Therefore, this study was designed to explore the compounds with acetylcholinesterase inhibitory and antioxidant activities from the chloroform fraction of Vanda roxburghii. Phytochemical investigation led to the isolation for the first time of a fatty acid ester: methyl linoleate (1), and three phenolics: syringaldehyde (2), vanillin (3), and dihydroconiferyl dihydro-p-coumarate (4) along with the previously reported compound gigantol (5). Among the isolates, vanillin (3) and dihydroconiferyl dihydro-p-coumarate (4) were found to significantly inhibit the activity of acetylcholinesterase, scavenge the free radicals, exhibit the reducing power and total antioxidant activity, and effectively reduce the peroxidation of lipid. Gigantol (5) and syringaldehyde (2), despite lacking the activity against acetylcholinesterase, exhibited antioxidant activity. Among the compounds, gigantol (5) appeared to be the most potent antioxidant. These findings revealed that V. roxburghii contained compounds with potential acetylcholinesterase inhibitory and antioxidant activity, which support its traditional use in the treatment of AD.
Collapse
|
24
|
Song L, Srilakshmi M, Wu Y, Saleem TSM. Sulforaphane Attenuates Isoproterenol-Induced Myocardial Injury in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3610285. [PMID: 33415146 PMCID: PMC7769644 DOI: 10.1155/2020/3610285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
The development of isoproterenol- (ISO-) induced oxidative stress in the myocardium results in myocardial necrosis. Sulforaphane (SFN-0.4% of sulforaphane from standardized broccoli sprout extract) possesses chemoprotective, antidiabetic, and antibacterial activities and is also active against cardiovascular-related problems due to its antioxidant properties. This study was designed to investigate the cardioprotective effect of SFN against isoproterenol-induced myocardial injury in mice. Healthy male Swiss albino mice weighing 20-30 g were used in this study. These mice were randomly divided into five groups (n = 6). All the mice in the experimental groups received isoproterenol (5 mg/kg bw, via i.p.) consecutively for 2 days. The mice were treated with SFN (4 mg/kg bw) and α-tocopherol (TCF) (10 mg/kg bw) by oral gavage for 1-7 days as pre- and posttreatment for the prophylactic and treatment groups, respectively. On day 10, the following parameters were studied: heart weight to body weight ratio, antioxidant parameters, and cardiac markers; and mitochondrial enzymes were estimated for cardioprotection. Administration of isoproterenol in mice showed an increased level of serum cardiac markers and heart mitochondrial ATPase enzymes. An increased level of myocardial thiobarbituric acid-reactive substance and decreased levels of endogenous antioxidant enzymes indicated that oxidative stress is induced by isoproterenol in the myocardium. The administration of SFN in mice restored the levels of all biochemical parameters to near-normal levels. Histopathological studies further confirmed the protective effect of sulforaphane. This study concluded that treatment with SFN boosts the endogenous antioxidant activity and prevents isoproterenol-induced myocardial injury.
Collapse
Affiliation(s)
- Lijuan Song
- Department of Cardiology, The Second People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | | | - Yi Wu
- Department of Cardiology, Zunyi Medical University, Guiyang, Guizhou 550001, China
| | - T. S. Mohamed Saleem
- Annamacharya College of Pharmacy, Rajampet-516126, Andhra Pradesh, India
- Department of Pharmacology, College of Pharmacy, Riyadh ELM University, P.O. Box 84891, Riyadh 11681, Saudi Arabia
| |
Collapse
|
25
|
Lv X, Zhu Y, Deng Y, Zhang S, Zhang Q, Zhao B, Li G. Glycyrrhizin improved autophagy flux via HMGB1-dependent Akt/mTOR signaling pathway to prevent Doxorubicin-induced cardiotoxicity. Toxicology 2020; 441:152508. [DOI: 10.1016/j.tox.2020.152508] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
|
26
|
Sun GZ, Meng FJ, Cai HQ, Diao XB, Zhang B, Bai XP. Ginsenoside Rg3 protects heart against isoproterenol-induced myocardial infarction by activating AMPK mediated autophagy. Cardiovasc Diagn Ther 2020; 10:153-160. [PMID: 32420095 DOI: 10.21037/cdt.2020.01.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Panax ginseng is a well-known medicinal herb that is widely used in traditional Chinese medicine for treating various diseases. Ginsenoside Rg3 (Rg3) is thought to be one of the most important active ingredients of Panax ginseng. However, the molecular mechanism underlying the beneficial effects of Rg3 has been elusive. Methods In the mouse heart injury model induced by isoproterenol (ISO), we used brain natriuretic peptide (BNP), lactate dehydrogenase (LDH) and caspase-3 ELISA kits to test myocardium injury. To test whether Rg3 protects myocardial injury through AMPK mediated autophagy, we used specific AMPK inhibitor in combination with Rg3. NLRP3 inflammasome related molecules such as NLRP3, ASC and caspase-1 were measured by western-blot following Rg3 treatment. Results We found that Rg3 significantly reduced ISO induced myocardial injury indicated by the downregulation of serum BNP and LDH. In addition, we showed that the improvement of myocardial injury by Rg3 was associated with enhanced expression of autophagy related protein and activation of AMPK downstream signaling pathway. Conclusions We observed that inhibition of AMPK significantly reversed the myocardial protective effect of Rg3, which is associated with a decrease of Rg3 induced autophagy. These together suggested that Rg3 may improve myocardial injury during MI through AMPK mediated autophagy. Our study also provides important translational evidence for using Rg3 in treating myocardial infarction (MI).
Collapse
Affiliation(s)
- Gui-Zhi Sun
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Fan-Ji Meng
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Huai-Qiu Cai
- Department of Ultrasonography, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue-Bo Diao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bo Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiu-Ping Bai
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
27
|
Gyongyosi A, Zilinyi R, Czegledi A, Tosaki A, Tosaki A, Lekli I. The Role of Autophagy and Death Pathways in Dose-dependent Isoproterenolinduced Cardiotoxicity. Curr Pharm Des 2020; 25:2192-2198. [PMID: 31258063 PMCID: PMC6806536 DOI: 10.2174/1381612825666190619145025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/04/2019] [Indexed: 12/03/2022]
Abstract
Background: Isoproterenol (ISO) is a non-selective β-adrenergic agonist. Our aims were to investigate the autophagy and cell death pathways including apoptosis and necrosis in ISO-induced car-diac injury in a dose-dependent manner. Methods: Male Sprague-Dawley rats were treated for 24 hours with I. vehicle (saline); II. 0.005 mg/kg ISO; III. 0.05 mg/kg ISO; IV. 0.5 mg/kg ISO; V. 5 mg/kg ISO; VI. 50 mg/kg ISO, respectively. Hearts were isolated and infarct size was measured. Serum levels of Troponin T (TrT), lactate dehydrogenase (LDH), creatine kinase iso-enzyme MB (CK-MB) were measured. TUNEL assay was carried out to monitor apoptotic cell death and Western blot was performed to evaluate the level of autophagic and apoptotic markers. Results: Survival rate of animals was dose-dependently decreased by ISO. Serum markers and infarct size revealed the development of cardiac toxicity. Level of Caspase-3, and results of TUNEL assay, demonstrated that the level of apoptosis was dose-dependently increased. They reached the highest level in ISO 5 and it decreased slightly in ISO 50 group. Focusing on autophagic proteins, we found that level of Beclin-1 was increased in a dose-dependent manner, but significantly increased in ISO 50 treated group. Level of LC3B-II and p62 showed the same manner, but the elevated level of p62 indicated that autophagy was impaired in both ISO 5 and ISO 50 groups. Conclusion: Taken together these results suggest that at smaller dose of ISO autophagy may cope with the toxic effect of ISO; however, at higher dose apoptosis is initiated and at the highest dose substantial necrosis occurs.
Collapse
Affiliation(s)
- Alexandra Gyongyosi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Rita Zilinyi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Andras Czegledi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Agnes Tosaki
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arpad Tosaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Istvan Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
S M, Shaik AH, E MP, Al Omar SY, Mohammad A, Kodidhela LD. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Sci Rep 2020; 10:3426. [PMID: 32099011 PMCID: PMC7042357 DOI: 10.1038/s41598-020-59925-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
The study was conducted to evaluate the cardio-protective activity of combination (COMB) of syringic acid (SA) and resveratrol (RV) against isoproterenol (ISO) induced cardio-toxicity in rats. Rats were pre-treated orally with SA (50 mg/kg), RV (50 mg/kg) and combination of SA (25 mg/kg) and RV (25 mg/kg) along with positive control gallic acid (50 mg/kg) for 30 days. The effects of ISO on cardiac markers, lipid profile and lipid peroxidation marker, anti-oxidant enzymes and m-RNA expression of nuclear factor-kappa B (NF-kB) and tumor necrosis factor-α (TNF-α) were observed along with histopathological observations of simple and transmission electron microscopes (TEM). Serum creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH) and alkaline phosphatase were significantly increased while cardiac tissue CK-MB, LDH, superoxide dismutase and catalase were significantly decreased in ISO administered rats, which also exhibited a significant increase in total cholesterol, triglycerides, low density lipoprotein cholesterol, very low density lipoprotein cholesterol and thiobarbutyric acid reactive substances and significant decrease in high density lipoprotein cholesterol in serum and heart. The m-RNA levels of inflammatory markers NF-kB and TNF-α were significantly increased in ISO treated rats. COMB Pre-treatment significantly reversed the ISO actions. Histopathological studies of simple and TEM were also co-related with the above biochemical parameters. Docking studies with NF-kB were also performed. Evidence has shown for the first time in this approach that COMB pre-treatment ameliorated ISO induced cardio-toxicity in rats and revealed cardio-protection.
Collapse
Affiliation(s)
- Manjunatha S
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Althaf Hussain Shaik
- Central Laboratory, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Maruthi Prasad E
- Shenzhen key of Laboratory of Translational medicine of Tumor, A7, 451, Department of Cell Biology and Genetics, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Suliman Yousef Al Omar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Mohammad
- Central Laboratory, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Lakshmi Devi Kodidhela
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| |
Collapse
|
29
|
Refaie MM, Rifaai RA, Bayoumi AM, Shehata S. Cardioprotective effect of hemin in isoprenaline‐induced myocardial infarction: role of ATP‐sensitive potassium channel and endothelial nitric oxide synthase. Fundam Clin Pharmacol 2020; 34:302-312. [DOI: 10.1111/fcp.12529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Marwa M.M. Refaie
- Department of Pharmacology Faculty of Medicine Minia University 61511 El‐Minia Egypt
| | - Rehab A. Rifaai
- Department of Histology and cell biology Faculty of Medicine Minia University 61511 El‐Minia Egypt
| | - Asmaa M.A. Bayoumi
- Department of Biochemistry Faculty of Pharmacy Minia University 61511 El‐Minia Egypt
| | - Sayed Shehata
- Department of Cardiology Faculty of Medicine Minia University 61511 El‐Minia Egypt
| |
Collapse
|
30
|
Xie Z, Wang J, Wang W, Wang Y, Xu J, Li Z, Zhao X, Fu B. Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin. FRONTIERS IN PLANT SCIENCE 2020; 11:618680. [PMID: 33519878 PMCID: PMC7840565 DOI: 10.3389/fpls.2020.618680] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
High salinity is one of the major abiotic stresses limiting rice production. Melatonin has been implicated in the salt tolerance of rice. However, the molecular basis of melatonin-mediated salt tolerance in rice remains unclear. In the present study, we performed an integrated transcriptome and metabolome profiling of rice seedlings treated with salt, melatonin, or salt + melatonin. The application of exogenous melatonin increased the salt tolerance of rice plants by decreasing the sodium content to maintain Na+/K+ homeostasis, alleviating membrane lipid oxidation, and enhancing chlorophyll contention. A comparative transcriptome analysis revealed that complex molecular pathways contribute to melatonin-mediated salt tolerance. More specifically, the AP2/EREBP-HB-WRKY transcriptional cascade and phytohormone (e.g., auxin and abscisic acid) signaling pathways were activated by an exogenous melatonin treatment. On the basis of metabolome profiles, 64 metabolites, such as amino acids, organic acids, nucleotides, and secondary metabolites, were identified with increased abundances only in plants treated with salt + melatonin. Several of these metabolites including endogenous melatonin and its intermediates (5-hydroxy-L-tryptophan, N 1-acetyl-N 2-formyl-5-methoxykynuramine), gallic acid, diosmetin, and cyanidin 3-O-galactoside had antioxidant functions, suggesting melatonin activates multiple antioxidant pathways to alleviate the detrimental effects of salt stress. Combined transcriptome and metabolome analyses revealed a few gene-metabolite networks related to various pathways, including linoleic acid metabolism and amino acid metabolism that are important for melatonin-mediated salt tolerance. The data presented herein may be useful for further elucidating the multiple regulatory roles of melatonin in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Ziyan Xie
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yanru Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiuqin Zhao,
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Binying Fu,
| |
Collapse
|
31
|
Tekupalli R, Kariyappa A, Ramachandregowda S, Anand S, Dundaiah B, Gopinath M. Decalepis hamiltonii and its bioactive compounds protects isoproterenol-induced myocardial oxidative stress in rats. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_642_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|