1
|
Rezaei H, Wang HW, Tian W, Zhao J, Najibi A, Retana-Márquez S, Rafiei E, Rowhanirad A, Sabouri S, Kiafar M, Fazlinezhad R, Niknahad AM, Evazzadeh F, Anousheh ST, Ommati MM, Niknahad H, Heidari R. Long-term taurine supplementation regulates brain mitochondrial dynamics in mice. Basic Clin Pharmacol Toxicol 2025; 136:e14101. [PMID: 39558449 DOI: 10.1111/bcpt.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Taurine (TAU) is the most abundant non-protein amino acid in the central nervous system (CNS). However, the molecular mechanism of TAU in the CNS is still poorly understood. Meanwhile, disruption in mitochondrial dynamics is evident in CNS disorders. This study aimed to investigate the effect of TAU on mitochondrial dynamics. METHODS TAU (0.25, 0.5 and 1% in drinking water) was administered to young mice for six months. Several memory/cognition parameters and indices of anxiety/depression were assessed. Meanwhile, various mitochondrial indices and the expression/activity of genes involved in mitochondrial biogenesis and dynamics (Akt, CREB, NRF1, TFAM, PGC-1α, Mfn1, Mfn2, UCP2, PINK1, OPA1, Drp1 and Fis1) were examined. RESULTS TAU significantly enhanced memory performance, suppressed anxiety and depression-like behaviour, increased mitochondrial biogenesis/dynamics and improved mitochondrial indices. It should be mentioned that there was no significant difference between different concentrations of TAU in changing most brain mitochondrial dynamic biomarkers in the current study. CONCLUSIONS These findings offer more insights into the molecular mechanism for TAU's action in the CNS. However, there is a need for further research to confirm these effects in humans. Overall, this study suggests the potential application of TAU in various neurological disorders and the need for clinical studies on the effects of this amino acid in the brain.
Collapse
Affiliation(s)
- Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Elahe Rafiei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ayeh Rowhanirad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mohammadreza Kiafar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Lee HC, Park SH, Jeong HM, Shin G, Lim SI, Kim J, Shim J, Park YM, Song KS. LPS-induced systemic inflammation is suppressed by the PDZ motif peptide of ZO-1 via regulation of macrophage M1/M2 polarization. eLife 2024; 13:RP95285. [PMID: 39377568 PMCID: PMC11460976 DOI: 10.7554/elife.95285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
The gram-negative bacterium lipopolysaccharide (LPS) is frequently administered to generate models of systemic inflammation. However, there are several side effects and no effective treatment for LPS-induced systemic inflammation. PEGylated PDZ peptide based on zonula occludens-1 (ZO-1) was analyzed for its effects on systemic inflammation induced by LPS. PDZ peptide administration led to the restoration of tissue injuries (kidney, liver, and lung) and prevented alterations in biochemical plasma markers. The production of pro-inflammatory cytokines was significantly decreased in the plasma and lung BALF in the PDZ-administered mice. Flow cytometry analysis revealed the PDZ peptide significantly inhibited inflammation, mainly by decreasing the population of M1 macrophages, and neutrophils (immature and mature), and increasing M2 macrophages. Using RNA sequencing analysis, the expression levels of the NF-κB-related proteins were lower in PDZ-treated cells than in LPS-treated cells. In addition, wild-type PDZ peptide significantly increased mitochondrial membrane integrity and decreased LPS-induced mitochondria fission. Interestingly, PDZ peptide dramatically could reduce LPS-induced NF-κB signaling, ROS production, and the expression of M1 macrophage marker proteins, but increased the expression of M2 macrophage marker proteins. These results indicated that PEGylated PDZ peptide inhibits LPS-induced systemic inflammation, reducing tissue injuries and reestablishing homeostasis, and may be a therapeutic candidate against systemic inflammation.
Collapse
Affiliation(s)
- Hyun-Chae Lee
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| | - Sun-Hee Park
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| | - Hye Min Jeong
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| | - Goeun Shin
- Department of Chemical Engineering, Pukyong National UniversityBusanRepublic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National UniversityBusanRepublic of Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of MedicineBusanRepublic of Korea
| | - Jaewon Shim
- Department of Biochemistry, Kosin University College of MedicineBusanRepublic of Korea
| | - Yeong-Min Park
- Department of Integrative Biological Sciences and Industry, College of Life Sciences, Sejong UniversitySeoulRepublic of Korea
| | - Kyoung Seob Song
- Department of Medical Science, Kosin University College of MedicineBusanRepublic of Korea
| |
Collapse
|
3
|
Zuo Q, Lin L, Zhang Y, Ommati MM, Wang H, Zhao J. The Footprints of Mitochondrial Fission and Apoptosis in Fluoride-Induced Renal Dysfunction. Biol Trace Elem Res 2024; 202:4125-4135. [PMID: 38057486 DOI: 10.1007/s12011-023-03994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Fluoride (F) is widely distributed in the environment and poses serious health risks to humans and animals. Although a good body of literature demonstrates a close relationship between F content and renal system performance, there is no satisfactory information on the involved intracellular routes. Hence, this study used histopathology and mitochondrial fission to explore fluorine-induced nephrotoxicity further. For this purpose, mice were exposed to the F ion (0, 25, 50, 100 mg/L) for 90 days. The effects of different F levels on renal pathomorphology and ion metabolism were assessed using hematoxylin and eosin (H&E), periodic acid-Schiff stain (PAS), periodic acid-silver methenamine (PASM), Prussian blue (PB), and alkaline phosphatase (ALP) staining. The results showed that F could lead to glomerular atrophy, tubular degeneration, and vacuolization. Meanwhile, F also could increase glomerular and tubular glycoproteins; made thickening of the renal capsule membrane and thickening of the tubular basement membrane; led to the accumulation of iron ions in the tubules; and increased in glomerular alp and decreased tubular alp. Concomitantly, IHC results showed that F significantly upregulated the expression levels of mitochondrial fission-related proteins, including mitochondrial fission factor (Mff), fission 1 (Fis1), and mitochondrial dynamics proteins of 49 kDa (MiD49) and 51 kDa (MiD51), ultimately caused apoptosis. To sum up, excessive fluorine has a strong nephrotoxicity effect, disrupting the balance of mitochondrial fission and fusion, interfering with the process of mitochondrial fission, and then causing damage to renal tissue structure and apoptosis.
Collapse
Affiliation(s)
- Qiyong Zuo
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Lin Lin
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Yuling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hongwei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
4
|
Keshavarzi M, Naraki K, Razavi BM, Hosseinzadeh H. A narrative review and new insights into the protective effects of taurine against drug side effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03331-0. [PMID: 39141023 DOI: 10.1007/s00210-024-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Taurine, a non-essential amino acid produced from cysteine, is abundant in body tissues and blood plasma. It plays vital roles in growth, osmosis, lipid metabolism, and neurohormonal modulation. Taurine has antioxidant, anti-apoptotic, and anti-inflammatory properties, and its deficiency can lead to various diseases including cardiovascular, diabetic, renal, and liver disorders. This report provides a comprehensive review of the functional properties of taurine in counteracting pharmaceutical-induced side effects. A search across databases such as Scopus, PubMed, MEDLINE, and Web of Science yielded 109 articles, of which 75 were included in the study. These results suggest that the protective effects of taurine involve mechanisms such as influencing pathways of Nrf2/OH-1, PI3-kinase/AKT and ERK2, boosting antioxidants (SOD, GPx and CAT), and suppression of inflammatory cytokines (TNF-α, IL-1β and IL-6). Overall, supplementation with taurine along with medications with significant side effects may mitigate these effects and enhance their efficacy. Further investigation of the interactions between taurine and other nutrients or compounds may provide insights into synergistic effects and novel therapeutic approaches.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Abady MM, Jeong JS, Kwon HJ, Assiri AM, Cho J, Saadeldin IM. The reprotoxic adverse side effects of neurogenic and neuroprotective drugs: current use of human organoid modeling as a potential alternative to preclinical models. Front Pharmacol 2024; 15:1412188. [PMID: 38948466 PMCID: PMC11211546 DOI: 10.3389/fphar.2024.1412188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
The management of neurological disorders heavily relies on neurotherapeutic drugs, but notable concerns exist regarding their possible negative effects on reproductive health. Traditional preclinical models often fail to accurately predict reprotoxicity, highlighting the need for more physiologically relevant systems. Organoid models represent a promising approach for concurrently studying neurotoxicity and reprotoxicity, providing insights into the complex interplay between neurotherapeutic drugs and reproductive systems. Herein, we have examined the molecular mechanisms underlying neurotherapeutic drug-induced reprotoxicity and discussed experimental findings from case studies. Additionally, we explore the utility of organoid models in elucidating the reproductive complications of neurodrug exposure. Have discussed the principles of organoid models, highlighting their ability to recapitulate neurodevelopmental processes and simulate drug-induced toxicity in a controlled environment. Challenges and future perspectives in the field have been addressed with a focus on advancing organoid technologies to improve reprotoxicity assessment and enhance drug safety screening. This review underscores the importance of organoid models in unraveling the complex relationship between neurotherapeutic drugs and reproductive health.
Collapse
Affiliation(s)
- Mariam M. Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
- Department of Nutrition and Food Science, National Research Centre, Cairo, Egypt
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Abdullah M. Assiri
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Islam M. Saadeldin
- Deperament of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Farjadian F, Heidari R, Mohammadi-Samani S. In vivo treatment of zinc phosphide poisoning by administration of mesoporous silica nanoparticles as an effective antidote agent. Heliyon 2024; 10:e29458. [PMID: 38681564 PMCID: PMC11046115 DOI: 10.1016/j.heliyon.2024.e29458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are highly advanced engineered particles with increased surface area and extreme adsorption capacity for various molecules. Herein, two types of MSNs were synthesized and applied as adsorbents for phosphine gas. One was without functional groups (MSN), and the other was post-modified with boric acid (MSN-BA). The structures of MSN and boric acid-modified MSN with high surface areas of about 1025 and 650 m2/g, respectively, were defined. MSN was found to have particles with sizes around 30 nm by transmission electron microscopy (TEM). In the present study, MSNs were used as an antidote to phosphorus poisoning, and zinc phosphide (phosphorus) powder was used as the toxic and lethal agent. In vivo analysis was carried out on rats to demonstrate the ability of MSNs to chemisorb phosphine gas. In the survival percentage assessment, Phos-poisoned animals were kept alive after treatment with MSNs, and the MSN-BA-treated group (dose of 5 mg/kg) was shown to have a 60 % survival rate. Blood serum analysis showed that MSNs have a high potential to alleviate organ blood damage, and serum biomarkers dropped sharply while phosphine-poisoned animals were treated with MSN-BA.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Liu HL, Huang Z, Li QZ, Cao YZ, Wang HY, Alolgab RN, Deng XY, Zhang ZH. Schisandrin A alleviates renal fibrosis by inhibiting PKCβ and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155372. [PMID: 38382281 DOI: 10.1016/j.phymed.2024.155372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/01/2024] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Renal fibrosis is a common pathway that drives the advancement of numerous kidney maladies towards end-stage kidney disease (ESKD). Suppressing renal fibrosis holds paramount clinical importance in forestalling or retarding the transition of chronic kidney diseases (CKD) to renal failure. Schisandrin A (Sch A) possesses renoprotective effect in acute kidney injury (AKI), but its effects on renal fibrosis and underlying mechanism(s) have not been studied. STUDY DESIGN Serum biochemical analysis, histological staining, and expression levels of related proteins were used to assess the effect of PKCβ knockdown on renal fibrosis progression. Untargeted metabolomics was used to assess the effect of PKCβ knockdown on serum metabolites. Unilateral Ureteral Obstruction (UUO) model and TGF-β induced HK-2 cells and NIH-3T3 cells were used to evaluate the effect of Schisandrin A (Sch A) on renal fibrosis. PKCβ overexpressed NIH-3T3 cells were used to verify the possible mechanism of Sch A. RESULTS PKCβ was upregulated in the UUO model. Knockdown of PKCβ mitigated the progression of renal fibrosis by ameliorating perturbations in serum metabolites and curbing oxidative stress. Sch A alleviated renal fibrosis by downregulating the expression of PKCβ in kidney. Treatment with Sch A significantly attenuated the upregulated proteins levels of FN, COL-I, PKCβ, Vimentin and α-SMA in UUO mice. Moreover, Sch A exhibited a beneficial impact on markers associated with oxidative stress, including MDA, SOD, and GSH-Px. Overexpression of PKCβ was found to counteract the renoprotective efficacy of Sch A in vitro. CONCLUSION Sch A alleviates renal fibrosis by inhibiting PKCβ and attenuating oxidative stress.
Collapse
Affiliation(s)
- Hui-Ling Liu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhou Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qing-Zhen Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Zhi Cao
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han-Yu Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Raphael N Alolgab
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xue-Yang Deng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhi-Hao Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Ommati MM, Rezaei H, Socorro RM, Tian W, Zhao J, Rouhani A, Sabouri S, Ghaderi F, Niknahad AM, Najibi A, Mazloomi S, Safipour M, Honarpishefard Z, Wang HW, Niknahad H, Heidari R. Pre/postnatal taurine supplementation improves neurodevelopment and brain function in mice offspring: A persistent developmental study from puberty to maturity. Life Sci 2024; 336:122284. [PMID: 38008208 DOI: 10.1016/j.lfs.2023.122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Taurine (TAU) is a sulfur-containing amino acid abundantly found in the human body. Endogenously, TAU is synthesized from cysteine in the liver. However, newborns rely entirely on TAU's dietary supply (milk). There is no investigation on the effect of long-term TAU administration on next-generation neurological development. The current study evaluated the effect of long-term TAU supplementation during the maternal gestational and litter weaning time on several neurological parameters in mice offspring. Moreover, the effects of TAU on mitochondrial function and oxidative stress biomarkers as plausible mechanisms of its action in the whole brain and hippocampus have been evaluated. TAU (0.5 % and 1 % w/v) was dissolved in the drinking water of pregnant mice (Day one of pregnancy), and amino acid supplementation was continued during the weaning time (post-natal day; PND = 21) until litters maturity (PND = 65). It was found that TAU significantly improved cognitive function, memory performance, reflexive motor activity, and emotional behaviors in F1-mice generation. TAU measurement in the brain and hippocampus revealed higher levels of this amino acid. TAU and ATP levels were also significantly higher in the mitochondria isolated from the whole brain and hippocampus. Based on these data, TAU could be suggested as a supplement during pregnancy or in pediatric formula. The effects of TAU on cellular mitochondrial function and energy metabolism might play a fundamental role in the positive effects of this amino acid observed in this investigation.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Retana-Márquez Socorro
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Ayeh Rouhani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China; College of Animal Science and Veterinary, Shanxi agricultural University, Taigu, Shanxi, China
| | - Fatemeh Ghaderi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Chemistry and Biochemistry, Miami University, 244 Hughes Laboratories, 651 E. High Street, Oxford, OH 45056, USA
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moslem Safipour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Honarpishefard
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City, Mexico.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Ommati MM, Mobasheri A, Niknahad H, Rezaei M, Alidaee S, Arjmand A, Mazloomi S, Abdoli N, Sadeghian I, Sabouri S, Saeed M, Mousavi K, Najibi A, Heidari R. Low-dose ketamine improves animals' locomotor activity and decreases brain oxidative stress and inflammation in ammonia-induced neurotoxicity. J Biochem Mol Toxicol 2023; 37:e23468. [PMID: 37491939 DOI: 10.1002/jbt.23468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Ammonium ion (NH4 + ) is the major suspected molecule responsible for neurological complications of hepatic encephalopathy (HE). No specific pharmacological action for NH4 + -induced brain injury exists so far. Excitotoxicity is a well-known phenomenon in the brain of hyperammonemic cases. The hyperactivation of the N-Methyl- d-aspartate (NMDA) receptors by agents such as glutamate, an NH4 + metabolite, could cause excitotoxicity. Excitotoxicity is connected with events such as oxidative stress and neuroinflammation. Hence, utilizing NMDA receptor antagonists could prevent neurological complications of NH4 + neurotoxicity. In the current study, C57BL6/J mice received acetaminophen (APAP; 800 mg/kg, i.p) to induce HE. Hyperammonemic animals were treated with ketamine (0.25, 0.5, and 1 mg/kg, s.c) as an NMDA receptor antagonist. Animals' brain and plasma levels of NH4 + were dramatically high, and animals' locomotor activities were disturbed. Moreover, several markers of oxidative stress were significantly increased in the brain. A significant increase in brain tissue levels of TNF-α, IL-6, and IL-1β was also detected in hyperammonemic animals. It was found that ketamine significantly normalized animals' locomotor activity, improved biomarkers of oxidative stress, and decreased proinflammatory cytokines. The effects of ketamine on oxidative stress biomarkers and inflammation seem to play a key role in its neuroprotective mechanisms in the current study.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdollah Arjmand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mohsen Saeed
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Niknahad H, Mobasheri A, Arjmand A, Rafiei E, Alidaee S, Razavi H, Bagheri S, Rezaei H, Sabouri S, Najibi A, Khodaei F, Kashani SMA, Ommati MM, Heidari R. Hepatic encephalopathy complications are diminished by piracetam via the interaction between mitochondrial function, oxidative stress, inflammatory response, and locomotor activity. Heliyon 2023; 9:e20557. [PMID: 37810869 PMCID: PMC10551565 DOI: 10.1016/j.heliyon.2023.e20557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Background of the study: Hepatic encephalopathy (HE) is a complication in which brain ammonia (NH4+) levels reach critically high concentrations because of liver failure. HE could lead to a range of neurological complications from locomotor and behavioral disturbances to coma. Several tactics have been established for subsiding blood and brain NH4+. However, there is no precise intervention to mitigate the direct neurological complications of NH4+. Purpose It has been found that oxidative stress, mitochondrial damage, and neuro-inflammation play a fundamental role in NH4+ neurotoxicity. Piracetam is a drug used clinically in neurological complications such as stroke and head trauma. Piracetam could significantly diminish oxidative stress and improve brain mitochondrial function. Research methods In the current study, piracetam (100 and 500 mg/kg, oral) was used in a mice model of HE induced by thioacetamide (TA, 800 mg/kg, single dose, i.p). Results Significant disturbances in animals' locomotor activity, along with increased oxidative stress biomarkers, including reactive oxygen species formation, protein carbonylation, lipid peroxidation, depleted tissue glutathione, and decreased antioxidant capacity, were evident in the brain of TA-treated mice. Meanwhile, mitochondrial permeabilization, mitochondrial depolarization, suppression of dehydrogenases activity, and decreased ATP levels were found in the brain of the TA group. The level of pro-inflammatory cytokines was also significantly high in the brain of HE animals. Conclusion It was found that piracetam significantly enhanced mice's locomotor activity, blunted oxidative stress biomarkers, decreased inflammatory cytokines, and improved mitochondrial indices in hyperammonemic mice. These data suggest piracetam as a neuroprotective agent which could be repurposed for the management of HE.
Collapse
Affiliation(s)
- Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics, And Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland
- University Medical Center Utrecht, Departments of Orthopedics Rheumatology and Clinical Immunology, 3508, GA, Utrecht, the Netherlands
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania
| | - Abdollah Arjmand
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Rafiei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Alidaee
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Razavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouzan Khodaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Mohammad Amin Kashani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shanxi Key Laboratory of Ecological, Animal Sciences, And Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Shaheen S, Liaqat F, Qamar S, Murtaza I, Rasheed A, yousuf S, Ishtiaq A, Akhter Z. Single crystal structure of nitro terminated Azo Schiff base: DNA binding, antioxidant, enzyme inhibitory and photo-isomerization investigation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
12
|
Shafik MS, El-Tanbouly DM, Bishr A, Attia AS. Insights into the role of PHLPP2/Akt/GSK3β/Fyn kinase/Nrf2 trajectory in the reno-protective effect of rosuvastatin against colistin-induced acute kidney injury in rats. J Pharm Pharmacol 2023:7140447. [PMID: 37095069 DOI: 10.1093/jpp/rgad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVES Oxidative stress-mediated colistin's nephrotoxicity is associated with the diminished activity of nuclear factor erythroid 2-related factor 2 (Nrf2) that is primarily correlated with cellular PH domain and leucine-rich repeat protein phosphatase (PHLPP2) levels. This study investigated the possible modulation of PHLPP2/protein kinase B (Akt) trajectory as a critical regulator of Nrf2 stability by rosuvastatin (RST) to guard against colistin-induced oxidative renal damage in rats. METHODS Colistin (300,000 IU/kg/day; i.p.) was injected for 6 consecutive days, and rats were treated simultaneously with RST orally at 10 or 20 mg/kg. KEY FINDINGS RST enhanced renal nuclear Nrf2 translocation as revealed by immunohistochemical staining to boost the renal antioxidants, superoxide dismutase (SOD) and reduced glutathione (GSH) along with a marked reduction in caspase-3. Accordingly, rats treated with RST showed significant restoration of normal renal function and histological features. On the molecular level, RST effectively decreased the mRNA expression of PHLPP2 to promote Akt phosphorylation. Consequently, it deactivated GSK-3β and reduced the gene expression of Fyn kinase in renal tissues. CONCLUSIONS RST could attenuate colistin-induced oxidative acute kidney injury via its suppressive effect on PHLPP2 to endorse Nrf2 activity through modulating Akt/GSK3 β/Fyn kinase trajectory.
Collapse
Affiliation(s)
- Marihan S Shafik
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Dalia M El-Tanbouly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abeer Bishr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Amina S Attia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Heidari R, Mohammadi HR, Goudarzi F, Farjadian F. Repurposing of sevelamer as a novel antidote against aluminum phosphide poisoning: An in vivo evaluation. Heliyon 2023; 9:e15324. [PMID: 37123944 PMCID: PMC10130877 DOI: 10.1016/j.heliyon.2023.e15324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/18/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Aluminum phosphide (AlP) is widely used for protecting grains from pests. AlP releases toxic phosphine gas (PH3) while exposed to humidity. Poisoning with these tablets is dangerous and can cause death or serious injuries. Up to now, no definite antidote has been introduced for specific treatment of this poisoning. Sevelamer carbonate or sevelamer hydrochloride (Renagel) is a polymeric pharmaceutical prescribed for treating hyperphosphatemia in patients with chronic kidney disease. Sevelamer can bind with phosphate groups and act as an anion exchanger. Herein, sevelamer is repurposed as a potent antidote agent in phosphine gas poisoning. In vivo evaluation was conducted on male Sprague Dawley rats. The evaluation was conducted on three groups of animals: control, AlP-poisoned, and AlP-poisoned treated with sevelamer. Survival percentage, serum biomarkers level of organ injury, and ATP level were recorded. The results indicate a high survival rate in sevelamer-treated animals compared with the AlP-poisoned group (75% vs. 0% respectively, 48 h after poisoning). The analysis of serum markers of organ injury also showed that sevelamer could reduce toxicity and organ injury in poisoned animals. ATP level of separate organs showed that sevelamer treated groups were recovered. The results showed that sevelamer could be a potent antidote for managing aluminum phosphide poisoning. Moreover, a mechanism is suggested for the interaction of sevelamer with phosphine gas.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Reza Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fazel Goudarzi
- Emergency Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Corresponding author.
| |
Collapse
|
14
|
Kucuk M, Heybeli C, Ozturk MC, Ergun B, Yakar MN, Gokmen AN, Comert B, Ergan B. Dexmedetomidine may reduce the risk of acute kidney injury development in critically ill patients during colistin therapy. J Infect Chemother 2023; 29:673-677. [PMID: 36921764 DOI: 10.1016/j.jiac.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Colistin is considered as a last resort therapy for multidrug-resistant gram-negative organisms. It is widely used despite the significant risk of nephrotoxicity. Experimental studies showed the nephroprotective effect of dexmedetomidine, a sedative agent, against colistin toxicity. This study was performed to show the possible nephroprotective effect of dexmedetomidine among critically ill patients who received colistin. METHODS Adult (>17 years) patients who were admitted to our surgical and medical intensive care unit (ICU) from March 2018 through March 2021, and who received colistin were included. Patients who receive Colistin therapy or intensive care unit follow-up of <72 h (discharge or death) and Acute kidney injury (AKI) or need hemodialysis prior to colistin therapy at the same hospitalization were excluded. AKI risk factors were examined by grouping patients with and without AKI. Patients, receiving colistin concomitantly with dexmedetomidine were also evaluated. RESULTS Of the 139 patients included, 27 (17.8%) patients received dexmedetomidine. Sixty-five patients (47%) had AKI, at a median 5 (4-7) days after the initiation of colistin. Older age, lower baseline estimated glomerular filtration rate, and vasopressor use were associated with a higher risk of AKI, while dexmedetomidine use was associated with a lower risk. In the multivariate regression model, dexmedetomidine use was independently associated with a lower risk of AKI development (OR 0.20 95% CI 0.07-0.59, p = 0.003). CONCLUSION In respect to these findings, dexmedetomidine may provide protection against AKI during colistin therapy in critically ill patients.
Collapse
Affiliation(s)
- Murat Kucuk
- Division of Critical Care, Department of Internal Medicine, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Cihan Heybeli
- Division of Nephrology, Department of Internal Medicine, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey.
| | - Mehmet Celal Ozturk
- Department of Anesthesiology and Critical Care, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Bişar Ergun
- Division of Critical Care, Department of Internal Medicine, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Mehmet Nuri Yakar
- Department of Anesthesiology and Critical Care, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Ali Necati Gokmen
- Department of Anesthesiology and Critical Care, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Bilgin Comert
- Division of Critical Care, Department of Internal Medicine, Medicana Hospital, Izmir, Turkey
| | - Begüm Ergan
- Department of Pulmonary and Critical Care, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
15
|
Pulmonary inflammation, oxidative stress, and fibrosis in a mouse model of cholestasis: the potential protective properties of the dipeptide carnosine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1129-1142. [PMID: 36651945 DOI: 10.1007/s00210-023-02391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Cholestasis is a clinical complication that primarily influences the liver. However, it is well known that many other organs could be affected by cholestasis. Lung tissue is a major organ influenced during cholestasis. Cholestasis-induced lung injury could induce severe complications such as respiratory distress, serious pulmonary infections, and tissue fibrosis. Unfortunately, there is no specific pharmacological intervention against this complication. Several studies revealed that oxidative stress and inflammatory response play a role in cholestasis-induced lung injury. Carnosine (CARN) is a dipeptide found at high concentrations in different tissues of humans. CARN's antioxidant and antiinflammatory properties are repeatedly mentioned in various experimental models. This study aimed to assess the role of CARN on cholestasis-induced lung injury. Rats underwent bile duct ligation (BDL) to induce cholestasis. Broncho-alveolar lavage fluid (BALF) levels of inflammatory cells, pro-inflammatory cytokines, and immunoglobulin were monitored at scheduled intervals (7, 14, and 28 days after BDL). Moreover, lung tissue histopathological alterations and biomarkers of oxidative stress were evaluated. A significant increase in BALF inflammatory cells, TNF-α, IL-1β, IL-6, and immunoglobulin-G (IgG) was detected in the BALF of BDL rats. Moreover, lung tissue histopathological changes, collagen deposition, increased TGF-β, and elevated levels of oxidative stress biomarkers were evident in cholestatic animals. It was found that CARN (100 and 500 mg/kg, i.p.) significantly alleviated lung oxidative stress biomarkers, inflammatory response, tissue fibrosis, and histopathological alterations. These data indicate the potential protective properties of CARN in the management of cholestasis-induced pulmonary damage. The effects of CARN on inflammatory response and oxidative stress biomarkers seems to play a crucial role in its protective properties in the lung of cholestatic animals.
Collapse
|
16
|
Zhu Y, Wang R, Fan Z, Luo D, Cai G, Li X, Han J, Zhuo L, Zhang L, Zhang H, Li Y, Wu S. Taurine Alleviates Chronic Social Defeat Stress-Induced Depression by Protecting Cortical Neurons from Dendritic Spine Loss. Cell Mol Neurobiol 2023; 43:827-840. [PMID: 35435537 PMCID: PMC9958166 DOI: 10.1007/s10571-022-01218-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Abnormal amino acid metabolism in neural cells is involved in the occurrence and development of major depressive disorder. Taurine is an important amino acid required for brain development. Here, microdialysis combined with metabonomic analysis revealed that the level of taurine in the extracellular fluid of the cerebral medial prefrontal cortex (mPFC) was significantly reduced in mice with chronic social defeat stress (CSDS)-induced depression. Therefore, taurine supplementation may be usable an intervention for depression. We found that taurine supplementation effectively rescued immobility time during a tail suspension assay and improved social avoidance behaviors in CSDS mice. Moreover, taurine treatment protected CSDS mice from impairments in dendritic complexity, spine density, and the proportions of different types of spines. The expression of N-methyl D-aspartate receptor subunit 2A, an important synaptic receptor, was largely restored in the mPFC of these mice after taurine supplementation. These results demonstrated that taurine exerted an antidepressive effect by protecting cortical neurons from dendritic spine loss and synaptic protein deficits.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Rui Wang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Ze Fan
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China ,State Key Laboratory of Military Stomatology, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Danlei Luo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Guohong Cai
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Xinyang Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Jiao Han
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Lixia Zhuo
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Li Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haifeng Zhang
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Yan Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Shengxi Wu
- Department of Neurobiology, The School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
17
|
Taurine Improves Sperm Mitochondrial Indices, Blunts Oxidative Stress Parameters, and Enhances Steroidogenesis and Kinematics of Sperm in Lead-Exposed Mice. Reprod Sci 2022; 30:1891-1910. [DOI: 10.1007/s43032-022-01140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
|
18
|
Ommati MM, Mobasheri A, Ma Y, Xu D, Tang Z, Manthari RK, Abdoli N, Azarpira N, Lu Y, Sadeghian I, Mousavifaraz A, Nadgaran A, Nikoozadeh A, Mazloomi S, Mehrabani PS, Rezaei M, Xin H, Mingyu Y, Niknahad H, Heidari R. Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1557-1572. [PMID: 36097067 DOI: 10.1007/s00210-022-02291-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Lung injury is a significant complication associated with cholestasis/cirrhosis. This problem significantly increases the risk of cirrhosis-related morbidity and mortality. Hence, finding effective therapeutic options in this field has significant clinical value. Severe inflammation and oxidative stress are involved in the mechanism of cirrhosis-induced lung injury. Taurine (TAU) is an abundant amino acid with substantial anti-inflammatory and antioxidative properties. The current study was designed to evaluate the role of TAU in cholestasis-related lung injury. For this purpose, bile duct ligated (BDL) rats were treated with TAU (0.5 and 1% w: v in drinking water). Significant increases in the broncho-alveolar lavage fluid (BALF) level of inflammatory cells (lymphocytes, neutrophils, basophils, monocytes, and eosinophils), increased IgG, and TNF-α were detected in the BDL animals (14 and 28 days after the BDL surgery). Alveolar congestion, hemorrhage, and fibrosis were the dominant pulmonary histopathological changes in the BDL group. Significant increases in the pulmonary tissue biomarkers of oxidative stress, including reactive oxygen species formation, lipid peroxidation, increased oxidized glutathione levels, and decreased reduced glutathione, were also detected in the BDL rats. Moreover, significant myeloperoxidase activity and nitric oxide levels were seen in the lung of BDL rats. It was found that TAU significantly blunted inflammation, alleviated oxidative stress, and mitigated lung histopathological changes in BDL animals. These data suggest TAU as a potential protective agent against cholestasis/cirrhosis-related lung injury.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mobasheri
- Physics, and Technology, Faculty of Medicine, Research Unit of Medical Imaging, University of Oulu, 90014, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
- Department of Regenerative Medicine, State Research Institute Center for Innovative Medicine, 08406, Vilnius, Lithuania
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Dongmei Xu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhongwei Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam-530045, Andhra Pradesh, India
| | - Narges Abdoli
- Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Negar Azarpira
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yu Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolghasem Mousavifaraz
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Nadgaran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Nikoozadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahra Mazloomi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooria Sayar Mehrabani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hu Xin
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yang Mingyu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Zheng G, Cai J, Zhou S, Du N, Bai H, He J, Bian X. Risk of polymyxin B-induced acute kidney injury with a non adjusted dose versus adjusted dose based on renal function. Per Med 2022; 19:307-314. [PMID: 35762314 DOI: 10.2217/pme-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To observe the difference in the risk of polymyxin B (PMB)-induced acute kidney injury (AKI) with or without dose adjustment based on the patients renal function. Materials & methods: This retrospective cohort analysis was carried out in 115 patients treated with PMB from November 2018 to October 2019. Results: No significant difference in the incidence of AKI as well as secondary outcomes was observed between these two groups (47.5 vs 37.14%; p = 0.304). Conclusion: Dosing adjustment based on renal function does not significantly lower the risk of PMB-induced AKI. A non adjusted dosing strategy for PMB is recommended in patients exhibiting various levels of renal impairment.
Collapse
Affiliation(s)
- Guanhao Zheng
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China.,Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jiaqi Cai
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, China
| | - Shenghui Zhou
- Department of Pharmacy, Baiyin Central Hospital, Baiyin, 730900, China
| | - Ning Du
- Department of Pharmacy, Qiqihar First Hospital, Qiqihar, 161000, China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400000, China
| | - Juan He
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China.,Department of Pharmacy, Luwan Branch of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| |
Collapse
|
20
|
Daniels RC, Tiba MH, Cummings B, Yap YR, Ansari S, McCracken B, Sun Y, Jennaro T, Ward KR, Stringer KA. Redox Potential Correlates with Changes in Metabolite Concentrations Attributable to Pathways Active in Oxidative Stress Response in Swine Traumatic Shock. Shock 2022; 57:282-290. [PMID: 35670453 PMCID: PMC10314677 DOI: 10.1097/shk.0000000000001944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Oxidation-reduction (redox) reactions, and the redox potential (RP) that must be maintained for proper cell function, lie at the heart of physiologic processes in critical illness. Imbalance in RP reflects systemic oxidative stress, and whole blood RP measures have been shown to correlate with oxygen debt level over time in swine traumatic shock. We hypothesize that RP measures reflect changing concentrations of metabolites involved in oxidative stress. To test this hypothesis, we compared blood and urine RP with concentrations of multiple metabolites in a swine traumatic shock model to identify meaningful RP-metabolite relationships. METHODS Seven swine were subjected to traumatic shock. Mixed venous (MV) RP, urine RP, and concurrent MV and urine metabolite concentrations were assessed at baseline, max O 2 Debt (80 mL/kg), end resuscitation, and 2 h post-resuscitation. RP was measured at collection via open circuit potential using nanoporous gold electrodes with Ag/AgCl reference and a ParstatMC potentiostat. Metabolite concentrations were measured by quantitative 1 H-NMR spectroscopy. MV and urine RP were compared with time-matched metabolites across all swine. LASSO regression with leave-one-out cross validation was used to determine meaningful RP/metabolite relationships. Metabolites had to maintain magnitude and direction of coefficients across 6 or more swine to be considered as having a meaningful relationship. KEGG IDs of these metabolites were uploaded into Metscape for pathway identification and evaluation for physiologic function. RESULTS Meaningful metabolite relationships (and mean coefficients across cross-validation folds) with MV RP included: choline (-6.27), ATP (-4.39), glycine (5.93), ADP (1.84), glucose (15.96), formate (-13.09), pyruvate (6.18), and taurine (-7.18). Relationships with urine RP were: betaine (4.81), urea (4.14), glycine (-2.97), taurine (10.32), 3-hydroxyisobutyrate (-7.67), N-phenylacetylglycine, PAG (-14.52), hippurate (12.89), and formate (-5.89). These meaningful metabolites were found to scavenge extracellular peroxide (pyruvate), inhibit ROS and activate cellular antioxidant defense (taurine), act as indicators of antioxidant mobilization against oxidative stress (glycine + PAG), and reflect renal hydroxyl radical trapping (hippurate), among other activities. CONCLUSIONS Real-time RP measures demonstrate significant relationships with metabolites attributable to metabolic pathways involved in systemic responses to oxidative stress, as well as those involved in these processes. These data support RP measures as a feasible, biologically relevant marker of oxidative stress. As a direct measure of redox state, RP may be a useful biomarker and clinical tool in guiding diagnosis and therapy in states of increased oxidative stress and may offer value as a marker for organ injury in these states as well.
Collapse
Affiliation(s)
- Rodney C. Daniels
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI
| | - M. Hakam Tiba
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Brandon Cummings
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Yan Rou Yap
- Pediatric Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Sardar Ansari
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
| | - Brendan McCracken
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Yihan Sun
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Teddy Jennaro
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Kevin R. Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI
| | - Kathleen A. Stringer
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
Mirjalili M, Mirzaei E, Vazin A. Pharmacological agents for the prevention of colistin-induced nephrotoxicity. Eur J Med Res 2022; 27:64. [PMID: 35525994 PMCID: PMC9077985 DOI: 10.1186/s40001-022-00689-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Colistin is a polymyxin antibiotic which has been used for treatment of Gram-negative infections, but it was withdrawn due to its nephrotoxicity. However, colistin has gained its popularity in recent years due to the reemergence of multidrug resistant Gram-negative infections and drug-induced toxicity is considered as the main obstacle for using this valuable antibiotic. RESULTS In total, 30 articles, including 29 animal studies and one clinical trial were included in this study. These compounds, including aged black garlic extract, albumin fragments, alpha lipoic acid, astaxanthin, baicalein, chrysin, cilastatin, colchicine, curcumin, cytochrome c, dexmedetomidine, gelofusine, grape seed proanthocyanidin extract, hesperidin, luteolin, lycopene, melatonin, methionine, N-acetylcysteine, silymarin, taurine, vitamin C, and vitamin E exhibited beneficial effects in most of the published works. CONCLUSIONS In this review, the authors have attempted to review the available literature on the use of several compounds for prevention or attenuation of colistin-induced nephrotoxicity. Most of the studied compounds were potent antioxidants, and it seems that using antioxidants concomitantly can have a protective effect during the colistin exposure.
Collapse
Affiliation(s)
- Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Mirzaei
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Afsaneh Vazin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Locci E, Liu J, Pais GM, Chighine A, Kahnamoei DA, Xanthos T, Chalkias A, Lee A, Hauser AR, Chang J, Rhodes NJ, Aloja ED, Scheetz MH. Urinary Metabolomics from a Dose-Fractionated Polymyxin B Rat Model of Acute Kidney Injury. Int J Antimicrob Agents 2022; 60:106593. [PMID: 35460851 DOI: 10.1016/j.ijantimicag.2022.106593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Polymyxin B treatment is limited by kidney injury. We sought to identify Polymyxin B related urinary metabolomic profile modifications for early detection of polymyxin-associated nephrotoxicity. METHODS Samples were obtained from a previously conducted study. Male Sprague-Dawley rats received dose-fractionated polymyxin B (12mg/kg/day) once daily (QD), twice daily (BID), and thrice daily (TID) for three days with urinary biomarkers and kidney histopathology scores determined. Daily urine was analysed for metabolites via 1H NMR. Principal Components Analyses identified spectral data trends with orthogonal Partial Least Square Discriminant Analysis applied to classify metabolic differences. Metabolomes were compared across groups (i.e., those receiving QD, BID, TID, and control) using a mixed-effects models. Spearman correlation was performed for injury biomarkers and the metabolome. RESULTS A total of 25 rats were treated with Polymyxin B, and n=2 received saline, contributing 77 urinary samples. Pre-dosing samples clustered well, characterized by higher amounts of citrate, 2-oxoglutarate, and hippurate. Day 1 samples showed higher taurine; day 3 samples had higher lactate, acetate, and creatine. Taurine was the only metabolite significantly increased in both BID and TID compared to QD group. Day 1 taurine correlated with increasing histopathology scores (rho=0.4167, P=0.038) and KIM-1 (rho =0.4052, P=0.036); whereas KIM-1 on day one and day 3 did not reach significance with histopathology (rho=0.3248, P=0.11 and rho=0.3739, P=0.066). CONCLUSIONS Polymyxin B causes increased amounts of urinary taurine on day 1 which then normalizes to baseline concentrations. Taurine may provide one of the earlier signals of acute kidney damage caused by polymyxin B.
Collapse
Affiliation(s)
- Emanuela Locci
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Jiajun Liu
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL
| | - Gwendolyn M Pais
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL
| | - Alberto Chighine
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Dariusc Andrea Kahnamoei
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | | | - Athanasios Chalkias
- University of Thessaly, Faculty of Medicine, Department of Anesthesiology, Larisa, Greece; Outcomes Research Consortium, Cleveland, OH 44195, USA
| | | | | | - Jack Chang
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL
| | - Nathaniel J Rhodes
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL
| | - Ernesto d' Aloja
- Department of Medical Sciences and Public Health, Section of Legal Medicine, University of Cagliari, Cagliari, Italy
| | - Marc H Scheetz
- Midwestern University, Downers Grove, IL; Midwestern University Chicago College of Pharmacy Pharmacometrics Center of Excellence, Downers Grove, IL; Northwestern Memorial Hospital, Chicago, IL.
| |
Collapse
|
23
|
Iwata Y, Nakade Y, Kitajima S, Nakagawa SY, Oshima M, Sakai N, Ogura H, Sato K, Toyama T, Yamamura Y, Miyagawa T, Yamazaki H, Hara A, Shimizu M, Furuichi K, Mita M, Hamase K, Tanaka T, Nishida M, Muramatsu W, Yamamoto H, Shichino S, Ueha S, Matsushima K, Wada T. Protective Effect of D-Alanine Against Acute Kidney Injury. Am J Physiol Renal Physiol 2022; 322:F667-F679. [PMID: 35435002 DOI: 10.1152/ajprenal.00198.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Recent studies revealed the connection between amino acid chirality and diseases. We previously reported that the gut microbiota produced various D-amino acids in a murine acute kidney injury (AKI) model. Here, we further explore the pathophysiological role of D-Alanine (Ala) in AKI. METHODS We analyzed the transcripts of the N-methyl-D-aspartate (NMDA) receptor, a receptor for D-Ala, in tubular epithelial cells (TECs). Then, the therapeutic effect of D-Ala was assessed in vivo and in vitro. Lastly, the plasma level of D-Ala was evaluated in AKI patients. RESULTS The Grin genes encoding NMDA receptor subtypes were expressed in TECs. Hypoxia condition changes the gene expressions of Grin1, Grin2A and Grin2B. D-Ala protected TECs from hypoxia-related cell injury and induced proliferation after hypoxia. These protective effects are associated with the chirality of D-Ala. D-Ala inhibits ROS production and improves mitochondrial membrane potential, through NMDA receptor signaling. The ratio of D-Ala/L-Ala was increased in feces, plasma, and urine after the induction of I/R. Moreover, enterobacteriaceae, such as Escherichia coli, Klebsiella oxytoca produced D-Ala. The oral administration of D-Ala ameliorated kidney injury after I/R induction in mice. The deficiency of NMDA subunit NR1 on tubular cell worsened kidney damage in AKI. In addition, the plasma level of D-Ala was increased and reflected the level of renal function in AKI patients. CONCLUSIONS D-Ala has protective effects on I/R-induced kidney injury. Moreover, the plasma level of D-Ala reflects the eGFR in AKI patients. D-Ala could be a promising therapeutic target and potential biomarker for AKI.
Collapse
Affiliation(s)
- Yasunori Iwata
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yusuke Nakade
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | | | - Megumi Oshima
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroka Yamazaki
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- Division of Nephrology, Kanazawa Medical University School of Medicine, Ishikawa, Kanazawa, Japan
| | | | - Kenji Hamase
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Tanaka
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems and Center for Novel Science Initiatives, National Institutes of Natural Sciences, Aichi, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences and Exploratory Research Center on Life and Living Systems and Center for Novel Science Initiatives, National Institutes of Natural Sciences, Aichi, Japan
| | - Wataru Muramatsu
- Molecular Catalyst Research Center, Chubu University, Aichi, Japan
| | - Hisashi Yamamoto
- Molecular Catalyst Research Center, Chubu University, Aichi, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Chiba, Tokyo University of Science, Tokyo, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Chiba, Tokyo University of Science, Tokyo, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Chiba, Tokyo University of Science, Tokyo, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
24
|
Anti-diabetic potential, crystal structure, molecular docking, DFT, and optical-electrochemical studies of new dimethyl and diethyl carbamoyl-N, N′-disubstituted based thioureas. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Jing H, Wang F, Gao XJ. Lithium intoxication induced pyroptosis via ROS/NF-κB/NLRP3 inflammasome regulatory networks in kidney of mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:825-835. [PMID: 34984798 DOI: 10.1002/tox.23446] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Humans and animals may be exposed to increasing contaminant lithium (Li) concentrations in the environment with the use and disposal of Li-containing products. Meanwhile, Li plays a key role in the treatment of human mental disorders, while the excessive accumulation of Li salts in the body can cause renal damage and nephrotic syndrome. In this study, the mechanism of renal inflammatory reaction induced by Li excessive intake was studied by establishing mice models in vitro and in vivo. The results of histopathology staining and TdT-mediated dUTP nick-end labeling assay showed that high Li condition (Lithium carbonate, 20 mg/kg/twice a day, i.e., for 30 consecutive days) caused inflammatory damage and apoptosis in kidney tissue cells. Western blot, qPCR, and immunohistochemical analysis were used to further study. In the vivo experiments, we found that Li reduced antioxidant enzyme capacity (glutathione peroxidase, total superoxide dismutase, total antioxidant capacity, and catalase) and induced the production of reactive oxygen species (ROS). Moreover, excessive Li activated nuclear factor kappa-B (NF-κB) signaling pathway and nucleotide-binding oligomerization domain-like receptors domains-containing protein 3 (NLRP3) inflammasome, resulting in activation of inflammatory factors tumor necrosis factor-α and IL-1β in the kidney of mice. In the vitro study, ROS as an upstream signal phosphorylated IκBα and NF-κB, up-regulated the NLRP3 inflammasome, increased caspase3, 6, 7, and 9 to exaggerate inflammation response, finally inducing pyroptosis in renal cells.
Collapse
Affiliation(s)
- Hongyuan Jing
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fuhan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Jiao Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
26
|
The Effect of Enalapril, Losartan, or Not Antihypertensive on the Oxidative Status in Renal Transplant Recipients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5622626. [PMID: 35308174 PMCID: PMC8930264 DOI: 10.1155/2022/5622626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022]
Abstract
The clinical and biochemical improvement observed in kidney transplant (RT) recipients is remarkable. The correct functioning of the allograft depends on various factors such as the donor's age, the alloimmune response, the ischemia-reperfusion injury, arterial hypertension, and the interstitial fibrosis of the allograft, among others. Antihypertensive drugs are necessary for arterial hypertension patients to avoid or reduce the probability of affecting graft function in RT recipients. Oxidative stress (OS) is another complex pathophysiological process with the ability to alter posttransplant kidney function. The study's objective was to determine the effect of the administration of Enalapril, Losartan, or not antihypertensive medication on the oxidative state in RT recipients at the beginning of the study and one year of follow-up. All patients included in the study found significant overexpression of the oxidative damage marker to DNA and the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In contrast, it was found that the determination of the total antioxidant capacity decreased significantly in the final determination at one year of follow-up in all the patients who ingested Enalapril and Losartan. We found dysregulation of the oxidative state characterized mainly by oxidative damage to DNA and a significant increase in antioxidant enzymes, which could suggest a compensatory effect against the imbalance of the oxidative state.
Collapse
|
27
|
Ommati MM, Li H, Jamshidzadeh A, Khoshghadam F, Retana-Márquez S, Lu Y, Farshad O, Nategh Ahmadi MH, Gholami A, Heidari R. The crucial role of oxidative stress in non-alcoholic fatty liver disease-induced male reproductive toxicity: the ameliorative effects of Iranian indigenous probiotics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:247-265. [PMID: 34994824 DOI: 10.1007/s00210-021-02177-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Several studies have focused on the high potential effects of probiotics on the reproductive system. However, there is a paucity of information regarding the ameliorative intracellular roles of indigenous Iranian yogurt-extracted/cultured probiotics on animals' reproductive health suffering from obesity and/or fatty liver disease, such as non-alcoholic fatty liver disease (NAFLD). For this purpose, simultaneously with the consumption of D-fructose (200 g/1000 mL water, induction of NAFLD model), all pubertal animals were also gavaged every day for 63 consecutive days with extracted probiotics, including 1 × 109 CFU/mL of Lactobacillus acidophilus (LA), Bifidobacterium spp. (BIF), Bacillus coagulans (BC), Lactobacillus rhamnosus (LR), and a mixture form (LA + BIF + BC + LR). At the end of the ninth week, the indices of epididymal sperm, and oxidative stress, as well as histopathological changes, were assessed. The results show that NAFLD could induce robust oxidative stress, highlighted as considerable increments in ROS level, TBARS content, total oxidized protein levels, along with severe decrements in reduced glutathione reservoirs, total antioxidant capacity in the hepatic and testicular tissues, as well as testicular and hepatic histopathological alterations. Moreover, a significant decrease in the percentage of sperm progressive motility, sperm count, and membrane integrity along with an increment in the percentage of sperm abnormality was detected in NAFLD animals. The observed adverse effects were significantly reversed upon probiotics treatment, especially in the group challenged with a mixture of all probiotics. Taken together, these findings indicate that the indigenous yogurt-isolated/cultured probiotics had a high potential antioxidant activity and the ameliorative effect against reprotoxicity and blood biochemical alterations induced by the NAFLD model. Highlights: 1. Reproductive indices could be reversely affected by xenobiotics and diseases. 2. NAFLD and cholestasis considerably affect the reproductive system in both genders. 3. NAFLD induced hepatic and testicular oxidative stress (OS). 4. NAFLD induced histopathological alterations and spermatotoxicity through OS. 5. The adverse effects were significantly reversed upon exposure to probiotics.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Khoshghadam
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Yu Lu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Pharmacy and Nutrition, School of Pharmacy, University of Saskatchewan, Saskatoon, Canada
| | - Mohammad Hasan Nategh Ahmadi
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, 71345, Shiraz, Iran
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Delineation of the molecular mechanisms underlying Colistin-mediated toxicity using metabolomic and transcriptomic analyses. Toxicol Appl Pharmacol 2022; 439:115928. [DOI: 10.1016/j.taap.2022.115928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
29
|
Li W, Wu G, Yang X, Yang J, Hu J. Taurine Prevents AFB1-Induced Renal Injury by Inhibiting Oxidative Stress and Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:435-444. [DOI: 10.1007/978-3-030-93337-1_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Naddafi M, Eghbal MA, Ghazi Khansari M, Sattari MR, Azarmi Y, Samadi M, Mehrizi AA. Sensing of oxidative stress biomarkers: The cardioprotective effect of taurine & grape seed extract against the poisoning induced by an agricultural pesticide aluminum phosphide. CHEMOSPHERE 2022; 287:132245. [PMID: 34543908 DOI: 10.1016/j.chemosphere.2021.132245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/24/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Aluminum phosphide is a well-known hazardous agent used as an agricultural pesticide to protect stored grains from insect damage. However, accidental consumption of a trivial amount of it caused irreversible damage to the human body or even death in acute cases. The present study used taurine and grape seed extract as a natural cardioprotective medicine against aluminum phosphide poisoning by decreasing oxidative stress. The activity of oxidative stress biomarkers (Malondialdehyde, Catalase, Protein carbonyl, and Superoxide dismutase) were evaluated in the cell line model on Human Cardiac Myocyte cells. In the beginning, to clarify the pure impact of aluminum phosphide poison, taurine, and grape seed extract on the human heart cells, their effects on the biomarkers quantity in cell line were measured. Subsequently, the effect of taurine and grape seed extract with various concentrations as a treatment on the oxidative stress biomarkers of the poisoned heart cells were studied. Data analysis reveals that taurine and grape seed extract treatment can successfully diminish the poisoning effect by their antioxidant properties. The oxidative markers values of the poisoned cells were recovered by taurine and grape seed extracts treatment. Taurine (2 g/l) can recover Malondialdehyde, Catalase, Protein carbonyl, and Superoxide dismutase by 56%, 78%, 88%, 78%, when the recovering power of grape seed extract (100 g/l) for the aforementioned enzymes are 56%, 0.71%,74%, 51%, respectively. Therefore, it is clear that the performance of taurine in the recovery of the biomarkers' value is better than grape seed extract.
Collapse
Affiliation(s)
- Mastoureh Naddafi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahmoud Ghazi Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Sattari
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Azarmi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahedeh Samadi
- Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbasali Abouei Mehrizi
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
31
|
Bhattacharjee A, Prajapati SK, Krishnamurthy S. Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms. Eur J Pharmacol 2021; 908:174361. [PMID: 34297965 DOI: 10.1016/j.ejphar.2021.174361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
RATIONALE Current pharmacotherapy for post-traumatic stress disorder (PTSD) is limited to few antidepressants. Mitochondrial dysfunction is observed in PTSD, along with altered potassium homeostasis. Nutritional supplementation of taurine can improve ionic homeostasis and thereby treat PTSD-like symptoms in rats. AIM The purpose is to study the pharmacological effect of taurine in stress re-stress-induced PTSD in rats. METHODS As per protocol, animals were restrained for 2 h then exposed to footshock (FS) (2 mA/10 s) followed by halothane-induced anesthesia. Behavioral assessments such as elevated plus maze (EPM) and Y-maze tests were performed on days 2, 8, and 32 of experimental protocol after re-stress. In addition, daily oral administration of taurine (100, 200, and 300 mg/kg) and paroxetine (PAX) (10 mg/kg) was done from D-8 to D-32 followed by re-stress. The plasma concentration of taurine, corticosterone, and potassium was measured on Day-32 along with mitochondrial function in discrete brain regions. RESULTS Sub-chronic administration of taurine in high and medium doses significantly ameliorated PTSD-like symptoms such as hyperarousal, anxiety, and improved spatial recognition memory. Taurine in all doses restored the plasma concentration of corticosterone and potassium. SRS-induced alterations in mitochondrial bioenergetics, complex enzyme activities, and reduced mitochondrial membrane potential in different brain regions were ameliorated by taurine. CONCLUSION Nutritional supplementation of taurine improves potassium ionic homeostasis, mitochondrial function, and attenuated PTSD-like symptoms in SRS subjected rats.
Collapse
Affiliation(s)
- Anindita Bhattacharjee
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221 005, U.P., India.
| |
Collapse
|
32
|
Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, Mousavi K, Khalvati B, Zhao Y, Sun J, Zong Y, Ommati MM, Heidari R. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett 2021; 349:12-29. [PMID: 34089816 DOI: 10.1016/j.toxlet.2021.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
The cholestatic liver injury could occur in response to a variety of diseases or xenobiotics. Although cholestasis primarily affects liver function, it has been well-known that other organs such as the kidney could be influenced in cholestatic patients. Severe cholestasis could lead to tissue fibrosis and organ failure. Unfortunately, there is no specific therapeutic option against cholestasis-induced organ injury. Hence, finding the mechanism of organ injury during cholestasis could lead to therapeutic options against this complication. The accumulation of potentially cytotoxic compounds such as hydrophobic bile acids is the most suspected mechanism involved in the pathogenesis of cholestasis-induced organ injury. A plethora of evidence indicates a role for the inflammatory response in the pathogenesis of several human diseases. Here, the role of nuclear factor-kB (NFkB)-mediated inflammatory response is investigated in an animal model of cholestasis. Bile duct ligated (BDL) animals were treated with sulfasalazine (SSLZ, 10 and 100 mg/kg, i.p) as a potent inhibitor of NFkB signaling. The NFkB proteins family activity in the liver and kidney, serum and tissue levels of pro-inflammatory cytokines, tissue biomarkers of oxidative stress, serum markers of organ injury, and the liver and kidney histopathological alterations and fibrotic changes. The oxidative stress-mediated inflammatory-related indices were monitored in the kidney and liver at scheduled time intervals (3, 7, and 14 days after BDL operation). Significant increase in serum and urine markers of organ injury, besides changes in biomarkers of oxidative stress and tissue histopathology, were evident in the liver and kidney of BDL animals. The activity of NFkB proteins (p65, p50, p52, c-Rel, and RelB) was significantly increased in the liver and kidney of cholestatic animals. Serum and tissue levels of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-7, IL-12, IL-17, IL-18, IL-23, TNF-α, and INF-γ) were also higher than sham-operated animals. Moreover, TGF- β, α-SMA, and tissue fibrosis (Trichrome stain) were evident in cholestatic animals' liver and kidneys. It was found that SSLZ (10 and 100 mg/kg/day, i.p) alleviated cholestasis-induced hepatic and renal injury. The effect of SSLZ on NFkB signaling and suppression of pro-inflammatory cytokines could play a significant role in its protective role in cholestasis. Based on these data, NFkB signaling could receive special attention to develop therapeutic options to blunt cholestasis-induced organ injury.
Collapse
Affiliation(s)
- Asrin Ahmadi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406, Vilnius, Lithuania; Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA, Utrecht, The Netherlands; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Yangfei Zhao
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Jianyu Sun
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yuqi Zong
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030801, China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Mousavi K, Manthari RK, Najibi A, Jia Z, Ommati MM, Heidari R. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100049. [PMID: 34909675 PMCID: PMC8663991 DOI: 10.1016/j.crphar.2021.100049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Tramadol (TMDL) is an opioid analgesic widely administered for the management of moderate to severe pain. On the other hand, TMDL is commonly abused in many countries because of its availability and cheap cost. Renal injury is related to high dose or chronic administration of TMDL. No precise mechanism for TMDL-induced renal damage has been identified so far. The current study aimed to evaluate the potential role of oxidative stress and mitochondrial impairment in the pathogenesis of TMDL-induced renal injury. For this purpose, rats were treated with TMDL (40 and 80 mg/kg, i.p, 28 consecutive days). A significant increase in serum Cr and BUN was detected in TMDL groups. On the other hand, TMDL (80 mg/kg) caused a substantial increase in urine glucose, ALP, protein, and γ-GT levels. Moreover, urine Cr was significantly decreased in TMDL-treated rats (40 and 80 mg/kg). Renal histopathological alterations included inflammation, necrosis, and tubular degeneration in the kidney of TMDL-treated animals. Reactive oxygen species (ROS) formation, increased oxidized glutathione (GSSG), lipid peroxidation, and protein carbonylation was increased, whereas total antioxidant capacity and reduced glutathione levels were considerably decreased in TMDL groups. Significant mitochondrial impairment was also detected in the form of mitochondrial depolarization, adenosine-tri-phosphate (ATP) depletion, mitochondrial permeabilization, lipid peroxidation, and decreased mitochondrial dehydrogenase activity in the kidney of TMDL (80 mg/kg)-treated animals. These data suggest mitochondrial impairment and oxidative stress as mechanisms involved in the pathogenesis of TMDL-induced renal injury.
Collapse
Affiliation(s)
- Khadijah Mousavi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, Andhra Pradesh, India
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zhipeng Jia
- College of Animal Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Metformin alleviates cholestasis-associated nephropathy through regulating oxidative stress and mitochondrial function. LIVER RESEARCH 2021. [DOI: 10.1016/j.livres.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Madbouly N, Azmy A, Salama A, El-Amir A. The nephroprotective properties of taurine-amikacin treatment in rats are mediated through HSP25 and TLR-4 regulation. J Antibiot (Tokyo) 2021; 74:580-592. [PMID: 34253885 DOI: 10.1038/s41429-021-00441-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Amikacin (AMK) is one of the most effective aminoglycoside antibiotics. However, nephrotoxicity is a major deleterious and dose-limiting side effect associated with its clinical use especially in high dose AMK-treated patients. The present study assessed the ability of taurine (TAU) to alleviate or prevent AMK-induced nephrotoxicity if co-administrated with AMK focusing on inflammation, apoptosis, and fibrosis. Male Sprague Dawley rats were assigned to six equal groups. Group 1: rats received saline (normal control), group 2: normal rats received 50 mg kg-1 TAU intraperitoneally (i.p.). Groups 3 and 4: received AMK (25 or 50 mg kg-1; i.p.). Groups 5 and 6: received TAU (50 mg kg-1; i.p.) concurrently with AMK (25 or 50 mg kg-1; i.p.) for 3 weeks. AMK-induced nephrotoxicity is evidenced by elevated levels of serum creatinine (CRE), blood urea nitrogen (BUN), and uric acid (UA). Histopathological investigations provoked damaging changes in the renal tissues. Heat shock proteins (HSP)25 and Toll-like receptor-4 (TLR-4) elevated levels were involved in the induction of inflammatory reactions and focal fibrosis. The improved activation of TLR-4 may stimulate monocytes to upgrade Interleukin (IL)-18 production rather than IL-10. TAU proved therapeutic effectiveness against AMK-induced renal toxicity through downregulation of HSP25, TLR-4, caspase-3, and IL-18 with up-regulation of IL-10 levels.
Collapse
Affiliation(s)
- Neveen Madbouly
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | - Ayman Azmy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Cairo, Egypt
| | - Azza El-Amir
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
36
|
Mousavi K, Niknahad H, Li H, Jia Z, Manthari RK, Zhao Y, Shi X, Chen Y, Ahmadi A, Azarpira N, Khalvati B, Ommati MM, Heidari R. The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury. Toxicol Res (Camb) 2021; 10:911-927. [PMID: 34484683 PMCID: PMC8403611 DOI: 10.1093/toxres/tfab073] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022] Open
Abstract
Cholestasis is a severe clinical complication that severely damages the liver. Kidneys are also the most affected extrahepatic organs in cholestasis. The pivotal role of oxidative stress has been mentioned in the pathogenesis of cholestasis-induced organ injury. The activation of the nuclear factor-E2-related factor 2 (Nrf2) pathway is involved in response to oxidative stress. The current study was designed to evaluate the potential role of Nrf2 signaling activation in preventing bile acids-induced toxicity in the liver and kidney. Dimethyl fumarate was used as a robust activator of Nrf2 signaling. Rats underwent bile duct ligation surgery and were treated with dimethyl fumarate (10 and 40 mg/kg). Severe oxidative stress was evident in the liver and kidney of cholestatic animals (P < 0.05). On the other hand, the expression and activity of Nrf2 and downstream genes were time-dependently decreased (P < 0.05). Moreover, significant mitochondrial depolarization, decreased ATP levels, and mitochondrial permeabilization were detected in bile duct-ligated rats (P < 0.05). Histopathological alterations included liver necrosis, fibrosis, inflammation and kidney interstitial inflammation, and cast formation. It was found that dimethyl fumarate significantly decreased hepatic and renal injury in cholestatic animals (P < 0.05). Based on these data, the activation of the cellular antioxidant response could serve as an efficient therapeutic option for managing cholestasis-induced organ injury.
Collapse
Affiliation(s)
- Khadijeh Mousavi
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hossein Niknahad
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Huifeng Li
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhipeng Jia
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM Institute of Science, Visakhapatnam, Gandhi Institute of Technology and Management, Andhra Pradesh 530045, India
| | - Yangfei Zhao
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiong Shi
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yuanyu Chen
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Asrin Ahmadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj 75919-51176, Iran
| | - Mohammad Mehdi Ommati
- Department of Bio-informatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
37
|
Ghanbarinejad V, Ommati MM, Jia Z, Farshad O, Jamshidzadeh A, Heidari R. Disturbed mitochondrial redox state and tissue energy charge in cholestasis. J Biochem Mol Toxicol 2021; 35:e22846. [PMID: 34250697 DOI: 10.1002/jbt.22846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/23/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
The liver is the primary organ affected by cholestasis. However, the brain, skeletal muscle, heart, and kidney are also severely influenced by cholestasis/cirrhosis. However, little is known about the molecular mechanisms of organ injury in cholestasis. The current study was designed to evaluate the mitochondrial glutathione redox state as a significant index in cell death. Moreover, tissue energy charge (EC) was calculated. Rats underwent bile duct ligation (BDL) and the brain, heart, liver, kidney, and skeletal muscle mitochondria were assessed at scheduled time intervals (3, 7, 14, and 28 days after BDL). A significant decrease in mitochondrial glutathione redox state and EC was detected in BDL animals. Moreover, disturbed mitochondrial indices were evident in different organs of BDL rats. These data could offer new insight into the mechanisms of organ injury and the source of oxidative stress during cholestasis and might provide novel therapeutic strategies against these complications.
Collapse
Affiliation(s)
- Vahid Ghanbarinejad
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhipeng Jia
- Department of Veterinary Medicine, College of Animal Sciences and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Omid Farshad
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Toxicology Laboratory, Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Jafari F, Elyasi S. Prevention of colistin induced nephrotoxicity: a review of preclinical and clinical data. Expert Rev Clin Pharmacol 2021; 14:1113-1131. [PMID: 34015235 DOI: 10.1080/17512433.2021.1933436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: The emergence of antimicrobial resistance in Gram-negative bacteria is a concerning challenge for health systems. The polymyxins, including colistin, are one of the limited available options these pathogens management. Nephrotoxicity, beside neurotoxicity is the major dose-limiting adverse reaction of polymyxins, with an up to 60% prevalence. As oxidative stress, inflammatory pathways and apoptosis are considered as the main mechanisms of colistin-induced kidney damage, various studies have evaluated antioxidant and/or antiapoptotic compounds for its prevention. In this article, we reviewed animal and human studies on these probable preventive measures.Area covered: PubMed, Scopus, and google scholar databases were searched using several combination of 'colistin', 'polymyxin E', 'CMS', 'Colistimethate sodium', 'nephrotoxicity', 'kidney injury', 'kidney damage', 'renal injury', 'renal damage', 'nephroprotectants', 'renoprotective', 'nephroprotective', and 'prevention'. All eligible articles including animal and human studies up to the end of 2020 were included.Expert opinion: Most of available studies are in vivo researches on anti-oxidant and anti-apoptotic agents like NAC, vitamin C and E, silymarin, and curcumin which mostly showed promising findings. However, limited human studies on NAC and vitamin C did not demonstrate considerable efficacy. So, before proposing these compounds, further well-designed randomized clinical trials are necessary.
Collapse
Affiliation(s)
- Fatemeh Jafari
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Cao P, Zhang W, Wang G, Zhao X, Gao N, Liu Z, Xu R. Low Dose of Folic Acid Can Ameliorate Hyperhomocysteinemia-Induced Cardiac Fibrosis and Diastolic Dysfunction in Spontaneously Hypertensive Rats. Int Heart J 2021; 62:627-635. [PMID: 33994505 DOI: 10.1536/ihj.20-593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
To evaluate whether lowering plasma homocysteine (Hcy) levels at different doses of folic acid (FA) could reduce cardiac fibrosis and diastolic dysfunction in spontaneously hypertensive rats (SHRs) with hyperhomocysteinemia (Hhcy) and investigate the possible mechanism of action.We randomly divided 32 male SHRs into control, Hhcy, Hhcy + low-dose FA (LFA), and Hhcy + high-dose FA (HFA) groups. Echocardiography and Masson staining of cardiac tissue were used to assess diastolic function and cardiac fibrosis. Blood pressure (BP) and Hcy levels were measured during the experiment. We also measured the indicators of oxidative stress (OS) and examined the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) genes and proteins using real-time polymerase chain reaction (PCR), immunohistochemistry, and western blotting to explore the possible mechanism of action.FA treatment reversed SHR cardiomyocyte interstitial and perivascular collagen deposition and diastolic dysfunction exacerbated by Hhcy. These effects were associated with promoting the translocation of Nrf2 from the cytoplasm to the nucleus, activating HO-1 expression and inhibiting OS. However, HFA did not show any additional benefit from LFA in reducing cardiac injury.Even at a low dose, FA can ameliorate Hhcy-induced cardiac fibrosis and diastolic dysfunction in SHRs by activating Nrf2/HO-1 pathway and inhibiting OS, independent of BP, providing evidence for the efficacy of LFA in the treatment of hypertension associated with Hhcy.
Collapse
Affiliation(s)
- Ping Cao
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University
- Department of Geriatrics, Taian City Central Hospital
| | | | - Guicheng Wang
- Department of Geriatrics, Taian City Central Hospital
| | - Xuan Zhao
- Department of Cardiology, People's Hospital of Dongying
| | - Ning Gao
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University
| | - Zhen Liu
- Department of Geriatrics, Taian City Central Hospital
| | - Rui Xu
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University
| |
Collapse
|
40
|
Ommati MM, Arabnezhad MR, Farshad O, Jamshidzadeh A, Niknahad H, Retana-Marquez S, Jia Z, Nateghahmadi MH, Mousavi K, Arazi A, Azmoon MR, Azarpira N, Heidari R. The Role of Mitochondrial Impairment and Oxidative Stress in the Pathogenesis of Lithium-Induced Reproductive Toxicity in Male Mice. Front Vet Sci 2021; 8:603262. [PMID: 33842567 PMCID: PMC8025583 DOI: 10.3389/fvets.2021.603262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/29/2021] [Indexed: 11/18/2022] Open
Abstract
Lithium (Li+) is prescribed against a wide range of neurological disorders. Besides its excellent therapeutic properties, there are several adverse effects associated with Li+. The impact of Li+ on renal function and diabetes insipidus is the most common adverse effect of this drug. On the other hand, infertility and decreased libido is another complication associated with Li+. It has been found that sperm indices of functionality, as well as libido, is significantly reduced in Li+-treated men. These adverse effects might lead to drug incompliance and the cessation of drug therapy. Hence, the main aims of the current study were to illustrate the mechanisms of adverse effects of Li+ on the testis tissue, spermatogenesis process, and hormonal changes in two experimental models. In the in vitro experiments, Leydig cells (LCs) were isolated from healthy mice, cultured, and exposed to increasing concentrations of Li+ (0, 10, 50, and 100 ppm). In the in vivo section of the current study, mice were treated with Li+ (0, 10, 50, and 100 ppm, in drinking water) for five consecutive weeks. Testis and sperm samples were collected and assessed. A significant sign of cytotoxicity (LDH release and MTT assay), along with disrupted testosterone biosynthesis, impaired mitochondrial indices (ATP level and mitochondrial depolarization), and increased biomarkers of oxidative stress were detected in LCs exposed to Li+. On the other hand, a significant increase in serum and testis Li+ levels were detected in drug-treated mice. Moreover, ROS formation, LPO, protein carbonylation, and increased oxidized glutathione (GSSG) were detected in both testis tissue and sperm specimens of Li+-treated mice. Several sperm anomalies were also detected in Li+-treated animals. On the other hand, sperm mitochondrial indices (mitochondrial dehydrogenases activity and ATP levels) were significantly decreased in drug-treated groups where mitochondrial depolarization was increased dose-dependently. Altogether, these data mention oxidative stress and mitochondrial impairment as pivotal mechanisms involved in Li+-induced reproductive toxicity. Therefore, based on our previous publications in this area, therapeutic options, including compounds with high antioxidant properties that target these points might find a clinical value in ameliorating Li+-induced adverse effects on the male reproductive system.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Department of Bioinformatics, College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Mohammad Reza Arabnezhad
- Department of Toxicology and Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Socorro Retana-Marquez
- Department of Biology and Reproduction, Autonomous Metropolitan University, Mexico City, Mexico
| | - Zhipeng Jia
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | | | - Khadijeh Mousavi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aysooda Arazi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Azmoon
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
41
|
Ghanbarinejad V, Jamshidzadeh A, Khalvati B, Farshad O, Li H, Shi X, Chen Y, Ommati MM, Heidari R. Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1191-1203. [PMID: 33527194 DOI: 10.1007/s00210-020-02041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is a clinical complication with different etiologies. The liver is the primary organ influenced in cholestasis. Renal injury is also a severe clinical complication in cholestatic/cirrhotic patients. Several studies mentioned the importance of oxidative stress and mitochondrial impairment as two mechanistically interrelated events in cholestasis-induced organ injury. Apoptosis-inducing factor (AIF) is a flavoprotein located in the inner mitochondrial membrane. This molecule is involved in a distinct pathway of cell death. The current study aimed to evaluate the role of AIF in the pathophysiology of cholestasis-associated hepatic and renal injury. Bile duct ligation (BDL) was used as an animal model of cholestasis. Serum, urine, and tissue samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Tissues' AIF mRNA levels, as well as serum, urine, and tissue activity of AIF, were measured. Moreover, markers of DNA fragmentation and apoptosis were assessed in the liver and kidney of cholestatic animals. A significant increase in liver and kidney AIF mRNA levels, in addition to increased AIF activity in the liver, kidney, serum, and urine, was detected in BDL rats. DNA fragmentation and apoptosis were raised in the liver and kidney of cholestatic animals, especially at the early stage of the disease. The apoptotic mode of cell death in the liver and kidney was connected to a higher AIF level. These data mention the importance of AIF in the pathogenesis of cholestasis-induced organ injury, especially at the early stage of this disease. Mitochondrial release of apoptosis-inducing factor (AIF) seems to play a pathogenic role in cholestasis-associated hepatic and renal injury. AIF release is directly connected to oxidative stress and mitochondrial impairment in cholestatic animals.
Collapse
Affiliation(s)
- Vahid Ghanbarinejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran
| | - Huifeng Li
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanyu Chen
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 158371345, Roknabad, Karafarin St, Shiraz, Fars, Iran.
| |
Collapse
|
42
|
Jiang Y, Zhang M, Zhang Y, Zulewska J, Yang Z. Calcium (Ca 2+)-regulated exopolysaccharide biosynthesis in probiotic Lactobacillus plantarum K25 as analyzed by an omics approach. J Dairy Sci 2021; 104:2693-2708. [PMID: 33455763 DOI: 10.3168/jds.2020-19237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 01/21/2023]
Abstract
Exopolysaccharide (EPS)-producing lactic acid bacteria have been widely used in dairy products, but how calcium, the main metal ion component in milk, regulates the EPS biosynthesis in lactic acid bacteria is not clear. In this study, the effect of Ca2+ on the biosynthesis of EPS in the probiotic Lactobacillus plantarum K25 was studied. The results showed that addition of CaCl2 at 20 mg/L in a semi-defined medium did not affect the growth of strain K25, but it increased the EPS yield and changed the microstructure of the polymer. The presence of Ca2+ also changed the monosaccharide composition of the EPS with decreased high molecular weight components and more content of rhamnose, though the functional groups of the polymer were not altered as revealed by Fourier transform infrared spectral analysis. These were further confirmed by analysis of the mRNA expression of cps genes, 9 of which were upregulated by Ca2+, including cps4F and rfbD associated with EPS biosynthesis with rhamnose. Proteomics analysis showed that Ca2+ upregulated most of the proteins related to carbon transport and metabolism, fatty acid synthesis, amino acid synthesis, ion transport, UMP synthesis. Specially, the increased expression of MelB, PtlIIBC, EIIABC, PtlIIC, PtlIID, Bgl, GH1, MalFGK, DhaK, and FBPase provided substrates for the EPS synthesis. Meanwhile, metabolomics analysis revealed significant change of the small molecular metabolites in tricarboxylic acid cycle, glucose metabolism and propionic acid metabolism. Among them the content of active small molecules such as polygalitol, lyxose, and 5-phosphate ribose increased, facilitating the EPS biosynthesis. Furthermore, Ca2+ activated HipB signaling pathway to inhibit the expression of manipulator repressor such as ArsR, LytR/AlgR, IscR, and RafR, and activated the expression of GntR to regulate the EPS synthesis genes. This study provides a basis for understanding the overall change of metabolic pathways related to the EPS biosynthesis in L. plantarum K25 in response to Ca2+, facilitating exploitation of its EPS-producing potential for application in probiotic dairy products.
Collapse
Affiliation(s)
- Yunyun Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048; Mengniu Gaoke Dairy (Beijing) Co. Ltd., Beijing, P.R. China 101100
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048
| | - Yang Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China 550001
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048.
| |
Collapse
|
43
|
Mohammadi H, Heidari R, Niknezhad SV, Jamshidzadeh A, Farjadian F. In vitro and in vivo Evaluation of Succinic Acid-Substituted Mesoporous Silica for Ammonia Adsorption: Potential Application in the Management of Hepatic Encephalopathy. Int J Nanomedicine 2020; 15:10085-10098. [PMID: 33363368 PMCID: PMC7754271 DOI: 10.2147/ijn.s271883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Hepatic encephalopathy (HE) is a critical situation in which liver failure affects brain function. HE could result in a state of coma and death. The liver is the main organ for ammonium ion (NH4 +) metabolism. Hence, acute and/or chronic liver failure could lead to hyperammonemia. NH4 + is the most suspected neurotoxic agent in HE. Thus, finding new therapeutic options to decrease plasma and brain NH4 + levels has a significant clinical value. Mesoporous silica (MS) particles have revolutionized many aspects of pharmaceutical sciences, including drug delivery systems. Moreover, recently, MS has been applied as agents for the detoxification of chemicals (eg, drugs and poisons). Methods First, MS particles containing amine groups (MS-NH2) were synthesized in co-condensation processes. Then, the structure was modified by succinic anhydride to have MS-SA. The MS-SA was characterized (FT-IR, XRD, X-ray photoelectron spectroscopy (XPS), DLS-Zeta FESEM-EDX, and HRTEM). Then, the potential of MS-NH2 and MS-SA particles in adsorption of NH4 + was investigated in vitro and in vivo. MS-NH2 and MS-SA were incubated with increasing concentrations (0.1-10 mM) of NH4 +, and the scavenging capacity of the investigated particles was evaluated. On the other hand, different doses (1 and 5 mg/kg per day) of nanoparticles were administered to a hyperammonemia animal model. Results It was figured out that both MS-NH2 and MS-SA significantly scavenged NH4 + in the in vitro model. However, the NH4 + scavenging capability of MS-SA was more significant. Administration of MS-NH2 and MS-SA also considerably decreased the level of ammonium in plasma and brain and improved cognitive and locomotor activity in hyperammonemic animals. The effects of MS-SA were more significant than MS-NH2 in the HE animal model. Conclusion Collectively, our data suggest that MS particles, especially succinic acid-functionalized MS, could act as special ancillary treatment in HE as a critical clinical complication.
Collapse
Affiliation(s)
- Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Farshad O, Keshavarz P, Heidari R, Farahmandnejad M, Azhdari S, Jamshidzadeh A. The Potential Neuroprotective Role of Citicoline in Hepatic Encephalopathy. J Exp Pharmacol 2020; 12:517-527. [PMID: 33235522 PMCID: PMC7678475 DOI: 10.2147/jep.s261986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Hepatic encephalopathy (HE) is described as impaired brain function induced by liver failure. Ammonia is the most suspected chemical involved in brain injury during HE. Although the precise mechanism of HE is not clear, several studies mentioned the role of oxidative stress in ammonia neurotoxicity. In animal models, the use of some compounds with antioxidant properties was reported to reduce the neurotoxic effects of ammonia, improve energy metabolism, and ameliorate the HE symptoms. Citicoline is a principal intermediate in the biosynthesis pathway of phosphatidylcholine that acts as neurovascular protection and repair effects. Various studies mentioned the neuroprotective and antioxidative effects of citicoline in the central nervous system. This study aims to investigate the potential protective effects of citicoline therapeutic in an animal model of HE. Materials and Methods Mice received acetaminophen (APAP,1g/kg, i. p.) and then treated with citicoline (500 mg/kg, i.p) one and two hours after APAP. Animals were monitored for locomotor activity and blood and brain ammonia levels. Moreover, markers of oxidative stress were assessed in the brain tissue. Results The result of the study revealed that plasma and brain ammonia and the liver injury markers increased, and locomotor activity impaired in the APAP-treated animals. Besides, an increase in markers of oxidative stress was evident in the brain of the APAP-treated mice. It was found that citicoline supplementation enhanced the animal’s locomotor activity and improved brain tissue markers of oxidative stress. Conclusion These data propose citicoline as a potential protective agent in HE. The effects of citicoline on oxidative stress markers could play a fundamental role in its neuroprotective properties during HE.
Collapse
Affiliation(s)
- Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pedram Keshavarz
- Department of Radiology, Tbilisi State Medical University (TSMU), Tbilisi, Georgia
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Farahmandnejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
45
|
Oktan MA, Heybeli C, Ural C, Kocak A, Bilici G, Cavdar Z, Ozbal S, Arslan S, Yilmaz O, Cavdar C. Alpha-lipoic acid alleviates colistin nephrotoxicity in rats. Hum Exp Toxicol 2020; 40:761-771. [PMID: 33111558 DOI: 10.1177/0960327120966043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Colistin methanesulfonate (CMS), a clinical form of colistin, is widely used as a last-line treatment for multidrug-resistant (MDR) gram-negative bacterial infections in critically ill patients presenting a considerably high mortality rate. However, nephrotoxicity is considered to be a critical adverse effect that limits CMS's clinical use. Alpha-lipoic acid (ALA) is a strong antioxidant that is effective in preventing nephrotoxicity in many models. The aim of this study was to investigate ALA's ability to protect against nephrotoxicity induced by colistin in rats. Male Wistar albino rats were randomly divided into four groups. Group 1 was the control group (Control; n = 6), in which isotonic saline was administered to the rats. Group 2 was the ALA group (ALA; n = 6) in which rats received 100 mg/kg ALA. Groups 3 was the CMS (CMS; n = 7) in which 450.000 IU/kg/day of CMS was administered to the rats. Groups 4 was the CMS + ALA group (n = 6), in which rats were injected with 100 mg/kg of ALA 30 min before administration of CMS. All injections were performed intraperitoneally at 1, 4, 7, and 10 days. Urine was collected by using a metabolic cage for 24 h after each administration. The rats were euthanized under ether anesthesia after 24 h of the last administration. Blood and kidney samples then were collected for histological and biochemical analysis. ALA pretreatment could reverse the effects of colistin-induced nephrotoxicity, partly through its suppressing effect on Nox4 and caspase-3, which in turn results in its antioxidant and antiapoptotic effect. Therefore, ALA may be an effective strategy for the management of colistin nephrotoxicity.
Collapse
Affiliation(s)
- Mehmet Asi Oktan
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Cihan Heybeli
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Cemre Ural
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Ayse Kocak
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Gokcen Bilici
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Zahide Cavdar
- Department of Molecular Medicine, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Seda Ozbal
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Sevki Arslan
- Faculty of Science, Department of Biology, Pamukkale University, Denizli, Turkey
| | - Osman Yilmaz
- Department of Laboratory Animal Science, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey
| | - Caner Cavdar
- Department of Nephrology, 37508Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
46
|
Farshad O, Ommati MM, Yüzügülen J, Jamshidzadeh A, Mousavi K, Ahmadi Z, Azarpira N, Ghaffari H, Najibi A, Shafaghat M, Niknahad H, Heidari R. Carnosine Mitigates Biomarkers of Oxidative Stress, Improves Mitochondrial Function, and Alleviates Histopathological Alterations in the Renal Tissue of Cholestatic Rats. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Cholestatic liver disease primarily affects hepatic tissue. Cholestasis could also influence the function of other organs rather than the liver. Cholestasis-induced kidney injury is a severe clinical complication known as "cholemic nephropathy" (CN). Bile duct ligation (BDL) is a trustworthy experimental model for inducing CN. Although the precise mechanism of renal injury in cholestasis is not fully recognized, several studies revealed the role of oxidative stress in CN. There is no promising pharmacological intervention against CN. Carnosine (CAR) is a peptide extensively investigated for its pharmacological effects. Radical scavenging and antioxidative stress are major features of CAR. The current study aimed to evaluate the role of CAR supplementation on the CN. Methods: CAR was administered (250 and 500 mg/kg, i.p) to BDL rats for 14 consecutive days. Urine and serum markers of renal injury, biomarkers of oxidative stress in the kidney tissue, and renal histopathological alterations were monitored. Results: Significant elevation in oxidative stress biomarkers, including ROS formation, lipid peroxidation, oxidized glutathione (GSSG) levels, and protein carbonylation were found in the kidney of BDL rats. Moreover, renal tissue antioxidant capacity and reduced glutathione (GSH) levels were significantly decreased in the organ of cholestatic animals. Renal histopathological changes, including tubular atrophy, interstitial inflammation, tissue fibrosis, and cast formation, were detected in the kidney of BDL rats. It was found that CAR administration significantly protected the kidney of cholestatic animals. Conclusion: The antioxidative properties of this peptide might play a fundamental role in its protective properties during cholestasis.
Collapse
Affiliation(s)
- Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, Peoples’ Republic of China
| | - Jale Yüzügülen
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, North Cyprus, Turkey
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadijeh Mousavi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ahmadi
- Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, North Cyprus, Turkey
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasti Ghaffari
- Department of Veterinary Sciences, Islamic Azad University, Urmia Branch, Urmia, Iran
| | - Asma Najibi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Shafaghat
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| |
Collapse
|
47
|
Sun Y, Dai S, Tao J, Li Y, He Z, Liu Q, Zhao J, Deng Y, Kang J, Zhang X, Yang S, Liu Y. Taurine suppresses ROS-dependent autophagy via activating Akt/mTOR signaling pathway in calcium oxalate crystals-induced renal tubular epithelial cell injury. Aging (Albany NY) 2020; 12:17353-17366. [PMID: 32931452 PMCID: PMC7521519 DOI: 10.18632/aging.103730] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 01/24/2023]
Abstract
Oxidative stress and autophagy are the key promoters of calcium oxalate (CaOx) nephrolithiasis. Taurine is an antioxidant that plays a protective role in the pathogenesis of kidney disease. Previous studies found that taurine suppressed cellular oxidative stress, and inhibited autophagy activation. However, the effect of taurine on CaOx kidney stone formation remains unknown. In the present work, we explored the regulatory effects of taurine on CaOx crystals-induced HK-2 cell injury. Results showed that pretreatment with taurine significantly enhanced the viability of HK-2 cells and ameliorated kidney tissue injury induced by CaOx crystals. Taurine also markedly reduced the levels of inflammatory cytokines, apoptosis, and CaOx crystals deposition. Furthermore, we observed that taurine supplementation alleviated CaOx crystals-induced autophagy. Mechanism studies showed that taurine reduced oxidative stress via increasing SOD activity, reducing MDA concentration, alleviating mitochondrial oxidative injury, and decreasing the production of intracellular ROS. Taurine treatment also effectively activated Akt/mTOR signaling pathway in CaOx crystals-induced HK-2 cells both in vitro and in vivo. In summary, the current study shows that taurine inhibits ROS-dependent autophagy via activating Akt/mTOR signaling pathway in CaOx crystals-induced HK-2 cell and kidney injury, suggesting that taurine may serve as an effective therapeutic agent for the treatment of CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Yan Sun
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiting Dai
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Tao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunlong Li
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Quan Liu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiawen Zhao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaoliang Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juening Kang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunlong Liu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
|
49
|
Vazin A, Heidari R, Khodami Z. Curcumin Supplementation Alleviates Polymyxin E-Induced Nephrotoxicity. J Exp Pharmacol 2020; 12:129-136. [PMID: 32581601 PMCID: PMC7280086 DOI: 10.2147/jep.s255861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/15/2020] [Indexed: 01/04/2023] Open
Abstract
Background The last-line agent for gram-negative bacteria that have developed resistance towards commonly used antibiotics is polymyxin E (PolyE). The renal toxicity attributed to this agent limits its use, proper dosing, and eventually its clinical efficacy. Although the exact mechanism of PolyE-induced nephrotoxicity is not obvious, some investigations suggest the role of oxidative stress and its associated events in this complication. Curcumin (CUR) is a potent antioxidant molecule. The aim of the current investigation was the evaluation of the potential nephroprotective properties of CUR in PolyE-treated mice. Materials and Methods Mice were randomly allocated into five groups (n = 8 per group). PolyE (15 mg/kg/day, i.v, for 7 days) alone or in combination with CUR (10, 100 and 200 mg/kg, i.p) were administered to mice. Renal injury biomarkers, in addition to markers of oxidative stress and kidney histopathological alterations, were evaluated. Results Plasma creatinine (Cr) and blood urine nitrogen (BUN) significantly raised in PolyE group. Oxidative stress biomarkers consisting of reactive oxygen species (ROS) and lipid peroxidation (LPO) also increased, and concomitantly GSH and antioxidant capacity of renal cells significantly decreased following the use of PolyE. Interstitial nephritis, tissue necrosis, and glomerular atrophy were all induced by the use of PolyE in the mice kidney. CUR (10, 100, and 200 mg/kg, i.p) treatment alleviated PolyE-induced oxidative stress and histopathological alterations in the kidney tissue significantly. Conclusion According to the results of this study, CUR has a protective role against renal toxicity induced by PolyE. Hence, more research is necessary until this compound could be clinically applicable to alleviate PolyE-induced renal injury.
Collapse
Affiliation(s)
- Afsaneh Vazin
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodami
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
50
|
Effects of dapagliflozin and statins attenuate renal injury and liver steatosis in high-fat/high-fructose diet-induced insulin resistant rats. Toxicol Appl Pharmacol 2020; 396:114997. [DOI: 10.1016/j.taap.2020.114997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
|