1
|
Wang J, Hu M, Min J, Li X. A positive feedback loop of SRSF9/USP22/ZEB1 promotes the progression of ovarian cancer. Cancer Biol Ther 2024; 25:2427415. [PMID: 39530604 PMCID: PMC11559372 DOI: 10.1080/15384047.2024.2427415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Ovarian cancer (OC) is recognized as the most lethal type of gynecological malignancy, making treatment options challenging. Discovering novel therapeutic targets will benefit OC patients. This study aimed to reveal the mechanism by which SRSF9 regulates OC progression. Cell proliferation was determined via CCK-8 assays, whereas cell migration and invasion were monitored via Transwell assays. Western blotting and qPCR assays were used to detect protein and mRNA alterations. RNA pull-down, RNA immunoprecipitation (RIP), and actinomycin D experiments were performed to investigate the relationships between SRSF9 and USP22. Co-IP was used to validate the interaction between USP22 and ZEB1. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were used to verify the regulatory effect of ZEB1 on the transcription of SRSF9. Subcutaneous xenograft models were established to evaluate the impact of SRSF9 on tumor development. Knockdown of SRSF9 significantly suppressed the proliferation, invasion, migration, tumorigenicity, and epithelial‒mesenchymal transition (EMT) of OC cells. SRSF9 can bind to USP22 mRNA, increasing its stability. Moreover, the overexpression of USP22 reversed the impact of SRSF9 silencing on malignant phenotypes. USP22 can mediate the deubiquitination of ZEB1, thereby enhancing the progression of OC. Furthermore, ZEB1 upregulated SRSF9 expression through transcriptional activation, thus establishing a positive feedback loop. SRSF9 enhanced the malignant characteristics of OC through a positive feedback loop of SRSF9/USP22/ZEB1. This functional circuit may help in the development of novel therapeutic approaches for treating OC.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gynecology II, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Ming Hu
- Department of Gynecology II, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Jie Min
- Department of Gynecology II, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Xin Li
- Department of Gynecology II, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
2
|
Lo YL, Hong CJ, Wang CS, Yang CP. Modulating versatile pathways using a cleavable PEG shell and EGFR-targeted nanoparticles to deliver CRISPR-Cas9 and docetaxel for triple-negative breast cancer inhibition. Arch Pharm Res 2024; 47:829-853. [PMID: 39482441 PMCID: PMC11602847 DOI: 10.1007/s12272-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Human antigen R (HuR), an RNA-binding protein, is implicated in regulating mRNA stability and translation in cancer, especially in triple-negative breast cancer (TNBC), a highly aggressive form. CRISPR/Cas9-mediated HuR knockout (HuR CRISPR) presents a promising genetic therapeutic approach, but it encounters transfection limitations. Docetaxel (DTX), an effective cytotoxic agent against metastatic breast cancer (BC), faces challenges related to vehicle-associated adverse events in DTX formulations. Therefore, we designed multifunctional nanoparticles with pH-sensitive PEG derivatives and targeting peptides to enable efficient HuR CRISPR and DTX delivery to human TNBC MDA-MB-231 cells and tumor-bearing mice. Our findings indicated that these nanoparticles displayed pH-responsive cytotoxicity, precise EGFR targeting, efficient tumor penetration, successful endosomal escape, and accurate nuclear and cytoplasmic localization. They also demonstrated the ability to spare normal cells and prevent hemolysis. Our study concurrently modulated multiple pathways, including EGFR, Wnt/β-catenin, MDR, and EMT, through the regulation of EGFR/PI3K/AKT, HuR/galectin-3/GSK-3β/β-catenin, and P-gp/MRPs/BCRP, as well as YAP1/TGF-β/ZEB1/Slug/MMPs. The combined treatment arrested the cell cycle at the G2 phase and inhibited EMT, effectively impeding tumor progression. Tissue distribution, biochemical assays, and histological staining revealed the enhanced safety profile of pH-responsive PEG- and peptide-modified nanoformulations in TNBC mice. The DTX-embedded and peptide-modified nanoparticles mitigated the side effects of DTX, enhanced cytotoxicity in TNBC MDA-MB-231 cells, and exhibited remarkable antitumor efficacy and safety in TNBC-bearing mice with HuR CRISPR deletion. Collectively, the combination therapy of DTX and CRISPR/Cas9 offers an effective platform for delivering antineoplastic agents and gene-editing systems to combat tumor resistance and progression in TNBC.
Collapse
Affiliation(s)
- Yu-Li Lo
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Faculty of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Ci-Jheng Hong
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Pharmacy, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan
| | - Chen-Shen Wang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ching-Ping Yang
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| |
Collapse
|
3
|
Kuo LW, Crump LS, O’Neill K, Williams MM, Christenson JL, Spoelstra NS, Roy MK, Argabright A, Reisz JA, D’Alessandro A, Boorgula MP, Goodspeed A, Bickerdike M, Bitler BG, Richer JK. Blocking Tryptophan Catabolism Reduces Triple-Negative Breast Cancer Invasive Capacity. CANCER RESEARCH COMMUNICATIONS 2024; 4:2699-2713. [PMID: 39311710 PMCID: PMC11484926 DOI: 10.1158/2767-9764.crc-24-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
SIGNIFICANCE TDO2 is more highly expressed than the nonhomologous TRP-catabolizing enzyme IDO1 in TNBC. We find that TDO2 knockdown can lead to a compensatory increase in IDO1. Therefore, we tested a newly developed TDO2/IDO1 dual inhibitor and found that it decreases TRP catabolism, anchorage-independent survival, and invasive capacity.
Collapse
Affiliation(s)
- Li-Wei Kuo
- Cancer Biology Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Lyndsey S. Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Kathleen O’Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Michelle M. Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Jessica L. Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Nicole S. Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Amy Argabright
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Meher P. Boorgula
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Andrew Goodspeed
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | | | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
4
|
Schultz H, Zhou X, Alonso CAI, Ongaro L, Lin YF, Loka M, Brabletz T, Brabletz S, Stemmler MP, Boehm U, Bernard DJ. ZEB1 Inhibits LHβ Subunit Transcription When Overexpressed, but Is Dispensable for LH Synthesis in Mice. Endocrinology 2024; 165:bqae116. [PMID: 39248143 PMCID: PMC11422717 DOI: 10.1210/endocr/bqae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Luteinizing hormone (LH), a heterodimeric glycoprotein produced by pituitary gonadotrope cells, regulates gonadal function. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates LH synthesis and secretion. GnRH induces LHβ subunit (Lhb) expression via the transcription factor, early growth response 1 (EGR1), acting on the Lhb promoter. In contrast, overexpression of zinc finger E-box binding homeobox 1 (ZEB1) represses LH production in mice, but the underlying mechanism was not previously elucidated. Here, we observed that ZEB1 inhibited GnRH-stimulated but not basal Lhb mRNA expression in homologous murine LβT2 cells. Moreover, ZEB1 blocked GnRH and/or EGR1 induction of murine Lhb but not human LHB promoter-reporter activity in these cells. Using chimeric reporters, we mapped the species-specific ZEB1 sensitivity to sequence differences, including in Z- and E-boxes, in the proximal Lhb/LHB promoters, immediately upstream of the transcription start sites. ZEB1 bound to the murine Lhb promoter with higher affinity than to the human LHB promoter in this region. To examine ZEB1's physiological role in LH synthesis, we characterized gonadotrope-specific Zeb1 knockout mice. Loss of ZEB1 in gonadotropes did not affect LH production or secretion. Collectively, the data suggest that ZEB1, when overexpressed, can inhibit GnRH/EGR1 induction of murine Lhb transcription but does not play a necessary role in LH synthesis in mice.
Collapse
Affiliation(s)
- Hailey Schultz
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Yeu-Farn Lin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Mary Loka
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, FAU University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Daniel J Bernard
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
5
|
Liu YJ, Li JP, Han M, Li JX, Ye QW, Lin ST, Zhou JY, Liu SL, Zou X. IFIT1 + neutrophil is a causative factor of immunosuppressive features of poorly cohesive carcinoma (PCC). J Transl Med 2024; 22:580. [PMID: 38898490 PMCID: PMC11188200 DOI: 10.1186/s12967-024-05389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
The importance of the immune microenvironment in poorly cohesive carcinoma (PCC) has been highlighted due to its limited response rate to conventional therapy and emerging treatment resistance. A combination of clinical cohorts, bioinformatics analyses, and functional/molecular experiments revealed that high infiltration of Interferon Induced Protein with Tetratricopeptide Repeats 1 (IFIT1) + tumor-associated neutrophils (TANs) is a distinguishing feature of PCC patients. Upregulation of IFIT1 + TANs promote migration and invasion of gastric cancer (GC) cell lines (MKN45 and MKN74) and stimulates the growth of cell-derived xenograft models. Besides, by promoting macrophage secreted phosphoprotein 1 (SPP1) expression and facilitating cancer-associated fibroblast and endothelial cell recruitment and activation through TANs, IFIT1 promotes a mesenchymal phenotype, which is associated with a poor prognosis. Importantly, compared to non-PCC (NPCC), PCC tumors is more immunosuppressive. Mechanistically, IFIT1 can be stimulated by IFN-γ and contributes to the expression of Programmed Cell Death 1 Ligand (PDL1) in TANs. We demonstrated in mouse models that IFIT1 + PDL1 + TANs can induce acquired resistance to anti-PD-1 immunotherapy, which may be responsible for the difficulty of PCC patients to benefit from immunotherapy. This work highlights the role of IFIT1 + TANs in mediating the remodeling of the tumor immune microenvironment and immunotherapeutic resistance and introduces IFIT1 + TANs as a promising target for precision therapy of PCC.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jie-Pin Li
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Mei Han
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jing-Xiao Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Qian-Wen Ye
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Si-Tian Lin
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jin-Yong Zhou
- Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Shen-Lin Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Xi Zou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210029, Jiangsu, China.
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
6
|
Liu Y, Xiang Q, Yang T, Wang J, Li H. LINC01806 Promotes Breast Cancer Growth and Metastasis via Sponging miR-1286 to Disinhibit ZEB1 Expression. Biochem Genet 2024; 62:1977-1993. [PMID: 37812283 DOI: 10.1007/s10528-023-10507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023]
Abstract
Breast cancer (BC) is the most abundant and aggressive cancer that impacts millions of women with poorly understood mechanisms. Here, we aimed to investigate the function of LINC01806 in BC development. Human BC tissues and nearby normal specimens were taken from diagnosed BC patients. The expression levels of LINC01806, miR-1286, ZEB1, and EMT-related markers were evaluated by qRT-PCR and western blotting. FISH was used to visualize the subcellular localization of LINC01806. The viability, proliferation, migration and invasion capacities of BC cells were assessed by MTT, colony formation, and transwell assays. Interactions among LINC01806, miR-1286 and ZEB1 were validated by dual luciferase assay. The unpaired Student t-test (for two groups) or one-way ANOVA following with Tukey post-hoc test (for more than three groups) was employed for statistical analysis. LINC01806 level was elevated in BC tissues. Knockdown of LINC01806 suppressed EMT process and BC cell proliferation, migration, and invasion. LINC01806 co-localized and directly bound with miR-1286 in the cytoplasm. MiR-1286 inhibitor blocked the effects of LINC01806 knockdown on BC cell EMT, proliferation and migration. MiR-1286 targeted ZEB1 and overexpression of ZEB1 blocked the regulatory functions of miR-1286 mimics in BC. LINC01806 facilitates EMT and accelerates BC cell proliferation, migration, and invasion via acting as miR-1286 sponge to disinhibit ZEB1 expression.
Collapse
Affiliation(s)
- Yuxiang Liu
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid & Medical Examination Institute, Changsha Medical University, 1501 Leifeng Dadao, Wangcheng District, Changsha, 410219, Hunan Province, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan Province, China
| | - Qin Xiang
- Department of Basic Biology, Changsha Medical University, Changsha, 410219, Hunan Province, China
| | - Tongwang Yang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid & Medical Examination Institute, Changsha Medical University, 1501 Leifeng Dadao, Wangcheng District, Changsha, 410219, Hunan Province, China
| | - Jing Wang
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid & Medical Examination Institute, Changsha Medical University, 1501 Leifeng Dadao, Wangcheng District, Changsha, 410219, Hunan Province, China
| | - Hongde Li
- The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid & Medical Examination Institute, Changsha Medical University, 1501 Leifeng Dadao, Wangcheng District, Changsha, 410219, Hunan Province, China.
- Medical Examination Institute, Changsha Medical University, Changsha, 410219, Hunan Province, China.
| |
Collapse
|
7
|
Khine YY, Nguyen H, Afolabi F, Lin CC. Fast-relaxing hydrogels with reversibly tunable mechanics for dynamic cancer cell culture. BIOMATERIALS ADVANCES 2024; 159:213829. [PMID: 38531258 PMCID: PMC11075809 DOI: 10.1016/j.bioadv.2024.213829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
The mechanics of the tumor microenvironment (TME) significantly impact disease progression and the efficacy of anti-cancer therapeutics. While it is recognized that advanced in vitro cancer models will benefit cancer research, none of the current engineered extracellular matrices (ECM) adequately recapitulate the highly dynamic TME. Through integrating reversible boronate-ester bonding and dithiolane ring-opening polymerization, we fabricated synthetic polymer hydrogels with tumor-mimetic fast relaxation and reversibly tunable elastic moduli. Importantly, the crosslinking and dynamic stiffening of matrix mechanics were achieved in the absence of a photoinitiator, often the source of cytotoxicity. Central to this strategy was Poly(PEGA-co-LAA-co-AAPBA) (PELA), a highly defined polymer synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. PELA contains dithiolane for initiator-free gel crosslinking, stiffening, and softening, as well as boronic acid for complexation with diol-containing polymers to give rise to tunable viscoelasticity. PELA hydrogels were highly cytocompatible for dynamic culture of patient-derived pancreatic cancer cells. It was found that the fast-relaxing matrix induced mesenchymal phenotype of cancer cells, and dynamic matrix stiffening restricted tumor spheroid growth. Moreover, this new dynamic viscoelastic hydrogel system permitted sequential stiffening and softening to mimic the physical changes of TME.
Collapse
Affiliation(s)
- Yee Yee Khine
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Han Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Favour Afolabi
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Dong W, Li X, Cheng L, Yang J, Zhao Z, Qiang X, Li P, Wu J, Guo L. RAE1 promotes gastric carcinogenesis and epithelial-mesenchymal transition. Arch Biochem Biophys 2024; 754:109896. [PMID: 38417691 DOI: 10.1016/j.abb.2024.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/01/2024]
Abstract
AIMS The purpose of this study was to explore the role of RAE1 in the invasion and metastasis of gastric cancer (GC) cells. MATERIALS AND METHODS RAE1 expression in GC cells was determined by reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting (WB). Cell models featuring RAE1 gene silencing and overexpression were constructed by lentiviral transfection; The proliferation, migration, and invasion ability of cells were detected by cell counting, colony formation assay, would healing assay, and transwell invasion and migration test. WB analysis of ERK/MAPK signaling pathway (ERK1/2, p-ERK1/2, c-Myc) and EMT-related molecules (ZEB1, E-cadherin, N-cadherin, and Vimentin). RESULTS The expression level of RAE1 in GC was notably higher than in adjacent tissues. Elevated RAE1 expression correlated with an unfavorable prognosis for GC patients. Knockdown of RAE1, as compared to the control group, resulted in a significant inhibition of proliferation, migration, and invasion abilities in GC cell lines. Furthermore, RAE1 knockdown led to a substantial decrease in the expression of N-cadherin, vimentin, ZEB1, p-ERK1/2, and c-Myc proteins, coupled with a marked increase in E-cadherin expression. The biological effects of RAE1 in GC cells were effectively reversed by the inhibition of the ERK/MAPK signaling pathway using SCH772984. Additionally, RAE1 knockdown demonstrated a suppressive effect on GC tumor size in vivo. Immunohistochemistry (IHC) results revealed significantly lower expression of Ki-67 in RAE1 knockout mice compared to the control group. CONCLUSIONS RAE1 promotes GC cell migration and invasion through the ERK/MAPK pathway and is a potential therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Wenhui Dong
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaofei Li
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lulu Cheng
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jing Yang
- Department of Pathology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ziyan Zhao
- Department of Hematology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xihui Qiang
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Pengmei Li
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ju Wu
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| | - Lianyi Guo
- Department of Gastroenterology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
9
|
Wang D, Chen S, Shao Y, Deng Y, Huang L. EIF4A3 modulated circ_000999 promotes epithelial-mesenchymal transition in cadmium-induced malignant transformation through the miR-205-5p/ZEB1 axis. ENVIRONMENT INTERNATIONAL 2024; 186:108656. [PMID: 38621321 DOI: 10.1016/j.envint.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Cadmium (Cd) is an accumulative toxic metal which poses a serious threat to human health, even in trace amounts. One of the most important steps in the pathophysiology of lung cancer (LC) is the epithelial-mesenchymal transition (EMT). In this investigation, a cell malignant transformation model was established by exposing human bronchial epithelial cells (16HBE) to a low dose of Cd for 30 weeks, after which a highly expressed circular RNA (circ_000999) was identified. Cd-induced EMT was clearly observed in rat lungs and 16HBE cells, which was further enhanced following circ_000999-overexpression. Furthermore, upregulated EIF4A3 interacted with the parental gene AGTPBP1 to promote high expression of circ_000999. Subsequent experiments confirmed that circ_000999 could regulate the EMT process by competitively binding miR-205-5p and inhibiting its activity, consequently upregulating expression of zinc finger E-box binding protein 1 (ZEB1). Importantly, the circ_000999 expression level in LC tissues was significantly increased, exhibiting a strong correlation with EMT indicators. Overall, these findings provide a new objective and research direction for reversing lung EMT and subsequent treatment and prevention of LC.
Collapse
Affiliation(s)
- Donglei Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Shijie Chen
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Yueqing Shao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Yang Deng
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China
| | - Lihua Huang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, China.
| |
Collapse
|
10
|
Said R, Hernández-Losa J, Jenni R, de Haro RSL, Moline T, Zouari S, Blel A, Rammeh S, Derouiche A, Ouerhani S. An insight into the diagnostic, prognostic, and taxanes resistance of double zinc finger and homeodomain factor 's expression in naïve prostate cancer. 3 Biotech 2024; 14:106. [PMID: 38476644 PMCID: PMC10925581 DOI: 10.1007/s13205-024-03941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/28/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, clinical biomarkers are urgently needed to improve patient management to guide personal therapy for cancer. In this study, we investigate the deregulation of Zeb-1 in prostate cancer (PC) Tunisian patients. Expression patterns of the Zeb-1 were investigated in prostate adenocarcinoma and benign prostate biopsies using quantitative real-time reverse transcription-polymerase chain reaction (RT-qPCR) and 2-ΔΔCt method. Statistical analysis was used to identify differences across groups depending on gene expression level. Furthermore, we exploited a follow-up over 15 years to correlate Zeb-1 deregulation and clinical outcomes in PC patients. Based on ROC curve analyses, the AUC was found in discriminating PC patients from controls (AUC = 0.757; p < 0.001). In addition, the higher expression level was significantly associated with PSA, Digital Rectal Examination, Gleason score, tumor stage, and distant lymph node metastases. Moreover, Zeb-1 overexpression was correlated with shorter overall survival (OS) (p = 0.042), poor progression-free survival (PFS) (p = 0.007), and with resistance to taxanes (p = 0.012). Our data provide the aberrant expression of Zeb-1 in PC patients suggesting its potential diagnostic, prognostic, and theranostic role. Further functional studies are mandatory to strengthen these results and to uncover the molecular mechanism of this neoplasm. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03941-8.
Collapse
Affiliation(s)
- Rahma Said
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Javier Hernández-Losa
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Rim Jenni
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| | - Rosa Somoza Lopez de Haro
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Teresa Moline
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d’Hebron, Passeig Vall d´Hebron, 119-129, 08035 Barcelona, Spain
| | - Skander Zouari
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahlem Blel
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Soumaya Rammeh
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amine Derouiche
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slah Ouerhani
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology - University of Carthage, Tunis, Tunisia
| |
Collapse
|
11
|
Yousefi A, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. MicroRNA-561-3p indirectly regulates the PD-L1 expression by targeting ZEB1, HIF1A, and MYC genes in breast cancer. Sci Rep 2024; 14:5845. [PMID: 38462658 PMCID: PMC10925600 DOI: 10.1038/s41598-024-56511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Atena Yousefi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
12
|
Bhartiya P, Jaiswal A, Negi M, Kaushik N, Ha Choi E, Kumar Kaushik N. Unlocking melanoma Suppression: Insights from Plasma-Induced potent miRNAs through PI3K-AKT-ZEB1 axis. J Adv Res 2024:S2090-1232(24)00084-5. [PMID: 38447612 DOI: 10.1016/j.jare.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Melanoma is a rare but highly malignant form of skin cancer. Although recent targeted and immune-based therapies have improved survival rates by 10-15%, effective melanoma treatment remains challenging. Therefore, novel, combinatorial therapy options such as non-thermal atmospheric pressure plasma (NTP) are being investigated to inhibit and prevent chemoresistance. Although several studies have reported the apoptotic and inhibitory effects of reactive oxygen species produced by NTP in the context of melanoma, the intricate molecular network that determines the role of microRNAs (miRNAs) in regulating NTP-mediated cell death remains unexplored. OBJECTIVES This study aimed to explore the molecular mechanisms and miRNA networks regulated by NTP-induced oxidative stress in melanoma cells. METHODS Melanoma cells were exposed to NTP and then subjected to high-throughput miRNA sequencing to identify NTP-regulated miRNAs. Various biological processes and underlying molecular mechanisms were assessed using Alamar Blue, propidium iodide (PI) uptake, cell migration, and clonogenic assays followed by qRT-PCR and flow cytometry. RESULTS NTP exposure for 3 min was sufficient to modulate the expression of several miRNAs, inhibiting cell growth. Persistent NTP exposure for 5 min increased differential miRNA regulation, PI uptake, and the expression of genes involved in cell cycle arrest and death. qPCR confirmed that miR-200b-3p and miR-215-5p upregulation contributed to decreased cell viability and migration. Mechanistically, inhibiting miR-200b-3p and miR-215-5p in SK-2 cells enhancedZEB1, PI3K, and AKT expression, increasing cell proliferation and viability. CONCLUSION This study demonstrated that NTP exposure for 5 min results in the differential regulation of miRNAs related to the PI3K-AKT-ZEB1 axis and cell cycle dysregulation to facilitate melanoma suppression.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
13
|
Zhou W, Li X, Li X, Liu Y, Song W, Yang Q. The role of circular RNA in preeclampsia: From pathophysiological mechanism to clinical application. Life Sci 2024; 338:122407. [PMID: 38184270 DOI: 10.1016/j.lfs.2023.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Preeclampsia (PE) is a common pregnancy-induced hypertension disorder that poses a significant threat to the health of pregnant women and fetuses, and has become a leading cause of maternal, fetal, and neonatal mortality. Currently, the therapy strategy for PE is mainly prevention management and symptomatic treatment, and only delivery can completely terminate PE. Therefore, a deeper understanding of the pathogenesis of PE is needed to make treatment and prevention more effective and targeted. With the deepening of molecular etiology research, circular RNAs (circRNAs) have been found to be widely involved in various processes of PE pathogenesis. As a kind of RNA with a special "head to tail" loop structure, the characteristics of circRNAs enable them to play diverse roles in the pathophysiology of PE, and can also serve as ideal biomarkers for early prediction and monitoring progression of PE. In this review, we summarized the latest research on PE-related circRNAs, trying to elucidate the unique or shared roles of circRNAs in various pathophysiological mechanisms of PE, aiming to provide a whole picture of current research on PE-related circRNAs, and extend a new perspective for the precise screening and targeted therapy of PE.
Collapse
Affiliation(s)
- Wenjing Zhou
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China; Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xiuying Li
- Medical Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xin Li
- Medical College, Jilin Engineering Vocational College, Siping, Jilin, China.
| | - Yaojia Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wenling Song
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
14
|
Luo J, Zhong H, Guo M, Xiao P, Cao R, Zhao M, Jing Y. CircAGFG1 Promotes Ovarian Cancer Progression Through the miR-409-3 p/ZEB1 Axis. Technol Cancer Res Treat 2024; 23:15330338241252423. [PMID: 38752261 PMCID: PMC11102704 DOI: 10.1177/15330338241252423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Circular RNAs (circRNAs) serve a crucial regulatory role in ovarian cancer (OC). Circular RNA ArfGAP with FG repeats 1 (circAGFG1) has been shown to be involved in promoting the progression of several cancers, containing triple-negative breast cancer, esophageal cancer and colorectal cancer. However, the function of circAGFG1 in OC is unclear. METHODS Quantitative real-time reverse transcription PCR (RT-qPCR) was conducted to determine the expression levels of circAGFG1 and miR-409-3p. The proliferation and metastasis of cells were determined by colony formation assays, EdU assays, transwell assays and wound healing assays. In addition, a dual-luciferase reporter assay was performed to validate the mechanism between circAGFG1, miR-409-3p, and ZEB1. RESULTS Our data suggested that circAGFG1 was significantly overexpressed in OC tissues compared to normal ovarian epithelial tissues. Overexpression of circAGFG1 was correlated with intraperitoneal metastasis, tumor recurrence and advanced stage. Additionally, circAGFG1 overexpression revealed a poor prognosis in OC patients. Knockdown of circAGFG1 suppressed the proliferation, invasion and migration of OC cells. Mechanistically, circAGFG1 acted as a sponge of miR-409-3p to enhance the expression level of zinc finger E-box binding homeobox 1 (ZEB1), thereby conferring OC cell proliferation, invasion and migration. Importantly, re-expression of ZEB1 effectively reversed the effects of circAGFG1 knockdown on OC cells. CONCLUSIONS In summary, our study indicated that circAGFG1 may act as a prognostic biomarker and potential therapeutic target for patients with OC.
Collapse
Affiliation(s)
- Jie Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hua Zhong
- Ultrasound Department, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mei Guo
- Department of Pathology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Peihong Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Rongyu Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mandan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yongping Jing
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Lee J, Shin DY, Jang Y, Han JP, Cho EM, Seo YR. Cadmium-induced Carcinogenesis in Respiratory Organs and the Prostate: Insights from Three Perspectives on Toxicogenomic Approach. J Cancer Prev 2023; 28:150-159. [PMID: 38205367 PMCID: PMC10774485 DOI: 10.15430/jcp.2023.28.4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) exposure primarily occurs through inhalation, either by smoking or occupational exposure to contaminated air. Upon inhalation, Cd ultimately reaches the prostate through the bloodstream. In this review, we investigate the carcinogenic potential of Cd in both respiratory organs and the prostate. Specifically, this review examines cellular metabolism, comprehensive toxicity, and carcinogenic mechanisms by exploring gene ontology, biological networks, and adverse outcome pathways. In the respiratory organs, Cd induces lung cancer by altering the expression of IL1B and FGF2, causing DNA damage, reducing cell junction integrity, and promoting apoptosis. In the prostate, Cd induces prostate cancer by modifying the expression of EDN1 and HMOX1, leading to abnormal protein activities and maturation, suppressing tumor suppressors, and inducing apoptosis. Collectively, this review provides a comprehensive understanding of the carcinogenic mechanisms of Cd in two different organs by adopting toxicogenomic approaches. These insights can serve as a foundation for further research on cadmium-induced cancer, contributing to the establishment of future cancer prevention strategies.
Collapse
Affiliation(s)
- Jun Lee
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yujin Jang
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Jun Pyo Han
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Eun-Min Cho
- Department of Nano, Chemical & Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul, Korea
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
16
|
Fernandez-De-Los-Reyes I, Gomez-Dorronsoro M, Monreal-Santesteban I, Fernandez-Fernandez A, Fraga M, Azcue P, Alonso L, Fernandez-Marlasca B, Suarez J, Cordoba-Iturriagagoitia A, Guerrero-Setas D. ZEB1 hypermethylation is associated with better prognosis in patients with colon cancer. Clin Epigenetics 2023; 15:193. [PMID: 38093305 PMCID: PMC10720242 DOI: 10.1186/s13148-023-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Colon cancer (CC) is a heterogeneous disease that is categorized into four Consensus Molecular Subtypes (CMS) according to gene expression. Patients with loco-regional CC (stages II/III) lack prognostic factors, making it essential to analyze new molecular markers that can delineate more aggressive tumors. Aberrant methylation of genes that are essential in crucial mechanisms such as epithelial mesenchymal transition (EMT) contributes to tumor progression in CC. We evaluate the presence of hyper- and hypomethylation in subrogate IHC markers used for CMS classification (CDX2, FRMD6, HTR2B, ZEB1) of 144 stage II/III patients and CC cell lines by pyrosequencing. ZEB1 expression was also studied in control and shRNA-silenced CC cell lines and in paired normal tissue/tumors by quantitative PCR. The pattern of ZEB1 staining was also analyzed in methylated/unmethylated tumors by immunohistochemistry. RESULTS We describe for the first time the hypermethylation of ZEB1 gene and the hypomethylation of the FRMD6 gene in 32.6% and 50.9% of tumors, respectively. Additionally, we confirm the ZEB1 re-expression by epigenetic drugs in methylated cell lines. ZEB1 hypermethylation was more frequent in CMS1 patients and, more importantly, was a good prognostic factor related to disease-free survival (p = 0.015) and overall survival (p = 0.006) in our patient series, independently of other significant clinical parameters such as patient age, stage, lymph node involvement, and blood vessel and perineural invasion. CONCLUSIONS Aberrant methylation is present in the subrogate genes used for CMS classification. Our results are the first evidence that ZEB1 is hypermethylated in CC and that this alteration is an independent factor of good prognosis.
Collapse
Affiliation(s)
- Irene Fernandez-De-Los-Reyes
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Marisa Gomez-Dorronsoro
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Oncogenetic and Hereditary Cancer Group, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Iñaki Monreal-Santesteban
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Agustín Fernandez-Fernandez
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Mario Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), 33940, El Entrego, Spain
- Health Research Institute of Asturias (ISPA), 33011, Oviedo, Spain
- University Institute of Oncology (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Pablo Azcue
- Department of Health Science, Public University of Navarra, Irunlarrea 3, 31008, Pamplona, Spain
| | - Laura Alonso
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | | | - Javier Suarez
- Department of Surgery, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Alicia Cordoba-Iturriagagoitia
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Guerrero-Setas
- Department of Pathology, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain.
- Molecular Pathology of Cancer Group, Navarrabiomed, Universidad Pública de Navarra (UPNA), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain.
| |
Collapse
|
17
|
Trsova I, Hrustincova A, Krejcik Z, Kundrat D, Holoubek A, Staflova K, Janstova L, Vanikova S, Szikszai K, Klema J, Rysavy P, Belickova M, Kaisrlikova M, Vesela J, Cermak J, Jonasova A, Dostal J, Fric J, Musil J, Dostalova Merkerova M. Expression of circular RNAs in myelodysplastic neoplasms and their association with mutations in the splicing factor gene SF3B1. Mol Oncol 2023; 17:2565-2583. [PMID: 37408496 PMCID: PMC10701770 DOI: 10.1002/1878-0261.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/27/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2023] Open
Abstract
Mutations in the splicing factor 3b subunit 1 (SF3B1) gene are frequent in myelodysplastic neoplasms (MDS). Because the splicing process is involved in the production of circular RNAs (circRNAs), we investigated the impact of SF3B1 mutations on circRNA processing. Using RNA sequencing, we measured circRNA expression in CD34+ bone marrow MDS cells. We defined circRNAs deregulated in a heterogeneous group of MDS patients and described increased circRNA formation in higher-risk MDS. We showed that the presence of SF3B1 mutations did not affect the global production of circRNAs; however, deregulation of specific circRNAs was observed. Particularly, we demonstrated that strong upregulation of circRNAs processed from the zinc finger E-box binding homeobox 1 (ZEB1) transcription factor; this upregulation was exclusive to SF3B1-mutated patients and was not observed in those with mutations in other splicing factors or other recurrently mutated genes, or with other clinical variables. Furthermore, we focused on the most upregulated ZEB1-circRNA, hsa_circ_0000228, and, by its knockdown, we demonstrated that its expression is related to mitochondrial activity. Using microRNA analyses, we proposed miR-1248 as a direct target of hsa_circ_0000228. To conclude, we demonstrated that mutated SF3B1 leads to deregulation of ZEB1-circRNAs, potentially contributing to the defects in mitochondrial metabolism observed in SF3B1-mutated MDS.
Collapse
Affiliation(s)
- Iva Trsova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
- Department of Genetics and Microbiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Andrea Hrustincova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Zdenek Krejcik
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - David Kundrat
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Aleš Holoubek
- Department of ProteomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Karolina Staflova
- Department of BiochemistryInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Lucie Janstova
- Department of Modern ImmunotherapyInstitute of Hematology and Blood TransfusionPragueCzech Republic
- Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sarka Vanikova
- Department of Immunomonitoring and Flow CytometryInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Katarina Szikszai
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Jiri Klema
- Department of Computer ScienceCzech Technical UniversityPragueCzech Republic
| | - Petr Rysavy
- Department of Computer ScienceCzech Technical UniversityPragueCzech Republic
| | - Monika Belickova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Monika Kaisrlikova
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Jitka Vesela
- Department of GenomicsInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Jaroslav Cermak
- Laboratory of AnemiasInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | - Anna Jonasova
- First Department of MedicineGeneral University HospitalPragueCzech Republic
| | - Jiri Dostal
- Department of BiochemistryInstitute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Fric
- Department of Modern ImmunotherapyInstitute of Hematology and Blood TransfusionPragueCzech Republic
- International Clinical Research Center of St. Anne's University Hospital (FNUSA‐ICRC)BrnoCzech Republic
| | - Jan Musil
- Department of Immunomonitoring and Flow CytometryInstitute of Hematology and Blood TransfusionPragueCzech Republic
| | | |
Collapse
|
18
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
20
|
Rithvik A, Samarpita S, Rasool M. Unleashing the pathological imprinting of cancer in autoimmunity: Is ZEB1 the answer? Life Sci 2023; 332:122115. [PMID: 37739160 DOI: 10.1016/j.lfs.2023.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The intriguing scientific relationship between autoimmunity and cancer immunology have been traditionally indulged to throw spotlight on novel pathological targets. Understandably, these "slowly killing" diseases are on the opposite ends of the immune spectrum. However, the immune regulatory mechanisms between autoimmunity and cancer are not always contradictory and sometimes mirror each other based on disease stage, location, and timepoint. Moreover, the blockade of immune checkpoint molecules or signalling pathways that unleashes the immune response against cancer is being leveraged to preserve self-tolerance and treat many autoimmune disorders. Therefore, understanding the common crucial factors involved in cancer is of paramount importance to paint the autoimmune disease spectrum and validate novel drug candidates. In the current review, we will broadly describe how ZEB1, or Zinc-finger E-box Binding Homeobox 1, reinforces immune exhaustion in cancer or contributes to loss of self-tolerance in auto-immune conditions. We made an effort to exchange information about the molecular pathways and pathological responses (immune regulation, cell proliferation, senescence, autophagy, hypoxia, and circadian rhythm) that can be regulated by ZEB1 in the context of autoimmunity. This will help untwine the intricate and closely postured pathogenesis of ZEB1, that is less explored from the perspective of autoimmunity than its counterpart, cancer. This review will further consider several approaches for targeting ZEB1 in autoimmunity.
Collapse
Affiliation(s)
- Arulkumaran Rithvik
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India
| | - Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, Tamil Nādu, India.
| |
Collapse
|
21
|
Zhao J, Chen P, Tan C, Cheng X, Zhang W, Shen C, Zhang D. LncRNA LINC00667 gets involved in clear cell renal cell carcinoma development and chemoresistance by regulating the miR-143-3p/ZEB1 axis. Aging (Albany NY) 2023; 15:10057-10071. [PMID: 37827696 PMCID: PMC10599729 DOI: 10.18632/aging.205029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is identified as a malignant tumor in the urinary tract. The research was an attempt to probe the biological function and molecular mechanism of lncRNA LINC00667 in ccRCC development. METHODS qRT-PCR monitored LINC00667, miR-143-3p, and ZEB1 levels. The models of LINC00667, miR-143-3p, and ZEB1 overexpression or knockdown were constructed in ccRCC cells. Cell proliferation, apoptosis, migration, and invasion of the cells were detected. The levels of apoptosis-associated proteins and epithelial-mesenchymal transition (EMT)-related proteins, and ZEB1 were detected by WB. Dual-luciferase reporter assay and RNA pull-down assay identified the binding association between LINC00667 and miR-143-3p, miR-143-3p and ZEB1. Moreover, a xenograft tumor model in nude mice was used for evaluating tumor growth in vivo. RESULTS LINC00667 and ZEB1 displayed high expression in ccRCC tissues and cells. miR-143-3p was lowly expressed in ccRCC tissues and cells. LINC00667 targeted and repressed miR-143-3p, which inhibited ZEB1 expression in a targeted manner. Overexpression of LINC00667 facilitated ccRCC cell proliferation, migration, invasion and EMT and retarded apoptosis, whereas LINC00667 knockdown or miR-143-3p overexpression exerted reverse effects. The rescue experiments indicated that overexpressing miR-143-3p dampened LINC00667-mediated oncogenic effects. Overexpressing ZEB1 diminished miR-143-3p-mediated tumor-suppressive effects. In-vivo experiments displayed that overexpression of LINC00667 contributed to the tumor growth of ccRCC cells, in contrast to miR-143-3p overexpression, which restrained the tumor growth. CONCLUSIONS LINC00667 is up-regulated in ccRCC and enhances the ZEB1 expression by targeting miR-143-3p, which in turn accelerates ccRCC progression and induces chemoresistance.
Collapse
Affiliation(s)
- Jianjun Zhao
- Department of Urology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China
| | - Pengjie Chen
- Department of Geriatrics, Handan Central Hospital, Handan 056001, Hebei, China
| | - Chao Tan
- Department of Urology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China
| | - Xiaolong Cheng
- Department of Urology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China
| | - Weichuan Zhang
- Department of Urology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China
| | - Chong Shen
- Department of Urology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China
| | - Dongli Zhang
- Department of Urology, Affiliated Hospital of Hebei Engineering University, Handan 056002, Hebei, China
| |
Collapse
|
22
|
Soltysova A, Begerova P, Jakic K, Kozics K, Sramkova M, Meese E, Smolkova B, Gabelova A. Genome-wide DNA methylome and transcriptome changes induced by inorganic nanoparticles in human kidney cells after chronic exposure. Cell Biol Toxicol 2023; 39:1939-1956. [PMID: 34973136 PMCID: PMC10547624 DOI: 10.1007/s10565-021-09680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/11/2021] [Indexed: 11/02/2022]
Abstract
The unique physicochemical properties make inorganic nanoparticles (INPs) an exciting tool in diagnosis and disease management. However, as INPs are relatively difficult to fully degrade and excrete, their unintended accumulation in the tissue might result in adverse health effects. Herein, we provide a methylome-transcriptome framework for chronic effects of INPs, commonly used in biomedical applications, in human kidney TH-1 cells. Renal clearance is one of the most important routes of nanoparticle excretion; therefore, a detailed evaluation of nanoparticle-mediated nephrotoxicity is an important task. Integrated analysis of methylome and transcriptome changes induced by INPs (PEG-AuNPs, Fe3O4NPs, SiO2NPs, and TiO2NPs) revealed significantly deregulated genes with functional classification in immune response, DNA damage, and cancer-related pathways. Although most deregulated genes were unique to individual INPs, a relatively high proportion of them encoded the transcription factors. Interestingly, FOS hypermethylation inversely correlating with gene expression was associated with all INPs exposures. Our study emphasizes the need for a more comprehensive investigation of INPs' biological safety, especially after chronic exposure.
Collapse
Affiliation(s)
- Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 04, Bratislava, Slovakia
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Patricia Begerova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Kristina Jakic
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Katarina Kozics
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Monika Sramkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Building 60, 66421, Homburg, Germany
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Alena Gabelova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
23
|
Chrysanthopoulos I, Mavrogianni D, Drakaki E, Potiris A, Zikopoulos A, Zachariou A, Domali E, Drakakis P, Stavros S. Detection of zeb1 Gene in Granulosa Cells in Women Undergoing IVF Treatment. J Clin Med 2023; 12:5652. [PMID: 37685721 PMCID: PMC10488692 DOI: 10.3390/jcm12175652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND ZEB1 plays a role in epithelial-to-mesenchymal transition and acts as a repressor of E-cadherin, TGF-β, and Wnt/β-catenin. Since ZEB1 protein is expressed in estrogen-responsive tissues, and expression of the gene in the normal ovary and endometrium is positively correlated with high estrogen levels, we performed a direct analysis of granulosa cell samples to determine whether there are any significant changes in zeb1 expression during folliculogenesis. METHODS ZEB1 expression levels were measured in the granulosa cells of 56 infertile women undergoing IVF treatment. RNA extraction from granulosa cells was performed along with reverse transcription quantitative polymerase chain reaction (RT-qPCR) with SYBR Green I to determine zeb1 gene expression levels. Statistical analysis was performed by using t-test, while possible correlations of the expression of ZEB1 protein with body mass index (BMI), age, number of oocytes, and oocyte maturation were investigated. RESULTS Zeb1 gene expression levels correlate significantly with body mass index (BMI) and age, but not with oocyte number and oocyte maturation stage. Obese women demonstrate a higher expression level of zeb1 gene compared to normal and overweight women. Moreover, zeb1 gene is overexpressed in women aged 35-40 years old and is under-expressed in women >40 years old. CONCLUSIONS ZEB1 expression should be further investigated as it may unveil new potential findings of the zeb1 gene's role in female fertility and its use as a biomarker in fertility workups.
Collapse
Affiliation(s)
- Ioannis Chrysanthopoulos
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Despoina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Athanasios Zikopoulos
- Department of Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LQ, UK;
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, School of Health Sciences, University of Ioannina, 451 10 Ioannina, Greece;
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
| | - Peter Drakakis
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece; (I.C.); (D.M.); (E.D.); (E.D.); (P.D.)
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
24
|
Leung DHL, Phon BWS, Sivalingam M, Radhakrishnan AK, Kamarudin MNA. Regulation of EMT Markers, Extracellular Matrix, and Associated Signalling Pathways by Long Non-Coding RNAs in Glioblastoma Mesenchymal Transition: A Scoping Review. BIOLOGY 2023; 12:818. [PMID: 37372103 DOI: 10.3390/biology12060818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Glioblastoma (GBM) mesenchymal (MES) transition can be regulated by long non-coding RNAs (lncRNAs) via modulation of various factors (Epithelial-to-Mesenchymal (EMT) markers, biological signalling, and the extracellular matrix (ECM)). However, understanding of these mechanisms in terms of lncRNAs is largely sparse. This review systematically analysed the mechanisms by which lncRNAs influence MES transition in GBM from a systematic search of the literature (using PRISMA) performed in five databases (PubMed, MEDLINE, EMBASE, Scopus, and Web of Science). We identified a total of 62 lncRNAs affiliated with GBM MES transition, of which 52 were upregulated and 10 were downregulated in GBM cells, where 55 lncRNAs were identified to regulate classical EMT markers in GBM (E-cadherin, N-cadherin, and vimentin) and 25 lncRNAs were reported to regulate EMT transcription factors (ZEB1, Snai1, Slug, Twist, and Notch); a total of 16 lncRNAs were found to regulate the associated signalling pathways (Wnt/β-catenin, PI3k/Akt/mTOR, TGFβ, and NF-κB) and 14 lncRNAs were reported to regulate ECM components (MMP2/9, fibronectin, CD44, and integrin-β1). A total of 25 lncRNAs were found dysregulated in clinical samples (TCGA vs. GTEx), of which 17 were upregulated and 8 were downregulated. Gene set enrichment analysis predicted the functions of HOXAS3, H19, HOTTIP, MEG3, DGCR5, and XIST at the transcriptional and translational levels based on their interacting target proteins. Our analysis observed that the MES transition is regulated by complex interplays between the signalling pathways and EMT factors. Nevertheless, further empirical studies are required to elucidate the complexity in this process between these EMT factors and the signalling involved in the GBM MES transition.
Collapse
Affiliation(s)
- Dexter Hoi Long Leung
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Brandon Wee Siang Phon
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Mageswary Sivalingam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| |
Collapse
|
25
|
Fratini L, Dalmolin MGS, Sinigaglia M, da Silveira Perla A, de Farias CB, Brunetto AL, Brunetto AT, da Cunha Jaeger M, Roesler R. ZEB1 is a Subgroup-Specific Marker of Prognosis and Potential Drug Target in Medulloblastoma. Neuromolecular Med 2023; 25:64-74. [PMID: 35716340 DOI: 10.1007/s12017-022-08716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Medulloblastoma (MB) is a malignant brain tumor that afflicts mostly children and adolescents and presents four distinct molecular subgroups, known as WNT, SHH, Group 3, and Group 4. ZEB1 is a transcription factor that promotes the expression of mesenchymal markers while restraining expression of epithelial and polarity genes. Because of ZEB1 involvement in cerebellum development, here we investigated the role of ZEB1 in MB. We found increased expression of ZEB1 in MB tumor samples compared to normal cerebellar tissue. Expression was higher in the SHH subgroup when compared to all other MB molecular subgroups. High ZEB1 expression was associated with poor prognosis in Group 3 and Group 4, whereas in patients with WNT tumors poorer prognosis were related to lower ZEB1 expression. There was a moderate correlation between ZEB1 and MYC expression in Group 3 and Group 4 MB. Treatment with the immunomodulator and histone deacetylase (HDAC) inhibitor fingolimod (FTY720) reduced ZEB1 expression specifically in D283 cells, which are representative of Group 3 and Group 4 MB. These findings reveal novel subgroup-specific associations of ZEB1 expression with survival in patients with MB and suggest that ZEB1 expression can be reduced by pharmacological agents that target HDAC activity.
Collapse
Affiliation(s)
- Livia Fratini
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| | - Matheus Gibeke Siqueira Dalmolin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Marialva Sinigaglia
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Alexandre da Silveira Perla
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Neurology Service, São José Hospital, Santa Casa de Misericórdia Porto Alegre Hospital Complex, Porto Alegre, RS, 90020-090, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Algemir L Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - André T Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
- Children's Cancer Institute, Porto Alegre, RS, 90620-110, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil.
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
26
|
Farzaneh M, Nasrolahi A, Ghaedrahmati F, Masoodi T, Najafi S, Sheykhi-Sabzehpoush M, Dari MAG, Radoszkiewicz K, Uddin S, Azizidoost S, Khoshnam SE. Potential roles of lncRNA-XIST/miRNAs/mRNAs in human cancer cells. Clin Transl Oncol 2023:10.1007/s12094-023-03110-y. [PMID: 36853400 DOI: 10.1007/s12094-023-03110-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs that contain more than 200 nucleotides but do not code for proteins. In tumorigenesis, lncRNAs can have both oncogenic and tumor-suppressive properties. X inactive-specific transcript (XIST) is a known lncRNA that has been implicated in X chromosome silencing in female cells. Dysregulation of XIST is associated with an increased risk of various cancers. Therefore, XIST can be a beneficial prognostic biomarker for human malignancies. In this review, we attempt to summarize the emerging roles of XIST in human cancers.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, 26999, Doha, Qatar
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
27
|
FBXL2 promotes E47 protein instability to inhibit breast cancer stemness and paclitaxel resistance. Oncogene 2023; 42:339-350. [PMID: 36460773 DOI: 10.1038/s41388-022-02559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with a high risk of metastasis and recurrence. Although chemotherapy has greatly improved the clinical outcome of TNBC patients, acquired drug resistance remains a huge challenge for TNBC treatment. Breast cancer stem cells (BCSCs) play a critical role in breast cancer development, metastasis, recurrence, and chemotherapy resistance. Thus, it is of great importance to decipher the underlying molecular mechanism of BCSCs regulation for TNBC drug resistance. In this study, we demonstrate that the F-box protein FBXL2 is a critical negative regulator of BCSCs stemness and that downregulation of FBXL2 plays a causal role in TNBC drug resistance. We show that expression levels of FBXL2 significantly influence CD44high/CD24low subpopulation and the mammosphere formation ability of TNBC cells. Ectopic expression of FBXL2 inhibits initiation of TNBC and overcomes paclitaxel resistance in vivo. In addition, activation of FBXL2 by nebivolol, a clinically used small-molecule inhibitor of the beta-1 receptor, markedly overcomes BCSCs-induced paclitaxel resistance. Mechanistically, we show that FBXL2 targets transcriptional factor E47 for polyubiquitin- and proteasome-mediated degradation, resulting in inhibition of BCSC stemness. Clinical analyses indicate that low expression of FBXL2 correlates with high expression of E47 as well as with high stemness features, and is associated with poor clinical outcomes of breast cancer patients. Taken together, these results highlight that the FBXL2-E47 axis plays a critical role in the regulation of BCSC stemness and paclitaxel resistance. Thus, targeting FBXL2 might be a potential therapeutic strategy for drug-resistant TNBC.
Collapse
|
28
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
29
|
Long non-coding RNAs involved in retinoblastoma. J Cancer Res Clin Oncol 2023; 149:401-421. [PMID: 36305946 DOI: 10.1007/s00432-022-04398-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Retinoblastoma (RB) is the most common childhood tumor that can occur in the retina and develop in a sporadic or heritable form. Although various traditional treatment options have been used for patients with RB, identifying novel strategies for childhood cancers is necessary. MATERIAL AND METHODS Recently, molecular-based targeted therapies have opened a greater therapeutic window for RB. Long non-coding RNAs (lncRNAs) presented a potential role as a biomarker for the detection of RB in various stages. CONCLUSION LncRNAs by targeting several miRNA/transcription factors play critical roles in the stimulation or suppression of RB. In this review, we summarized recent progress on the functions of tumor suppressors or oncogenes lncRNAs in RB.
Collapse
|
30
|
Alatawneh R, Salomon Y, Eshel R, Orenstein Y, Birnbaum RY. Deciphering transcription factors and their corresponding regulatory elements during inhibitory interneuron differentiation using deep neural networks. Front Cell Dev Biol 2023; 11:1034604. [PMID: 36891511 PMCID: PMC9986276 DOI: 10.3389/fcell.2023.1034604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
During neurogenesis, the generation and differentiation of neuronal progenitors into inhibitory gamma-aminobutyric acid-containing interneurons is dependent on the combinatorial activity of transcription factors (TFs) and their corresponding regulatory elements (REs). However, the roles of neuronal TFs and their target REs in inhibitory interneuron progenitors are not fully elucidated. Here, we developed a deep-learning-based framework to identify enriched TF motifs in gene REs (eMotif-RE), such as poised/repressed enhancers and putative silencers. Using epigenetic datasets (e.g., ATAC-seq and H3K27ac/me3 ChIP-seq) from cultured interneuron-like progenitors, we distinguished between active enhancer sequences (open chromatin with H3K27ac) and non-active enhancer sequences (open chromatin without H3K27ac). Using our eMotif-RE framework, we discovered enriched motifs of TFs such as ASCL1, SOX4, and SOX11 in the active enhancer set suggesting a cooperativity function for ASCL1 and SOX4/11 in active enhancers of neuronal progenitors. In addition, we found enriched ZEB1 and CTCF motifs in the non-active set. Using an in vivo enhancer assay, we showed that most of the tested putative REs from the non-active enhancer set have no enhancer activity. Two of the eight REs (25%) showed function as poised enhancers in the neuronal system. Moreover, mutated REs for ZEB1 and CTCF motifs increased their in vivo activity as enhancers indicating a repressive effect of ZEB1 and CTCF on these REs that likely function as repressed enhancers or silencers. Overall, our work integrates a novel framework based on deep learning together with a functional assay that elucidated novel functions of TFs and their corresponding REs. Our approach can be applied to better understand gene regulation not only in inhibitory interneuron differentiation but in other tissue and cell types.
Collapse
Affiliation(s)
- Rawan Alatawneh
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yahel Salomon
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reut Eshel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Ramon Y Birnbaum
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
32
|
Bryl R, Piwocka O, Kawka E, Mozdziak P, Kempisty B, Knopik-Skrocka A. Cancer Stem Cells-The Insight into Non-Coding RNAs. Cells 2022; 11:cells11223699. [PMID: 36429127 PMCID: PMC9688207 DOI: 10.3390/cells11223699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Since their initial identification three decades ago, there has been extensive research regarding cancer stem cells (CSCs). It is important to consider the biology of cancer stem cells with a particular focus on their phenotypic and metabolic plasticity, the most important signaling pathways, and non-coding RNAs (ncRNAs) regulating these cellular entities. Furthermore, the current status of therapeutic approaches against CSCs is an important consideration regarding employing the technology to improve human health. Cancer stem cells have claimed to be one of the most important group of cells for the development of several common cancers as they dictate features, such as resistance to radio- and chemotherapy, metastasis, and secondary tumor formation. Therapies which could target these cells may develop into an effective strategy for tumor eradication and a hope for patients for whom this disease remains uncurable.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Emilia Kawka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Medical University of Wrocław, 50-367 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Correspondence: or
| | - Agnieszka Knopik-Skrocka
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
33
|
Poonaki E, Kahlert UD, Meuth SG, Gorji A. The role of the ZEB1–neuroinflammation axis in CNS disorders. J Neuroinflammation 2022; 19:275. [PMCID: PMC9675144 DOI: 10.1186/s12974-022-02636-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a master modulator of the epithelial–mesenchymal transition (EMT), a process whereby epithelial cells undergo a series of molecular changes and express certain characteristics of mesenchymal cells. ZEB1, in association with other EMT transcription factors, promotes neuroinflammation through changes in the production of inflammatory mediators, the morphology and function of immune cells, and multiple signaling pathways that mediate the inflammatory response. The ZEB1–neuroinflammation axis plays a pivotal role in the pathogenesis of different CNS disorders, such as brain tumors, multiple sclerosis, cerebrovascular diseases, and neuropathic pain, by promoting tumor cell proliferation and invasiveness, formation of the hostile inflammatory micromilieu surrounding neuronal tissues, dysfunction of microglia and astrocytes, impairment of angiogenesis, and dysfunction of the blood–brain barrier. Future studies are needed to elucidate whether the ZEB1–neuroinflammation axis could serve as a diagnostic, prognostic, and/or therapeutic target for CNS disorders.
Collapse
Affiliation(s)
- Elham Poonaki
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany ,grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany
| | - Ulf Dietrich Kahlert
- grid.5807.a0000 0001 1018 4307Molecular and Experimental Surgery, Faculty of Medicine, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Gorji
- grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany ,grid.512981.60000 0004 0612 1380Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran ,grid.411583.a0000 0001 2198 6209Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Li Z, Wang P, Cui W, Yong H, Wang D, Zhao T, Wang W, Shi M, Zheng J, Bai J. Tumour-associated macrophages enhance breast cancer malignancy via inducing ZEB1-mediated DNMT1 transcriptional activation. Cell Biosci 2022; 12:176. [PMID: 36273188 PMCID: PMC9587673 DOI: 10.1186/s13578-022-00913-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Background DNMT1 has been shown to be highly expressed in a variety of cancers, including breast cancer. However, the mechanism is not very clear. Therefore, we aim to reveal the mechanism of DNMT1 highly express in breast cancer. And we also want to explore the role of DNMT1 in tumour microenvironment promoting breast cancer progression. Results In this study, we demonstrate that DNMT1 is overexpressed in breast cancer and that DNMT1 promotes breast cancer tumorigenesis and metastasis. We discovered that ZEB1 activates DNMT1 expression in breast cancer cells by recruiting P300 binding to the DNMT1 promoter and increasing its acetylation. Moreover, we revealed that tumour-associated macrophages (TAMs) increase DNMT1 expression in breast cancer cells via the IL-6-pSTAT3-ZEB1-DNMT1 axis in the tumour microenvironment. DNMT1 is required for TAM-mediated breast cancer cell migration. In addition, we confirmed that there were positive correlations among CD163 (TAM marker) expression, ZEB1 expression and DNMT1 expression in breast cancer patient tissues. Conclusions Our study indicates that DNMT1 is necessary for TAM-mediated breast cancer metastasis. Decitabine (DAC), as a specific DNA methylation inhibitor and FDA-approved drug, is a bona fide drug for breast cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00913-4.
Collapse
Affiliation(s)
- Zhongwei Li
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Pengfei Wang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Wenjie Cui
- grid.417303.20000 0000 9927 0537Department of Respiratory and Critical Care Medicine, The Municipal Hospital, Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Hongmei Yong
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Diandian Wang
- grid.413389.40000 0004 1758 1622Intensive Care Unit, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tiesuo Zhao
- grid.412990.70000 0004 1808 322XDepartment of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan China
| | - Wenwen Wang
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Ming Shi
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Junnian Zheng
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| | - Jin Bai
- grid.417303.20000 0000 9927 0537Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China ,grid.413389.40000 0004 1758 1622Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China ,grid.417303.20000 0000 9927 0537Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, 221002 Jiangsu China
| |
Collapse
|
35
|
Dzul Keflee R, Hoong Leong K, Ogawa S, Bignon J, Chiang Chan M, Weng Kong K. Overview of the multifaceted resistances toward EGFR-TKIs and new chemotherapeutic strategies in non-small cell lung cancer. Biochem Pharmacol 2022; 205:115262. [PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanism of resistances towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever evolving and adaptive nature of NSCLC.
Collapse
Affiliation(s)
- Rashidi Dzul Keflee
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jerome Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris Saclay, Gif-sur-Yvette, France
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
36
|
Zhang Y, Wang X, Li A, Guan Y, Shen P, Ni Y, Han X. PP2A regulates metastasis and vasculogenic mimicry formation via PI3K/AKT/ZEB1 axis in non-small cell lung cancers. J Pharmacol Sci 2022; 150:56-66. [DOI: 10.1016/j.jphs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
|
37
|
Silveira DA, Gupta S, Sinigaglia M, Mombach JCM. The Wnt pathway can stabilize hybrid phenotypes in the epithelial-mesenchymal transition: A logical modeling approach. Comput Biol Chem 2022; 99:107714. [PMID: 35763962 DOI: 10.1016/j.compbiolchem.2022.107714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
The Wnt pathway is important to regulate a variety of biochemical functions and can contribute to cancer development through its influence on the epithelial-mesenchymal transition (EMT). Multiple circuits have been reported to participate in the regulation of the Wnt signaling, however, the way these circuits coordinately regulate this signaling is still unclear. Moreover, the mechanisms responsible for the appearance of hybrid phenotypes (cells presenting both E and M features) are not well determined. The hybrid phenotype can present much higher metastatic potential than the mesenchymal phenotype. In this study, we propose a Boolean model of the Wnt pathway signaling contemplating recent published biochemical information on hepatocarcinoma. The model presents good coherence with experimental data for perturbed and wild-type cases. With the model, we propose two new molecular circuits involving several molecules that can stabilize hybrid states during the EMT. Moreover, we found that the two well studied circuits, AKT1/β-catenin and SNAIL1/miR-34, can cooperate with the predicted ones to favor the stabilization of the hybrid states. These findings highlight some possible unrecognized mechanisms during Wnt signaling and may provide alternative therapeutic strategies to control cancer metastatization.
Collapse
Affiliation(s)
- Daner Acunha Silveira
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Children's Cancer Institute, Porto Alegre, Rio Grande do Sul, Brazil
| | - Shantanu Gupta
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
38
|
Singh R, Singh UP, Agrawal V, Garg M. Epithelial-to-mesenchymal transition based diagnostic and prognostic signature markers in non-muscle invasive and muscle invasive bladder cancer patients. Mol Biol Rep 2022; 49:7541-7556. [PMID: 35593896 DOI: 10.1007/s11033-022-07563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Diagnostic and prognostic significance of epithelial-to-mesenchymal transition (EMT) associated biomarkers are evaluated in a cohort of NMIBC (non-muscle invasive bladder cancer) and MIBC (muscle invasive bladder cancer) patients. METHODS AND RESULTS Real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical (IHC) staining were carried out in 100 tumor specimens (59 NMIBC and 41 MIBC). The expressions of the epithelial marker, mesenchymal markers and EMT-activating transcription factors (EMT-ATFs) were determined at transcriptome and protein level followed by their statistical associations with clinicohistopathological variables of the patients. Transcriptomic expression analysis showed statistical relevance of tumor stage with increased Twist and Zeb-1; tumor type with reduced E-cadherin and increased Snail; and smoking/tobacco chewing status (S/TC) of patients with increased N-cadherin and Snail in NMIBC patients. Tumor grade with reduced message E-cadherin, gain of N-cadherin, Snail, Twist and Zeb-1; patients' age with reduced E-cadherin and Twist gain; and tumor type with increased message N-cadherin exhibited associations in MIBC patients. Protein expression analysis identified statistical relevance of tumor grade with nuclear gain of Snail and Twist; and nuclear gain of Slug with S/TC status of NMIBC patients. Novel gain of membranous Vimentin deduced association with patients' age in MIBC patients. Survival analysis identified novel Vimentin as the positive predictor of short progression free survival (PFS) and short overall survival (OS) in MIBC patients. Study established altered EMT profile as the independent negative predictor of short recurrence free survival (RFS) in NMIBC patients and positive predictor of short PFS and OS in MIBC patients. CONCLUSIONS EMT associated biomarkers could provide diagnostic and prognostic risk stratification and hence could be of importance in the clinical management of bladder cancer patients.
Collapse
Affiliation(s)
- R Singh
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - U P Singh
- Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - V Agrawal
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014, India
| | - M Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India.
| |
Collapse
|
39
|
Wu W, Zhang S, He J. The Mechanism of Long Non-coding RNA in Cancer Radioresistance/Radiosensitivity: A Systematic Review. Front Pharmacol 2022; 13:879704. [PMID: 35600868 PMCID: PMC9117703 DOI: 10.3389/fphar.2022.879704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background and purpose: Radioresistance remains a significant challenge in tumor therapy. This systematic review aims to demonstrate the role of long non-coding RNA (lncRNA) in cancer radioresistance/radiosensitivity. Material and methods: The electronic databases Pubmed, Embase, and Google Scholar were searched from January 2000 to December 2021 to identify studies addressing the mechanisms of lncRNAs in tumor radioresistance/sensitivity, each of which required both in vivo and in vitro experiments. Results: Among the 87 studies identified, lncRNAs were implicated in tumor radioresistance/sensitivity mainly in three paradigms. 1) lncRNAs act on microRNA (miRNA) by means of a sponge, and their downstream signals include some specific molecular biological processes (DNA repair and chromosome stabilization, mRNA or protein stabilization, cell cycle and proliferation, apoptosis-related pathways, autophagy-related pathways, epithelial-mesenchymal transition (EMT), cellular energy metabolism) and some signaling mediators (transcription factors, kinases, some important signal transduction pathways) that regulate various biological processes. 2) lncRNAs directly interact with proteins, affecting the cell cycle and autophagy to contribute to tumor radioresistance. 3) lncRNAs act like transcription factors to initiate downstream signaling pathways and participate in tumor radioresistance. Conclusion: lncRNAs are important regulators involved in tumor radioresistance\sensitivity. Different lncRNAs may participate in the radioresistance with the same regulatory paradigm, and the same lncRNAs may also participate in the radioresistance in different ways. Future research should focus more on comprehensively characterizing the mechanisms of lncRNAs in tumor radioresistance to help us identify corresponding novel biomarkers and develop new lncRNA-based methods to improve radioresistance.
Collapse
Affiliation(s)
- Wenhan Wu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Wenhan Wu,
| | - Shijian Zhang
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jia He
- Faculty Affairs and Human Resources Management Department, Southwest Medical University, Luzhou, China
| |
Collapse
|
40
|
Guo X, Li Y, Che X, Hou K, Qu X, Li C. microRNA-569 inhibits tumor metastasis in pancreatic cancer by directly targeting NUSAP1. Aging (Albany NY) 2022; 14:3652-3665. [PMID: 35483343 PMCID: PMC9085231 DOI: 10.18632/aging.204035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are known to be involved in the development and progression of pancreatic cancer (PC). In this study, the prognostic significance and mechanistic role of microRNA-569 in PC were explored. Quantitative real-time PCR was used to detect the expression of microRNA-569 in PC tissues and cell lines. Scratch test and Transwell assay were conducted to detect migration and invasion ability. The xenograft nude mice model was used to determine tumor metastasis in vivo. The direct targets of microRNA-569 were determined by using bioinformatics analysis and a dual-luciferase reporter assay. The expression level of microRNA-569 was down-regulated in PC patients with a poor prognosis. In vitro and in vivo experiments indicated that over-expression of microRNA-569 inhibited the migration and invasion of PC cells. MicroRNA-569 negatively regulated NUSAP1 by directly binding its 3'-untranslated region. Further mechanism research implied that the ZEB1 pathway was involved in microRNA-569/NUSAP1 mediation of the biological behaviors in PC. These data demonstrated that microRNA-569 may exert a tumor-suppressing effect in PC and maybe a potential therapeutic target for PC patients.
Collapse
Affiliation(s)
- Xiaohui Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yatian Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
41
|
Inhibition of APE1 Expression Enhances the Antitumor Activity of Olaparib in Triple-Negative Breast Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6048017. [PMID: 35463096 PMCID: PMC9020940 DOI: 10.1155/2022/6048017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that is prone to recurrence and metastasis. Because of the lack of expression of estrogen receptor (ER) and progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) in TNBC, treatment methods are greatly limited. In this study, the proliferation inhibition and apoptosis-inducing effects of PARP1 inhibitors in TNBC breast cancer cells and in vivo xenograft animal models were examined to investigate the molecular role of APE1 in PARP1-targeted therapy. In TNBC patients, the expression of APE1 and PARP1 were positively correlated, and high expression of APE1 and PARP1 was associated with poor survival of TNBC. Our results indicated that knockdown APE1 could increase the sensitivity of olaparib in the treatment of TNBC. In conclusion, the results of this study will not only clarify the molecular role of APE1 in PARP1-targeted therapy for TNBC but also provide a theoretical basis for the future clinical application of targeting APE1 and PARP1 in the treatment of refractory TNBC.
Collapse
|
42
|
Peng Z, Ouyang X, Wang Y, Fan Q. MAPKAPK5-AS1 drives the progression of hepatocellular carcinoma via regulating miR-429/ZEB1 axis. BMC Mol Cell Biol 2022; 23:21. [PMID: 35468721 PMCID: PMC9036786 DOI: 10.1186/s12860-022-00420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignancy. Long non-coding RNAs (lncRNAs) partake in the progression of HCC. However, the role of lncRNA MAPKAPK5-AS1 in the development of HCC has not been fully clarified. Methods RNA sequencing data and quantitative real-time polymerase chain reaction (qRT-PCR) were adopted to analyze MAPKAPK5-AS1, miR-429 and ZEB1 mRNA expressions in HCC tissues and cell lines. Western blot was used to detect ZEB1, E-cadherin and N-cadherin protein expressions. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Transwell and flow cytometry assays were adopted to analyze the effects of MAPKAPK5-AS1 on cell proliferation, migration, invasion and apoptosis. Besides, luciferase reporter assay was used to detect the targeting relationship between miR-429 and MAPKAPK5-AS1 or ZEB1 3’UTR. The xenograft tumor mouse models were used to explore the effect of MAPKAPK5-AS1 on lung metastasis of HCC cells. Results MAPKAPK5-AS1 and ZEB1 expressions were up-regulated in HCC tissues, and miR-429 expression is down-regulated in HCC tissues. MAPKAPK5-AS1 knockdown could significantly impede HCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), as well as promote cell apoptosis. MAPKAPK5-AS1 overexpression could enhance L02 cell proliferation, migration, invasion and EMT, and inhibit cell apoptosis. MiR-429 was validated to be the target of MAPKAPK5-AS1, and miR-429 inhibitors could partially offset the effects of knocking down MAPKAPK5-AS1 on HCC cells. MAPKAPK5-AS1 could positively regulate ZEB1 expression through repressing miR-429. Moreover, fewer lung metastatic nodules were observed in the lung tissues of nude mice when the MAPKAPK5-AS1 was knocked down in HCC cells. Conclusion MAPKAPK5-AS1 can adsorb miR-429 to promote ZEB1 expression to participate in the development of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00420-x.
Collapse
Affiliation(s)
- Zongqing Peng
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Zhongyuan Road No.7, Xiangyang, 441000, Hubei Province, China
| | - Xinhua Ouyang
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Zhongyuan Road No.7, Xiangyang, 441000, Hubei Province, China.
| | - Yexing Wang
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Zhongyuan Road No.7, Xiangyang, 441000, Hubei Province, China
| | - Qiming Fan
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Zhongyuan Road No.7, Xiangyang, 441000, Hubei Province, China.
| |
Collapse
|
43
|
Zhao Y, Yang M, Wang S, Abbas SJ, Zhang J, Li Y, Shao R, Liu Y. An Overview of Epigenetic Methylation in Pancreatic Cancer Progression. Front Oncol 2022; 12:854773. [PMID: 35296007 PMCID: PMC8918690 DOI: 10.3389/fonc.2022.854773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past decades, the aberrant epigenetic modification, apart from genetic alteration, has emerged as dispensable events mediating the transformation of pancreatic cancer (PC). However, the understanding of molecular mechanisms of methylation modifications, the most abundant epigenetic modifications, remains superficial. In this review, we focused on the mechanistic insights of DNA, histone, and RNA methylation that regulate the progression of PC. The methylation regulators including writer, eraser and reader participate in the modification of gene expression associated with cell proliferation, invasion and apoptosis. Some of recent clinical trials on methylation drug targeting were also discussed. Understanding the novel regulatory mechanisms in the methylation modification may offer alternative opportunities to improve therapeutic efficacy to fight against this dismal disease.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Mao Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shijia Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Sk Jahir Abbas
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
| | - Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Rong Shao
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
- *Correspondence: Yingbin Liu, ; Rong Shao,
| |
Collapse
|
44
|
Wang T, Peng B, Luo T, Tian D, Zhao Z, Fu Z, Li Q. ZEB1 recruit Brg1 to regulate airway remodeling epithelial-mesenchymal transition in asthma. Exp Physiol 2022; 107:515-526. [PMID: 35138000 DOI: 10.1113/ep090212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022]
Abstract
What is the central question of this study? The aim was to investigate the function of Brg1 in airway remodeling epithelial-mesenchymal transition (EMT) of asthma and identify the transcription factor (TF) of Brg1 which bind to the protomer of E-cadherin. What is the main finding and its importance? This study highlighted an important molecular mechanism involving chromatin remodeling factor Brahma-related gene-1 (Brg1) that played a critical role in airway remodeling EMT of asthma and demonstrated ZEB1 was the key TF recruiting Brg1. This finding might offer new insights into gene-based therapy for asthma. ABSTRACT: Epithelial-mesenchymal transition (EMT) of airway remodeling happens in children with asthma. Reduction of epithelial marker E-cadherin is reported to be one of the initiating factors of EMT. Our previous study shows that chromatin remodeling factor Brahma-related gene-1 (Brg1) could regulate the expression of E-cadherin indirectly, but the transcription factor (TF) involved in the recruitment of Brg1 in asthma is unknown. Here, we studied the function of Brg1 in an ovalbumin (OVA)-induced asthma model (lung-specific conditional Brg1 (Brg1-/- ) knockdown mice) and human bronchial epithelial 16HBE cells stably expressing Brg1 shRNA. Our results showed that Brg1 was involved in epithelial-mesenchymal transition in asthmatic mice by detecting the expression of EMT markers. Meanwhile, we identified that Brg1 participated in the TGF-β induced EMT of 16HBE cells. We observed that Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Brg1 colocalized in the EMT of TGF-β induced 16HBE cells. Further results revealed that ZEB1 recruited Brg1 and bound to the promoter region (+3563/3715) to regulate E-cadherin expression. Thus, ZEB1 might be the key TF to recruit Brg1 in airway remodeling EMT of asthma and might be a novel therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bingming Peng
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tingting Luo
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Daiyin Tian
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhihua Zhao
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qubei Li
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
45
|
Frey P, Devisme A, Rose K, Schrempp M, Freihen V, Andrieux G, Boerries M, Hecht A. SMAD4 mutations do not preclude epithelial-mesenchymal transition in colorectal cancer. Oncogene 2022; 41:824-837. [PMID: 34857888 PMCID: PMC8816731 DOI: 10.1038/s41388-021-02128-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022]
Abstract
Transforming growth factor beta (TGFβ) superfamily signaling is a prime inducer of epithelial-mesenchymal transitions (EMT) that foster cancer cell invasion and metastasis, a major cause of cancer-related deaths. Yet, TGFβ signaling is frequently inactivated in human tumor entities including colorectal cancer (CRC) and pancreatic adenocarcinoma (PAAD) with a high proportion of mutations incapacitating SMAD4, which codes for a transcription factor (TF) central to canonical TGFβ and bone morphogenetic protein (BMP) signaling. Beyond its role in initiating EMT, SMAD4 was reported to crucially contribute to subsequent gene regulatory events during EMT execution. It is therefore widely assumed that SMAD4-mutant (SMAD4mut) cancer cells are unable to undergo EMT. Here, we scrutinized this notion and probed for potential SMAD4-independent EMT execution using SMAD4mut CRC cell lines. We show that SMAD4mut cells exhibit morphological changes, become invasive, and regulate EMT marker genes upon induction of the EMT-TF SNAIL1. Furthermore, SNAIL1-induced EMT in SMAD4mut cells was found to be entirely independent of TGFβ/BMP receptor activity. Global assessment of the SNAIL1-dependent transcriptome confirmed the manifestation of an EMT gene regulatory program in SMAD4mut cells highly related to established EMT signatures. Finally, analyses of human tumor transcriptomes showed that SMAD4 mutations are not underrepresented in mesenchymal tumor samples and that expression patterns of EMT-associated genes are similar in SMAD4mut and SMAD4 wild-type (SMAD4wt) cases. Altogether, our findings suggest that alternative TFs take over the gene regulatory functions of SMAD4 downstream of EMT-TFs, arguing for considerable plasticity of gene regulatory networks operating in EMT execution. Further, they establish that EMT is not categorically precluded in SMAD4mut tumors, which is relevant for their diagnostic and therapeutic evaluation.
Collapse
Affiliation(s)
- Patrick Frey
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Antoine Devisme
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Rose
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Monika Schrempp
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vivien Freihen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
46
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
47
|
Kucuk U, Ekmekci S, Talu C, Pekcevik Y, Cukurova I. Relationship of E-cadherin, Beta-catenin, N-cadherin, ZEB1 and αSMA as Epithelial Mesenchymal Transition markers with prognostic factors in early and advanced stage laryngeal squamous cell carcinomas. INDIAN J PATHOL MICR 2022; 66:237-245. [PMID: 37077062 DOI: 10.4103/ijpm.ijpm_530_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Aims To investigate the relationship between E-cadherin, beta-catenin, N-cadherin, ZEB1, and αSMA as epithelial-mesenchymal transformation markers with tumor stage, lymph node metastasis (LNM), and overall survival (OS) in laryngeal squamous cell carcinomas (LSCC). Materials and Methods A total of 100 cases diagnosed with LSCC were included in the study. Data about the lymphovascular invasion (LVI), perineural invasion (PNI), necrosis, and LNM were recorded by evaluating hematoxylin-eosin-stained slides. Markers of E-cadherin, beta-catenin, N-cadherin, ZEB1, and αSMA were applied to the sections prepared from paraffin blocks of tumor samples. Results Ninety-five male and five female patients were included in the study, and 38 of them exited. A significant relationship was observed between OS with advanced tumor stage, presence of LNM and PNI. A significant relationship was found between increased tumor Zeb1 expression and advanced tumor stage. In univariate and multivariate analyses, a significant negative relationship with OS, and increased Zeb1 expression in tumor and tumor stroma was seen. Any relationship was not observed between E-cadherin, beta-catenin, N-cadherin, and αSMA and OS. Conclusion Among the EMT markers, we evaluated in our study, it was seen that Zeb1, which is an EMT transcription factor, is associated with tumor stage, LNM, and OS. Remarkably, Zeb1 expression observed in tumor stroma was also significant for OS. Any similar data reported for LSCCs have not been encountered in the literature, and it was thought that it would be appropriate to support our findings with further studies to be performed on this subject.
Collapse
|
48
|
Zhang X, Tanwar VS, Jose CC, Lee HW, Cuddapah S. Transcriptional repression of E-cadherin in nickel-exposed lung epithelial cells mediated by loss of Sp1 binding at the promoter. Mol Carcinog 2022; 61:99-110. [PMID: 34727382 PMCID: PMC8665052 DOI: 10.1002/mc.23364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
E-cadherin plays a central role in the stability of epithelial tissues by facilitating cell-cell adhesion. Loss of E-cadherin expression is a hallmark of epithelial-mesenchymal transition (EMT), a major event in the pathogenesis of several lung diseases. Our earlier studies showed that nickel, a ubiquitous environmental toxicant, induced EMT by persistently downregulating E-cadherin expression in human lung epithelial cells and that the EMT remained irreversible postexposure. However, the molecular basis of persistent E-cadherin downregulation by nickel exposure is not understood. Here, our studies show that the binding of transcription factor Sp1 to the promoter of E-cadherin encoding gene, CDH1, is essential for its expression. Nickel exposure caused a loss of Sp1 binding at the CDH1 promoter, resulting in its downregulation and EMT induction. Loss of Sp1 binding at the CDH1 promoter was associated with an increase in the binding of ZEB1 adjacent to the Sp1 binding site. ZEB1, an EMT master regulator persistently upregulated by nickel exposure, is a negative regulator of CDH1. CRISPR-Cas9-mediated knockout of ZEB1 restored Sp1 binding at the CDH1 promoter. Furthermore, ZEB1 knockout rescued E-cadherin expression and re-established the epithelial phenotype. Since EMT is associated with a number of nickel-exposure-associated chronic inflammatory lung diseases including asthma, fibrosis and cancer and metastasis, our findings provide new insights into the mechanisms associated with nickel pathogenesis.
Collapse
Affiliation(s)
- Xiaoru Zhang
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Vinay Singh Tanwar
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Cynthia C Jose
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| |
Collapse
|
49
|
Kalinkova L, Nikolaieva N, Smolkova B, Ciernikova S, Kajo K, Bella V, Kajabova VH, Kosnacova H, Minarik G, Fridrichova I. miR-205-5p Downregulation and ZEB1 Upregulation Characterize the Disseminated Tumor Cells in Patients with Invasive Ductal Breast Cancer. Int J Mol Sci 2021; 23:ijms23010103. [PMID: 35008529 PMCID: PMC8744876 DOI: 10.3390/ijms23010103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Dissemination of breast cancer (BC) cells through the hematogenous or lymphogenous vessels leads to metastatic disease in one-third of BC patients. Therefore, we investigated the new prognostic features for invasion and metastasis. Methods: We evaluated the expression of miRNAs and epithelial-to-mesenchymal transition (EMT) genes in relation to CDH1/E-cadherin changes in samples from 31 patients with invasive ductal BC including tumor centrum (TU-C), tumor invasive front (TU-IF), lymph node metastasis (LNM), and CD45-depleted blood (CD45-DB). Expression of miRNA and mRNA was quantified by RT-PCR arrays and associations with clinico-pathological characteristics were statistically evaluated by univariate and multivariate analysis. Results: We did not verify CDH1 regulating associations previously described in cell lines. However, we did detect extremely high ZEB1 expression in LNMs from patients with distant metastasis, but without regulation by miR-205-5p. Considering the ZEB1 functions, this overexpression indicates enhancement of metastatic potential of lymphogenously disseminated BC cells. In CD45-DB samples, downregulated miR-205-5p was found in those expressing epithelial and/or mesenchymal markers (CTC+) that could contribute to insusceptibility and survival of hematogenously disseminated BC cells mediated by increased expression of several targets including ZEB1. Conclusions: miR-205-5p and potentially ZEB1 gene are promising candidates for markers of metastatic potential in ductal BC.
Collapse
Affiliation(s)
- Lenka Kalinkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Nataliia Nikolaieva
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (B.S.); (V.H.K.)
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Karol Kajo
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
- Department of Pathology, St. Elisabeth Cancer Institute, 81250 Bratislava, Slovakia
| | - Vladimir Bella
- Department of Senology, St. Elisabeth Cancer Institute, 81250 Bratislava, Slovakia;
| | - Viera Horvathova Kajabova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (B.S.); (V.H.K.)
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
| | - Gabriel Minarik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;
| | - Ivana Fridrichova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (L.K.); (N.N.); (S.C.); (K.K.); (H.K.)
- Correspondence: ; Tel.: +421-02-32295188
| |
Collapse
|
50
|
Chaves LP, Melo CM, Saggioro FP, dos Reis RB, Squire JA. Epithelial-Mesenchymal Transition Signaling and Prostate Cancer Stem Cells: Emerging Biomarkers and Opportunities for Precision Therapeutics. Genes (Basel) 2021; 12:1900. [PMID: 34946849 PMCID: PMC8701270 DOI: 10.3390/genes12121900] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancers may reactivate a latent embryonic program called the epithelial-mesenchymal transition (EMT) during the development of metastatic disease. Through EMT, tumors can develop a mesenchymal phenotype similar to cancer stem cell traits that contributes to metastasis and variation in therapeutic responses. Some of the recurrent somatic mutations of prostate cancer affect EMT driver genes and effector transcription factors that induce the chromatin- and androgen-dependent epigenetic alterations that characterize castrate-resistant prostate cancer (CRPC). EMT regulators in prostate cancer comprise transcription factors (SNAI1/2, ZEB1, TWIST1, and ETS), tumor suppressor genes (RB1, PTEN, and TP53), and post-transcriptional regulators (miRNAs) that under the selective pressures of antiandrogen therapy can develop an androgen-independent metastatic phenotype. In prostate cancer mouse models of EMT, Slug expression, as well as WNT/β-Catenin and notch signaling pathways, have been shown to increase stemness potential. Recent single-cell transcriptomic studies also suggest that the stemness phenotype of advanced prostate cancer may be related to EMT. Other evidence correlates EMT and stemness with immune evasion, for example, activation of the polycomb repressor complex I, promoting EMT and stemness and cytokine secretion through RB1, TP53, and PRC1. These findings are helping clinical trials in CRPC that seek to understand how drugs and biomarkers related to the acquisition of EMT can improve drug response.
Collapse
Affiliation(s)
- Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
| | - Fabiano Pinto Saggioro
- Pathology Department, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (L.P.C.); (C.M.M.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|