1
|
He Y, Xu D, Zhang J, Liu Y, Liao M, Xia Y, Wei Z, Dai Y. Bergenin, the main active ingredient of Bergenia purpurascens, attenuates Th17 cell differentiation by downregulating fatty acid synthesis. FASEB J 2024; 38:e70095. [PMID: 39373984 DOI: 10.1096/fj.202400961r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Bergenin is the main active ingredient of Bergenia purpurascens, a medicinal plant which has long been used to treat a variety of Th17 cell-related diseases in China, such as allergic airway inflammation and colitis. This study aimed to uncover the underlying mechanisms by which bergenin impedes Th17 cell response in view of cellular metabolism. In vitro, bergenin treatment reduced the frequency of Th17 cells generated from naïve CD4+ T cells of mice. Mechanistically, bergenin preferentially restrained fatty acid synthesis (FAS) but not other metabolic pathways in differentiating Th17 cells, and exogenous addition of either palmitic acid (PA) or oleic acid (OA) and combination with acetyl-CoA carboxylase 1 (ACC1) activator citric acid dampened the inhibition of bergenin on Th17 cell differentiation. Bergenin inhibited FAS through downregulating the expression of SREBP1 via restriction of histone H3K27 acetylation in the SREBP1 promoter, and SREBP1 overexpression weakened the inhibition of bergenin on Th17 differentiation. Furthermore, bergenin was shown to directly interact with SIRT1 and result in activation of SIRT1. Either combination with SIRT1 inhibitor EX527 or point mutation plasmid of SIRT1 diminished the inhibitory effect of bergenin on FAS and Th17 cell differentiation. Finally, the inhibitory effect of bergenin on Th17 cell response and SIRT1 dependence were verified in mice with dextran sulfate sodium-induced colitis. In short, bergenin repressed Th17 cell response by downregulating FAS via activation of SIRT1, which might find therapeutic use in Th17 cell-related diseases.
Collapse
Affiliation(s)
- Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Danlei Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Liao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Zhang CJ, Qu XY, Yu ZY, Yang J, Zhu B, Zhong LY, Sun J, He JH, Zhu YX, Dong L, Xu WJ. Research of the dynamic regulatory mechanism of Compound Danshen Dripping Pills on myocardial infarction based on metabolic trajectory analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155626. [PMID: 38850631 DOI: 10.1016/j.phymed.2024.155626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/02/2023] [Accepted: 04/09/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is a serious cardiovascular disease, which presents different pathophysiological changes with the prolongation of the disease. Compound danshen dripping pills (CDDP) has obvious advantages in MI treatment and widely used in the clinic. However, the current studies were mostly focused on the endpoint of CDDP intervention, lacking the dynamic attention to the disease process. It is of great value to establish a dynamic research strategy focused on the changes in pharmacodynamic substances for guiding clinical medication more precisely. PURPOSE It is aimed to explore the dynamic regulating pattern of CDDP on MI based on metabolic trajectory analysis, and then clarify the variation characteristic biomarkers and pharmacodynamic substances in the intervention process. METHODS The MI model was successfully prepared by coronary artery left anterior descending branch ligation, and then CDDP intervention was given for 28 days. Endogenous metabolites and the components of CDDP in serum were measured by LC/MS technique simultaneously to identify dynamic the metabolic trajectory and screen the characteristic pharmacodynamic substances at different points. Finally, network pharmacology and molecular docking techniques were used to simulate the core pharmacodynamic substances and core target binding, then validated at the genetic and protein level by Q-PCR and western blotting technology. RESULTS CDDP performed typical dynamic regulation features on metabolite distribution, biological processes, and pharmacodynamic substances. During 1-7 days, it mainly regulated lipid metabolism and inflammation, the Phosphatidylcholine (PC(18:1(9Z/18:1(9Z)) and Sphingomyelin (SM(d18:1/23:1(9Z)), SM(d18:1/24:1(15Z)), SM(d18:0/16:1(9Z))) were the main characteristic biomarkers. Lipid metabolism was the mainly regulation pathway during 14-21 days, and the characteristic biomarkers were the Lysophosphatidylethanolamine (LysoPE(0:0/20:0), PE-NMe2(22:1(13Z)/15:0)) and Sphingomyelin (SM(d18:1/23:1(9Z))). At 28 days, in addition to inflammatory response and lipid metabolism, fatty acid metabolism also played the most important role. Correspondingly, Lysophosphatidylcholine (LysoPC(20:0/0:0)), Lysophosphatidylserine (LPS(18:0/0:0)) and Fatty acids (Linoelaidic acid) were the characteristic biomarkers. Based on the results of metabolite distribution and biological process, the characteristic pharmacodynamic substances during the intervention were further identified. The results showed that various kinds of Saponins and Tanshinones as the important active ingredients performed a long-range regulating effect on MI. And the other components, such as Tanshinol and Salvianolic acid B affected Phosphatidylcholine and Sphingomyelin through Relaxin Signaling pathway during the early intervention. Protocatechualdehyde and Rosmarinic acid affected Lysophosphatidylethanolamine and Sphingomyelin through EGFR Tyrosine kinase inhibitor resistance during the late intervention. Tanshinone IIB and Isocryptotanshinone via PPAR signaling pathway affected Lysophosphatidylcholine, Lysophosphatidylserine, and Fatty acids. CONCLUSION The dynamic regulating pattern was taken as the entry point and constructs the dynamic network based on metabolic trajectory analysis, establishes the dynamic correlation between the drug-derived components and the endogenous metabolites, and elucidates the characteristic biomarkers affecting the changes of the pharmacodynamic indexes, systematically and deeply elucidate the pharmacodynamic substance and mechanism of CDDP on MI. It also enriched the understanding of CDDP and provided a methodological reference for the dynamic analysis of complex systems of TCM.
Collapse
Affiliation(s)
- Cai-Juan Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing,100700, China
| | - Xiao-Yang Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Zhi-Ying Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Jie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Bo Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Lin-Ying Zhong
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Jing Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiang-Hua He
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Yu-Xin Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China.
| | - Wen-Juan Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Sunny South Street, Liangxiang Higher Education Park, Fangshan District, Beijing 100029, China.
| |
Collapse
|
3
|
Qiu XY, Yan LS, Kang JY, Yu Gu C, Chi-Yan Cheng B, Wang YW, Luo G, Zhang Y. Eucalyptol, limonene and pinene enteric capsules attenuate airway inflammation and obstruction in lipopolysaccharide-induced chronic bronchitis rat model via TLR4 signaling inhibition. Int Immunopharmacol 2024; 129:111571. [PMID: 38309095 DOI: 10.1016/j.intimp.2024.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Chronic bronchitis (CB), a type of chronic obstructive pulmonary disease (COPD), poses a significant global health burden owing to its high morbidity and mortality rates. Eucalyptol, limonene and pinene enteric capsules (ELPs) are clinically used as expectorants to treat various respiratory diseases, including CB, but their acting mechanisms remain unclear. In this study, we investigated the anti-CB effects of ELP in a rat model of lipopolysaccharide (LPS)-induced CB. The molecular mechanisms underlying its inhibitory effects on airway inflammation were further explored in LPS-stimulated Beas-2B cells. METHODS ELP was characterized using gas chromatography. The production of inflammatory mediators in bronchoalveolar lavage fluid (BALF) was determined using an enzyme-linked immunosorbent assay. The expression of MUC5AC, MUC5B, and p-p65 in the lung tissue was measured using immunohistochemical staining. The gene expression of inflammatory mediators was determined using qRT-PCR. The expression levels of the target proteins were detected by western blotting. Nuclear localization of p65 was determined using an immunofluorescence assay. RESULTS Compared to the CB model rats, ELP-treated rats showed reduced airway resistance, inflammation, and goblet cell hyperplasia. In BALF, ELP decreased the levels of inflammatory mediators, including TNF-α, IL-6, MIP-1α, and CCL5. ELP also suppressed LPS-induced elevation of MUC5AC, MUC5B, and p-p65 in the lung tissue. The metabolic pathway changes caused by LPS challenge were improved by ELP treatment. In LPS-exposed Beas-2B cells, ELP treatment inhibited the expression of TNFA, IL6, CCL5, MCP1, and MIP2A and decreased the phospho-levels of toll-like receptor 4 (TLR4) signaling-related proteins, including p-p38, p-JNK, p-ERK, p-TBK1, p-IKKα/β, p-IκB, p-p65, and p-c-Jun. ELP also hindered the nuclear translocation of p65, c-Jun, and IRF3. CONCLUSIONS This study showed that ELP has a potential therapeutic effect in LPS-induced CB rat model, possibly by suppressing TLR4 signaling. These results justify the clinical use of ELP for the treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Chun Yu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
4
|
Chen Z, Li F, Fu L, Xia Y, Luo Y, Guo A, Zhu X, Zhong H, Luo Q. Role of inflammatory lipid and fatty acid metabolic abnormalities induced by plastic additives exposure in childhood asthma. J Environ Sci (China) 2024; 137:172-180. [PMID: 37980005 DOI: 10.1016/j.jes.2023.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 11/20/2023]
Abstract
Lipid metabolism play an essential role in occurrence and development of asthma, and it can be disturbed by phthalate esters (PAEs) and organophosphate flame retardants (OPFRs). As a chronic inflammatory respiratory disease, the occurrence risk of childhood asthma is increased by PAEs and OPFRs exposure, but it remains not entirely clear how PAEs and OPFRs contribute the onset and progress of the disease. We have profiled the serum levels of PAEs and OPFRs congeners by liquid chromatography coupled with mass spectrometry, and its relationships with the dysregulation of lipid metabolism in asthmatic, bronchitic (acute inflammation) and healthy (non-inflammation) children. Eight PAEs and nine OPFRs congeners were found in the serum of children (1 - 5 years old) from Shenzhen, and their total median levels were 615.16 ng/mL and 17.06 ng/mL, respectively. Moreover, the serum levels of mono-methyl phthalate (MMP), tri-propyl phosphate (TPP) and tri-n-butyl phosphate (TNBP) were significant higher in asthmatic children than in healthy and bronchitic children as control. Thirty-one characteristic lipids and fatty acids of asthma were screened by machine-learning random forest model based on serum lipidome data, and the alterations of inflammatory characteristic lipids and fatty acids including palmitic acids, 12,13-DiHODE, 14,21-DiHDHA, prostaglandin D2 and LysoPA(18:2) showed significant correlated with high serum levels of MMP, TPP and TNBP. These results imply PAEs and OPFRs promote the occurrence of childhood asthma via disrupting inflammatory lipid and fatty acid metabolism, and provide a novel sight for better understanding the effects of plastic additives on childhood asthma.
Collapse
Affiliation(s)
- Zhiyu Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Lei Fu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Xia
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ying Luo
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ang Guo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaona Zhu
- Rheumatology &Immunology Department of Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Li X, Du J, Chen J, Lin F, Wang W, Wei TT, Xu J, Lu QB. Metabolic profile of exhaled breath condensate from the pneumonia patients. Exp Lung Res 2022; 48:149-157. [PMID: 35708062 DOI: 10.1080/01902148.2022.2078019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE OF THE STUDY Exhaled breath condensate (EBC) is increasingly being used for disease diagnosis and environmental exposure assessment as a noninvasive method reducing the risk of exposure. The purpose of this study was to investigate the application of a new sample type of EBC in pneumonia by metabolomics and to explore differential metabolites and potential metabolic pathways. MATERIALS AND METHODS A case-control study was performed at the Peking University Third Hospital from August to December 2020. C-MS/MS analyses were performed on EBC samples using a UHPLC system. RESULTS Totally 22 patients with pneumonia and 24 healthy controls were recruited. Using untargeted metabolomics based on LC-MS/MS analysis, 25 kinds of differential metabolites were found. Through a comprehensive analysis of the pathways in which the differential metabolites were located, the key pathway with the highest correlation with the difference of metabolites was taurine and hypotaurine metabolism. CONCLUSIONS The study implicates that the hypotaurine/taurine metabolic pathway may play a role on the development of pneumonia through metabolism analysis on EBC and the 3-Sulfinoalanine may be used as a biomarker in the diagnosis of pneumonia.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research, Peking University, Beijing, People's Republic of China
| | - Jing Chen
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Fei Lin
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wei Wang
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Ting-Ting Wei
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research, Peking University, Beijing, People's Republic of China
| | - Jie Xu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People's Republic of China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China.,Global Center for Infectious Disease and Policy Research, Peking University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Li R, Zhao YL, Qin F, Zhao Y, Xiao XR, Cao WY, Fan MR, Wang SG, Wu Y, Wang B, Fan CZ, Guo ZN, Yang QN, Zhang WT, Li XG, Li F, Luo XD, Gao R. The clinical population pharmacokinetics, metabolomics and therapeutic analysis of alkaloids from Alstonia scholaris leaves in acute bronchitis patients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153979. [PMID: 35176533 DOI: 10.1016/j.phymed.2022.153979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Capsule of alkaloids from leaf of Alstonia scholaris (CALAS) is a new investigational botanical drug (No. 2011L01436) for respiratory disease. Clinical population pharmacokinetics (PK), metabolomics and therapeutic data are essential to guide dosing in patients. Previous research has demonstrated the potential therapeutic effect of CALAS on acute bronchitis. Further clinical trial data are needed to verify its clinical efficacy, pharmacokinetics behavior, and influence of dosage and other factors. PURPOSE To verify the clinical efficacy and explore the potential biomarkers related to CALAS treatment for acute bronchitis. MATERIALS AND METHODS Oral CALAS was assessed in a randomized, double-blind, placebo-controlled trial. Fifty-five eligible patients were randomly assigned to four cohorts to receive 20, 40 or 80 mg, of CALAS three times daily for seven days, or placebo. Each CALAS cohort included 15 subjects, and the placebo group included 10 subjects. A population PK model of CALAS was developed using plasma with four major alkaloid components. Metabolomics analysis was performed to identify biomarkers correlated with the therapeutic effect of CALAS, and efficacy and safety were assessed based on clinical symptoms and adverse events. RESULTS The symptoms of acute bronchitis were alleviated by CALAS treatment without serious adverse events or clinically significant changes in vital signs, electrocardiography or upper abdominal Doppler ultrasonography. Moreover, one compartment model with first-order absorption showed that an increase in aspartate transaminase will reduce the clearance (CL) of scholaricine, and picrinine CL was inversely proportional to body mass index, while 19-epischolaricine and vallesamine CL increased with aging. The serum samples from acute bronchitis patients at different time points were analyzed using UPLC-QTOF in combination with the orthogonal projection to latent structures-discriminant analysis, which indicated higher levels of lysophosphatidylcholines, lysophosphatidylethanolamines and amino acids with CALAS treatment than with placebo. CONCLUSION This is the first study to evaluate the clinical efficacy and explored the potential biomarkers related to CALAS therapeutic mechanism of acute bronchitis by means of clinical trial combined the metabolomics study. This exploratory study provides a basis for further research on clinical efficacy and optimal dosing regimens based on pharmacokinetics behavior. Additional acute bronchitis patients and CALAS PK samples collected in future studies may be used to improve model performance and maximize its clinical value.
Collapse
Affiliation(s)
- Rui Li
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China; NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Feng Qin
- Department of Analytical Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Yang Zhao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Xue-Rong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Wei-Yi Cao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Mao-Rong Fan
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Shu-Ge Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Yi Wu
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Bing Wang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Chang-Zheng Fan
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Zhong-Ning Guo
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Qiao-Ning Yang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Wan-Tong Zhang
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China
| | - Xin-Gang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, PR China.
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| | - Rui Gao
- Institute of Clinical Pharmacology of Xiyuan Hospital, National Clinical Research Center for Chinese Medicine Cardiology, China Academy of Chinese Medical Sciences, No. 1, R. Xiyuangcaochang, Haidian District, Beijing 100091, China.
| |
Collapse
|
7
|
Wu J, Qiu M, Zhang C, Zhang C, Wang N, Zhao F, Lv L, Li J, Lyu-Bu AGA, Wang T, Zhao B, You S, Wu Y, Wang X. Type 3 resistant starch from Canna edulis modulates obesity and obesity-related low-grade systemic inflammation in mice by regulating gut microbiota composition and metabolism. Food Funct 2021; 12:12098-12114. [PMID: 34784410 DOI: 10.1039/d1fo02208c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is a most prevalent human health problem. Several studies showed that appropriate modulation of gut microbiota could help reshape the metabolic profile of obese individuals, thereby altering the development of obesity. A nutritional strategy for treating obesity includes prebiotics. Type 3 Resistant Starch from Canna edulis (Ce-RS3) is a dietary fiber that exerts potential effects on the intestinal microbial community; however, the metabolic landscape and anti-obesity mechanism remain unclear. In the present study, obese mice were treated with Ce-RS3, and 16S rRNA gene sequencing and metabolomics were used to measure changes in gut microbiota and fecal metabolic profiles, respectively. At the end of the treatment (13 weeks), we observed slow weight gain in the mice, and pathological damage and inflammation were substantially reduced. Ce-RS3 constructs a healthy gut microbiota structure and can enhance intestinal immunity and reduce metabolic inflammation. Ce-RS3 increased the diversity of gut microbiota with enrichment of Bifidobacterium and Roseburia. Ce-RS3 regulated the systemic metabolic dysbiosis in obese mice and adjusted 26 abnormal metabolites in amino acids and lipids metabolism, many of which are related to the microbiome. More importantly, we found that the anti-obesity effect of Ce-RS3 can be transferred by fecal transplantation. The beneficial effects of Ce-RS3 might derive from gut microbiota changes, which might improve obesity and metabolic inflammation by altering host-microbiota interactions with impacts on the metabolome. In conclusion, Ce-RS3 can be used as a prebiotic with potential value for the treatment of obesity.
Collapse
Affiliation(s)
- Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Minyi Qiu
- Medicament Department, Peking University People's Hospital, Beijing, 100044, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Fangyuan Zhao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Liqiao Lv
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Junling Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - A G A Lyu-Bu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shaowei You
- The Second Affiliated Hospital of Guizhou University of traditional Chinese Medicine, Guizhou, 550003, China
| | - Yuanhua Wu
- The First Affiliated Hospital of Guizhou University of traditional Chinese Medicine, Gouzhou, 550001, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
8
|
Madaan R, Singla RK, Kumar S, Dubey AK, Kumar D, Sharma P, Bala R, Singla S, Shen B. Bergenin - a biologically active scaffold: Nanotechnological perspectives. Curr Top Med Chem 2021; 22:132-149. [PMID: 34649489 DOI: 10.2174/1568026621666211015092654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Bergenin, 4-O-methyl gallic acid glucoside, is a bioactive compound present in various plants belonging to different families. The present work compiles scattered information on pharmacology, structure activity relationship and nanotechnological aspects of bergenin, collected from various electronic databases such as Sci Finder, PubMed, Google scholar, etc. Bergenin has been reported to exhibit hepatoprotective, anti-inflammatory, anticancer, neuroprotective, antiviral and antimicrobial activities. Molecular docking studies have shown that isocoumarin pharmacophore of bergenin is essential for its bioactivities. Bergenin holds a great potential to be used as lead molecule and also as a therapeutic agent for development of more efficacious and safer semisynthetic derivatives. Nanotechnological concepts can be employed to overcome poor bioavailability of bergenin. Finally, it is concluded that bergenin can be emerged as clinically potential medicine in modern therapeutics.
Collapse
Affiliation(s)
- Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University Punjab. India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan. China
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- Punjab. India
| | - Ankit Kumar Dubey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu. India
| | - Dinesh Kumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu. India
| | - Pooja Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala- Punjab. India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University Punjab. India
| | - Shailja Singla
- iGlobal Research and Publishing Foundation, New Delhi. India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan. China
| |
Collapse
|
9
|
Nassan FL, Kelly RS, Koutrakis P, Vokonas PS, Lasky-Su JA, Schwartz JD. Metabolomic signatures of the short-term exposure to air pollution and temperature. ENVIRONMENTAL RESEARCH 2021; 201:111553. [PMID: 34171372 PMCID: PMC8478827 DOI: 10.1016/j.envres.2021.111553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Short-term exposures to air pollution and temperature have been reported to be associated with inflammation and oxidative stress. However, mechanistic understanding of the affected metabolic pathways is still lacking and literature on the short-term exposure of air-pollution on the metabolome is limited. OBJECTIVES We aimed to determine changes in the plasma metabolome and associated metabolic pathways related to short-term exposure to outdoor air pollution and temperature. METHODS We performed mass-spectrometry based untargeted metabolomic profiling of plasma samples from a large and well-characterized cohort of men (Normative Aging Study) to identify metabolic pathways associated with short-term exposure to PM2.5, NO2, O3, and temperature (one, seven-, and thirty-day average of address-specific predicted estimates). We used multivariable linear mixed-effect regression and independent component analysis (ICA) while simultaneously adjusting for all exposures and correcting for multiple testing. RESULTS Overall, 456 white men provided 648 blood samples, in which 1158 metabolites were quantified, between 2000 and 2016. Average age and body mass index were 75.0 years and 27.7 kg/m2, respectively. Only 3% were current smokers. In the adjusted models, NO2, and temperature showed statistically significant associations with several metabolites (19 metabolites for NO2 and 5 metabolites for temperature). We identified six metabolic pathways (sphingolipid, butanoate, pyrimidine, glycolysis/gluconeogenesis, propanoate, and pyruvate metabolisms) perturbed with short-term exposure to air pollution and temperature. These pathways were involved in inflammation and oxidative stress, immunity, and nucleic acid damage and repair. CONCLUSIONS This is the first study to report an untargeted metabolomic signature of temperature exposure, the largest to report an untargeted metabolomic signature of air pollution, and the first to use ICA. We identified several significant plasma metabolites and metabolic pathways associated with short-term exposure to air pollution and temperature; using an untargeted approach. Those pathways were involved in inflammation and oxidative stress, immunity, and nucleic acid damage and repair. These results need to be confirmed by future research.
Collapse
Affiliation(s)
- Feiby L Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Rachel S Kelly
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Pantel S Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston MA, 02215, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA; Channing Division of Network Medicine; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02129, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Li X, Wang Y, Liang J, Bi Z, Ruan H, Cui Y, Ma L, Wei Y, Zhou B, Zhang L, Zhou H, Yang C. Bergenin attenuates bleomycin-induced pulmonary fibrosis in mice via inhibiting TGF-β1 signaling pathway. Phytother Res 2021; 35:5808-5822. [PMID: 34375009 DOI: 10.1002/ptr.7239] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 01/01/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by epithelial cell damage, fibroblast activation, and collagen deposition. IPF has high mortality and limited therapies, which urgently needs to develop safe and effective therapeutic drugs. Bergenin, a compound derived from a variety of medicinal plants, has demonstrated multiple pharmacological activities including anti-inflammatory and anti-tumor, also acts as a traditional Chinese medicine to treat chronic bronchitis, but its effect on the pulmonary fibrosis is unknown. In this study, we demonstrated that bergenin could attenuate bleomycin (BLM)-induced pulmonary fibrosis in mice. In vitro studies indicated that bergenin inhibited the transforming growth factor-β1 (TGF-β1)-induced fibroblast activation and the extracellular matrix accumulation by inhibiting the TGF-β1/Smad signaling pathway. Further studies showed that bergenin could induce the autophagy formation of myofibroblasts by suppressing the mammalian target of rapamycin signaling and that bergenin could promote the myofibroblast apoptosis. In vivo experiments revealed that bergenin substantially inhibited the myofibroblast activation and the collagen deposition and promoted the autophagy formation. Overall, our results showed that bergenin attenuated the BLM-induced pulmonary fibrosis in mice by suppressing the myofibroblast activation and promoting the autophagy and the apoptosis of myofibroblasts.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingjing Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hao Ruan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yunyao Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yuli Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Bingchen Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tian Jin First Central Hospital, Tianjin, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
11
|
Liu H, Nie J, Stephen Chan HC, Zhang H, Li L, Lin H, Tong HHY, Ma A, Zhou Z. Phase solubility diagrams and energy surface calculations support the solubility enhancement with low hygroscopicity of Bergenin: 4-Aminobenzamide (1: 1) cocrystal. Int J Pharm 2021; 601:120537. [PMID: 33781883 DOI: 10.1016/j.ijpharm.2021.120537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023]
Abstract
Herein, we reported a new bergenin: 4-aminobenzamide (BGN-4AM) cocrystal with significantly enhanced solubility and low hygroscopicity probed from two aspects such as phase solubility diagrams and theoretical calculations. Compared with anhydrous BGN, BGN-4AM solubilities in water and different buffer solutions (pH = 1.2, 4.5, 6.8) increase significantly. It is noted that BGN-4AM solubility in pH = 6.8 buffer solution presents 32.7 times higher than anhydrous BGN. Interestingly, BGN-4AM (0.31 ± 0.07%) showcases lower hygroscopicity than anhydrous BGN (9.31 ± 0.16%). The predicted and experimental solubilities agree with each other when considering solubility product (Ksp) and solution binding constant (K11) in phase solubility diagrams, indicating the solution complexes formation occurs. Further crystal surface-water interactions and Bravais, Friedel, Donnay-Harker (BFDH) analyses based on Density Functional Theory with dispersion correction (DFT-d) methods support the enhanced solubility. The water probe demonstrates an average interaction energy of -6.48 kcal/mol on the 002 plane of BGN-4AM, and only -5.47 kcal/mol on the 011 plane of BGN monohydrate. The lower lattice energy of BGN-4AM guarantees its lower hygroscopicity than BGN monohydrate. BGN-4AM with enhanced solubility and low hygroscopicity can be a potential candidate for further formulation development.
Collapse
Affiliation(s)
- Hongji Liu
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinju Nie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - H C Stephen Chan
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liang Li
- Department of Forensic Toxicological Analysis, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hongqing Lin
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Henry H Y Tong
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Ande Ma
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhengzheng Zhou
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
12
|
Nassan FL, Kelly RS, Kosheleva A, Koutrakis P, Vokonas PS, Lasky-Su JA, Schwartz JD. Metabolomic signatures of the long-term exposure to air pollution and temperature. Environ Health 2021; 20:3. [PMID: 33413450 PMCID: PMC7788989 DOI: 10.1186/s12940-020-00683-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Long-term exposures to air pollution has been reported to be associated with inflammation and oxidative stress. However, the underlying metabolic mechanisms remain poorly understood. OBJECTIVES We aimed to determine the changes in the blood metabolome and thus the metabolic pathways associated with long-term exposure to outdoor air pollution and ambient temperature. METHODS We quantified metabolites using mass-spectrometry based global untargeted metabolomic profiling of plasma samples among men from the Normative Aging Study (NAS). We estimated the association between long-term exposure to PM2.5, NO2, O3, and temperature (annual average of central site monitors) with metabolites and their associated metabolic pathways. We used multivariable linear mixed-effect regression models (LMEM) while simultaneously adjusting for the four exposures and potential confounding and correcting for multiple testing. As a reduction method for the intercorrelated metabolites (outcome), we further used an independent component analysis (ICA) and conducted LMEM with the same exposures. RESULTS Men (N = 456) provided 648 blood samples between 2000 and 2016 in which 1158 metabolites were quantified. On average, men were 75.0 years and had an average body mass index of 27.7 kg/m2. Almost all men (97%) were not current smokers. The adjusted analysis showed statistically significant associations with several metabolites (58 metabolites with PM2.5, 15 metabolites with NO2, and 6 metabolites with temperature) while no metabolites were associated with O3. One out of five ICA factors (factor 2) was significantly associated with PM2.5. We identified eight perturbed metabolic pathways with long-term exposure to PM2.5 and temperature: glycerophospholipid, sphingolipid, glutathione, beta-alanine, propanoate, and purine metabolism, biosynthesis of unsaturated fatty acids, and taurine and hypotaurine metabolism. These pathways are related to inflammation, oxidative stress, immunity, and nucleic acid damage and repair. CONCLUSIONS Using a global untargeted metabolomic approach, we identified several significant metabolites and metabolic pathways associated with long-term exposure to PM2.5, NO2 and temperature. This study is the largest metabolomics study of long-term air pollution, to date, the first study to report a metabolomic signature of long-term temperature exposure, and the first to use ICA in the analysis of both.
Collapse
Affiliation(s)
- Feiby L. Nassan
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
| | - Rachel S. Kelly
- Channing Division of Network Medicine; Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02129 USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
| | - Pantel S. Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, School of Medicine and School of Public Health, Boston University, Boston, MA 02215 USA
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine; Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02129 USA
| | - Joel D. Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Landmark Center, Room 414C, 401 Park Dr, Boston, MA 02215 USA
- Channing Division of Network Medicine; Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02129 USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA
| |
Collapse
|
13
|
Villarreal CF, Santos DS, Lauria PSS, Gama KB, Espírito-Santo RF, Juiz PJL, Alves CQ, David JM, Soares MBP. Bergenin Reduces Experimental Painful Diabetic Neuropathy by Restoring Redox and Immune Homeostasis in the Nervous System. Int J Mol Sci 2020; 21:ijms21144850. [PMID: 32659952 PMCID: PMC7420298 DOI: 10.3390/ijms21144850] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathy is a frequent complication of diabetes. Symptoms include neuropathic pain and sensory alterations—no effective treatments are currently available. This work characterized the therapeutic effect of bergenin in a mouse (C57/BL6) model of streptozotocin-induced painful diabetic neuropathy. Nociceptive thresholds were assessed by the von Frey test. Cytokines, antioxidant genes, and oxidative stress markers were measured in nervous tissues by ELISA, RT-qPCR, and biochemical analyses. Single (3.125–25 mg/kg) or multiple (25 mg/kg; twice a day for 14 days) treatments with bergenin reduced the behavioral signs of diabetic neuropathy in mice. Bergenin reduced both nitric oxide (NO) production in vitro and malondialdehyde (MDA)/nitrite amounts in vivo. These antioxidant properties can be attributed to the modulation of gene expression by the downregulation of inducible nitric oxide synthase (iNOS) and upregulation of glutathione peroxidase and Nrf2 in the nervous system. Bergenin also modulated the pro- and anti-inflammatory cytokines production in neuropathic mice. The long-lasting antinociceptive effect induced by bergenin in neuropathic mice, was associated with a shift of the cytokine balance toward anti-inflammatory predominance and upregulation of antioxidant pathways, favoring the reestablishment of redox and immune homeostasis in the nervous system. These results point to the therapeutic potential of bergenin in the treatment of painful diabetic neuropathy.
Collapse
Affiliation(s)
- Cristiane F. Villarreal
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
- Correspondence: ; Tel.: +55-(71)3283-6933
| | - Dourivaldo S. Santos
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
| | - Pedro S. S. Lauria
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
| | - Kelly B. Gama
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| | - Renan F. Espírito-Santo
- Faculdade de Farmácia, Universidade Federal da Bahia, CEP 40.170-115 Salvador, Brazil; (D.S.S.); (P.S.S.L.); (R.F.E.-S.)
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| | - Paulo J. L. Juiz
- Universidade Federal do Recôncavo da Bahia, CEP 44.042-280 Feira de Santana, Brazil;
| | - Clayton Q. Alves
- Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana, CEP 44.036-336 Feira de Santana, Brazil;
| | - Jorge M. David
- Instituto de Química, Universidade Federal da Bahia, CEP 40.170-280 Salvador, Brazil;
| | - Milena B. P. Soares
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, CEP 40.296-710 Salvador, Brazil; (K.B.G.); (M.B.P.S.)
| |
Collapse
|
14
|
Xiao X, Zhang T, Huang J, Zhao Q, Li F. Effect of CYP3A4 on liver injury induced by triptolide. Biomed Chromatogr 2020; 34:e4864. [PMID: 32330997 DOI: 10.1002/bmc.4864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/22/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Triptolide (TP), one of the main bioactive diterpenes of the herbal medicine Tripterygium wilfordii Hook F, is used for the treatment of autoimmune diseases in the clinic and is accompanied by severe hepatotoxicity. CYP3A4 has been reported to be responsible for TP metabolism, but the mechanism remains unclear. The present study applied a UPLC-QTOF-MS-based metabolomics analysis to characterize the effect of CYP3A4 on TP-induced hepatotoxicity. The metabolites carnitines, lysophosphatidylcholines (LPCs) and a serious of amino acids were found to be closely related to liver damage indexes in TP-treated female mice. Metabolomics analysis further revealed that the CYP3A4 inducer dexamethasone improved the level of LPCs and amino acids, and defended against oxidative stress. On the contrary, pretreatment with the CYP3A4 inhibitor ketoconazole increased liver damage with most metabolites being markedly altered, especially carnitines. Among these metabolites, except for LPC18:2, LPC20:1 and arginine, dexamethasone and ketoconazole both affected oxidative stress induced by TP. The current study provides new mechanistic insights into the metabolic alterations, leading to understanding of the role of CYP3A4 in hepatotoxicity induced by TP.
Collapse
Affiliation(s)
- Xuerong Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Fei Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Zhang C, Dong L, Wu J, Qiao S, Xu W, Ma S, Zhao B, Wang X. Intervention of resistant starch 3 on type 2 diabetes mellitus and its mechanism based on urine metabonomics by liquid chromatography-tandem mass spectrometry. Biomed Pharmacother 2020; 128:110350. [PMID: 32521455 DOI: 10.1016/j.biopha.2020.110350] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
As a severe metabolic disease, type 2 diabetes mellitus (T2DM) has aroused increasing public attentions. Resistant starch 3 (RS3), as a starch resistant to enzymatic hydrolysis owing to its special structure, has a good effect on improving insulin resistance and reducing blood sugar in T2DM patients. However, the possible mechanisms were barely interpreted yet. In our research, we aimed to evaluate the effects and the possible mechanisms of RS3 on the treatment of T2DM. ICR mice treated with high-fat diet (HFD) for eight weeks, and then injected with streptozotocin (STZ) (100 mg/kg) to establish the T2DM. We choose the mice with the fast blood glucose (FBG) more than 11 mmol/L as T2DM. After treated for 11 weeks the relevant data was analyzed. According to the results, the FBG was dramatically reduced (p < 0.05), which also downregulated triglyceride (p < 0.01) and total cholesterol (p < 0.01). Additionally, the insulin resistance indexes were significantly reduced (p < 0.01), the homeostasis model assessment-β and insulin-sensitive index were significantly improved (p < 0.01) in RS3 group. Meanwhile, the metabolic profiles of urine were analyzed and 29 potential biomarkers were screened out, including amino acids and lipids. In conclusion, we speculated that the tricarboxylic acid cycle, amino acid metabolism and lipid metabolism played roles in the therapeutic mechanisms of RS3 on T2DM.
Collapse
Affiliation(s)
- Caijuan Zhang
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Ling Dong
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Jiahui Wu
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Sanyang Qiao
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Wenjuan Xu
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Shuangshuang Ma
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Baosheng Zhao
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Xueyong Wang
- Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
16
|
Zhang C, Ma S, Wu J, Luo L, Qiao S, Li R, Xu W, Wang N, Zhao B, Wang X, Zhang Y, Wang X. A specific gut microbiota and metabolomic profiles shifts related to antidiabetic action: The similar and complementary antidiabetic properties of type 3 resistant starch from Canna edulis and metformin. Pharmacol Res 2020; 159:104985. [PMID: 32504839 DOI: 10.1016/j.phrs.2020.104985] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has drawn increasing attention, and the benefits of various treatment strategies, including nutrition, medication and physical exercise, maybe microbially-mediated. Metformin is a widely used hypoglycemic agent, while resistant starch (RS) is a novel dietary fiber that emerges as a nutritional strategy for metabolic disease. However, it remains unclear as to the potential degree and interactions among gut microbial communities, metabolic landscape, and the anti-diabetic effects of metformin and RS, especially for a novel type 3 resistant starch from Canna edulis (Ce-RS3). In the present study, T2DM rats were administered metformin or Ce-RS3, and the changes in gut microbiota and serum metabolic profiles were characterized using 16S-rRNA gene sequencing and metabolomics, respectively. After 11 weeks of treatment, Ce-RS3 exhibited similar anti-diabetic effects to those of metformin, including dramatically reducing blood glucose, ameliorating the response to insulin resistance and glucose tolerance test, and relieving the pathological damage in T2DM rats. Interestingly, the microbial and systemic metabolic dysbiosis in T2DM rats was effectively modulated by both Ce-RS3 and, to a lesser extent, metformin. The two treatments increased the gut bacterial diversity, and supported the restoration of SCFA-producing bacteria, thereby significantly increasing SCFAs levels. Both treatments simultaneously corrected 16 abnormal metabolites in the metabolism of lipids and amino acids, many of which are microbiome-related. PICRUSt analysis and correlation of SCFAs levels with metabolomics data revealed a strong association between gut microbial and host metabolic changes. Strikingly, Ce-RS3 exhibited better efficacy in increasing gut microbiota diversity with a peculiar enrichment of Prevotella genera. The gut microbial properties of Ce-RS3 were tightly associated with the T2DM-related indexes, showing the potential to alleviate diabetic phenotype dysbioses, and possibly explaining the greater efficiency in improving metabolic control. The beneficial effects of Ce-RS3 and metformin might derive from changes in gut microbiota through altering host-microbiota interactions with impact on the host metabolome. Given the complementarity of Ce-RS3 and metformin in regulation of gut microbiota and metabolites, this study also prompted us to suggest possible "Drug-Dietary fiber" combinations for managing T2DM.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Shuangshuang Ma
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Linglong Luo
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Sanyang Qiao
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Ruxin Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Wenjuan Xu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine,Beijing, 100029, China
| | - Xiao Wang
- College of Pharmacy, Qilu University of Technology (Shandong Academy of Sciences), Shandong, 250014, China
| | - Yuan Zhang
- College of Biochemical Engineering, Beijing Union University, No. 18, Fatou Xili District, Chaoyang District, Beijing, 100023
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
17
|
Liu L, Li X, Huang C, Bian Y, Liu X, Cao J, Qu W, Miao L. Bile acids, lipid and purine metabolism involved in hepatotoxicity of first-line anti-tuberculosis drugs. Expert Opin Drug Metab Toxicol 2020; 16:527-537. [PMID: 32436768 DOI: 10.1080/17425255.2020.1758060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Rifampin (RIF), isoniazid (INH) and pyrazinamide (PZA) are essential components of the short-term first-line anti-tuberculosis (anti-TB) chemotherapy regimen and can cause hepatotoxicity. However, the mechanism of anti-TB drug-induced hepatotoxicity (ATDH) is currently unclear. We investigate the relevant contributions to liver injury and the pathway of the above-mentioned drugs administered alone or in combination. METHODS UPLC-Q-TOF/MS-based metabolomics, bile acids (BAs) analysis and FXR/SHP detection were used to evaluate the toxicity of these drugs and clarify the underlying metabolism-related pathway. RESULTS In C57BL/6 mice administered the corrected clinical doses, RIF, INH and PZA could induced hepatotoxicity; with less toxicity in the combination therapy than RIF. The pathological biochemistry, BAs concentration and metabolically regulated FXR/SHP gene expression analyzes in mice were consistent with the metabolomics results. FXR played a role in the hepatotoxicity of anti-tuberculosis drugs in the obeticholic acid treated and FXR-/- mice. Additionally, the purine and lipid metabolic pathways were involved in ATDH. CONCLUSION ATDH was involved in bile acids and lipid and purine metabolism. The BAs metabolic pathway involvement in mice was validated in TB patients. The noninvasive metabolomics approach is more systemic than routine toxicity evaluation and can be used to assess compound toxicity and the underlying mechanism.
Collapse
Affiliation(s)
- Linsheng Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Xianglian Li
- College of Pharmaceutical Science, Soochow University , Suzhou, China
| | - Chenrong Huang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Yicong Bian
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Xiaoxue Liu
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China
| | - Jun Cao
- Department of pharmacy, The Affiliated Infectious Diseases Hospital of Soochow University (The Fifth People's Hospital of Suzhou) , Suzhou, China
| | - Wenhao Qu
- College of Pharmaceutical Science, Soochow University , Suzhou, China
| | - Liyan Miao
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University , Suzhou, China.,College of Pharmaceutical Science, Soochow University , Suzhou, China
| |
Collapse
|
18
|
Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology 2020; 28:795-817. [PMID: 32189104 DOI: 10.1007/s10787-020-00698-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023]
|