1
|
Yang T, Fang H, Lin D, Yang S, Luo H, Wang L, Yang B. Ganoderma Lucidum polysaccharide peptide (GL-PP2): A potential therapeutic agent against sepsis-induced organ injury by modulating Nrf2/NF-κB pathways. Int J Biol Macromol 2024; 285:138378. [PMID: 39643194 DOI: 10.1016/j.ijbiomac.2024.138378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Sepsis, characterized by a severe immune response to infection, remains a leading cause of mortality, with few effective strategies to prevent organ damage. Targeting inflammation, oxidative stress, and apoptosis is crucial for improving outcomes and advancing sepsis management. We investigated the protective effects of Ganoderma Lucidum Polysaccharide Peptide 2 (GL-PP2) against sepsis-induced organ damage, focusing on immune regulation and kidney protection. In a murine sepsis model, mice received intraperitoneal injection of GL-PP2 (25, 50, 100 mg/kg) for seven days, with dexamethasone (5 mg/kg) as a positive control. Sepsis was induced by intraperitoneal lipopolysaccharide (LPS, 10 mg/kg), followed by histological, biochemical, molecular, and network pharmacology analyses to evaluate kidney and spleen damage. Results demonstrated that GL-PP2 mitigates LPS-induced kidney and spleen damage, preserving tissue integrity and improving renal function markers (blood creatinine, urea nitrogen). GL-PP2 also lowers pro-inflammatory cytokines, boosts antioxidant enzymes, and modulates the Nrf2/NF-κB pathways, highlighting its anti-inflammatory and antioxidant effects. Additionally, it reduces apoptosis by regulating Bax, cleaved caspase-3, and Bcl-2 expression. These findings indicate that GL-PP2 is a promising sepsis therapy candidate, as it targets inflammation, oxidative stress, and apoptosis, reducing organ injury. By modulating key pathways, GL-PP2 could improve clinical outcomes, warranting further study.
Collapse
Affiliation(s)
- Teng Yang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Hui Fang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Shangpeng Yang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Hongjian Luo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
2
|
Liu Y, Wang X, Chen Y, Zhou L, Wang Y, Li L, Wang Z, Yang L. Pharmacological mechanisms of traditional Chinese medicine against acute lung injury: From active ingredients to herbal formulae. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155562. [PMID: 39536423 DOI: 10.1016/j.phymed.2024.155562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the leading causes of acute respiratory failure in many critical diseases and are among the main respiratory diseases with high clinical mortality. The global outbreak of coronavirus disease 2019 (COVID-19) can cause severe ARDS, resulting in a steep rise in the number of patient deaths. Therefore, it is important to explore the pathogenesis of ALI and find effective therapeutic agents. In recent years, thanks to modern biomedical tools, some progress has been made in the application of traditional Chinese medicine (TCM) treatment principles based on syndromic differentiation and holistic concepts in clinical and experimental studies of ALI. More and more TCM effective components and formulae have been verified to have significant curative effects, which have a certain guiding significance for clinical practice. PURPOSE It is hoped to provide reference for the clinical research of ALI/ARDS and provide theoretical basis and technical support for the scientific application of TCM in respiratory related diseases. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, ScienceDirect, China National Knowledge Infrastructure (CNKI), and others up to January 2023. RESULTS In recent years, thanks to modern biomedical tools, some progress has been made in the application of TCM treatment principles based on syndromic differentiation and holistic concepts in clinical and experimental studies of ALI. This paper mainly reviews the research progress of ALI/ARDS mechanism, the understanding of its etiology and pathogenesis by TCM, and the therapeutic effects of TCM formulae and active ingredients of Chinese medicine. A large number of studies have shown that the effective components and formulae of TCM can prevent or treat ALI/ARDS in vivo and in vitro experiments. CONCLUSION TCM effective components and formulae play an important role in the prevention and treatment of ALI/ARDS through multiple approaches and multiple targets, and provide necessary theoretical support for the further development and utilization of TCM resources.
Collapse
Affiliation(s)
- Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xunjiang Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yilin Chen
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Limei Zhou
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yining Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Yin J, Zhao D, Song J, Gao R, Wang X, Rao H, Gao X, Hao J. Synergistic Antioxidant Activity of Lycium barbarum Polysaccharide and Chlorogenic Acid and Its Effect on Inflammatory Response of NR8383 Cells. Foods 2024; 13:3696. [PMID: 39594111 PMCID: PMC11593829 DOI: 10.3390/foods13223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
It is inevitable for polyphenols and polysaccharides to interact during food preparation. Modifications in microstructure can lead to changes in the physical and chemical properties of food systems, which in turn may influence the nutritional characteristics and functional activities of the food. Recent studies have shown that, in addition to traditional Chinese medicine compounds, certain natural polysaccharides and polyphenols exhibit significant anti-inflammatory and antioxidant properties. These compounds are also associated with beneficial therapeutic effects for the prevention and treatment of acute lung injury. The objective of this study was to examine the synergistic antioxidant effects of chlorogenic acid (CA) and Lycium barbarum polysaccharide (LBP) in various ratios, along with their combined antioxidant and anti-inflammatory effects on LPS-induced inflammation in rat alveolar macrophages. Using the Combination Index (CI), which quantifies the synergistic or antagonistic effect of two substances, all four combinations showed synergistic antioxidant properties over a range of concentrations by in vitro antioxidant property experiments. However, based on comparing them, the four group ratios exhibited the highest antioxidant activity of the infusion at CA:LBP = 1:7, indicating synergistic interactions (CI < 1). In addition, the antioxidant and anti-inflammatory effects of the CA-LBP complex were observed to alleviate cellular inflammatory injury by reducing LPS-induced nitric oxide and reactive oxygen species production and inhibiting the release of inflammatory factors such as TNF-α and IL-6.
Collapse
Affiliation(s)
- Junye Yin
- College of Bioscience & Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050018, China; (J.Y.); (R.G.); (X.W.); (H.R.); (J.H.); (X.G.)
| | - Dandan Zhao
- College of Bioscience & Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050018, China; (J.Y.); (R.G.); (X.W.); (H.R.); (J.H.); (X.G.)
| | - Jian Song
- Shandong Center for Disease Control and Prevention, Jinan 250014, China;
| | - Ran Gao
- College of Bioscience & Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050018, China; (J.Y.); (R.G.); (X.W.); (H.R.); (J.H.); (X.G.)
| | - Xuan Wang
- College of Bioscience & Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050018, China; (J.Y.); (R.G.); (X.W.); (H.R.); (J.H.); (X.G.)
| | - Huan Rao
- College of Bioscience & Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050018, China; (J.Y.); (R.G.); (X.W.); (H.R.); (J.H.); (X.G.)
| | - Xiaoguang Gao
- College of Bioscience & Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050018, China; (J.Y.); (R.G.); (X.W.); (H.R.); (J.H.); (X.G.)
- Hebei Province Functional Food Technology Innovation Center, Shijiazhuang 050018, China
| | - Jianxiong Hao
- College of Bioscience & Bioengineering, Hebei University of Science & Technology, Shijiazhuang 050018, China; (J.Y.); (R.G.); (X.W.); (H.R.); (J.H.); (X.G.)
| |
Collapse
|
4
|
Gao Y, Li H, Que Y, Chen W, Huang SY, Liu W, Ye X. Lycium barbarum polysaccharides (LBP) suppresses hypoxia/reoxygenation (H/R)-induced rat H9C2 cardiomyocytes pyroptosis via Nrf2/HO-1 signaling pathway. Int J Biol Macromol 2024; 280:135924. [PMID: 39322131 DOI: 10.1016/j.ijbiomac.2024.135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
This study aimed to explore the mechanism that Lycium barbarum polysaccharides (LBP) suppress hypoxia/reoxygenation (H/R)-caused pyroptosis in cardiomyocytes (H9C2) via the Nrf2/HO-1 pathway. Initially, we established the cell model of H/R (6 h hypoxia plus with 24 h reoxygenation), and found that 90 μg/mL LBP was the optimal concentration. Subsequently, we confirmed that LBP reduced the apoptosis rate of cells after H/R, the activity of LDH, the inflammatory factors IL-1β and IL-18, and the levels of pyroptosis-specific markers ASC, NLRP3, and Caspase-1 (mRNAs and proteins). It increased the cell survival rate and the mRNA levels of the Nrf2/HO-1 pathway markers Nrf2 and HO-1, and allowed cytoplasmic Nrf2 protein to enter the nucleus to activate HO-1 protein. The Nrf2 siRNA2 caused the following events in H/R model: (1) the increases of the apoptosis rate, LDH activity, the levels of inflammatory factors (IL-1β and IL-18), the levels of ACS, NLRP3, and Caspase-1 (mRNAs and proteins); and (2) the decreases of the cell survival rate, the mRNA levels of Nrf2 and HO-1, and the protein levels of cytoplasm-Nrf2, nucleus-Nrf2, and HO-1. Therefore we concluded that 90 μg/mL LBP suppressed H/R-induced H9C2 cardiomyocyte pyroptosis via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yi Gao
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Huangen Li
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Yongkang Que
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Weiwen Chen
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China.
| | - Wenjie Liu
- Department of General Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| | - Xiaotong Ye
- School of Medicine, Huaqiao University, Quanzhou 362000, China.
| |
Collapse
|
5
|
Wang Q, Li M, Lu Q, Tao R, Liao J, Zhao J. Lycium barbarum-Derived Polysaccharides Alleviate DNA Damage and Oxidative Stress Caused by Ultraviolet Radiation in Corneal Epithelial Cells. Curr Eye Res 2024; 49:1123-1130. [PMID: 39444111 DOI: 10.1080/02713683.2024.2366309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Lycium barbarum polysaccharides (LBPs) have been proven to protect the eyes by inhibiting apoptosis. This study was designed to investigate the effect of LBPs on DNA damage and oxidative stress induced by ultraviolet B (UVB) radiation in human corneal epithelial cells (HCECs). METHODS HCECs were divided into a control group, UVB group and UVB + LBP group and treated with varying concentrations of LBP (0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 mg/mL). Then, the effects of LBP on the viability and apoptosis of HCECs were detected via MTT assay and flow cytometry. Additionally, the contents of superoxide dismutase (SOD), malondialdehyde (MDA), and reactive oxygen species (ROS) in the cells of each group were measured to evaluate the level of oxidative stress. RESULTS LBP at a concentration of 0.4 mg/mL showed the best effect on promoting the viability and inhibiting the apoptosis of HCECs. Compared with the control group, the UVB and UVB + LBP groups exhibited significantly decreased levels of cell viability and SOD and notably increased apoptosis, MDA, ROS, tail DNA percentage, olive tail moment, p-CHK2, and gamma histone (γH2AX). In contrast to the UVB group, the UVB + LBP group presented notably upregulated levels of cell viability and SOD and downregulated apoptosis, MDA, ROS, tail DNA percentage, olive tail moment, p-CHK2, and γH2AX. CONCLUSIONS The optimal concentration of LBP to promote the viability and reduce the apoptosis of HCECs is 0.4 mg/mL. Moreover, LBP can alleviate DNA damage and oxidative stress induced by UVB in HCECs.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ophthalmology, Shidong Hospital of Yangpu District, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Qing Lu
- Department of Ophthalmology, Shidong Hospital of Yangpu District, Shanghai, China
| | - Rui Tao
- Department of Ophthalmology, Shidong Hospital of Yangpu District, Shanghai, China
| | | | - Jie Zhao
- Department of Ophthalmology, Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
6
|
Huang Q, Ren Y, Yuan P, Huang M, Liu G, Shi Y, Jia G, Chen M. Targeting the AMPK/Nrf2 Pathway: A Novel Therapeutic Approach for Acute Lung Injury. J Inflamm Res 2024; 17:4683-4700. [PMID: 39051049 PMCID: PMC11268519 DOI: 10.2147/jir.s467882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
ALI(acute lung injury) is a severe respiratory dysfunction caused by various intrapulmonary and extrapulmonary factors. It is primarily characterized by oxidative stress and affects the integrity of the pulmonary barrier. In severe cases, ALI can progress to ARDS(acute respiratory distress syndrome), a condition that poses a serious threat to the lives of affected patients. To date, the etiological mechanisms underlying ALI remain elusive, and available therapeutic options are quite limited. AMPK(AMP-activated protein kinase), an essential serine/threonine protein kinase, performs a pivotal function in the regulation of cellular energy levels and cellular regulatory mechanisms, including the detection of redox signals and mitigating oxidative stress. Meanwhile, Nrf2(nuclear factor erythroid 2-related factor 2), a critical transcription factor, alleviates inflammation and oxidative responses by interacting with multiple signaling pathways and contributing to the modulation of oxidative enzymes associated with inflammation and programmed cell death. Indeed, AMPK induces the dissociation of Nrf2 from Keap1(kelch-like ECH-associated protein-1) and facilitates its translocation into the nucleus to trigger the transcription of downstream antioxidant genes, ultimately suppressing the expression of inflammatory cells in the lungs. Given their roles, AMPK and Nrf2 hold promise as novel treatment targets for ALI. This study aimed to summarise the current status of research on the AMPK/Nrf2 signaling pathway in ALI, encompassing recently reported natural compounds and drugs that can activate the AMPK/Nrf2 signaling pathway to alleviate lung injury, and provide a theoretical reference for early intervention in lung injury and future research on lung protection.
Collapse
Affiliation(s)
- Qianxia Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ping Yuan
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Ma Huang
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Guoyue Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Yuanzhi Shi
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Guiyang Jia
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| | - Miao Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi City, Gui Zhou, People’s Republic of China
| |
Collapse
|
7
|
Wu F, Dang B, Hu L, Zhu S, Liu Z, Cao X, Li Z, Wang C, Lin C. Lycium barbarum polysaccharide inhibits blue-light-induced skin oxidative damage with the involvement of mitophagy. Photochem Photobiol 2024; 100:604-621. [PMID: 37814779 DOI: 10.1111/php.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Although blue light can damage the skin to a certain extent, the pathogenesis of its damage remains still unclear. The available evidence suggests that oxidative stress may be the main cause of its damage. Lycium barbarum polysaccharide (LBP) has antioxidative effects in a variety of cells. In this paper, we investigated the protective role of LBP and its mechanism of action related to mitophagy in blue-light-damaged skin cells. The findings indicated that in HaCaT cells and mouse skin, LBP pretreatment was effective in reducing blue-light-induced apoptosis and ameliorating the elevated level of cellular autophagy/mitophagy caused by excessive blue light exposure. The markers reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) were used to assess oxidative stress. LBP could effectively inhibit blue-light-induced oxidative stress. It was also found that blue light exposure caused mitochondrial dysfunction in HaCaT cells, including increased intracellular calcium ion levels and decreased mitochondrial membrane potential. LBP pretreatment significantly relieved mitochondrial dysfunction in HaCaT cells. These findings imply that LBP pretreatment protects skin cells from damage induced by blue light irradiation and that mitophagy may be a significant factor in skin photodamage.
Collapse
Affiliation(s)
- Fen Wu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Liming Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zuohao Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinhui Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhen Li
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Luan R, Luo M, Ding D, Su X, Yang J. Zinc deficiency increases lung inflammation and fibrosis in obese mice by promoting oxidative stress. Biochim Biophys Acta Gen Subj 2024; 1868:130518. [PMID: 37951369 DOI: 10.1016/j.bbagen.2023.130518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Zinc deficiency can lead to multiple organ damage. In this study, we investigated the effects of zinc deficiency on obesity-related lung damage. METHODS C57BL/6 J mice were fed a diet with differing amounts of zinc and fat over a 6-month period. Palmitic acid was used to stimulate A549 cells to construct a high-fat alveolar epithelial cell model. Western blotting and histopathological staining were performed on animal tissues. Nuclear expression of nuclear factor erythroid 2-related factor 2 (Nrf2) was detected in cultured cells. A reactive oxygen species (ROS) assay kit was used to detect intracellular ROS. Furthermore, Nrf2 siRNA was used to examine zinc deficiency effects on A549 cells. RESULTS Pathological results showed significant damage to the lung structure of mice in the high-fat and low-zinc diet group, with a significant increase in the expression of inflammatory (IL-6, TNF-α) and fibrosis (TGFβ1, PAI-1) factors, combined with a decrease in the expression of Nrf2, HO-1 and NQO1 in the antioxidant pathway. In A549 cells, high fat and low zinc levels aggravated ROS production. Western blot and immunofluorescence results showed that high fat and zinc deficiency inhibited Nrf2 expression. After Nrf2-specific knockout in A549 cells, the protective effect of zinc on oxidant conditions induced by high fat was reduced. Phosphorylated Akt and PI3K levels were downregulated on the high-fat and low-zinc group compared with the high-fat group. CONCLUSIONS Zinc attenuated lung oxidative damage in obesity-related lung injury and Nrf2 activation is one of the important mechanisms of this effect. GENERAL SIGNIFICANCE Regulating zinc homeostasis through dietary modifications or supplemental nutritional therapy can contribute to the prevention and treatment of obesity-related lung injury.
Collapse
Affiliation(s)
- Rumei Luan
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dongyan Ding
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Su
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Li ZY, Lin LH, Liang HJ, Li YQ, Zhao FQ, Sun TY, Liu ZY, Zhu JY, Gu F, Xu JN, Hao QY, Zhou DS, Zhai HH. Lycium barbarum polysaccharide alleviates DSS-induced chronic ulcerative colitis by restoring intestinal barrier function and modulating gut microbiota. Ann Med 2023; 55:2290213. [PMID: 38061697 PMCID: PMC10836275 DOI: 10.1080/07853890.2023.2290213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE This study examined the protective effects and mechanism of Lycium barbarum polysaccharides (LBP) in the context of intestinal barrier function and intestinal microbiota in mice with dextran sulfate sodium (DSS)-induced chronic ulcerative colitis (UC). METHODS C57BL/6J male mice were assigned to a standard normal diet without DSS (control group), a normal diet with DSS (DSS group, 2% DSS given discontinuously for 3 weeks) or a normal diet supplemented with LBP (1% dry feed weight, LBP group, 2% DSS given discontinuously for 3 weeks) for a total of 8 weeks, at which point colonic tissues and caecal contents were collected. RESULTS LBP exerted a significant effect against colitis by increasing body weight, colon length, DAI and histopathological scores. LBP inhibited proinflammatory cytokines (IL-1β, IL-6, iNOS and TNF-α) expression, improved anti-inflammatory cytokine (IL-10) expression, promoted the expression of tight junction proteins (Occludin and ZO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2) activation and decreased Claudin-2 expression to maintain the intestinal mucosal barrier. In addition, the abundances of some probiotics (Ruminococcaceae, Lactobacillus, Butyricicoccus, and Akkermansia) were decreased with DSS treatment but increased obviously with LBP treatment. And LBP reduced the abundance of conditional pathogens associated with UC (Mucispirillum and Sutterella). Furthermore, LBP improved the production of short-chain fatty acids (SCFAs), including acetic acid, propionic acid, butyric acid and isobutyric acid. CONCLUSION LBP can alleviate DSS-induced UC by regulating inflammatory cytokines and tight junction proteins. Moreover, LBP promotes probiotics, suppresses conditional pathogens and increases SCFAs production, showing a strong prebiotic effect.
Collapse
Affiliation(s)
- Zhi-Yu Li
- Department of Gastroenterology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Lan-Hui Lin
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - He-Jun Liang
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Ya-Qi Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fu-Qian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ting-Yi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zi-Yu Liu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jing-Yi Zhu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Feng Gu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Jia-Ning Xu
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Qi-Yuan Hao
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - De-Shan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui-Hong Zhai
- National Clinical Research Center for Digestive Diseases, Beijing, China
- Department of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Lian YZ, Liu YC, Chang CC, Nochi T, Chao JCJ. Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells. Pharmaceuticals (Basel) 2023; 16:1455. [PMID: 37895926 PMCID: PMC10610401 DOI: 10.3390/ph16101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The effects of Lycium barbarum polysaccharides (LBP) and plasmon-activated water (PAW) against IFN-γ/TNF-α induced inflammation in human colon Caco-2 cells were investigated. Cells were divided into the control, induction, LBP treatment (100-500 μg/mL), and combination groups with PAW. Inflammation was induced 24 h with 10 ng/mL IFN-γ when cell confluency reached >90%, and various doses of LBP with or without PAW were treated for 3 h, and subsequently 50 ng/mL TNF-α was added for another 24 h to provoke inflammation. Combination of LBP with PAW significantly decreased the secretion of IL-6 and IL-8. Cyclooxygenase-2 and inducible NO synthase expression was attenuated in all LBP-treated groups with or without PAW. NLRP3 inflammasome and related protein PYCARD expression were inhibited by LBP at the highest dose (500 μg/mL). All doses of LBP alone significantly decreased p-ERK expression, but combination with PAW increased p-ERK expression compared to those without PAW. Additionally, 250 and 500 μg/mL of LBP with or without PAW inhibited procaspase-3/caspase-3 expression. Therefore, LBP possesses anti-inflammation and anti-apoptosis by inhibiting the secretion of inflammatory cytokines and the expression of NLRP3 inflammasome-related protein. The combination with PAW exerts additive or synergistic effect on anti-inflammation.
Collapse
Affiliation(s)
- Yu Zhi Lian
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Cell Physiology and Molecular Image Research Center, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110301, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Tomonori Nochi
- Laboratory of Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan;
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Jane C.-J. Chao
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan;
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Master Program in Global Health and Health Security, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
11
|
Cheong KL, Yu B, Teng B, Veeraperumal S, Xu B, Zhong S, Tan K. Post-COVID-19 syndrome management: Utilizing the potential of dietary polysaccharides. Biomed Pharmacother 2023; 166:115320. [PMID: 37595427 DOI: 10.1016/j.biopha.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
The COVID-19 pandemic has caused significant global impact, resulting in long-term health effects for many individuals. As more patients recover, there is a growing need to identify effective management strategies for ongoing health concerns, such as post-COVID-19 syndrome, characterized by persistent symptoms or complications beyond several weeks or months from the onset of symptoms. In this review, we explore the potential of dietary polysaccharides as a promising approach to managing post-COVID-19 syndrome. We summarize the immunomodulatory, antioxidant, antiviral, and prebiotic activities of dietary polysaccharides for the management of post-COVID-19 syndrome. Furthermore, the review investigates the role of polysaccharides in enhancing immune response, regulating immune function, improving oxidative stress, inhibiting virus binding to ACE2, balancing gut microbiota, and increasing functional metabolites. These properties of dietary polysaccharides may help alleviate COVID-19 symptoms, providing a promising avenue for effective treatment strategies.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Biao Yu
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
12
|
Jiang SJ, Xiao X, Li J, Mu Y. Lycium barbarum polysaccharide-glycoprotein ameliorates ionizing radiation-induced epithelial injury by regulating oxidative stress and ferroptosis via the Nrf2 pathway. Free Radic Biol Med 2023; 204:84-94. [PMID: 37119863 DOI: 10.1016/j.freeradbiomed.2023.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Radiation-induced oral mucositis (RIOM) is considered to be the most common acute side effect of radiation therapy and occurs during intentional or accidental radiation exposure. Antioxidant synthesis agents have been reported to protect against or alleviate the development of mucositis, but the resulting side effects of chemical synthesis agents limit their use in clinical practice. Lycium barbarum polysaccharide-glycoprotein (LBP), a polysaccharide extract of the Lycium barbarum fruit, has superior antioxidant capacity and biosafety and is a potential option for radiation prevention and treatment. Here, we aimed to investigate whether LBP conferred radioprotection against ionizing radiation-induced oral mucosal damage. We found that LBP exerted radioprotective effects in irradiated HaCaT cells, improving cell viability, stabilizing mitochondrial membrane potential, and decreasing cell death. LBP pretreatment reduced oxidative stress and ferroptosis in radioactivity-damaged cells by activating the transcription factor Nrf2 and promoting its downstream targets, such as HO-1, NQO1, SLC7A11, and FTH1. Knockdown of Nrf2 eliminated the protective effects of LBP, implying the essential role of Nrf2 in LBP activity. Additionally, the topical application of LBP thermosensitive hydrogel on rat mucosa resulted in a significant decrease in ulcer size in the irradiated group, suggesting that LBP oral mucoadhesive gel may be a potential tool for the treatment of irradiation. In conclusion, we demonstrated that LBP attenuates ionizing radiation-induced oral mucosa injury by reducing oxidative stress and inhibiting ferroptosis via the Nrf2 signaling pathway. LBP may be a promising medical countermeasure against RIOM.
Collapse
Affiliation(s)
- Si-Jing Jiang
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China; Stomatology Department, Chengdu Shuangliu Hospital of Traditional Chinese Medicine, Chengdu, 610212, China
| | - Xun Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jing Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yangdong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
13
|
Song L, Yang J, Kong W, Liu Y, Liu S, Su L. Cordyceps militaris polysaccharide alleviates ovalbumin-induced allergic asthma through the Nrf2/HO-1 and NF-κB signaling pathways and regulates the gut microbiota. Int J Biol Macromol 2023; 238:124333. [PMID: 37030458 DOI: 10.1016/j.ijbiomac.2023.124333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Polysaccharides, as one of the main types of bioactive components of Cordyceps militaris, have anti-allergic asthma effects. Herein, an ovalbumin-induced allergic asthma mouse model was established to assess the potential mechanisms of the separated and purified Cordyceps militaris polysaccharide (CMP). CMP is an α-pyranose with a molecular weight of 15.94 kDa that consists of Glc, Man, Gal, Xyl, Ara and GlcA in a molar ratio of 81.25:21.96:13.88:3.92:3.58:1.00. CMP improved inflammatory cytokine levels, alleviated the histopathological changes in the lung and intestinal tissues, regulated the expression of mRNA and proteins related to oxidative stress and inflammatory pathways, reversed gut dysbiosis at the phylum and family levels and improved microbiota function in allergic asthma mice. Moreover, it was found that the levels of inflammatory cytokines in lung tissue of mice were significantly correlated with some intestinal microbial communities. Overall, CMP improved oxidative stress and the inflammatory response in allergic asthma mice by regulating the Nrf2/HO-1 and NF-κB signaling pathways, which may be closely correlation with maintaining the stability of the gut microbiota.
Collapse
Affiliation(s)
- Lanyue Song
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Jintao Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Weihan Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Shuyan Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, Jilin, China; College of Plant Protection, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
14
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Zhang L, Gong Y, Zhang L, Liang B, Xu H, Hu W, Jin Z, Wu X, Chen X, Li M, Shi L, Shi Y, Li M, Huang Y, Wang Y, Yang L. Gou Qi Zi inhibits proliferation and induces apoptosis through the PI3K/AKT1 signaling pathway in non-small cell lung cancer. Front Oncol 2022; 12:1034750. [PMID: 36591458 PMCID: PMC9796997 DOI: 10.3389/fonc.2022.1034750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
Background Gou Qi Zi (Lycium barbarum) is a traditional herbal medicine with antioxidative effects. Although Gou Qi Zi has been used to prevent premature aging and in the treatment of non-small cell lung cancer (NSCLC), its mechanism of action in NSCLC remains unclear. The present study utilized network pharmacology to assess the potential mechanism of action of Gou Qi Zi in the treatment of NSCLC. Methods The TCMSP, TCMID, SwissTargetPrediction, DrugBank, DisGeNET, GeneCards, OMIM and TTD databases were searched for the active components of Gou Qi Zi and their potential therapeutic targets in NSCLC. Protein-protein interaction networks were identified and the interactions of target proteins were analyzed. Involved pathways were determined by GO enrichment and KEGG pathway analyses using the Metascape database, and molecular docking technology was used to study the interactions between active compounds and potential targets. These results were verified by cell counting kit-8 assays, BrdU labeling, flow cytometry, immunohistochemistry, western blotting, and qRT-PCR. Results Database searches identified 33 active components in Gou Qi Zi, 199 predicted biological targets and 113 NSCLC-related targets. A network of targets of traditional Chinese medicine compounds and potential targets of Gou Qi Zi in NSCLC was constructed. GO enrichment analysis showed that Gou Qi Zi targeting of NSCLC was mainly due to the effect of its associated lipopolysaccharide. KEGG pathway analysis showed that Gou Qi Zi acted mainly through the PI3K/AKT1 signaling pathway in the treatment of NSCLC. Molecular docking experiments showed that the bioactive compounds of Gou Qi Zi could bind to AKT1, C-MYC and TP53. These results were verified by experimental assays. Conclusion Gou Qi Zi induces apoptosis and inhibits proliferation of NSCLC in vitro and in vivo by inhibiting the PI3K/AKT1 signaling pathway.
Collapse
Affiliation(s)
- Lingling Zhang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanju Gong
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Zhang
- School of Medicine, Jianghan University, Wuhan, China
| | - Bing Liang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangming Hu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhong Jin
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiongbin Chen
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Li
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqin Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaping Shi
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingjian Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- Basic Medicine College, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Lan Yang, ;
| |
Collapse
|
16
|
Hao Y, Gao X. Diosgenin protects retinal pigment epithelial cells from inflammatory damage and oxidative stress induced by high glucose by activating AMPK/Nrf2/HO-1 pathway. Immun Inflamm Dis 2022; 10:e698. [PMID: 36444632 PMCID: PMC9667204 DOI: 10.1002/iid3.698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Diosgenin is a natural steroidal compound with reported antidiabetic and many other protective properties. This study aimed to explore the protective effect of diosgenin on high-glucose (HG)-induced retinal pigment epithelial cells. METHODS HG-induced ARPE-19 cells were considered as a cell model of diabetic retinopathy (DR). The viability and apoptosis of ARPE-19 cells induced by HG treated with either diosgenin or Compound C (CC; dorsomorphin) were detected by Cell Counting Kit-8 assay and flow cytometric analysis. The expression of apoptosis-related proteins, inflammation-related proteins, and AMPK/Nrf2/HO-1 pathway-related proteins was detected by western blotting. The levels of inflammatory cytokines and detection of oxidative stress indexes were performed using the appropriate assay kits. The messenger RNA expression of inflammatory cytokines was detected by real-time quantitative polymerase chain reaction. RESULTS There was no obvious effect of diosgenin on the viability of ARPE-19 cells and the viability of ARPE-19 cells was significantly reduced after HG induction. However, diosgenin increased the viability, inhibited the apoptosis, and reduced the inflammatory response and oxidative stress of ARPE-19 cells induced by HG. In addition, diosgenin could activate the AMPK/Nrf2/HO-1 pathway. CC, an AMPK inhibitor, could reverse the above changes caused by diosgenin treatment in ARPE-19 cells induced by HG. CONCLUSIONS Diosgenin could protect ARPE-19 cells from inflammatory damage and oxidative stress induced by HG, by activating the AMPK/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yang Hao
- Department of OpthalmologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xuefeng Gao
- College of ManagementBeijing Capital Normal University College of ManagementBeijingChina
| |
Collapse
|
17
|
Luan R, Ding D, Yang J. The protective effect of natural medicines against excessive inflammation and oxidative stress in acute lung injury by regulating the Nrf2 signaling pathway. Front Pharmacol 2022; 13:1039022. [PMID: 36467050 PMCID: PMC9709415 DOI: 10.3389/fphar.2022.1039022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury (ALI) is a common critical disease of the respiratory system that progresses into acute respiratory distress syndrome (ARDS), with high mortality, mainly related to pulmonary oxidative stress imbalance and severe inflammation. However, there are no clear and effective treatment strategies at present. Nuclear factor erythroid 2-related factor 2(Nrf2) is a transcription factor that interacts with multiple signaling pathways and regulates the activity of multiple oxidases (NOX, NOS, XO, CYP) related to inflammation and apoptosis, and exhibits antioxidant and anti-inflammatory roles in ALI. Recently, several studies have reported that the active ingredients of natural medicines show protective effects on ALI via the Nrf2 signaling pathway. In addition, they are cheap, naturally available, and possess minimal toxicity, thereby having good clinical research and application value. Herein, we summarized various studies on the protective effects of natural pharmaceutical components such as polyphenols, flavonoids, terpenoids, alkaloids, and polysaccharides on ALI through the Nrf2 signaling pathway and demonstrated existing gaps as well as future perspectives.
Collapse
|
18
|
Huang P, Zhang J, Duan W, Jiao J, Leng A, Qu J. Plant polysaccharides with anti-lung injury effects as a potential therapeutic strategy for COVID-19. Front Pharmacol 2022; 13:982893. [DOI: 10.3389/fphar.2022.982893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
When coronavirus disease 2019 (COVID-19) develops into the severe phase, lung injury, acute respiratory distress syndrome, and/or respiratory failure could develop within a few days. As a result of pulmonary tissue injury, pathomorphological changes usually present endothelial dysfunction, inflammatory cell infiltration of the lung interstitium, defective gas exchange, and wall leakage. Consequently, COVID-19 may progress to tremendous lung injury, ongoing lung failure, and death. Exploring the treatment drugs has important implications. Recently, the application of traditional Chinese medicine had better performance in reducing fatalities, relieving symptoms, and curtailing hospitalization. Through constant research and study, plant polysaccharides may emerge as a crucial resource against lung injury with high potency and low side effects. However, the absence of a comprehensive understanding of lung-protective mechanisms impedes further investigation of polysaccharides. In the present article, a comprehensive review of research into plant polysaccharides in the past 5 years was performed. In total, 30 types of polysaccharides from 19 kinds of plants have shown lung-protective effects through the pathological processes of inflammation, oxidative stress, apoptosis, autophagy, epithelial–mesenchymal transition, and immunomodulation by mediating mucin and aquaporins, macrophage, endoplasmic reticulum stress, neutrophil, TGF-β1 pathways, Nrf2 pathway, and other mechanisms. Moreover, the deficiencies of the current studies and the future research direction are also tentatively discussed. This research provides a comprehensive perspective for better understanding the mechanism and development of polysaccharides against lung injury for the treatment of COVID-19.
Collapse
|
19
|
Zhou W, Xuan D, Yu T, Zhang J. Aberrant pulmonary immune response of obese mice to periodontal infection. Open Life Sci 2022; 17:991-1000. [PMID: 36060644 PMCID: PMC9386611 DOI: 10.1515/biol-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and periodontitis constitute mutual risk factors in respiratory disorders; this study aimed to explore the pulmonary immune response to periodontal infection using combined animal models with diet-induced obesity (DIO). Thirty-two C57 BL/6J mice were randomly divided into low-fat (LF) or high-fat (HF) diet groups and fed an LF diet as a control or an HF diet to induce obesity. The 30-week mice in the diet group were divided into periodontal ligation group (10 days using Porphyromonas gingivalis ATCC 33277) or sham-ligation group. The expressions of the macrophage-specific maker (F4/80), macrophage chemotactic protein1 (MCP1), and inflammatory cytokines in lung tissues were analyzed. The mRNA and protein levels of F4/80, MCP1, interleukin (IL)-1β, and IL-6 expressions were significantly upregulated by obesity in lung tissues. However, the mRNA and protein levels of F4/80, MCP1, and IL-6 were downregulated by periodontitis in DIO mice relative to that of the HF control group. Periodontitis increased tumor necrosis factor-α level of lung tissues under LF, while IL-10 was not affected by obesity regardless of periodontitis. Periodontitis may aggravate pulmonary immune response in obese rodents. This may relate to the imbalance of the pro- and anti-inflammatory cytokine status of lung lesions, which tends to attenuate the infiltration of alveolar macrophages.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Periodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Dongying Xuan
- Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, China
| | - Ting Yu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key laboratory of Basic and Applied Research of Oral Regenerative Medicine, 195A, Dongfeng West Road, Yuexiu District, Guangzhou, Guangdong, China
| | - Jincai Zhang
- Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Tao J, Wang S, Qiu H, Xie R, Zhang H, Chen N, Li S. Modulation of growth performance, antioxidant capacity, non-specific immunity and disease resistance in largemouth bass (Micropterus salmoides) upon compound probiotic cultures inclusion. FISH & SHELLFISH IMMUNOLOGY 2022; 127:804-812. [PMID: 35843521 DOI: 10.1016/j.fsi.2022.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
An 8-week feeding trial was conducted to evaluate the effects of dietary supplementation of compound probiotic cultures (CPC; Bacillus subtilis, Lactobacillus plantarum and Saccharomyces cerevisiae) on the growth performance, antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass. Triplicate groups of largemouth bass (average weight 42.05 ± 0.02 g), with a destiny of 30 individuals per tank, were fed diets supplemented with different concentration of compound probiotic cultures (CPC) (0%, CPC (0.0); 0.5%, CPC (0.5); 1.0%, CPC (1.0); 2.0%, CPC (2.0)). After the feeding trial, tissue samples of largemouth bass were collected and the challenge test with Aeromonas hydrophila was performed. Results indicated that the CPC supplementation produced no significant difference on the growth performance, feed utilization and body composition of largemouth bass, while significantly increased the cumulative survival rate in the Aeromonas hydrophila challenge test. Meanwhile, the inclusion of CPC elevated the hepatic antioxidant capacity, and the highest activity of antioxidant enzymes, including T-AOC, CAT, GPx and T-SOD, was observed in the CPC (2.0) group. Meanwhile, the transcription of Nrf2/keap1 and antioxidant related genes, including CAT, GPx, GST, SOD1 and SOD2, was significantly elevated with the inclusion of CPC. In addition, the inclusion of CPC improved the non-specific immunity of largemouth bass. The activity of serum lysozyme was significantly elevated in the CPC (2.0) group, while the transcription of RelA and pro-inflammatory factors, including TNF-α and IL-1β, was inhibited with the inclusion of CPC. Meanwhile, related genes potentially linked to RelA, including TLR2 and p38 MAPK, were detected that their relative expression was significantly inhibited with the inclusion of CPC. The current findings indicated that the inclusion of 2% CPC improved the antioxidant capacity, non-specific immunity and disease resistance of juvenile largemouth bass, and suggested that 2% CPC as a functional additive could be applied to the diet of juvenile largemouth bass in aquaculture practice.
Collapse
Affiliation(s)
- Jiajie Tao
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shilin Wang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Hongjie Qiu
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524000, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524000, China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 20136, China; National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
21
|
Wu J, Huang R, Jiao D, Liu S, Liu H, Liu H. Protection by Hosta ventricosa polysaccharides against oxidative damage induced by t-BHP in HepG2 cells via the JNK/Nrf2 pathway. Int J Biol Macromol 2022; 208:453-462. [PMID: 35339497 DOI: 10.1016/j.ijbiomac.2022.03.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Hosta ventricosa is a plant that can be used for medicine and diet. It has been proven to have anti-inflammatory, antibacterial and antitumor activities, and one of its main constituents is polysaccharides. However, studies on polysaccharides of Hosta ventricosa are limited, and their physiological activities have not been clarified. Therefore, isolation, purification and characterization of Hosta ventricosa root polysaccharides (HVRPp-1) were performed in this research. Furthermore, the effect of HVRPp-1 on tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in HepG2 cells was investigated in vitro. The results showed that HVRPp-1 is a nonhomogeneous polysaccharide that could protect HepG2 cells from oxidative damage through the C-Jun N-terminal kinase (JNK)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In conclusion, this research proved the antioxidant mechanism of HVRPp-1 for the first time, providing a reliable theoretical basis for basic research on Hosta ventricosa polysaccharides and the possibility of their application in functional foods.
Collapse
Affiliation(s)
- Jinshan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Rong Huang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Dexin Jiao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Shuying Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
| | - Hongzhang Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
22
|
Zhong JX, Jin SS, Wu KS, Yu GC, Tu LL, Liu L. Effect of nano-selenium loaded with lycium barbarum polysaccharide on the proliferation of lens epithelial cells after UVB damage in vitro. Int J Ophthalmol 2022; 15:9-14. [PMID: 35047350 DOI: 10.18240/ijo.2022.01.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/18/2021] [Indexed: 01/02/2023] Open
Abstract
AIM To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide (LBP-SeNPs) on the proliferation of human lens epithelial cells (HLECs) from UV irradiation. METHODS LBP-SeNPs were prepared and their particle size was detected. HLECs (SRA01/04) were irradiated with UVB for different time (0, 10, 20, 30, 40, 50, 60min) to construct a damaged model, the survival rate of cells was determined by methylthiazol tetrazolium (MTT) assay. The 4',6-Diamidine-2'-phenylindole dihydrochloride (DAPI) staining was used to observe the status of cell nucleus and drug entering cytoplasm through cell membrane in SRA01/04 cells after adding LBP-SENPS loaded with coumarin fluorescence agent 24h under fluorescence microscope. SRA01/04 normal and UVB-damaged cells were treated with different amounts of LBP-SeNPs at different concentrations, cells proliferation were observed. RESULTS The particle size of LBP-SeNPs was stable in the range of 150-200 nm. The survival rate changes with time after UVB irradiation were statistically significant. The 10min of UVB exposure as the time was chosen to construct the cell damage model. With DAPI staining, LBP-SeNPs were observed to enter the cytoplasm through the cell membrane under fluorescence inverted microscope. Cytotoxicity of SRA01/04 at different concentrations of LBP-SeNPs were measured. Cell survival rate was statistically different compared with the control group. The higher the loading concentration of LBP in nano-Se drugs was, the higher the cell proliferation rate was (P<0.05). The lower the concentration of LBP-SeNPs, the higher the cell proliferation rate, showing a negative growth trend (P<0.05). The group with the highest average cell proliferation rate was 0.5 µmol/L 2.0 mg/mL LBP-SeNPs (128.80%). When the 2.0 mg/mL LBP-SeNPs group was selected for cell photography, the cell density was higher at 0.5 µmol/L. With the increase of concentration, SRA01/04 cells appeared more cytoplasm dehydration, cell shrinkage and apoptotic bodies, and cell density decreased. CONCLUSION LBP-SeNPs has moderate particle size and good stability. LBP-SeNPs can protect HLECs (SRA01/04) from UVB-induced damage, and the cell proliferation rate is further increased with increasing the amount of loaded LBP and decreasing nano-selenium concentration.
Collapse
Affiliation(s)
- Jing-Xiang Zhong
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Shan-Shan Jin
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Kang-Sheng Wu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Guo-Cheng Yu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lei-Lei Tu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| | - Lian Liu
- Department of Ophthalmology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong Province, China
| |
Collapse
|
23
|
Pan H, Niu L, Wu Y, Chen L, Zhou X, Zhao Y. Lycium barbarum polysaccharide protects rats and cardiomyocytes against ischemia/reperfusion injury via Nrf2 activation through autophagy inhibition. Mol Med Rep 2021; 24:778. [PMID: 34498711 PMCID: PMC8436221 DOI: 10.3892/mmr.2021.12418] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The irreversible loss of cardiomyocytes is mainly the result of ischemic/reperfusion (I/R) myocardial injury, leading to persistent heart dysfunction and heart failure. It has been reported that Lycium barbarum polysaccharide (LBP) has protective effects on cardiomyocytes, but the specific mechanism is still not completely understood. The present study examined the protective role of LBP in myocardial I/R injury. Rats were subjected to myocardial I/R injury and LBP treatment. Moreover, rat myocardial H9C2 cells exposed to hypoxia/reoxygenation (H/R) were used to simulate cardiac injury during myocardial I/R process and were exposed to LBP, rapamycin (an autophagy activator) or nuclear factor-erythroid factor 2-related factor 2 (Nrf2) transfection. Morphological examination, histopathological examination and echocardiography were used to determine the cardiac injury after I/R injury. Cell viability and apoptosis were determined via MTT and flow cytometry assays, respectively. The levels of lactate dehydrogenase (LDH), creatine kinase (CK), cardiac troponin T (cTnT), IL-1β, IL-6, TNF-α, malondialdehyde (MDA) and superoxidase dismutase (SOD) in rat serum, hearts and/or cells were assessed using ELISAs. The expression levels of Beclin 1, LC3II/LC3I, P62 and Nrf2 were analyzed via reverse transcription-quantitative PCR and western blotting. The results demonstrated that LBP improved heart function and repaired cardiomyocyte damage in I/R model rats, as well as reduced the production of cTnT, CK, LDH, IL-1β, IL-6 and TNF-α. The in vitro study results indicated that LBP increased cell viability, the apoptosis rate, and the levels of SOD and P62, as well as reduced the levels of LDH, CK, IL-1β, IL-6, TNF-α, MDA, Beclin 1 and LC3-II/LC3-I in H/R-injured H9C2 cells. Moreover, LBP promoted Nrf2 nuclear translocation, but decreased Nrf2 expression in the cytoplasm. Rapamycin exacerbated the aforementioned effects in H/R injured H9C2 cells, and partially reversed LBP-induced effects. Overexpressing Nrf2 counteracted I/R-induced effects and partially resisted rapamycin-induced effects. These findings demonstrated that LBP exhibited a cardiac protective effect on the ischemic myocardium of rats after reperfusion and attenuated myocardial I/R injury via autophagy inhibition-induced Nrf2 activation.
Collapse
Affiliation(s)
- Hao Pan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Lin Niu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yihao Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaowei Zhou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Zhao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
24
|
Signal Pathways and Markers Involved in Acute Lung Injury Induced by Acute Pancreatitis. DISEASE MARKERS 2021; 2021:9947047. [PMID: 34497676 PMCID: PMC8419500 DOI: 10.1155/2021/9947047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease with a mortality rate of about 30%. Acute lung injury (ALI) is a common systemic complication of acute pancreatitis, with progressive hypoxemia and respiratory distress as the main manifestations, which can develop into acute respiratory distress syndrome or even multiple organ dysfunction syndrome (MODS) in severe cases, endangering human health. In the model of AP, pathophysiological process of the lung can be summarized as oxidative stress injury, inflammatory factor infiltration, and alveolar cell apoptosis. However, the intrinsic mechanisms underlying AP and how it leads to ALI are not fully understood. In this paper, we summarize recent articles related to AP leading to ALI, including the signal transduction pathways and biomarkers of AP-ALI. There are factors or pathway aggravating ALI, the JAK2-STAT3 signaling pathway, NLRP3/NF-κB pathway, mitogen-activated protein kinase, PKC pathway, neutrophil protease (NP)-LAMC2-neutrophil pathway, and the P2X7 pathway, and there are important transcription factors in the NRF2 signal transduction pathway which could give researchers better understanding of the underlying mechanisms controlling AP and ALI and lay the foundation for finally curing ALI induced by AP.
Collapse
|
25
|
Xie W, Huang YY, Chen HG, Zhou X. Study on the Efficacy and Mechanism of Lycium barbarum Polysaccharide against Lead-Induced Renal Injury in Mice. Nutrients 2021; 13:nu13092945. [PMID: 34578823 PMCID: PMC8470764 DOI: 10.3390/nu13092945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Lead is one of the most common heavy metal pollutants in the environment. Prolonged exposure to lead will induce oxidative stress, inflammation, and apoptosis in the kidneys, which in turn causes kidney injury. Lycium barbarum polysaccharide (LBP) is well known for its numerous pharmacological properties. This study aims to explore the efficacy and mechanism of LBP against lead-induced kidney damage in mice. Symptoms of renal injury were induced in mice by using 25 mg/kg lead acetate (PbAc2), and different doses of LBP (200, 400, and 600 mg/kg BW) were orally administrated to PbAc2-treated mice for five weeks. The results of the pharmacodynamics experiment showed that the renal pathological damages, serum creatinine (Cre), blood urea nitrogen (BUN), and kidney index of PbAc2-treated mice could be significantly alleviated by treatment with LBP. Further, LBP treatment significantly increased the weight and feed intake of PbAc2-treated mice. The dose effect results indicated that a medium dose of LBP was superior to high and low doses. The results of mechanistic experiments showed that LBP could attenuate oxidative stress, inflammation, and apoptosis in the kidneys of mice with lead toxicity by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway.
Collapse
Affiliation(s)
- Wen Xie
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Yuan-Yuan Huang
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
| | - Hua-Guo Chen
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| | - Xin Zhou
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China; (W.X.); (Y.-Y.H.)
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, 116 Baoshan North Rd., Guiyang 550001, China
- The Research Center for Quality Control of Natural Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang 550001, China
- Correspondence: (H.-G.C.); (X.Z.)
| |
Collapse
|
26
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
27
|
Xiao Z, Deng Q, Zhou W, Zhang Y. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far? Pharmacol Ther 2021; 229:107921. [PMID: 34174277 DOI: 10.1016/j.pharmthera.2021.107921] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Lycium barbarum is widely used as a functional food and medicinal herb to promote health and longevity in China and in some other Asian countries. In modern pharmacological and chemical studies, the most valuable and well-researched component of L. barbarum is a group of unique water-soluble glycoconjugates that are collectively termed Lycium barbarum polysaccharides (LBPs). Numerous modern pharmacological studies have revealed that LBPs possess antiaging, antidiabetic, antifibrotic, neuroprotective, and immunomodulation properties, while the immunomodulatory effect is primary and is involved in other activities. However, due to their structural heterogeneity and lack of chromophores, it has long been unclear how LBPs work on the immune system. A few studies have recently provided some insights into the proposed mode of action of LBPs, such as structure-activity relationships, receptor recognition, and gut microbiota modulation of LBPs. This review provides a comprehensive overview of the immunoregulating properties of LBPs and their related mechanisms of action.
Collapse
Affiliation(s)
- Zhiyong Xiao
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Deng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| |
Collapse
|
28
|
The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res 2021; 167:105526. [DOI: 10.1016/j.phrs.2021.105526] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
|
29
|
Food-Derived Pharmacological Modulators of the Nrf2/ARE Pathway: Their Role in the Treatment of Diseases. Molecules 2021; 26:molecules26041016. [PMID: 33671866 PMCID: PMC7918973 DOI: 10.3390/molecules26041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.
Collapse
|
30
|
You Q, Li L, Li D, Yang D, Chen L, Chen HP, Liu YP. Meta-Analysis on the Chinese Herbal Formula Xiaoer-Feike Granules as a Complementary Therapy for Children With Acute Lower Respiratory Infections. Front Pharmacol 2020; 11:496348. [PMID: 33192498 PMCID: PMC7642815 DOI: 10.3389/fphar.2020.496348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Over the past five years the Chinese herbal formula (CHF) medicine, Xiaoer-Feike granules (XFG), has become a widely used adjuvant therapy for acute lower respiratory infections (ALRI). Considering the rapid popularization and application of XFG, and the lack of systematic evidence evaluating its effectiveness and safety in treating ALRI, it is necessary to conduct a meta-analysis to determine its benefits for patients. Methods This study systematically identified randomized controlled trials (RCTs) of XFG treatments for ALRI through July 2019 using four English-databases (PubMed, Cochrane Library, Ovid, and Web of Science) and four Chinese-databases (Sino-med database, China National Knowledge Infrastructure (CNKI), VIP database, and the WANFANG database). We then performed a quality assessment and data analysis with Review Manager 5.3.5 and Stata 15.1. Results Twenty-one RCTs involving 3425 patients were randomly divided into an XFG group and a conventional medicine (CM) group. The results showed that the clinical efficacy rate (CER) of the XFG group was significantly higher than that of the CM group (RR=1.17, 95% CI =1.13-1.22, P< 0.00001). In comparison with the CM group, the XFG group had strikingly shortened: resolution time of cough (RTC) (MD = -1.92; 95% CI =-2.33, -1.51, P<0.00001); resolution time of rale (RTR) (MD = -1.68; 95% CI =-2.27, -1.10, P<0.00001); resolution time of fever (RTF) (MD = -1.46; 95% CI =-1.92, -1.00, P<0.00001); resolution time of inflammatory lesions (RTIL) (MD = -2.43, 95% CI =-2.94, -1.93, P< 0.00001); and hospital stays (HS) (MD = -2.26, 95% CI =-3.03, -1.49, P< 0.00001). At the cellular and molecular level, the CD4, CD8, CD4/CD8, IL-6, TNF-α, and CRP levels were significantly improved when CM was complemented with XFG. In addition, no significant difference was observed between the XFG and CM groups in terms of the adverse events (AE) (RR =0.97, 95% CI= 0.61-1.54, P= 0.89). Conclusions The findings of this meta-analysis support the use of XFG in the treatment of ALRI. However, these results should be treated with caution due to the significant heterogeneity and publication bias of existing data. Further well-designed and high-quality RCTs are needed to interrogate the efficacy and safety of XFG.
Collapse
Affiliation(s)
- Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lan Li
- School of Nursing, Southwest Medical University, Luzhou, China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Ping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - You-Ping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Zhang M, Li F, Pokharel S, Ma T, Wang X, Wang Y, Wang W, Lin R. Lycium barbarum polysaccharide protects against Homocysteine-induced Vascular smooth muscle cell proliferation and phenotypic transformation via PI3K/Akt pathway. J Mol Histol 2020; 51:629-637. [PMID: 32897463 DOI: 10.1007/s10735-020-09909-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Lycium barbarum polysaccharide (LBP) is an alkaloid extracted from lycium barbarum. LBP is the active component of lycium barbarum used to treat hypertension, atherosclerosis and other cardiovascular diseases in Chinese traditional medicine. However, the underlying cellular and molecular mechanisms of LBP- mediated activity in vascular disease remain poorly understood. In the present study, we showed the protective effect of LBP in vascular smooth muscle cells. Our results indicate that LBP significantly reduces the proliferation of VSMCs caused by Homocysteine (Hcy) and inhibits the phenotypic transformation of VSMCs caused by Hcy, from contractile to synthetic. LBP inhibited the protein expression of PI3K and Akt caused by Hcy, and increased the expression of miR-145. The results indicate that LBP exhibits substantial therapeutic potential for the treatment of Hcy-induced VSMCs proliferation and phenotypic transformation through inhibition of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Minghao Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Fan Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China.,Sanqun Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Smritee Pokharel
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Ting Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Xiuyu Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.,Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health Commission, Ningxia Key Laboratory of Vascular Injury and Repair Research, Yinchuan, China
| | - Yiyong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Weirong Wang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Rong Lin
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
32
|
Xu W, Zhao T, Xiao H. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis. Front Endocrinol (Lausanne) 2020; 11:400. [PMID: 32625169 PMCID: PMC7311749 DOI: 10.3389/fendo.2020.00400] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
It is widely recognized that chemical, physical, and biological factors can singly or synergistically evoke the excessive production of oxidative stress in pulmonary tissue that followed by pulmonary lesions and pneumonia. In addition, metabolic and endocrine disorder-induced diseases such as diabetes and obesity often expressed higher susceptibility to pulmonary infections, and presented severe symptoms which increasing the mortality rate. Therefore, the connection between the lesion of the lungs and the metabolic/endocrine disorders is an interesting and essential issue to be addressed. Studies have noticed a similar pathological feature in both infectious pneumonia and metabolic disease-intercurrent pulmonary lesions, that is, from the view of molecular pathology, the accumulation of excessive reactive oxygen species (ROS) in pulmonary tissue accompanying with activated pro-inflammatory signals. Meanwhile, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor 2 (Nrf2) signaling plays important role in metabolic/endocrine homeostasis and infection response, and it's closely associated with the anti-oxidative capacity of the body. For this reason, this review will start from the summary upon the implication of ROS accumulation, and to discuss how AMPK-Nrf2 signaling contributes to maintaining the metabolic/endocrine homeostasis and attenuates the susceptibility of pulmonary infections.
Collapse
Affiliation(s)
| | | | - Hengyi Xiao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Zheng D, Liu D, Kuang Y, Xu J, Xu G, Tai Q. Toll-like receptor 7 deficiency mitigates hyperoxia-induced acute lung injury in mice. Biomed Pharmacother 2020; 129:110345. [PMID: 32535385 DOI: 10.1016/j.biopha.2020.110345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/10/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Toll-like receptor (TLR) 7 is an important mediator in inflammation. However, its role in hyperoxia-induced acute lung injury (HALI) remains to be elucidated. METHODS C57BL/6 wild-type and C57BL/6 background TLR 7 deficiency mice were exposed to hyperoxia to stimulate HALI in airtight cages. Animals were sacrificed at 72 h post hyperoxia or room air exposure. Lung injury indicators were measured. Moreover, soluble epoxide hydrolase (sEH) activity was detected by a 14, 15-EET/DHET ELISA kit. Activation of activator protein (AP)-1 and nuclear factor kappa-B (NF-κB) was detected with enzyme linked immunosorbent assay kits. RESULTS Our data revealed that pulmonary histological assay and wet to dry weight ratio, myeloperoxidase and malondialdehyde activity were reduced in TLR 7 deficiency mice compared with wild-type mice. Moreover, hyperoxia-caused elevation of sEH activity was reduced in TLR 7 deficiency mice. Transcription factors AP-1 activation was significantly inhibited in TLR 7 deficiency mice compared with wild-type mice. Similarly, the activation of NF-κB was reduced in TLR 7 deficiency mice. Tumor necrosis factor-α and interleukin-1β, potent proinflammatory cytokines, were reduced in TLR 7 deficiency mice. CONCLUSION TLR 7 deficiency is associated with inhibition of inflammation in HALI in mice.
Collapse
Affiliation(s)
- Donghua Zheng
- Department Of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, GuangDong, 510000, China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, GuangDong, 510000, China
| | - Yukun Kuang
- The Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, GuangDong, 510000, China
| | - Jinghong Xu
- Department Of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, GuangDong, 510000, China
| | - Guixing Xu
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou, GuangDong, 510000, China.
| | - Qiang Tai
- Department Of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, GuangDong, 510000, China.
| |
Collapse
|
34
|
Acetylated Polysaccharides From Pleurotus geesteranus Alleviate Lung Injury Via Regulating NF-κB Signal Pathway. Int J Mol Sci 2020; 21:ijms21082810. [PMID: 32316588 PMCID: PMC7216226 DOI: 10.3390/ijms21082810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
The present work investigated the anti-inflammatory, antioxidant, and lung protection effects of acetylated Pleurotus geesteranus polysaccharides (AcPPS) on acute lung injury (ALI) mice. The acetylation of AcPPS was successfully shown by the peaks of 1737 cm−1 and 1249 cm−1 by FTIR. The animal experiments demonstrated that lung damage can be induced by zymosan. However, the supplementation of AcPPS had potential effects on reducing lung index, remitting inflammatory symptoms (TNF-α, IL-1β, and IL-6), inhibiting NF-κB signal pathway based on up-regulating the level of IκBα and down-regulating p-IκBα level by Western blotting and immunofluorescence assay, preventing oxidative stress (ROS, SOD, GSH-Px, CAT, T-AOC, and MDA), reducing lipid accumulation (TC, TG, LDL-C, HDL-C, and VLDL-C), and alleviating lung functions by histopathologic observation. These results demonstrated that AcPPS might be suitable for natural food for prevention or remission in ALI.
Collapse
|
35
|
Ding Z, Zhong R, Xia T, Yang Y, Xing N, Wang W, Wang Y, Yang B, Sun X, Shu Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed Pharmacother 2019; 122:109706. [PMID: 31918277 DOI: 10.1016/j.biopha.2019.109706] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.
Collapse
Affiliation(s)
- Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Xing
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wujing Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
36
|
Lipoxin A4 Ameliorates Acute Pancreatitis-Associated Acute Lung Injury through the Antioxidative and Anti-Inflammatory Effects of the Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2197017. [PMID: 31781326 PMCID: PMC6875318 DOI: 10.1155/2019/2197017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/08/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
Abstract
Acute lung injury (ALI) is a critical event involved in the pathophysiological process of acute pancreatitis (AP). Many methods have been widely used for the treatment of AP-ALI, but few are useful during early inflammation. Lipoxin A4 (LXA4), a potent available anti-inflammatory and novel antioxidant mediator, has been extensively studied in AP-ALI, but its underlying mechanism as a protective mediator is not clear. This research was conducted to identify the possible targets and mechanisms involved in the anti-AP-ALI effect of LXA4. First, we confirmed that LXA4 strongly inhibited AP-ALI in mice. Next, using ELISA, PCR, and fluorescence detection to evaluate different parameters, LXA4 was shown to reduce the inflammatory cytokine production induced by AP and block reactive oxygen species (ROS) generation in vivo and in vitro. In addition, TNF-α treatment activated the nuclear factor E2-related factor 2 (Nrf2) signaling pathway and its downstream gene heme oxygenase-1 (HO-1) in human pulmonary microvascular endothelial cells (HPMECs), and LXA4 further promoted their expression. This study also provided evidence that LXA4 phosphorylates Ser40 and triggers its nuclear translocation to activate Nrf2. Moreover, when Nrf2-knockout (Nrf2−/−) mice and cells were used to further assess the effect of the Nrf2/HO-1 pathway, we found that Nrf2 expression knockdown partially eliminated the effect of LXA4 on the reductions in inflammatory factor levels while abrogating the inhibitory effect of LXA4 on the ROS generation stimulated by AP-ALI. Overall, LXA4 attenuated the resolution of AP-induced inflammation and ROS generation to mitigate ALI, perhaps by modulating the Nrf2/HO-1 pathway. These findings have laid a foundation for the treatment of AP-ALI.
Collapse
|
37
|
Extraction, Structural Characterization, and Biological Functions of Lycium Barbarum Polysaccharides: A Review. Biomolecules 2019; 9:biom9090389. [PMID: 31438522 PMCID: PMC6770593 DOI: 10.3390/biom9090389] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Lycium barbarum polysaccharides (LBPs), as bioactive compounds extracted from L. barbarum L. fruit, have been widely explored for their potential health properties. The extraction and structural characterization methods of LBPs were reviewed to accurately understand the extraction method and structural and biological functions of LBPs. An overview of the biological functions of LBPs, such as antioxidant function, antitumor activity, neuroprotective effects, immune regulating function, and other functions, were summarized. This review provides an overview of LBPs and a theoretical basis for further studying and extending the applications of LBPs in the fields of medicine and food.
Collapse
|