1
|
Liu H, Dai L, Liu J, Duan K, Yi F, Li Z. Establishment and validation of diagnostic model in immunoglobulin A nephropathy based on weighted gene co-expression network analysis. Medicine (Baltimore) 2024; 103:e39930. [PMID: 39612439 DOI: 10.1097/md.0000000000039930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Bioinformatics analysis helps to understand the underlying mechanisms and adjust diagnostic and treatment strategies for immunoglobulin A nephropathy (IgAN) by screening gene expression datasets. We explored the biological function of IgAN, and established and validated a diagnostic model for IgAN using weighted gene co-expression network analysis. Using the GSE93798 and GSE37460 datasets, we performed differential expression analysis, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, constructed a protein-protein network, and identified hub genes. A diagnostic model was built using a receiver operating characteristic curve, calibration plot, and decision curve analysis. Two Gene Expression Omnibus (GEO) datasets were integrated to screen 38 differentially expressed genes between patients with IgAN and normal kidney donors in glomerular samples. KEGG enrichment analysis showed that the differentially expressed genes were mainly enriched in the IL-17 and relaxin signaling pathways. We constructed a protein-protein interaction (PPI) network of differentially expressed genes using the STRING database and cross-compared it with the results of weighted gene correlation network analysis to screen out the top 10 key genes: FOS, EGR2, FOSB, NR4A1, BR4A3, FOSL1, NR4A2, ALB, CD53, C3AR1.We also found that the immune infiltration level was remarkably increased in IgAN tissues. We established a 5-gene panel diagnostic model (ACTA2, ALB, AFM, ALDH1L1, and ALDH6A1). The combined diagnostic ability was high, with the area under the curve (AUC) was 0.964. Based on these 5 genes, we also developed a risk-scoring evaluation system for individuals. The calibration plot indicated that the nomogram-predicted probability of nonadherence was highly correlated with actual diagnosed nonadherence, and the decision curve analysis indicated that patients had a relatively good net benefit. The model and gene expression were also validated using an external dataset. Our study provides directions for exploring the potential molecular mechanisms of IgAN as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Haibo Liu
- Department of Emergency, Yueyang Central Hospital, Yueyang, Hunan Province, China
| | - Lingling Dai
- Department of Gynaecology, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong Province, China
| | - Jie Liu
- Department of Emergency, Shenzhen United Family Hospital, Shenzhen, Guangdong Province, China
| | - Kai Duan
- Department of Emergency, Yueyang Central Hospital, Yueyang, Hunan Province, China
| | - Feng Yi
- Department of Emergency, Yueyang Central Hospital, Yueyang, Hunan Province, China
| | - Zhuo Li
- Department of Emergency, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong Province, China
| |
Collapse
|
2
|
Liu ZH, Xu QY, Wang Y, Gao HX, Min YH, Jiang XW, Yu WH. Catalpol from Rehmannia glutinosa Targets Nrf2/NF-κB Signaling Pathway to Improve Renal Anemia and Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1451-1485. [PMID: 39075978 DOI: 10.1142/s0192415x24500575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rehmannia glutinosa is widely recognized as a prominent medicinal herb employed by practitioners across various generations for the purpose of fortifying kidney yin. Within Rehmannia glutinosa, the compound known as catalpol (CAT) holds significant importance as a bioactive constituent. However, the protective effects of CAT on kidneys, including ameliorative effects on chronic kidney disease - most prominently renal anemia and renal fibrosis - have not been clearly defined. In this study, the kidney injury model of NRK-52E cells and C57BL/6N male mice was prepared by exposure to aristolochic acid I (AA-I), and it was discovered that CAT could ameliorate oxidative stress injury, inflammatory injury, apoptosis, renal anemia, renal fibrosis, and other renal injuries both in vivo and in vitro. Further treatment of NRK-52E cells with Nrf2 inhibitors (ML385) and activators (ML334), as well as NF-κB inhibitors (PDTC), validated CAT's ability to target Nrf2 activation. Furthermore, the expression of phosphorylated NF-κB p65, IL-6, and Cleaved-Caspase3 protein was inhibited. CAT also inhibited NF-κB, and then inhibited the expression of IL-6, p-STAS3, TGF-β1 protein. Therefore, CAT can regulate Nrf2/NF-κB signaling pathway, significantly correct renal anemia and renal fibrosis, and is conducive to the preservation of renal structure and function, thus achieving a protective effect on the kidneys.
Collapse
Affiliation(s)
- Zhi-Hui Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Qing-Yang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Yu Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Hong-Xin Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Ya-Hong Min
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Xiao-Wen Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
| | - Wen-Hui Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Chinese Veterinary Research Institute, Northeast Agricultural University, Harbin, Heilongjiang Province, 150030, P. R. China
- Heilongjiang Key Laboratory for the Prevention and Control of Common Animal Diseases, Harbin, Heilongjiang Province, 150030, P. R. China
| |
Collapse
|
3
|
Sun MX, Qiao FX, Xu ZR, Liu YC, Xu CL, Wang HL, Qi ZQ, Liu Y. Aristolochic acid I exposure triggers ovarian dysfunction by activating NLRP3 inflammasome and affecting mitochondrial homeostasis. Free Radic Biol Med 2023; 204:313-324. [PMID: 37201634 DOI: 10.1016/j.freeradbiomed.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Aristolochic acids are widely distributed in the plants of Aristolochiaceae family and Asarum species. Aristolochic acid I (AAI) is the most frequent compound of aristolochic acids, which can accumulate in the soil, and then contaminates crops and water and enters the human body. Research has shown that AAI affects the reproductive system. However, the mechanism of AAI's effects on the ovaries at the tissue level still needs to be clarified. In this research, we found AAI exposure reduced the body and ovarian growth in mice, decreased the ovarian coefficient, prevented follicular development, and increased atretic follicles. Further experiments showed that AAI upregulated nuclear factor-κB and tumor necrosis factor-α expression, activated the NOD-like receptor protein 3 inflammasome, and led to ovarian inflammation and fibrosis. AAI also affected mitochondrial complex function and the balance between mitochondrial fusion and division. Metabolomic results also showed ovarian inflammation and mitochondrial dysfunction due to AAI exposure. These disruptions reduced the oocyte developmental potential by forming abnormal microtubule organizing centers and expressing abnormal BubR1 to destroy spindle assembly. In summary, AAI exposure triggers ovarian inflammation and fibrosis, affecting the oocyte developmental potential.
Collapse
Affiliation(s)
- Ming-Xin Sun
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Feng-Xin Qiao
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Yue-Cen Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, Guangxi, 530031, China
| | - Hai-Long Wang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
4
|
Feng LL, Huang Z, Nong YY, Guo BJ, Wang QY, Qin JH, He Y, Zhu D, Guo HW, Qin YL, Zhong XY, Guo Y, Cheng B, Ou SF, Su ZH. Evaluation of aristolochic acid Ι nephrotoxicity in mice via 1H NMR quantitative metabolomics and network pharmacology approaches. Toxicol Res (Camb) 2023; 12:282-295. [PMID: 37125334 PMCID: PMC10141773 DOI: 10.1093/toxres/tfad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023] Open
Abstract
Background Although many studies have shown that herbs containing aristolochic acids can treat various human diseases, AAΙ in particular has been implicated as a nephrotoxic agent. Methods and results Here, we detail the nephrotoxic effect of AAΙ via an approach that integrated 1H NMR-based metabonomics and network pharmacology. Our findings revealed renal injury in mice after the administration of AAΙ. Metabolomic data confirmed significant differences among the renal metabolic profiles of control and model groups, with significant reductions in 12 differential metabolites relevant to 23 metabolic pathways. Among them, there were seven important metabolic pathways: arginine and proline metabolism; glycine, serine, and threonine metabolism; taurine and hypotaurine metabolism; ascorbate and aldehyde glycolate metabolism; pentose and glucosinolate interconversion; alanine, aspartate, and glutamate metabolism; and glyoxylate and dicarboxylic acid metabolism. Relevant genes, namely, nitric oxide synthase 1 (NOS1), pyrroline-5-carboxylate reductase 1 (PYCR1), nitric oxide synthase 3 (NOS3) and glutamic oxaloacetic transaminase 2 (GOT2), were highlighted via network pharmacology and molecular docking techniques. Quantitative real-time PCR findings revealed that AAI administration significantly downregulated GOT2 and NOS3 and significantly upregulated NOS1 and PYCR1 expression and thus influenced the metabolism of arginine and proline. Conclusion This work provides a meaningful insight for the mechanism of AAΙ renal injury.
Collapse
Affiliation(s)
- Lin-Lin Feng
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Zheng Huang
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Yun-Yuan Nong
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Bing-Jian Guo
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Qian-Yi Wang
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Jing-Hua Qin
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Ying He
- First Clinical Medical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Dan Zhu
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Hong-Wei Guo
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Yue-Lian Qin
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Xin-Yu Zhong
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Yue Guo
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, No. 20-1 Dongge Road, Qingxiu District, Nanning 530022, China
| | - Bang Cheng
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Song-Feng Ou
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| | - Zhi-Heng Su
- Pharmaceutical College, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development, High-value Utilization Engineering Research Center, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, No. 22 Shuangyong Road, Qingxiu District, Nanning 530021, China
| |
Collapse
|
5
|
Chen X, Zhang J, Xie J, Huang Z. Development of two immunochromatographic test strips based on gold nanospheres and gold nanoflowers for the rapid and simultaneous detection of aflatoxin B1 and aristolochic acid A in dual-use medicinal and food ingredients. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Dong LY, Cao TY, Guo YH, Chen R, Zhao YS, Zhao Y, Kong H, Qu HH. Aristolochic Acid Nephropathy: A Novel Suppression Strategy of Carbon Dots Derived from Astragali Radix Carbonisata. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite strict restrictions on the use of aristolochic acids (AAs)-containing merchandise or drugs in many countries, a substantial amounts of occurrences aristolochic acid nephropathy (AAN) had been accounted worldwide. Clinically, there is no effective incurable therapy regimen to
reverse the progression of AAN. Although carbon dots have shown surprising bioactivity, research on the acute kidney injury caused by AAs is lacking. Here, a novel biomass-carbon dots from Astragali Radix (AR) as precursors was synthesized through one-step pyrolysis treatment. The ARC-carbon
dots (ARC-CDs) was demonstrated in detail for its inhibitory effect on aristolochic acid nephropathy in a mice model. The indexes of inflammatory cytokines as well as oxidative stress were significantly reduced by the ARC-CDs in kidney tissue cells. Additionally, the ARC-CDs administration
resulted in a large decrease in positive apoptotic cells according to TUNEL labeling and western blotting, which may be connected to the ARC-CDs’ modulation of the protein in the Akt/Mdm2/p53 signaling pathway. These findings show that ARC-CDs have remarkable anti-inflammatory, antioxidant,
and anti-apoptotic capabilities against acute kidney injury spurred by aristolochic acids via the AKT/Mdm2/p53 signaling pathway.
Collapse
Affiliation(s)
- Li-Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tian-You Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ying-Hui Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Rui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yu-Sheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui-Hua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
7
|
Feiteng C, Lei C, Deng L, Chaoliang X, Zijie X, Yi S, Minglei S. Relaxin inhibits renal fibrosis and the epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway. Ren Fail 2022; 44:513-524. [PMID: 35311469 PMCID: PMC8942541 DOI: 10.1080/0886022x.2022.2044351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Renal fibrosis is a common characteristic and the final pathological mechanism of chronic kidney disease (CKD). Although CKD remains incurable, inhibition of renal fibrosis is beneficial to inhibit the CKD process. Relaxin alleviates renal fibrosis in some experimental models, but its mechanism remains unclear. In the following, we studied the regulatory effect of relaxin on epithelial-mesenchymal transition (EMT) after unilateral ureteral obstruction (UUO). Our results demonstrate that relaxin could downregulate Wnt/β-catenin signaling and decrease EMT, thus protecting against loss of transporters in tubular epithelial cells (TECs) and abrogate renal interstitial fibrosis following UUO. We confirmed that relaxin can downregulate Wnt/β-catenin signaling and decrease EMT in NRK52E, thus abrogating G2 cell cycle arrest in vitro experiments. Therefore, a novel mechanism by which relaxin is antifibrotic is that relaxin regulates the EMT program of TECs via Wnt/β-catenin signaling pathway. The inhibition of EMT contributes to protecting the functional capabilities of TECs and promoting the regeneration of TECs.
Collapse
Affiliation(s)
- Chen Feiteng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Lei
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Deng
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Chaoliang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Zijie
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shao Yi
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sha Minglei
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Antoine MH, Husson C, Yankep T, Mahria S, Tagliatti V, Colet JM, Nortier J. Protective Effect of Nebivolol against Oxidative Stress Induced by Aristolochic Acids in Endothelial Cells. Toxins (Basel) 2022; 14:toxins14020132. [PMID: 35202159 PMCID: PMC8876861 DOI: 10.3390/toxins14020132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Aristolochic acids (AAs) are powerful nephrotoxins that cause severe tubulointerstitial fibrosis. The biopsy-proven peritubular capillary rarefaction may worsen the progression of renal lesions via tissue hypoxia. As we previously observed the overproduction of reactive oxygen species (ROS) by cultured endothelial cells exposed to AA, we here investigated in vitro AA-induced metabolic changes by 1H-NMR spectroscopy on intracellular medium and cell extracts. We also tested the effects of nebivolol (NEB), a β-blocker agent exhibiting antioxidant properties. After 24 h of AA exposure, significantly reduced cell viability and intracellular ROS overproduction were observed in EAhy926 cells; both effects were counteracted by NEB pretreatment. After 48 h of exposure to AA, the most prominent metabolite changes were significant decreases in arginine, glutamate, glutamine and glutathione levels, along with a significant increase in the aspartate, glycerophosphocholine and UDP-N-acetylglucosamine contents. NEB pretreatment slightly inhibited the changes in glutathione and glycerophosphocholine. In the supernatants from exposed cells, a decrease in lactate and glutamate levels, together with an increase in glucose concentration, was found. The AA-induced reduction in glutamate was significantly inhibited by NEB. These findings confirm the involvement of oxidative stress in AA toxicity for endothelial cells and the potential benefit of NEB in preventing endothelial injury.
Collapse
Affiliation(s)
- Marie-Hélène Antoine
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Erasme Campus, 808 Route de Lennik, B-1070 Brussels, Belgium; (C.H.); (T.Y.); (S.M.); (J.N.)
- Correspondence:
| | - Cécile Husson
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Erasme Campus, 808 Route de Lennik, B-1070 Brussels, Belgium; (C.H.); (T.Y.); (S.M.); (J.N.)
| | - Tatiana Yankep
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Erasme Campus, 808 Route de Lennik, B-1070 Brussels, Belgium; (C.H.); (T.Y.); (S.M.); (J.N.)
| | - Souhaila Mahria
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Erasme Campus, 808 Route de Lennik, B-1070 Brussels, Belgium; (C.H.); (T.Y.); (S.M.); (J.N.)
| | - Vanessa Tagliatti
- Laboratory of Human Toxicology, University of Mons (UMONS), 6 Avenue du Champ de Mars, B-7000 Mons, Belgium; (V.T.); (J.-M.C.)
| | - Jean-Marie Colet
- Laboratory of Human Toxicology, University of Mons (UMONS), 6 Avenue du Champ de Mars, B-7000 Mons, Belgium; (V.T.); (J.-M.C.)
| | - Joëlle Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Erasme Campus, 808 Route de Lennik, B-1070 Brussels, Belgium; (C.H.); (T.Y.); (S.M.); (J.N.)
| |
Collapse
|
9
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
10
|
Kocic G, Gajic M, Tomovic K, Hadzi-Djokic J, Anderluh M, Smelcerovic A. Purine adducts as a presumable missing link for aristolochic acid nephropathy-related cellular energy crisis, potential anti-fibrotic prevention and treatment. Br J Pharmacol 2021; 178:4411-4427. [PMID: 34235731 DOI: 10.1111/bph.15618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Aristolochic acid nephropathy is a progressive exposome-induced disease characterized by tubular atrophy and fibrosis culminating in end-stage renal disease and malignancies. The molecular mechanisms of the energy crisis as a putative cause of fibrosis have not yet been elucidated. In light of the fact that aristolochic acid forms DNA and RNA adducts by covalent binding of aristolochic acid metabolites to exocyclic amino groups of (deoxy)adenosine and (deoxy)guanosine, we hypothesize here that similar aristolochic acid adducts may exist with other purine-containing molecules. We also provide new insights into the aristolochic acid-induced energy crisis and presumably a link between already known mechanisms. In addition, an overview of potential targets in fibrosis treatment is provided, which is followed by recommendations on possible preventive measures that could be taken to at least postpone or partially alleviate aristolochic acid nephropathy.
Collapse
Affiliation(s)
- Gordana Kocic
- Department of Biochemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Mihajlo Gajic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Katarina Tomovic
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | | | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Andrija Smelcerovic
- Department of Chemistry, Faculty of Medicine, University of Nis, Nis, Serbia
| |
Collapse
|
11
|
Ng HH, Soula M, Rivas B, Wilson KJ, Marugan JJ, Agoulnik AI. Anti-apoptotic and Matrix Remodeling Actions of a Small Molecule Agonist of the Human Relaxin Receptor, ML290 in Mice With Unilateral Ureteral Obstruction. Front Physiol 2021; 12:650769. [PMID: 34305630 PMCID: PMC8293094 DOI: 10.3389/fphys.2021.650769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Diseases, such as diabetes and hypertension, often lead to chronic kidney failure. The peptide hormone relaxin has been shown to have therapeutic effects in various organs. In the present study, we tested the hypothesis that ML290, a small molecule agonist of the human relaxin receptor (RXFP1), is able to target the kidney to remodel the extracellular matrix and reduce apoptosis induced by unilateral ureteral obstruction (UUO). UUO was performed on the left kidney of humanized RXFP1 mice, where the right kidneys served as contralateral controls. Mice were randomly allocated to receive either vehicle or ML290 (30 mg/kg) via daily intraperitoneal injection, and kidneys were collected for apoptosis, RNA, and protein analyses. UUO significantly increased expression of pro-apoptotic markers in both vehicle- and ML290-treated mice when compared to their contralateral control kidneys. Specifically, Bax expression and Erk1/2 activity were upregulated, accompanied by an increase of TUNEL-positive cells in the UUO kidneys. Additionally, UUO induced marked increase in myofibroblast differentiation and aberrant remodeling on the extracellular matrix. ML290 suppressed these processes by promoting a reduction of pro-apoptotic, fibroblastic, and inflammatory markers in the UUO kidneys. Finally, the potent effects of ML290 to remodel the extracellular matrix were demonstrated by its ability to reduce collagen gene expression in the UUO kidneys. Our data indicate that daily administration of ML290 has renal protective effects in the UUO mouse model, specifically through its anti-apoptotic and extracellular matrix remodeling properties.
Collapse
Affiliation(s)
- Hooi Hooi Ng
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mariluz Soula
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Bryan Rivas
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Kenneth J Wilson
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Juan J Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
12
|
Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, Tan HL, Tang XL, Wang YG, Ma ZC, Gao Y. Mitochondrial Iron Overload-Mediated Inhibition of Nrf2-HO-1/GPX4 Assisted ALI-Induced Nephrotoxicity. Front Pharmacol 2021; 11:624529. [PMID: 33584308 PMCID: PMC7873870 DOI: 10.3389/fphar.2020.624529] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 01/31/2023] Open
Abstract
Aristolactam I (ALI) is an active component derived from some Traditional Chinese medicines (TCMs), and also the important metabolite of aristolochic acid. Long-term administration of medicine-containing ALI was reported to be related to aristolochic acid nephropathy (AAN), which was attributed to ALI-induced nephrotoxicity. However, the toxic mechanism of action involved is still unclear. Recently, pathogenic ferroptosis mediated lipid peroxidation was demonstrated to cause kidney injury. Therefore, this study explored the role of ferroptosis induced by mitochondrial iron overload in ALI-induced nephrotoxicity, aiming to identify the possible toxic mechanism of ALI-induced chronic nephropathy. Our results showed that ALI inhibited HK-2 cell activity in a dose-dependent manner and significantly suppressed glutathione (GSH) levels, accompanying by significant increases in intracellular 4-hydroxynonenal (4-HNE) and intracellular iron ions. Moreover, the ALI-mediated cytotoxicity could be reversed by deferoxamine mesylate (DFO). Compared with other inhibitors, Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, obviously alleviated ALI-induced cytotoxicity. Furthermore, we have shown that ALI could remarkably increase the levels of superoxide anion and ferrous ions in mitochondria, and induce mitochondrial damage and condensed mitochondrial membrane density, the morphological characteristics of ferroptosis, all of which could be reversed by DFO. Interestingly, ALI dose-dependently inhibited these protein contents of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and glutathione peroxidase 4 (GPX4), which could be partly rescued by Tin-protoporphyrin IX (SnPP) and mitoTEMPO co-treatment. In conclusion, our results demonstrated that mitochondrial iron overload-mediated antioxidant system inhibition would assist ALI-induced ferroptosis in renal tubular epithelial cells, and Nrf2-HO-1/GPX4 antioxidative system could be an important intervention target to prevent medicine containing ALI-induced nephropathy.
Collapse
Affiliation(s)
- Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan-Xin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ning-Ning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong-Qiang Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xian Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Cong-Shu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Zhen Qiu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hong-Ling Tan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiang-Lin Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Guang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zeng-Chun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Anger EE, Yu F, Li J. Aristolochic Acid-Induced Nephrotoxicity: Molecular Mechanisms and Potential Protective Approaches. Int J Mol Sci 2020; 21:E1157. [PMID: 32050524 PMCID: PMC7043226 DOI: 10.3390/ijms21031157] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022] Open
Abstract
Aristolochic acid (AA) is a generic term that describes a group of structurally related compounds found in the Aristolochiaceae plants family. These plants have been used for decades to treat various diseases. However, the consumption of products derived from plants containing AA has been associated with the development of nephropathy and carcinoma, mainly the upper urothelial carcinoma (UUC). AA has been identified as the causative agent of these pathologies. Several studies on mechanisms of action of AA nephrotoxicity have been conducted, but the comprehensive mechanisms of AA-induced nephrotoxicity and carcinogenesis have not yet fully been elucidated, and therapeutic measures are therefore limited. This review aimed to summarize the molecular mechanisms underlying AA-induced nephrotoxicity with an emphasis on its enzymatic bioactivation, and to discuss some agents and their modes of action to reduce AA nephrotoxicity. By addressing these two aspects, including mechanisms of action of AA nephrotoxicity and protective approaches against the latter, and especially by covering the whole range of these protective agents, this review provides an overview on AA nephrotoxicity. It also reports new knowledge on mechanisms of AA-mediated nephrotoxicity recently published in the literature and provides suggestions for future studies.
Collapse
Affiliation(s)
| | | | - Ji Li
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (E.E.A.); (F.Y.)
| |
Collapse
|
14
|
Liu X, Wu J, Wang J, Feng X, Wu H, Huang R, Fan J, Yu X, Yang X. Mitochondrial dysfunction is involved in aristolochic acid I-induced apoptosis in renal proximal tubular epithelial cells. Hum Exp Toxicol 2019; 39:673-682. [PMID: 31884831 DOI: 10.1177/0960327119897099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aristolochic acid (AA) is a compound extracted from the Aristolochia species of herbs. AA exposure is associated with kidney injury known as aristolochic acid nephropathy (AAN). Proximal tubular epithelial cell (PTEC) is the primary target of AA and rich in mitochondria. Recently, increasing evidence suggests that mitochondrial dysfunction plays a critical role in the pathogenesis of kidney disease. However, the status of mitochondrial function in PTEC after exposure to AA remains largely unknown. The aim of this study was to explore the effect of aristolochic acid I (AAI) on cell apoptosis and mitochondrial function in PTEC. Normal rat kidney-52E (NRK-52E) cells were exposed to different concentrations of AAI for different time periods. Cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, cell apoptosis was analyzed by flow cytometry, and the expression of cleaved caspase-3 by Western blotting. Mitochondrial function was evaluated by reactive oxygen species (ROS), mitochondrial membrane potential (MMP), mitochondrial DNA (mtDNA) copy number, and adenosine triphosphate (ATP). It was found that AAI reduced cell viability and increased cell apoptosis in a dose- and time-dependent manner. In parallel to increased apoptosis, NRK-52E cell manifested signs of mitochondrial dysfunction in response to AAI treatment. The data indicated that AAI could increase ROS level, lower MMP, decrease mtDNA copy number, and reduce ATP production. In addition, Szeto-Schiller 31, a mitochondria-targeted antioxidant peptide, attenuated AAI-induced mitochondrial dysfunction and apoptosis. Our study depicted significant aberrant of mitochondrial function in AAI-treated NRK-52E cell, which suggested that mitochondrial dysfunction may be involved in AAI-induced apoptosis in PTEC.
Collapse
Affiliation(s)
- X Liu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China.,Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - J Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China.,Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - J Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - X Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - H Wu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - R Huang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - J Fan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - X Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| | - X Yang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, China
| |
Collapse
|