1
|
Xinhua C, Yang W, Jinyang S, Hongyue X, Wanlu Y, Mingmei Z, Jiazhang Q, Lu Y. The Effects of Baitouweng Decoction on Salmonella Typhimurium Infection and Its Underlying Mechanisms Evaluated by In Vivo and In Vitro Experiments, Network Pharmacology Analysis, and Molecular Docking Technology. Foodborne Pathog Dis 2024. [PMID: 39298327 DOI: 10.1089/fpd.2023.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Salmonella Typhimurium is a foodborne pathogen threatening livestock and human health. It is highly resistant to commonly used clinical antibiotics, and it is urgently needed to explore new anti-Salmonella treatment schemes. In this study, first, our in vivo mouse experiments showed that Baitouweng decoction (BTW), a classical Traditional Chinese Medicine (TCM) prescription, had good efficacy against Salmonella Typhimurium infection: mitigating weight loss of mice; lowering the bacterial load of liver, spleen, and colon; reducing the production of serum inflammatory factors (interleukin-1β and tumor necrosis factor-α); and decreasing histological index scores than that in the Salmonella Typhimurium infection group. Furthermore, we explored the potential active components and molecular mechanism of BTW in the treatment of Salmonella Typhimurium infection. A total of 465 compounds of BTW were retrieved from herb website and 227 bioactive compounds were identified, 911 potential BTW-related targets and 1,602 disease targets of Salmonella Typhimurium infection were acquired by ten public analytical databases, among them, 188 genes were overlay targets of BTW-Salmonella Typhimurium; String, Metascape, and Cytoscape plug-in Molecular Complex Detection and ClueGo analysis pointed that BTW exerted an anti-Salmonella effect through a multicomponent, multitarget, and multipathway manner, including 10 hub targets (TNF, AKT CASP3, ALB, EGFR, JUN, MAPK, STAT3, VEGFA, and TP53) and 94 pathways such as cell apoptosis, inflammation, and metabolism. Finally, AutoDock Vina showed that the hub target AKT1 with menispermine and quercetin had good binding energy, which was confirmed by the in vitro cellular thermal shift assay and drug affinity responsive target stability assay. This study laid the foundation for further study of BTW mechanism and for further development of BTW anti-Salmonella.
Collapse
Affiliation(s)
- Cui Xinhua
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Wang Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine Jilin University, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Hu S, Li S, Xu Y, Huang X, Mai Z, Chen Y, Xiao H, Ning W, Gaus S, Savkovic V, Lethaus B, Zimmerer R, Acharya A, Ziebolz D, Schmalz G, Huang S, Zhao J, Hu X. The antitumor effects of herbal medicine Triphala on oral cancer by inactivating PI3K/Akt signaling pathway: based on the network pharmacology, molecular docking, in vitro and in vivo experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155488. [PMID: 38493718 DOI: 10.1016/j.phymed.2024.155488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND This research aimed to investigate the anti-tumor effects and underlying genetic mechanisms of herbal medicine Triphala (TRP) in oral squamous cell carcinoma (OSCC). METHODS The target genes of Triphala (TRP) in oral squamous cell carcinoma (OSCC) were identified, and subsequent functional enrichment analysis was conducted to determine the enriched signaling pathways. Based on these genes, a protein-protein interaction network was constructed to identify the top 10 genes with the highest degree. Genes deregulated in OSCC tumor samples were identified to be hub genes among the top 10 genes. In vitro experiments were performed to investigate the influence of TRP extracts on the cell metabolic activity, migration, invasion, apoptosis, and proliferation of two OSCC cell lines (CAL-27 and SCC-9). The functional rescue assay was conducted to investigate the effect of applying the inhibitor and activator of an enriched pathway on the phenotypes of cancer cells. In addition, the zebrafish xenograft tumor model was established to investigate the influence of TRP extracts on tumor growth and metastasis in vivo. RESULTS The target genes of TRP in OSCC were prominently enriched in the PI3K-Akt signaling pathway, with the identification of five hub genes (JUN, EGFR, ESR1, RELA, and AKT1). TRP extracts significantly inhibited cell metabolic activity, migration, invasion, and proliferation and promoted cell apoptosis in OSCC cells. Notably, the application of TRP extracts exhibited the capacity to downregulate mRNA and phosphorylated protein levels of AKT1 and ESR1, while concomitantly inducing upregulation of mRNA and phosphorylated protein levels in the remaining three hub genes (EGFR, JUN, and RELA). The functional rescue assay demonstrated that the co-administration of TRP and the PI3K activator 740Y-P effectively reversed the impact of TRP on the phenotypes of OSCC cells. Conversely, the combination of TRP and the PI3K inhibitor LY294002 further enhanced the effect of TRP on the phenotypes of OSCC cells. Remarkably, treatment with TRP in zebrafish xenograft models demonstrated a significant reduction in both tumor growth and metastatic spread. CONCLUSIONS Triphala exerted significant inhibitory effects on cell metabolic activity, migration, invasion, and proliferation in OSCC cell lines, accompanied by the induction of apoptosis, which was mediated through the inactivation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shaonan Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Xiuhong Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Zhaoyi Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Hui Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Wanchen Ning
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Sebastian Gaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Vuk Savkovic
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Bernd Lethaus
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Rüdiger Zimmerer
- Department of Cranio Maxillofacial Surgery, University Clinic Leipzig, Leipzig 04103, Germany
| | - Aneesha Acharya
- Dr. D. Y. Patil Dental College & Hospital, Pune 411018, India
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig 04103, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig 04103, Germany
| | - Shaohong Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen 518118, China.
| | - Xianda Hu
- Laboratory of Molecular Cell Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing 100029, China; Institute for the History of Chinese Medicine and Medical Literature, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Khan MRUZ, Trivedi V. Molecular modelling, docking and network analysis of phytochemicals from Haritaki churna: role of protein cross-talks for their action. J Biomol Struct Dyn 2024; 42:4297-4312. [PMID: 37288779 DOI: 10.1080/07391102.2023.2220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Phytochemicals are bioactive agents present in medicinal plants with therapeutic values. Phytochemicals isolated from plants target multiple cellular processes. In the current work, we have used fractionation techniques to identify 13 bioactive polyphenols in ayurvedic medicine Haritaki Churna. Employing the advanced spectroscopic and fractionation, structure of bioactive polyphenols was determined. Blasting the phytochemical structure allow us to identify a total of 469 protein targets from Drug bank and Binding DB. Phytochemicals with their protein targets from Drug bank was used to create a phytochemical-protein network comprising of 394 nodes and 1023 edges. It highlights the extensive cross-talk between protein target corresponding to different phytochemicals. Analysis of protein targets from Binding data bank gives a network comprised of 143 nodes and 275 edges. Taking the data together from Drug bank and binding data, seven most prominent drug targets (HSP90AA1, c-Src kinase, EGFR, Akt1, EGFR, AR, and ESR-α) were found to be target of the phytochemicals. Molecular modelling and docking experiment indicate that phytochemicals are fitting nicely into active site of the target proteins. The binding energy of the phytochemicals were better than the inhibitors of these protein targets. The strength and stability of the protein ligand complexes were further confirmed using molecular dynamic simulation studies. Further, the ADMET profiles of phytochemicals extracted from HCAE suggests that they can be potential drug targets. The phytochemical cross-talk was further proven by choosing c-Src as a model. HCAE down regulated c-Src and its downstream protein targets such as Akt1, cyclin D1 and vimentin. Hence, network analysis followed by molecular docking, molecular dynamics simulation and in-vitro studies clearly highlight the role of protein network and subsequent selection of drug candidate based on network pharmacology.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Rafi Uz Zama Khan
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| |
Collapse
|
4
|
Agarwal D, Malik J, Bhanwala N, Ambatwar R, Kumar S, Chandrakar L, Datusalia AK, Khatik GL. Networkodynamic approach to perceive the key phytoconstituents of E. officinalis (Amla) as natural BACE1 inhibitors: an in-silico study. J Biomol Struct Dyn 2023; 42:12304-12316. [PMID: 37861402 DOI: 10.1080/07391102.2023.2269260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a deteriorating neural disorder, and currently, available drugs are ineffective in its treatment. Emblica officinalis (Amla) is widely recognised in the Indian medicinal system for ameliorative effects in managing diabetes, hyperlipidaemia and neurological diseases. Thus, we aimed to identify the active phytoconstituents of E. officinalis and their role in inhibiting the potential targets for the possible treatment of AD. The network pharmacology approach, gene ontology, molecular docking and molecular dynamics simulation (MDS) studies were performed. A total of 36 bioactive components in E. officinalis, 95 predicted anti-AD targets, and 3398 AD-related targets were identified from different databases. The network analysis showed that BACE1, ABCB1 and AChE, CA2 are the most potential AD targets. Based on gene ontology and topology analysis results, BACE1 was a significant target related to AD pathways, and quercetin, kaempferol and myricetin showed the highest interaction with target genes. The molecular docking results found that rutin and quercetin displayed better binding affinities -7.5, -5.67 kcal/mol than the BACE1 bound internal ligand. Furthermore, MDS results suggested that quercetin and rutin could be potential inhibitors against BACE-1 protein and may have therapeutic effects in treating AD. Such promising results could be further helpful in new drug discovery against AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhairiya Agarwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Jatin Malik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Neeru Bhanwala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Lokesh Chandrakar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Liu H, Zhang J, Yan X, An D, Lei H. The Anti-atherosclerosis Mechanism of Ziziphora clinopodioides Lam. Based On Network Pharmacology. Cell Biochem Biophys 2023; 81:515-532. [PMID: 37523140 DOI: 10.1007/s12013-023-01151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
We investigated the mechanisms underlying the effects of Ziziphora clinopodioides Lam. (ZCL) on atherosclerosis (AS) using network pharmacology and in vitro validation.We collected the active components of ZCL and predicted their targets in AS. We constructed the protein-protein interaction, compound-target, and target-compound-pathway networks, and performed GO and KEGG analyses. Molecular docking of the active components and key targets was constructed with Autodock and Pymol software. Validation was performed with qRT-PCR, ELISA, and Western blot.We obtained 80 components of ZCL. The network analysis identified that 14 components and 37 genes were involved in AS. Then, 10 key nodes in the PPI network were identified as the key targets of ZCL because of their importance in network topology. The binding energy of 8 components (Cynaroside, α-Spinasterol, Linarin, Kaempferide, Acacetin, Genkwanin, Chrysin, and Apiin) to 4 targets (MMP9, TP53, AKT1, SRC) was strong and <-1 kJ/mol. In addition, 13 of the 14 components were flavonoids and thus total flavonoids of Ziziphora clinopodioides Lam. (ZCF) were used for in vitro validation. We found that ZCF reduced eNOS, P22phox, gp91phox, and PCSK9 at mRNA and protein levels, as well as the levels of IL-1β, TNF-α, and IL-6 proteins in vitro (P < 0.05).We successfully predicted the active components, targets, and mechanisms of ZCL in treating AS using network pharmacology. We confirmed that ZCF may play a role in AS by modulating oxidative stress, lipid metabolism, and inflammatory response via Cynaroside, Linarin, Kaempferide, Acacetin, Genkwanin, Chrysin, and Apiin.
Collapse
Affiliation(s)
- Hongbing Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Jianxin Zhang
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Xuehua Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China
| | - Dongqing An
- College of Traditional Chinese Medicine, Xinjiang Medical University, 830011, Urumqi, China.
- Xinjiang Key Laboratory of Famous Prescription and Science of Formulas, 830011, Urumqi, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, 102488, Beijing, China.
| |
Collapse
|
6
|
Wang W, Ige OO, Ding Y, He M, Long P, Wang S, Zhang Y, Wen X. Insights into the potential benefits of triphala polyphenols toward the promotion of resilience against stress-induced depression and cognitive impairment. Curr Res Food Sci 2023; 6:100527. [PMID: 37377497 PMCID: PMC10291000 DOI: 10.1016/j.crfs.2023.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
In response to environmental challenges, stress is a common reaction, but dysregulation of the stress response can lead to neuropsychiatric disorders, including depression and cognitive impairment. Particularly, there is ample evidence that overexposure to mental stress can have lasting detrimental consequences for psychological health, cognitive function, and ultimately well-being. In fact, some individuals are resilient to the same stressor. A major benefit of enhancing stress resilience in at-risk groups is that it may help prevent the onset of stress-induced mental health problems. A potential therapeutic strategy for maintaining a healthy life is to address stress-induced health problems with botanicals or dietary supplements such as polyphenols. Triphala, also known as Zhe Busong decoction in Tibetan, is a well-recognized Ayurvedic polyherbal medicine comprising dried fruits from three different plant species. As a promising food-sourced phytotherapy, triphala polyphenols have been used throughout history to treat a variety of medical conditions, including brain health maintenance. Nevertheless, a comprehensive review is still lacking. Here, the primary objective of this review article is to provide an overview of the classification, safety, and pharmacokinetics of triphala polyphenols, as well as recommendations for the development of triphala polyphenols as a novel therapeutic strategy for promoting resilience in susceptible individuals. Additionally, we summarize recent advances demonstrating that triphala polyphenols are beneficial to cognitive and psychological resilience by regulating 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) receptors, gut microbiota, and antioxidant-related signaling pathways. Overall, scientific exploration of triphala polyphenols is warranted to understand their therapeutic efficacy. In addition to providing novel insights into the mechanisms of triphala polyphenols for promoting stress resilience, blood brain barrier (BBB) permeability and systemic bioavailability of triphala polyphenols also need to be improved by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of triphala polyphenols' beneficial effects for preventing and treating cognitive impairment and psychological dysfunction.
Collapse
Affiliation(s)
- Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Olufola Oladoyin Ige
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, 610021, China
| |
Collapse
|
7
|
Khan MRUZ, Yanase E, Trivedi V. Extraction, phytochemical characterization and anti-cancer mechanism of Haritaki churna: An ayurvedic formulation. PLoS One 2023; 18:e0286274. [PMID: 37256897 PMCID: PMC10231837 DOI: 10.1371/journal.pone.0286274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Haritaki churna (HC), a single herb ayurvedic formulations is known to be prescribed for various gastro-intestinal disorders in Ayurveda. Haritaki churna aqueous extract (HCAE) has anti-cancer activity against different types of cancer cells with an IC50 in the range of 50-97 μg/ml. Bioavailability of Haritaki Churna is very high in digestive track and treatment of colorectal cancer cells HCT-116, DLD1, HT-29 with HCAE reduces its cellular viability with anti-cancer IC50 70μg/ml. HCAE consumption is safe for human as it didn't affect the cellular viability of primary human PBMCs or non-cancerogenic HEK-293 cells. Haritaki churna was found to be stable in biological gastric fluids and bioactive agents are not losing their anti-cancer activity under such harsh conditions. The HPLC Chromatogram of HCAE is giving 13 major peaks and 11 minor peaks. Exploiting LC-MS, IR and NMR spectroscopic techniques, a total of 13 compounds were identified from HCAE namely Shikimic acid, Chebulic acid, gallic acid, 5-hydroxymethylfurfural, Protocatechuic acid, 4-O-galloyl-shikimic Acid, 5-O-galloyl-shikimic Acid, Methylgallate, corilagin, 1, 2, 6, Tri-O-galloyl β-D-glucose, chebulagic acid, chebulinic acid, and Ellagic acid. Reconstitution and subtraction of phytochemicals from the mixture indicate that Ellagic acid significantly contribute into anti-cancer effect of HCAE. Cancer cells treated with ellagic acid from HCAE were incapable of completing their cell-cycle and halted the cell-cycle at DNA synthesis S-Phase, as demonstrated by decreased cyclin A2 expression levels with increasing ellagic acid concentration. Halting of cells at S-phase causes induction of apoptosis in cancer cells. Cancer cells exhibiting DNA fragmentation, changes in expression of several apoptotic proteins such as Bcl2, cytochrome-c and formation of cleaved products of caspase 3 and PARP-1 suggests ellagic acid induces cell death via mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- Md Rafi Uz Zama Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Vishal Trivedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, Assam, India
| |
Collapse
|
8
|
Huo J, Wang T, Wei B, Shi X, Yang A, Chen D, Hu J, Zhu H. Integrated network pharmacology and intestinal flora analysis to determine the protective effect of Xuanbai-Chengqi decoction on lung and gut injuries in influenza virus-infected mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115649. [PMID: 35987410 DOI: 10.1016/j.jep.2022.115649] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanbai-Chengqi decoction (XBCQ) is a traditional Chinese medicine (TCM) compound used in the treatment of pulmonary infection in China. Despite the popular usage of XBCQ, its underlying protective roles and the associated molecular mechanisms with the gut-lung axis in influenza remain unclear. AIM OF THE STUDY We aimed to explore the protective effects and the underlying mechanism of XBCQ efficacy on lung and intestine injuries induced by influenza A virus as well as to identify the main active components through integrated network pharmacology, intestinal flora analysis and pathway validation. MATERIALS AND METHODS The potential active components and therapeutic targets of XBCQ in the treatment of influenza were hypothesized through a series of network pharmacological strategies, including components screening, targets prediction and bioinformatics analysis. Inflammatory cytokines and pathway proteins were assayed to validate the results of network pharmacology. Then the mechanism of XBCQ alleviating lung and intestine injuries was further explored via intestinal flora analysis. The important role of Rhubarb in the formula was verified by removing Rhubarb. RESULTS XBCQ could significantly improve the survival rate in IAV-infected mice. The network pharmacology results demonstrated that JUN, mitogen-activated protein kinase (MAPK), and tumor necrosis factor (TNF) are the key targets of XBCQ that can be useful in influenza treatment as it contains the core components luteolin, emodin, and aloe-emodin, which are related to the pathways of TNF, T-cell receptor (TCR), and NF-κB. Verification experiments demonstrated that XBCQ could significantly alleviate the immune injury of the lungs and the gut of the mice, which is attributable to the inhibition of the release of inflammatory cytokines (such as TNF-α, IL-6, and IL-1β), the downregulation of the protein expression levels of Toll-like receptors-7 (TLR7), MyD88, and p-NF-κB65, and the reduction in the relative abundance of Enterobacteriaceae and Proteus, while an increase in that of Firmicutes and Lachnospiraceae. The overall protective role of XBCQ contributing to the treatment of the lungs and the gut was impaired when Rhubarb was removed from XBCQ. CONCLUSIONS Our results suggest that the efficacy of XBCQ is related to the inhibition of the immune injury and remodeling of the intestinal flora, wherein Rhubarb plays an important role, which cumulatively provide the evidence applicable for the treatment of viral pneumonia induced by a different respiratory virus with XBCQ.
Collapse
Affiliation(s)
- Jinlin Huo
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China
| | - Ting Wang
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Bokai Wei
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China
| | - Xunlong Shi
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Aidong Yang
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China.
| | - Jing Hu
- Preclinical Medicine College, Shanghai University of Traditional Chinese Medicine, 1200# Cailun Rd., Pudong District, Shanghai, 201203, PR China.
| | - Haiyan Zhu
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China.
| |
Collapse
|
9
|
Study on Medication Rules of Traditional Chinese Medicine in Treating Constipation through Data Mining and Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6733851. [PMID: 36267846 PMCID: PMC9578820 DOI: 10.1155/2022/6733851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Background To explore the rules of TCM medication in the treatment of constipation in network pharmacology. Methods Collect and screen the clinical intervention literature on TCM for constipation from China's national knowledge infrastructure, Wanfang and VIP databases established a database of TCM for constipation, applied R software (3.3.1) to analyze the pattern of prescriptions for TCM for constipation, and summarized the core prescription. The effective active compounds and action targets in the core prescription were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Traditional Chinese Medicine Integrated Databases (TCMID), constipation-related targets were derived from the DisGeNET and GeneCards databases, Protein-protein interaction network (PPI) was drawn by STRING database, and enrichment analysis was conducted by the Clusterprofiler package in R software (3.3.1). Finally, molecular docking was used to validate the binding ability of candidate compounds to potential targets. Results Two hundred sixteen target prescriptions were screened through data mining, involving 226 herbs. Association rule analysis results suggested that the “Angelicae sinensis-Radix-dried rehmanniae-Cistanche deserticola-Atractylodes macrocephala-Astragali Radix” was a strong affinity for medicine. Network pharmacology analysis of the core prescription resulted in the screening of 115 candidate compounds, such as quercetin, kaempferol, mangostin, eugenol A, and beta-sitosterol; 131 potential targets, such as PTGS2, PTGS1, and CHRM3; and 160 signaling pathways, such as lipid and atherosclerosis, proteoglycans in cancer, hepatitis B, Kaposi's sarcoma-associated herpesvirus infection, and PI3K/AKT pathways. Molecular docking showed that PTGS1-formononetin, PTGS2-kaempferol, and CHRM3-kaempferol were all well bound and well matched. Conclusions This study provides a new method and ideas for clinical applications of integrated Chinese and western medicine in treating constipation.
Collapse
|
10
|
Sahu R, Gupta PK, Mishra A, Kumar A. Ayurveda and in silico Approach: A Challenging Proficient Confluence for Better Development of Effective Traditional Medicine Spotlighting Network Pharmacology. Chin J Integr Med 2022; 29:470-480. [PMID: 36094769 PMCID: PMC9465656 DOI: 10.1007/s11655-022-3584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Coalescence of traditional medicine Ayurveda and in silico technology is a rigor for supplementary development of future-ready effective traditional medicine. Ayurveda is a popular traditional medicine in South Asia, emanating worldwide for the treatment of metabolic disorders and chronic illness. Techniques of in silico biology are not much explored for the investigation of a variety of bioactive phytochemicals of Ayurvedic herbs. Drug repurposing, reverse pharmacology, and polypharmacology in Ayurveda are areas in silico explorations that are needed to understand the rich repertoire of herbs, minerals, herbo-minerals, and assorted Ayurvedic formulations. This review emphasizes exploring the concept of Ayurveda with in silico approaches and the need for Ayurinformatics studies. It also provides an overview of in silico studies done on phytoconstituents of some important Ayurvedic plants, the utility of in silico studies in Ayurvedic phytoconstituents/formulations, limitations/challenges, and prospects of in silico studies in Ayurveda. This article discusses the convergence of in silico work, especially in the least explored field of Ayurveda. The focused coalesce of these two domains could present a predictive combinatorial platform to enhance translational research magnitude. In nutshell, it could provide new insight into an Ayurvedic drug discovery involving an in silico approach that could not only alleviate the process of traditional medicine research but also enhance its effectiveness in addressing health care.
Collapse
Affiliation(s)
- Rashmi Sahu
- Department of Balroga, Shri NPA Govt. Ayurveda College, Raipur, Chhattisgarh, 492010, India
| | - Prashant Kumar Gupta
- Department of Balroga, Shri NPA Govt. Ayurveda College, Raipur, Chhattisgarh, 492010, India.,Ayurinformatics Lab, Department of Kaumarabhritya, All India Institute of Ayurveda, Sarita Vihar, New Delhi, 110076, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
11
|
Fan S, Huang Y, Zuo X, Li Z, Zhang L, Tang J, Lu L, Huang Y. Exploring the molecular mechanism of action of Polygonum capitatum Buch-Ham. ex D. Don for the treatment of bacterial prostatitis based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115007. [PMID: 35150815 DOI: 10.1016/j.jep.2022.115007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Polygonum capitatum Buch-Ham. ex D. Don (CNPC2009), a traditional Miao-national herbal medicine, has been widely used with considerable therapeutic efficacy in the treatment of various urologic disorders including prostatitis. However, the molecular mechanism of action (MOA) remains unclear. AIM OF THE STUDY In this study, UPLC-Q-Exactive-MS and Network pharmacological methods were used to explore the underlying molecular MOA of Polygonum capitatum Buch-Ham. Ex D. Don (P.capitatum) for the treatment bacterial prostatitis (BP). MATERIALS AND METHODS The UPLC-Q-Exactive-MS technique was used to identify the chemical components of P. capitatum. Databases such as SwissTargetPrediction, Gene Cards, and OMIM were used to predict the targets of P. capitatum for the treatment of BP. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) was used to analyze the protein-protein interaction (PPI) and construct a PPI network, and the Metascape was used for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. In addition, experimental treatment of Escherichia coli (E.coli)-induced BP was verified. RESULTS A total of 31 molecular components were identified by UPLC-Q-Exactive-MS. Network pharmacology revealed that P. capitatum may act on the AKT1, PI3K, MTO, EGFR and other targets through active components such as Gallic acid, Quercetin, Luteolin, Protocatechuic Acid, Kaempferol and thereby regulate PI3K-AKT, ErbB, AMPK, HIF-1, and other signaling pathways to intervene in the pathological mechanism of BP. Verification through experimental results showed that compared with the model group, treatment with P. capitatum could significantly inhibit bacterial growth in prostate tissues, lowered the prostate index, down-regulated the levels of inflammatory mediators(IL-1β, IL-6, and TNF-α) in prostate tissues, and down-regulate the protein expression and mRNA expression levels of AKT and PI3K. CONCLUSION This study preliminarily revealed the MOA of P. capitatum for treating BP with multiple components, multiple targets, and multiple pathways, especially affecting the PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Shanshan Fan
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yuxing Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xurui Zuo
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China
| | - Liyan Zhang
- School of Pharmacy, Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, China
| | - Jingwen Tang
- Guizhou Weimen Pharmaceutical Co., Ltd, No. 23 Gaoxin Road, Wudang District, Guiyang City, Guizhou, 550004, China
| | - Liping Lu
- Guizhou Weimen Pharmaceutical Co., Ltd, No. 23 Gaoxin Road, Wudang District, Guiyang City, Guizhou, 550004, China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, No. 69 Zengchan Road, Hebei District, Tianjin, 300250, China.
| |
Collapse
|
12
|
Antiepileptic Therapy of Abrus cantoniensis: Evidence from Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7748787. [PMID: 35707480 PMCID: PMC9192286 DOI: 10.1155/2022/7748787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
The present study explores the mechanism of antiepileptic treatment of Abrus cantoniensis through network pharmacology. During this process, several databases were recruited, e.g., the TCMSP database, HERB database, and SwissTargetPrediction database were used to retrieve the active components and targets of Abrus cantoniensis; GeneCards database and OMIM database were used to retrieve the targets of epilepsy. The targets of epilepsy and Abrus cantoniensis were subjected to target intersection in venny2.1, and protein interaction analysis of Abrus cantoniensis in the String database. We set the Cyto NCA plug-in condition as betweenness; selected the first 8 genes of betweenness as the core genes; performed the integrative bioinformatics of candidates by GO analysis and KEGG analysis. Moreover, AutoDockTools and AutoDockVina software were used to perform the molecular docking; Pymol was used to perform the docking visualization. We obtained three active components of Abrus cantoniensis, which are mainly related to β-sitosterol and stigmasterol; 92 intersection targets of epilepsy of Abrus cantoniensis, including 9 core targets such as AKT1, ESR1, MMP9, CES1, SRC, HIF1A, ABCB1, CASP3, and SNCA; 8 core targets were flavanone constituent proteins. Define p value less than 0.05; according to the screening principle, the first 20 GO pathways and KEGG pathways were selected. We found that Abrus cantoniensis was mainly connected with epilepsy through the neuroactive ligand-receptor interaction signaling pathway, the neurodegeneration pathway, and multiple disease signaling pathway; the docking between ESR1 and components is the most stable among the core targets. Besides, the binding energies of the core targets were all less than −5 kcal mol−1. Taken together, the current research provides a new strategy for the antiepileptic treatment of Abrus cantoniensis.
Collapse
|
13
|
Luo B, Zhou H, Xiao Q, He Y. An exploratory study on the mechanism of Huangqi Guizhi Wuwu Decoction in the treatment of neuropathic pain. IBRAIN 2022; 8:127-140. [PMID: 37786887 PMCID: PMC10529154 DOI: 10.1002/ibra.12033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 10/04/2023]
Abstract
Huangqi Guizhi Wuwu Decoction (HGWD) has a definite effect on neuropathic pain (NP), whereas the specific mechanism has not been elucidated. The components and targets in HGWD were collected and identified through System Pharmacology Database (Traditional Chinese Medicine Database and Analysis Platform). Genecards and Online Mendelian Inheritance in Man databases were used to search for NP-related genes. The Venn diagram was drawn to get the intersection target. Cytoscape 3.8.0 software was used to construct the compound-disease-target-pathway networks. STRING database was applied to analyze protein-protein interaction of potential targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were used to identify the function of genes related to NP. Finally, molecular docking was performed to visualize the binding mode and affinity between proteins and active ingredients. According to the intersection target of the Venn diagram, the network graph is constructed by Cytoscape and the results show the five compounds, β-sitosterol, (+)-catechin, quercetin, Stigmasterol, kaempferol, and 15 genes (CASP3, FOS, GSK3B, HSP90AA1, IKBKB, IL6, MAPK8, RELA, ICAM1, SELE, ELK1, HSPB1, PRKACA, PRKCA, RAF1) were highly correlated with NP. KEGG and GO of 15 genes results that TNF, IL-17 and MAPK signaling pathway were Significantly related to the pathological mechanism of NP. Molecular docking showed that core genes in this network were IL-6 (TNF and IL-17 signaling pathways), ICAM1 (TNF signaling pathway), and CASP3 (three signal pathways). This study found that the five active compounds, three core genes, and three signaling pathways may be the key to the treatment of NP by HGWD.
Collapse
Affiliation(s)
- Bo‐Yan Luo
- School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Qiu‐Xia Xiao
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Qi He
- School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
14
|
Noor F, Tahir ul Qamar M, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals (Basel) 2022; 15:572. [PMID: 35631398 PMCID: PMC9143318 DOI: 10.3390/ph15050572] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Natural products have played a critical role in medicine due to their ability to bind and modulate cellular targets involved in disease. Medicinal plants hold a variety of bioactive scaffolds for the treatment of multiple disorders. The less adverse effects, affordability, and easy accessibility highlight their potential in traditional remedies. Identifying pharmacological targets from active ingredients of medicinal plants has become a hot topic for biomedical research to generate innovative therapies. By developing an unprecedented opportunity for the systematic investigation of traditional medicines, network pharmacology is evolving as a systematic paradigm and becoming a frontier research field of drug discovery and development. The advancement of network pharmacology has opened up new avenues for understanding the complex bioactive components found in various medicinal plants. This study is attributed to a comprehensive summary of network pharmacology based on current research, highlighting various active ingredients, related techniques/tools/databases, and drug discovery and development applications. Moreover, this study would serve as a protocol for discovering novel compounds to explore the full range of biological potential of traditionally used plants. We have attempted to cover this vast topic in the review form. We hope it will serve as a significant pioneer for researchers working with medicinal plants by employing network pharmacology approaches.
Collapse
Affiliation(s)
- Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (F.N.); (M.T.u.Q.)
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.S.S.A.); (M.A.A.)
| |
Collapse
|
15
|
Wang L, Zhu W, Sun R, Liu J, Ma Q, Zhang B, Shi Y. Network Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential Pharmacological Mechanism of Wen-Yu-Jin against Pulmonary Fibrosis in a Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7753508. [PMID: 35186103 PMCID: PMC8853792 DOI: 10.1155/2022/7753508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a devastating lung disease, resulting in gas exchange dysfunction until death. The two drugs approved by the FDA, pirfenidone and nintedanib, have obvious side effects. Wen-yu-jin (WYJ), one of the commonly used herbs in China, can treat respiratory diseases. The potential effects and the underlying mechanism of WYJ against PF are unclear. PURPOSE Employing network pharmacology, molecular docking, and in vivo and in vitro experiments to explore the potential effects and underlying mechanisms of WYJ in the treatment of PF. METHODS Ultra-high pressure liquid chromatography combined with linear ion trap-orbital tandem mass spectrometry (UHPLC-LTQ-orbital trap) was used to identify compounds of WYJ. We got PF-related targets and WYJ compounds-related targets from public databases and further completed critical targets exploration, network construction, and pathway analysis by network pharmacology. Molecular docking predicted binding activity of WYJ compounds and critical targets. Based on the above results, in vivo and in vitro experiments validated the potential effects and mechanisms of WYJ against PF. RESULTS 23 major compositions of WYJ were identified based on UHPLC-LTQ-Orbitrap. According to the results of network pharmacology, STAT3, SRC, IL6, MAPK1, AKT1, EGFR, MAPK8, MAPK14, and IL1B are critical therapeutic targets. Molecular docking results showed that most of the compounds have good binding activities with critical targets. The results of in vivo and in vitro experiments showed that WYJ alleviated the process of fibrosis by targeting MAPK and STAT3 pathways. CONCLUSION Network pharmacology, molecular docking, and in vivo and in vitro experiments showed the potential effects and mechanisms of WYJ against PF, which provides a theoretical basis for the treatment of WYJ with PF.
Collapse
Affiliation(s)
- Lu Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wenxiang Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| | - Rui Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihong Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Liao YC, Wang JW, Zhang JL, Guo C, Xu XL, Wang K, Zhao C, Wen AD, Li RL, Ding Y. Component-target network and mechanism of Qufeng Zhitong capsule in the treatment of neuropathic pain. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114532. [PMID: 34416296 DOI: 10.1016/j.jep.2021.114532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qufeng Zhitong capsule (QFZTC) is a traditional Chinese medicine (TCM) clinically used for treating pain. However, the active ingredients of QFZTC and its pharmacological mechanism in the treatment of neuropathic pain (NP) remain unclear. AIM OF THE STUDY We aimed to identify the active ingredients of QFZTC and reveal its target genes and underlying mechanism of action in NP. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) was used to identify the active ingredients of QFZTC. Network pharmacology analysis was conducted to determine the core targets and pathway enrichment of QFZTC. An NP mice model was established through chronic compression injury (CCI) surgery of the sciatic nerve, while von Frey instrumentation and a thermal stimulator were employed to measure the sensitivity of mice to mechanical and thermal stimuli. Immunofluorescence was used to observe the expression of TLR4 and p-P65 in microglia. Western blotting was used to detect the levels of protein expression of Iba-1, TLR4, MyD88, P65, p-P65, and c-Fos, while ELISA kits were used to detect the release of TNF-α, IL-6, and IL-1β. RESULTS Seven active ingredients were identified in QFZTC: gallic acid, loganylic acid, syringin, corilagin, loganin, ellagic acid, and osthole. Network analysis identified TLR4, TNF, IL6, IL1β, and c-Fos as core targets, and Toll-like receptors and NF-κB as core signaling pathways. Treatment with QFZTC significantly relieved mechanical allodynia and thermal hyperalgesia in CCI mice models. CCI induced an increase in the expression of TLR4 and p-P65 in microglia, whereas QFZTC dose-dependently reduced the expression of Iba-1, TLR4, MyD88, and p-P65 in the spinal cord. QFZTC inhibited the expression of the c-Fos pain marker and reduced the expression of the TNF-α, IL-6, and IL-1β inflammatory factors. CONCLUSION We combined the active ingredients of QFZTC with network pharmacology research to clarify its biological mechanism in the treatment of NP. We demonstrated that QFZTC reduced NP in mice probably through regulating the spinal microglia via the TLR4/MyD88/NF-κB signaling pathway. Hence, QFZTC could be regarded as a potential drug for relieving NP.
Collapse
Affiliation(s)
- Yu-Cheng Liao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juan-Li Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin-Liang Xu
- Department of Pain, Jining No.1 Peoples Hospital, Jining, 272011, China
| | - Kai Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Rui-Li Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
17
|
Zhou Y, Wang C, Kou J, Wang M, Rong X, Pu X, Xie X, Han G, Pang X. Chrysanthemi Flos extract alleviated acetaminophen-induced rat liver injury via inhibiting oxidative stress and apoptosis based on network pharmacology analysis. PHARMACEUTICAL BIOLOGY 2021; 59:1378-1387. [PMID: 34629029 PMCID: PMC8510625 DOI: 10.1080/13880209.2021.1986077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Acetaminophen (APAP) overdose is the leading cause of drug-induced liver injury. Bianliang ziyu, a variety of Chrysanthemum morifolium Ramat. (Asteraceae), has potential hepatoprotective effect. However, the mechanism is not clear yet. OBJECTIVE To investigate the hepatoprotective activity and mechanism of Bianliang ziyu flower ethanol extract (BZE) on APAP-induced rats based on network pharmacology. MATERIALS AND METHODS Potential pathways of BZE were predicted by network pharmacology. Male Sprague-Dawley rats were pre-treated with BZE (110, 220 and 440 mg/kg, i.g.) for eight days, and then APAP (800 mg/kg, i.g.) was used to induce liver injury. After 24 h, serum and liver were collected for biochemical detection and western blot measurement. RESULTS Network pharmacology indicated that liver-protective effect of BZE was associated with its antioxidant and anti-apoptotic efficacy. APAP-induced liver pathological change was alleviated, and elevated serum AST and ALT were reduced by BZE (440 mg/kg) (from 66.45 to 22.64 U/L and from 59.59 to 17.49 U/L, respectively). BZE (440 mg/kg) reduced the ROS to 65.50%, and upregulated SOD and GSH by 212.92% and 175.38%, respectively. In addition, BZE (440 mg/kg) increased levels of p-AMPK, p-GSK3β, HO-1 and NQO1, ranging from 1.66- to 10.29-fold compared to APAP group, and promoted nuclear translocation of Nrf2. BZE also inhibited apoptosis induced by APAP through the PI3K-Akt pathway and restored the ability of mitochondrial biogenesis. DISCUSSION AND CONCLUSIONS Our study demonstrated that BZE protected rats from APAP-induced liver injury through antioxidant and anti-apoptotic pathways, suggesting BZE could be further developed as a potential liver-protecting agent.
Collapse
Affiliation(s)
- Yunfeng Zhou
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Chunli Wang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Jiejian Kou
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Minghui Wang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Xuli Rong
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiaohui Pu
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
| | - Xinmei Xie
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
- CONTACT Xinmei Xie
| | - Guang Han
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
- Kaifeng Key Lab for Application of Local Dendranthema morifolium in Food & Drug, Kaifeng, China
- Guang Han
| | - Xiaobin Pang
- Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng, China
- Institutes of Traditional Chinese Medicine, Henan University, Kaifeng, China
- Xiaobin Pang Pharmaceutical Institute, School of Pharmacy, Henan University, Kaifeng475004, China
| |
Collapse
|
18
|
Yan Z, Liu G, Yang Y, Chen L, Shang Y, Hong Q. Identifying mechanisms of Epimedii Folium against Alzheimer’s disease via a network pharmacology approach Epimedii Folium treats Alzheimer’s disease via PI3K-AKT. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211041435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To elucidate the mechanism of the multi-target action of Epimedii Folium on Alzheimer’s disease, this study focuses on the analysis of network pharmacology. Based on a bioinformatics approach, this study obtained the effective components of Epimedium through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, predicted the compound targets through the Pharmapper and Swiss target prediction database and then through Gene Expression Omnibus Datasets and Therapeutic Target Database. We collected and analysed of heral and disease targets, constructed the network. Through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Gene Ontology enrichment, then the key targets and pathways of Epimedii Folium to cope with Alzheimer’s disease have been identified. Twenty-three bioactive components and 477 potential target genes of Epimedii Folium were identified. A total of 1612 target diseases were identified. Through network module analysis, 30 hub target genes were identified. Through enrichment analysis of the KEGG pathway, hub target genes were largely enriched in the PI3K-AKT signaling pathway. Through the analysis of network pharmacology, it was found that Epimedii Folium might play the role of multi-compound and multi-target therapy through the PI3K-AKT signaling pathway. These findings provide helpful directions for future clinical studies.
Collapse
Affiliation(s)
- Zhao Yan
- Department of Traditional Medicine, Xuzhou New Health Hospital, Jiangsu, Xuzhou, China
| | - Guangmei Liu
- Department of Internal Medicine, Xuzhou Cancer Hospital, Jiangsu, Xuzhou, China
| | - Yang Yang
- Department of Pharmacy, the Affiliated Huaihai Hospital of Xuzhou Medical University/The 71st Group Army Hospital of CPLA Army, Jiangsu, Xuzhou, China
| | - Ling Chen
- Department of Internal Medicine, the Affiliated Huaihai Hospital of Xuzhou Medical University/The 71st Group Army Hospital of CPLA Army, Jiangsu, Xuzhou, China
| | - Ying Shang
- Department of Internal Medicine, the Affiliated Huaihai Hospital of Xuzhou Medical University/The 71st Group Army Hospital of CPLA Army, Jiangsu, Xuzhou, China
| | - Qian Hong
- Department of Internal Medicine, the Affiliated Huaihai Hospital of Xuzhou Medical University/The 71st Group Army Hospital of CPLA Army, Jiangsu, Xuzhou, China
| |
Collapse
|
19
|
Zhang Y, Song JK, Jiang JS, Yin SY, Luo Y, Luo Y, Ding XJ, Ru Y, Liu L, Li W, Kuai L, Li B. Modular pharmacology-based approach to identify hub genes and kernel pathways of taodan granules treated psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114485. [PMID: 34348195 DOI: 10.1016/j.jep.2021.114485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taodan granules (TDG) have been observed to decrease interleukins, or psoriasis area and severity index (PASI) score for psoriasis vulgaris, without significant adverse events. However, the regulatory network remains elucidated. AIM OF THE STUDY The objective is to identify critical genes and kernel pathways of TDG treated psoriasis. MATERIALS AND METHODS Firstly, construct a network of components-targets of TDG using network pharmacology. Secondly, the ClusterONE algorithm was used to build a modular network and identify critical genes and corresponding pathways. Thirdly, the critical genes and kernel pathways were verified in imiquimod (IMQ) induced psoriasis-like mice model. RESULTS The results validated that TDG downregulated the mRNA expression of MMP2 (degree = 5, P < 0.05), IL6 (degree = 9, P < 0.05), TNF (degree = 14, P < 0.05), CCL2 (degree = 8, P < 0.05), CXCL2 (degree = 8, P < 0.05), IL1B (degree = 9, P < 0.05), and JUN (degree = 9, P < 0.05), while upregulated IL10 (degree = 8) expression. Besides, TDG were observed to regulate IL17 signaling pathway and TNF signaling pathway (size = 18), via the skin tissue homogenate of psoriasis-like mice. CONCLUSION In summary, this study identified the potential targets and pathways, providing additional evidence for the clinical application of TDG treated psoriasis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Yue Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Jie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Li
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China; Department of Dermatology, Shaanxi Hospital of Traditional Chinese Medicine, Xian 710003, China.
| |
Collapse
|
20
|
Jiang Z, Han Y, Zhang Y, Li J, Liu C. Sedum sarmentosum Bunge Attenuates Drug-Induced Liver Injury via Nrf2 Signaling Pathway: An Experimental Verification Based on Network Pharmacology Prediction. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1142638. [PMID: 34900173 PMCID: PMC8577938 DOI: 10.1155/2021/1142638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Purpose Using network pharmacology and in vivo experiments, we investigated the antidrug-induced liver injury components and functional processes of Sedum sarmentosum Bunge (SSBE). Methods The effective components, primary active ingredients, and possible target in the therapy of DILI were predicted using network pharmacology and bioinformatics. APAP was inducing the DILI model. In vivo testing of the pharmacodynamic foundation of SSBE in the treatment of DILI was performed. Results The TCMSP database evaluated five main active components and 299 related targets. In addition, 707 differential genes for DILI were obtained from the DisGeNET database, DigSee database, and OMIM database. 61 related targets were mapped to predict the targets of SSBE acting on DILI. The protein-protein interaction (PPI) core network contained 59 proteins, including IL-β, MARK14, SSP1, and MMP9. These genes are closely related to the Nrf2/ARE signaling pathway, and they may play a key role in the hepatoprotective effect of SSBE. Verification experiment results showed that, in the DILI mouse model, SSBE promoted inflammation diminution and regulation of Nrf2-ARE cascade. SSBE protected normal hepatocyte growth and inhibited apoptosis of normal liver cells induced by APAP. SSBE inhibited the expression of Nrf2 and ARE proteins in the liver tissue of the DILI mouse model in vivo. Conclusion By modulating the Nrf2 signaling pathway, the active components in SSBE may protect against drug-induced liver damage.
Collapse
Affiliation(s)
- Zhitao Jiang
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Yi Han
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Yuechan Zhang
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Jie Li
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| | - Chundi Liu
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China
| |
Collapse
|
21
|
McBryde ES, Meehan MT, Caldwell JM, Adekunle AI, Ogunlade ST, Kuddus MA, Ragonnet R, Jayasundara P, Trauer JM, Cope RC. Modelling direct and herd protection effects of vaccination against the SARS-CoV-2 Delta variant in Australia. Med J Aust 2021; 215:427-432. [PMID: 34477236 PMCID: PMC8662033 DOI: 10.5694/mja2.51263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To analyse the outcomes of COVID-19 vaccination by vaccine type, age group eligibility, vaccination strategy, and population coverage. DESIGN Epidemiologic modelling to assess the final size of a COVID-19 epidemic in Australia, with vaccination program (Pfizer, AstraZeneca, mixed), vaccination strategy (vulnerable first, transmitters first, untargeted), age group eligibility threshold (5 or 15 years), population coverage, and pre-vaccination effective reproduction number ( R eff v ¯ ) for the SARS-CoV-2 Delta variant as factors. MAIN OUTCOME MEASURES Numbers of SARS-CoV-2 infections; cumulative hospitalisations, deaths, and years of life lost. RESULTS Assuming R eff v ¯ = 5, the current mixed vaccination program (vaccinating people aged 60 or more with the AstraZeneca vaccine and people under 60 with the Pfizer vaccine) will not achieve herd protection unless population vaccination coverage reaches 85% by lowering the vaccination eligibility age to 5 years. At R eff v ¯ = 3, the mixed program could achieve herd protection at 60-70% population coverage and without vaccinating 5-15-year-old children. At R eff v ¯ = 7, herd protection is unlikely to be achieved with currently available vaccines, but they would still reduce the number of COVID-19-related deaths by 85%. CONCLUSION Vaccinating vulnerable people first is the optimal policy when population vaccination coverage is low, but vaccinating more socially active people becomes more important as the R eff v ¯ declines and vaccination coverage increases. Assuming the most plausible R eff v ¯ of 5, vaccinating more than 85% of the population, including children, would be needed to achieve herd protection. Even without herd protection, vaccines are highly effective in reducing the number of deaths.
Collapse
Affiliation(s)
- Emma S McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Jamie M Caldwell
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,University of Hawai'i at Mānoa, Honolulu, HI, United States of America
| | - Adeshina I Adekunle
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,Australian Department of Defence, Melbourne, VIC
| | - Samson T Ogunlade
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD
| | - Md Abdul Kuddus
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD.,University of Rajshahi, Rajshahi, Bangladesh
| | | | | | | | - Robert C Cope
- Biological Data Sciences Institute, Australian National University, Canberra, ACT
| |
Collapse
|
22
|
Wang K, Lei L, Cao J, Qiao Y, Liang R, Duan J, Feng Z, Ding Y, Ma Y, Yang Z, Zhang E. Network pharmacology-based prediction of the active compounds and mechanism of Buyang Huanwu Decoction for ischemic stroke. Exp Ther Med 2021; 22:1050. [PMID: 34434264 PMCID: PMC8353622 DOI: 10.3892/etm.2021.10484] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Buyang Huanwu Decoction (BYHWD) is used to promote blood circulation and is widely used in Chinese clinical practice for the treatment and prevention of ischemic cerebral vascular diseases. However, the mechanism and active compounds of BYHWD used to treat ischemic stroke are not well understood. The current study aimed to identify the potential active components of BYHWD and explore its mechanism using network pharmacology and bioinformatics analyses. The compounds of BYHWD were obtained from public databases. Oral bioavailability and drug-likeness were screened using the absorption, distribution, metabolism and excretion (ADME) criteria. Components of BYHWD, alongside the candidate targets of each component and the known therapeutic targets of ischemic stroke were collected. A network of target gene compounds and cerebral ischemia compounds was established using network pharmacology data sources. The enrichment of key targets and pathways was analyzed using STRING and DAVID databases. Moreover, three of key targets [IL6, VEGFA and hypoxia-inducible-factor-1α (HIF-1α)] were verified using western blot analysis. Network analysis determined 102 compounds in seven herbal medicines that were subjected to ADME screening. A total of 42 compounds as well as 79 genes formed the principal pathways associated with ischemic stroke. The 16 key compounds identified were baicalein, beta-carotene, baicalin, kaempferol, luteolin, quercetin, hydroxysafflor yellow A, isorhamnetin, bifendate, formononetin, calycosin, astragaloside IV, stigmasterol, sitosterol, Z-ligustilide, and dihydrocapsaicin. The core genes in this network were IL6, TNF, VEGFA, HIF-1α, MAPK1, MAPK3, JUN, STAT3, IL1B and IL10. Furthermore, the TNF, IL17, apoptosis, PI3K-Akt, toll-like receptor, MAPK, NF-κB and HIF-1 signaling pathways were identified to be associated with ischemic stroke. Compared with the control group (no treatment), BYHWD significantly inhibited the expression of IL6 and increase the expression of HIF-1α and VEGFA. Network pharmacology analyses can help to reveal close interactions between multi-components and multi-targets and enhance understanding of the potential effects of BYHWD on ischemic stroke.
Collapse
Affiliation(s)
- Kai Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Lu Lei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jinyi Cao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Qiao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Ruimin Liang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhijun Feng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Enhu Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
23
|
Liu H, Xu J, Li H, Zhang L, Xu P. Network pharmacology-based investigation to explore the effect and mechanism of Erchen decoction against the nonalcoholic fatty liver disease. Anat Rec (Hoboken) 2021; 304:2605-2619. [PMID: 34536264 DOI: 10.1002/ar.24770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to uncover the potential mechanism of Erchen decoction (ECD) on the amelioration of nonalcoholic fatty liver disease (NAFLD). Network pharmacology and bioinformatics were used to determine the active components of ECD and its potential target in treating NAFLD. High fat diet (HFD)-induced NAFLD mice model was used. Liver tissues were stained with hematoxylin and eosin, and Oil Red O. Serum lipid profiles and hepatic inflammatory molecules in lipopolysaccharide (LPS)/Toll-like receptor-4 (TLR-4) pathway were confirmed by enzyme-linked immunosorbent assay. Intestinal barrier function, including intestinal epithelial tight junction (IETJ) proteins, fecal short-chain fatty acids (SCFAs) concentration and intestinal microbiota composition, was also assessed. Screening relevant databases revealed 123 active components and 158 potential target proteins in ECD, as well as 1,783 differential genes for NAFLD. Enrichment analyses predicted that the regulation of LPS, cholesterol metabolism and inflammatory pathways might be the underlying mechanisms of ECD in NAFLD treatment. ECD ameliorated the multi-profiles of NAFLD and reversed the high levels of inflammatory molecules such as, serum LPS, hepatic TLR-4, tumor necrosis factor-α, and interleukin-1β. Additionally, ECD upregulated the concentration levels of IETJ proteins and fecal SCFAs. 16s RNA sequencing indicated that ECD can improve the gut microbiota, such as Akkermansia, Clostridium XIVa, Coprococcus, and Ruminococcus. The current study demonstrated that ECD can reverse the HFD-induced intestinal barrier dysfunction, thereby reducing the LPS translocation and alleviating the hepatic inflammation, and eventually exhibiting a protective effect against NAFLD.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Digestive Disease Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jie Xu
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Li
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lina Zhang
- Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pingzhen Xu
- Endoscopy Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
24
|
Liang GC, Duan WG, Chen SY, Fang JK. Analysis of the Composition and Anti-Rheumatoid Arthritis Mechanism of Qintengtongbi Decoction Based on Network Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211041421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Qintengtongbi Decoction (QTTBD) is a traditional prescription for rheumatoid arthritis (RA) treatment in Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, southern China's Guangxi Zhuang Autonomous Region. However, there is not yet any analysis on its active compounds or action mechanism for treating RA. Moreover, the prescription has not been investigated from the perspective of network pharmacology. Therefore, this study aimed to analyze the compounds QTTBD and their potential pharmacological effects and the mechanism by which they treat RA via an integrated network pharmacology approach. With the aid of the relevant database tools and research indices, 188 compounds and 272 related drug targets genes/proteins were collected from QTTBD through the compound-target network, and 175 common gene targets between the QTTBD and RA were obtained by Venn 2.1. Finally, the top 10 gene targets and pathways were identified through the protein–protein interaction network, gene ontology, and KEGG pathway analysis: the gene targets include AKT1, IL6, TP53, VEGFA, MAPK3, TNF, CASP3, JUN, EGF, and EGFR; the pathways include oxytocin signaling pathway, amphetamine addiction, graft-versus-host disease, ovarian steroidogenesis, cGMP-PKG signaling pathway, Rap1 signaling pathway, allograft rejection, cytokine–cytokine receptor interaction, regulation of lipolysis in adipocytes and inflammatory mediator regulation of transient receptor potential channels. Therefore, it is concluded that a network pharmacology-based approach can help reveal and clarify the anti-RA role of QTTBD, and provide a scientific basis for further research into the mechanism.
Collapse
Affiliation(s)
- Guo-Cheng Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Shu-Yin Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jian-Kang Fang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
25
|
Wei Y, Gao J, Xu F, Shi J, Yu C, Gong Q. A network pharmacological approach to investigate the pharmacological effects of CZ2HF decoction on Alzheimer's disease. IBRAIN 2021; 7:153-170. [PMID: 37786799 PMCID: PMC10529192 DOI: 10.1002/j.2769-2795.2021.tb00080.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 10/04/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia, which brings tremendous burden to the sufferers and society. However, ideal tactics are unavailable for AD. Our previous study has shown that CZ2HF, a Chinese herb preparation, mitigates cognitive impairment in AD rats; whereas, its detailed mechanism has not been elucidated. Methods Public databases were applied to collect and identify the chemical ingredients of eight herbs in CZ2HF. Criteria of absorption, distribution, metabolism, and excretion was used to screen oral bio-availability and drug-likeness. STITCH database and Therapeutic Target Database were applied to decipher the relationship between compounds and genes related to AD. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology term analyses were used to identify the involved signaling pathways. Cytoscape was adopted to establish the networks The molecular docking was used to validate the interactions between the candidate compounds and their potential targets. Results 914 compounds were identified in eight herbal medicines of CZ2HF. Among them, 9 compounds and 28 genes were highly involved in the pathologic process of AD. Furthermore, the mechanism of CZ2HF to AD was based on its anti-inflammatory effects mainly through lipopolysaccharide-mediated signaling pathway and TNF signaling pathway. Core genes in this network were TNF, ICAM1, MMP9 and IL-10. Conclusion This study predicts the active compounds in CZ2HF and uncovers their protein targets using holistic network pharmacology methods. It will provide a insight into the underlying mechanism of CZ2HF to AD from a multi-scale perspective.
Collapse
Affiliation(s)
- Yu Wei
- Department of Pharmacythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jian‐Mei Gao
- Department of Clinical Pharmacotherapeutics of School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| | - Fan Xu
- Spemann Graduate School of Biology and MedicineAlbert‐Ludwigs‐University FreiburgFreiburgBaden‐WürttembergGermany
| | - Jing‐Shan Shi
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| | - Chang‐Yin Yu
- Department of Neurologythe Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Qi‐Hai Gong
- Department of Clinical Pharmacotherapeutics of School of PharmacyZunyi Medical UniversityZunyiGuizhouChina
- Department of PharmacologyKey Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
26
|
Ahmed S, Ding X, Sharma A. Exploring scientific validation of Triphala Rasayana in ayurveda as a source of rejuvenation for contemporary healthcare: An update. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113829. [PMID: 33465446 DOI: 10.1016/j.jep.2021.113829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurveda remains the classical and comprehensive part of the ancient Indian medicine system for well-being promotive, disease preventive, and revival approach for the human body. Triphala Rasayana is mentioned in Ayurveda, comprising fruits of three plant species viz. Phyllanthus emblica L. (P. emblica), Terminalia chebula Retz (T. chebula), and Terminalia bellirica Roxb (T.bellirica). Triphala Rasayana has been utilized in various traditional medicine systems, viz., Ayurveda, Siddha, and Unani. Traditionally Rasayana based drugs are utilized in different kinds of diseases without pathophysiological associations as indicated by current medication. Various medicinal attributes of Triphala Rasayana include antioxidant, anticancer, antidiabetic, antimicrobial, immunomodulatory, and anticataract and is also considered as a pillar for gastrointestinal treatment, specifically in functional gastrointestinal disorders (FGIDs). Due to Rasayana's accessible mode of administration, availability, and affordability, there is an increase in its global acceptance. AIM OF REVIEW This review article summarizes the scientific validation, traditional uses, bioactive compounds, and ethnopharmacological properties of Triphala Rasayana. It also documents recent data on in vivo and in vitro pharmacological studies and clinical effects of Triphala Rasayana. MATERIAL AND METHOD A literature review is carried out using PubMed, ScienceDirect, Scopus, web of science, Ayush Research Portal, and Clinical Trials Registry-India. In addition to an electronic search, traditional ayurvedic texts and books were used as sources of information. RESULTS Traditionally, "Triphala Rasayana" is classified as a tridoshic rasayana and one of the most well-studied ayurvedic Rasayana. It showed various pharmacological activities such as anticancer, antioxidant, antibacterial, immunomodulatory, cardioprotective, and antidiabetic. Besides this, Rasayana has reported ethnopharmacological activities such as antimicrobial, anticataract, wound healing, and radioprotection. It has shown a good impact on the gastrointestinal tract (GIT) system with the reported pharmacological activities in gastrointestinal disorders such as constipation, gastric ulcer, and inflammatory bowel disease (IBD). Phytochemical studies of Triphala Rasayana revealed chemical constituents like gallic acid, ellagic acid, chebulic acid, chebulinic acid, methyl gallate, emblicanin A, and emblicanin B. Additionally, clinical studies found Triphala Rasayana to be effective against diabetes, constipation, and obesity. CONCLUSION The present review revealed that Triphala Rasayana may treat a diverse range of diseases, especially GIT disorders. Considering the beneficial properties of Triphala Rasayana and it's proven non-toxic nature could be a source of rejuvenation in contemporary healthcare. Nevertheless, its clinical data effectively provided precious signals to correlate ayurvedic biology and modern medicine.
Collapse
Affiliation(s)
- Suhail Ahmed
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Xianting Ding
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Alok Sharma
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
27
|
Luo Z, Yu G, Wang W, Sun R, Zhang B, Wang J, Liu J, Gao S, Wang P, Shi Y. Integrated Systems Pharmacology and Surface Plasmon Resonance Approaches to Reveal the Synergistic Effect of Multiple Components of Gu-Ben-Ke-Chuan Decoction on Chronic Bronchitis. J Inflamm Res 2021; 14:1455-1471. [PMID: 33883922 PMCID: PMC8055291 DOI: 10.2147/jir.s303530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Gu-Ben-Ke-Chuan (GBKC) decoction, a well-known prescription composed of seven herbs, has been widely used for treating chronic bronchitis (CB). However, the pharmacological constituents of GBKC and the underlying mechanisms by which these components act on CB remain unclear. Methods Ultra-high-pressure liquid chromatography coupled with linear ion trap–Orbitrap tandem mass spectrometry (UHPLC-LTQ-Orbitrap) was first employed to rapidly identify compounds from GBKC. Thereafter, network pharmacology and molecular docking analyses were performed to identify the potential active constituents, candidate targets, and major pathways. Finally, the affinities between the key compounds and targets were verified via surface plasmon resonance (SPR) analysis. In addition, the anti-inflammatory effect of GBKC was verified using an LPS-induced inflammatory cell model based on the predicted results. Results A total of 53 major compounds were identified in the GBKC decoction. After network pharmacology-based virtual screening, 141 major targets and 39 main compounds were identified to be effective in the treatment of CB. The major targets were highly enriched in the tumor necrosis factor (TNF) signaling pathway, suggesting that GBKC could attenuate the inflammatory response in patients with CB. Furthermore, molecular docking results indicated that 20 pairs of components and target proteins relevant to the TNF pathway exhibited notable interactions. Among them, eight compound-target pairs exhibited good affinity as per SPR analysis. In addition, the production of interleukin 6 and TNF-α in LPS-induced MH-S cells was suppressed after GBKC treatment. Conclusion This study successfully clarified the mechanism of action of GBKC against CB, which demonstrated that the integrated strategy described above is reliable for identifying the active compounds and mechanisms responsible for the pharmacological activities of GBKC decoction.
Collapse
Affiliation(s)
- Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Wubin Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Rui Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Binbin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Jing Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Shan Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China
| | - Peng Wang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China
| | - Yuanyuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, People's Republic of China.,Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, People's Republic of China
| |
Collapse
|
28
|
A Network Pharmacology Approach to Predict the Proangiogenesis Mechanism of Huangqi-Honghua Herb Pair after Cerebral Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9834856. [PMID: 33953789 PMCID: PMC8064780 DOI: 10.1155/2021/9834856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Objective Huangqi-Honghua herb pair is known for its medicinal value to treat Qi deficiency and blood stasis syndrome with a long history in clinical practice. To understand its possible mechanism in a systematic study, a network pharmacological method was addressed. Methods Detailed information on the HH compounds was obtained from two public databases, and oral bioavailability (OB) and drug-like (DL) of the compounds were evaluated. A correlation between HH compounds, its potential targets, and known targets was extrapolated, and the herb-compound-target-disease (H-C-T-D) network was established. Next, the pathway enrichment and essential genes were analyzed. Then, three key genes (VEGFA, VEGFR2, and eNOS), highly associated with angiogenesis, were screened and verified through western blot assay. Results Out of 276 compounds, 21 HH compounds and 78 target genes regulating the major pathways associated with CI in the network are analyzed. The bioactive compounds in HH were active in various signal transduction pathways such as the toll-like receptor signaling pathway, VEGF signaling pathway, TNF signaling pathway, and HIF-1 signaling pathway are important pathways that may regulate anti-inflammatory, antiapoptotic, immune correlation, and antioxidative effects. The core genes are PTGS2, TNF, NOS2, IL6, BCL2, IL1B, SOD2, NOS3, SOD1, MMP9, and VEGFA. The in vitro results suggested that HH treatment could significantly elevate the expression of proangiogenic genes such as VEGFA, VEGFR2, and eNOS compared with OGD groups. Conclusions Our results predict that HH may regulate the expression of VEGFA, VEGFR2, and eNOS via the VEGF and HIF-1 signaling pathway to promote angiogenesis and alleviate cerebral ischemia injury.
Collapse
|
29
|
Wang L, Yang YF, Chen L, He ZQ, Bi DY, Zhang L, Xu YW, He JC. Compound Dihuang Granule Inhibits Nigrostriatal Pathway Apoptosis in Parkinson's Disease by Suppressing the JNK/AP-1 Pathway. Front Pharmacol 2021; 12:621359. [PMID: 33897417 PMCID: PMC8060647 DOI: 10.3389/fphar.2021.621359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/12/2021] [Indexed: 12/28/2022] Open
Abstract
Compound Dihuang Granule (CDG) is widely used in traditional Chinese medicine (TCM) for the treatment of Parkinson's disease (PD). It has been shown to alleviate PD symptoms. However, the molecular mechanisms of its action have not been established. To establish the molecular mechanisms of CDG against PD, we used TCM network pharmacology methods to predict its molecular targets and signaling pathways, followed by experimental validation. The Core Protein protein interaction (PPI) network of the 150 intersections between CDG and PD-related genes, comprising 23 proteins, including CASP3 (caspase-3), MAPK8 (JNK), FOS (c-Fos), and JUN (c-Jun). KEGG and GO analyses revealed that apoptotic regulation and MAPK signaling pathways were significantly enriched. Since c-Jun and c-Fos are AP-1 subunits, an important downstream JNK effector, we investigated if the JNK/AP-1 pathway influences CDG against apoptosis through the nigrostriatal pathways in PD rat models. Molecular docking analysis found that the top three bioactive compounds exhibiting the highest Degree Centrality following online database and LC-MS analysis had high affinities for JNK. Experimental validation analysis showed that CDG decreased the number of rotating laps and suppressed the levels of phosphorylated c-Jun, c-Fos, and JNK, as well as the number of TUNEL positive cells and the cleaved caspase-3 level in the nigrostriatal pathway. Furthermore, CDG treatment elevated the number of TH neurons, TH expression level, and Bcl-2/Bax protein ratio in a 6-OHDA-induced PD rat. These findings are in tandem with those obtained using SP600125, a specific JNK inhibitor. In conclusion, CDG suppresses the apoptosis of the nigrostriatal pathway and relieves PD symptoms by suppressing the JNK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Li Wang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-fang Yang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhu-qing He
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dian-yong Bi
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-wu Xu
- Department of Biochemistry, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-cheng He
- Department of Diagnostics of Traditional Chinese Medicine, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Protective Effect of Triphala against Oxidative Stress-Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6674988. [PMID: 33898626 PMCID: PMC8052154 DOI: 10.1155/2021/6674988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.
Collapse
|
31
|
Network Pharmacology Interpretation of Fuzheng-Jiedu Decoction against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4652492. [PMID: 33688358 PMCID: PMC7914091 DOI: 10.1155/2021/4652492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
Introduction Traditional Chinese medicine (TCM) believes that the pathogenic factors of colorectal cancer (CRC) are “deficiency, dampness, stasis, and toxin,” and Fuzheng–Jiedu Decoction (FJD) can resist these factors. In this study, we want to find out the potential targets and pathways of FJD in the treatment of CRC and also explain from a scientific point of view that FJD multidrug combination can resist “deficiency, dampness, stasis, and toxin.” Methods We get the composition of FJD from the TCMSP database and get its potential target. We also get the potential target of colorectal cancer according to the OMIM Database, TTD Database, GeneCards Database, CTD Database, DrugBank Database, and DisGeNET Database. Subsequently, PPI analysis, KEGG pathways analysis, and GO biological processes analysis were carried out for the target of FJD in the therapy of colorectal cancer. In addition, we have also built a relevant network diagram. Results In this study, we identified four core compounds of FJD in the therapy of colorectal cancer, including quercetin, kaempferol, beta-sitosterol, and stigmasterol. At the same time, we also obtained 30 core targets, including STAT3, INS, TP53, VEGFA, AKT1, TNF, IL6, JUN, EGF, CASP3, MAPK3, MAPK1, MAPK8, SRC, IGF1, CCND1, ESR1, EGFR, PTEN, MTOR, FOS, PTGS2, CXCL8, HRAS, CDH1, BCL2L1, FN1, MMP9, ERBB2, and JAK2. FJD treatment of colorectal cancer mainly involves 112 KEGG pathways, including FoxO (hsa04068) signaling pathway, PI3K-Akt (hsa04151) signaling pathway, HIF-1 (hsa04066) signaling pathway, T cell receptor (hsa04660) signaling pathway, and ErbB (hsa04012) signaling pathway. At the same time, 330 GO biological processes were summarized, including cell proliferation, cell apoptosis, angiogenesis, inflammation, and immune. Conclusions In this study, we found that FJD can regulate cell proliferation, apoptosis, inflammation and immunity, and angiogenesis through PI3K-Akt signaling pathway to play an anti-CRC effect.
Collapse
|
32
|
Zhu N, Huang B, Zhu L, Wang Y. Potential Mechanisms of Triptolide against Diabetic Cardiomyopathy Based on Network Pharmacology Analysis and Molecular Docking. J Diabetes Res 2021; 2021:9944589. [PMID: 34926700 PMCID: PMC8672107 DOI: 10.1155/2021/9944589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
The incidence of heart failure was significantly increased in patients with diabetic cardiomyopathy (DCM). The therapeutic effect of triptolide on DCM has been reported, but the underlying mechanisms remain to be elucidated. This study is aimed at investigating the potential targets of triptolide as a therapeutic strategy for DCM using a network pharmacology approach. Triptolide and its targets were identified by the Traditional Chinese Medicine Systems Pharmacology database. DCM-associated protein targets were identified using the comparative toxicogenomics database and the GeneCards database. The networks of triptolide-target genes and DCM-associated target genes were created by Cytoscape. The common targets and enriched pathways were identified by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The gene-gene interaction network was analyzed by the GeneMANIA database. The drug-target-pathway network was constructed by Cytoscape. Six candidate protein targets were identified in both triptolide target network and DCM-associated network: STAT3, VEGFA, FOS, TNF, TP53, and TGFB1. The gene-gene interaction based on the targets of triptolide in DCM revealed the interaction of these targets. Additionally, five key targets that were linked to more than three genes were determined as crucial genes. The GO analysis identified 10 biological processes, 2 cellular components, and 10 molecular functions. The KEGG analysis identified 10 signaling pathways. The docking analysis showed that triptolide fits in the binding pockets of all six candidate targets. In conclusion, the present study explored the potential targets and signaling pathways of triptolide as a treatment for DCM. These results illustrate the mechanism of action of triptolide as an anti-DCM agent and contribute to a better understanding of triptolide as a transcriptional regulator of cytokine mRNA expression.
Collapse
Affiliation(s)
- Ning Zhu
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| | - Bingwu Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325000 Zhejiang Province, China
| | - Liuyan Zhu
- Department of General Practice, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| | - Yi Wang
- Department of Cardiology, The Third Affiliated Hospital of Shanghai University (Wenzhou People's Hospital), No. 299 Guan Road, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
33
|
Shi H, Dong C, Wang M, Liu R, Wang Y, Kan Z, Wang L, Si G. Exploring the mechanism of Yizhi Tongmai decoction in the treatment of vascular dementia through network pharmacology and molecular docking. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:164. [PMID: 33569466 PMCID: PMC7867933 DOI: 10.21037/atm-20-8165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Vascular dementia (VaD) is a degenerative cerebrovascular disease that leads to progressive decline of patients' cognitive ability and memory. Yizhi Tongmai (YZTM) decoction is an empirical prescription first formulated by Professor Guomin Si. Our previous experiments proved the effectiveness of this prescription in the treatment of VaD. In this study, we aimed to use network pharmacology and molecular docking technology to systematically explain the potential anti-VaD mechanism of YZTM. METHODS We identified the core compounds of YZTM and their potential targets through the TCMSP, BATMAN, and SwissTargetPrediction databases. Then, we identified the molecular targets of YZTM in VaD using the Online Mendelian Inheritance in Man and GeneCards databases. The common targets of YZTM and VaD were screened out, and then the pathways of these target genes were analyzed using the Database for Annotation, Visualization and Integrated Discovery v6.8. Molecular docking was used to verify the relationship between the core compounds and proteins. RESULTS Through network pharmacology analysis, we discovered that the 5 core compounds in YZTM exert an anti-VaD effect. The potential mechanism of YZTM anti-VaD may be through inhibiting the NLRP3 inflammasome, TNF signaling pathway, and toll-like receptor signaling pathways. Subsequently, key compounds were docked with related proteins in the NLRP3 inflammasome (NLRP3, ASC, caspase-1, interleukin-18, and interleukin-1 β) using molecular docking technology. The compounds were found to spontaneously bind to the proteins. CONCLUSIONS YZTM may exert an anti-VaD effect through inhibition of the NLRP3 inflammasome. In addition, TNF signaling pathway and toll-like receptor signaling pathway may also be its underlying mechanism. The application of network pharmacology and molecular docking technology may provide a novel method for research of Chinese herbal medicine. YZTM may also provide a complementary treatment option for patients with VaD.
Collapse
Affiliation(s)
- Hongshuo Shi
- Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Chengda Dong
- Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Min Wang
- Shandong University of Traditional Chinese Medicine, Experimental Center, Jinan, China
| | - Ruxue Liu
- Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Yao Wang
- Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Zunqi Kan
- Shandong University of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Jinan, China
| | - Lei Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guomin Si
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Department of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Chinese Medicine Huzhen Tongfeng Formula Effectively Attenuates Gouty Arthritis by Inhibiting Arachidonic Acid Metabolism and Inflammatory Mediators. Mediators Inflamm 2020; 2020:6950206. [PMID: 33132756 PMCID: PMC7568794 DOI: 10.1155/2020/6950206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The Chinese herbal medicine, Huzhen Tongfeng Formula (HZTF), derived from traditional Chinese medicine (TCM) practice, has recognized therapeutic benefits for gouty arthritis (GA). HZTF is currently in the late stage of approval process as a new anti-GA drug application. However, the underlying mechanism of HZTF as an antigout medication is unclear. In this study, we combined network pharmacology and experimental validation approaches to elucidate the mechanism of action of HZTF. First, the relative drug-disease target networks were constructed and analyzed for pathway enrichment. Potential pathways were then validated by in vitro and in vivo experiments. We found that 34 compounds from HZTF matched 181 potential drug targets. Topology analysis revealed 77 core targets of HZTF, which were highly related to gout, following screening of KEGG pathway enrichment. Further analysis demonstrated that the arachidonic acid metabolic pathway was the most relevant pathway involved in the mechanism of HZTF. Validation experiments showed that HZTF significantly inhibited the inflammatory cell infiltration into gouty joints, improved the swelling of affected joints, and increased the pain threshold. HZTF significantly reduced the transcription and production of various cytokines and inflammatory mediators in vitro. In particular, cyclooxygenase (COX)-1, COX-2, and 5-lipoxygenase were simultaneously downregulated. In conclusion, our study suggests that the antigout mechanism of HZTF is associated with the inhibition of the arachidonic acid pathway, resulting in the suppression of inflammatory cytokines and mediators. These findings extend our understanding of the pharmacological action of HZTF, rationalizing the application HZTF as an effective herbal therapy for GA.
Collapse
|
35
|
A Network Pharmacology Technique to Investigate the Synergistic Mechanisms of Salvia miltiorrhiza and Radix puerariae in Treatment of Cardio-Cerebral Vascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6937186. [PMID: 33082828 PMCID: PMC7566220 DOI: 10.1155/2020/6937186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
Objective This study is aimed to analyze the active ingredients, drug targets, and related pathways in the combination of Salvia miltiorrhiza (SM) and Radix puerariae (RP) in the treatment of cardio-cerebral vascular diseases (CCVDs). Method The ingredients and targets of SM and RP were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the disease targets were obtained from Therapeutic Target Database (TTD), National Center for Biotechnology Information (NCBI), and Online Mendelian Inheritance in Man (OMIM) Database. The synergistic mechanisms of the SM and RP were evaluated by gene ontology (GO) enrichment analyses and Kyoto encyclopedia of genes and genomes (KEGG) path enrichment analyses. Result A total of 61 active ingredients and 58 common targets were identified in this study. KEGG pathway enrichment analysis results showed that SM- and RP-regulated pathways were mainly inflammatory processes, immunosuppression, and cardiovascular systems. The component-target-pathway network indicated that SM and RP exert a synergistic mechanism for CCVDs through PTGS2 target in PI3k-Akt, TNF, and Jak-STAT signaling pathways. Conclusion In summary, this study clarified the synergistic mechanisms of SM and RP, which can provide a better understanding of effect in the treatment of CCVDs.
Collapse
|
36
|
Deciphering the Molecular Targets and Mechanisms of HGWD in the Treatment of Rheumatoid Arthritis via Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7151634. [PMID: 32908565 PMCID: PMC7471805 DOI: 10.1155/2020/7151634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
Background Huangqi Guizhi Wuwu Decoction (HGWD) has been applied in the treatment of joint pain for more than 1000 years in China. Currently, most physicians use HGWD to treat rheumatoid arthritis (RA), and it has proved to have high efficacy. Therefore, it is necessary to explore the potential mechanism of action of HGWD in RA treatment based on network pharmacology and molecular docking methods. Methods The active compounds of HGWD were collected, and their targets were identified from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and DrugBank database, respectively. The RA-related targets were retrieved by analyzing the differentially expressed genes between RA patients and healthy individuals. Subsequently, the compound-target network of HGWD was constructed and visualized through Cytoscape 3.8.0 software. Protein-protein interaction (PPI) network was constructed to explore the potential mechanisms of HGWD on RA using the plugin BisoGenet of Cytoscape 3.8.0 software. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed in R software (Bioconductor, clusterProfiler). Afterward, molecular docking was used to analyze the binding force of the top 10 active compounds with target proteins of VCAM1, CTNNB1, and JUN. Results Cumulatively, 790 active compounds and 1006 targets of HGWD were identified. A total of 4570 differentially expressed genes of RA with a p value <0.05 and |log 2(fold change)| > 0.5 were collected. Moreover, 739 GO entries of HGWD on RA were identified, and 79 pathways were screened based on GO and KEGG analysis. The core target gene of HGWD in RA treatment was JUN. Other key target genes included FOS, CCND1, IL6, E2F2, and ICAM1. It was confirmed that the TNF signaling pathway and IL-17 signaling pathway are important pathways of HGWD in the treatment of RA. The molecular docking results revealed that the top 10 active compounds of HGWD had a strong binding to the target proteins of VCAM1, CTNNB1, and JUN. Conclusion HGWD has important active compounds such as quercetin, kaempferol, and beta-sitosterol, which exert its therapeutic effect on multiple targets and multiple pathways.
Collapse
|
37
|
Fuling-Guizhi Herb Pair in Coronary Heart Disease: Integrating Network Pharmacology and In Vivo Pharmacological Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1489036. [PMID: 32508942 PMCID: PMC7251461 DOI: 10.1155/2020/1489036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Abstract
The Fuling (Poria cocos)-Guizhi (Cinnamomi ramulus) herb pair (FGHP) is a commonly used traditional Chinese herbal formula with coronary heart disease (CHD) treatment potential. However, the mechanism of FGHP in the treatment of CHD was still unclear. In this study, the action targets and underlying mechanism of FGHP against CHD were successfully achieved by combined network pharmacology prediction with experimental verification. 76 common targets were screened out by overlapping the chemical-protein data of FGHP and CHD-related targets. Then, two key targets were further selected for verification by using western blot analysis after analyzing PPI, GO function, and KEGG pathway. Results indicated FGHP could alleviate CHD syndromes and regulate inflammatory responses in acute myocardial ischemia rats, and the reduction of expression of TNF-α and IL-6 in myocardial tissue would be one of its possible underlying mechanisms. Our work demonstrated that network pharmacology combined with experimental verification provides a credible method to elucidate the pharmacological mechanism of FGHP against CHD.
Collapse
|
38
|
Wang W, Wang S, Liu T, Ma Y, Huang S, Lei L, Wen A, Ding Y. Resveratrol: Multi-Targets Mechanism on Neurodegenerative Diseases Based on Network Pharmacology. Front Pharmacol 2020; 11:694. [PMID: 32477148 PMCID: PMC7240052 DOI: 10.3389/fphar.2020.00694] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Resveratrol is a natural polyphenol in lots of foods and traditional Chinese medicines, which has shown promising treatment for neurodegenerative diseases (NDs). However, the molecular mechanisms of its action have not been systematically studied yet. In order to elucidate the network pharmacological prospective effects of resveratrol on NDs, we assessed of pharmacokinetics (PK) properties of resveratrol, studied target prediction and network analysis, and discussed interacting pathways using a network pharmacology method. Main PK properties of resveratrol were acquired. A total of 13,612 genes related to NDs, and 138 overlapping genes were determined through matching the 175 potential targets of resveratrol with disease-associated genes. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to obtain more in-depth understanding of resveratrol on NDs. Accordingly, nodes with high degrees were obtained according using a PPI network, and AKT1, TP53, IL6, CASP3, VEGFA, TNF, MYC, MAPK3, MAPK8, and ALB were identified as hub target genes, which showed better affinity with resveratrol in silico studies. In addition, our experimental results demonstrated that resveratrol markedly enhanced the decreased levels of Bcl-2 and significantly reduced the increased expression of Bax and Caspase-3 in hippocampal neurons induced by glutamate exposure. Western blot results confirmed that resveratrol inhibited glutamate-induced apoptosis of hippocampal neurons partly by regulating the PI3K/AKT/mTOR pathway. In conclusion, we found that resveratrol could target multiple pathways forming a systematic network with pharmacological effects.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, 940 Hospital of PLA Joint Logistics Support Forces, Lanzhou, China
| | - Yang Ma
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shaojie Huang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Lei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
39
|
Network Pharmacology Study of Heat-Clearing and Detoxifying Traditional Chinese Medicine for Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7831675. [PMID: 32382304 PMCID: PMC7196989 DOI: 10.1155/2020/7831675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/15/2020] [Accepted: 03/25/2020] [Indexed: 01/13/2023]
Abstract
This study aims to explore the possible homologous mechanism of 7 frequently-used herbs for heat-clearing and detoxification in traditional Chinese medicine (HDTCM) for treating Alzheimer's disease (AD), one of the most common types of dementia, based on network pharmacology. Herbs that satisfied the criteria of containing chlorogenic acid, relating to AD and aligning with HDTCM, were simultaneously collected to determine whether they have anti-AD effect based on a survey of the literature. Herb-ingredient-target-disease networks were constructed by collecting information from the TCMSP and GeneCards public databases. The common targets of the herbs and AD were identified for conducting a Gene Ontology (GO) analyses and a Reactome pathway enrichment analysis. The results showed that PTGS1, IL-6, CASP3, and VEGFA were the predicted key gene targets. The IL-4 and IL-13 signaling pathway, the ESR-mediated signaling pathway, and the extranuclear estrogen signaling pathway were the significant pathways associated with the 7 herbs. This study revealed that the analogous anti-AD mechanism of the 7 herbs of HDTCM may be associated with anti-inflammation, which is a common effect of the chlorogenic acid and quercetin components.
Collapse
|
40
|
Systematic Elucidation of the Potential Mechanism of Erzhi Pill against Drug-Induced Liver Injury via Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6219432. [PMID: 31998398 PMCID: PMC6970004 DOI: 10.1155/2020/6219432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Objective The purpose of this work was to investigate the bioactive compounds, core genes, and pharmacological mechanisms and to provide a further research orientation of Erzhi pill (EZP) on drug-induced liver injury (DILI). Methods At first, we collected information of bioactive compounds of EZP from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and previous studies. And then, the targets related to bioactive compounds and DILI were obtained from 4 public databases. At last, Cytoscape was used to establish a visual network. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to investigate potential mechanism of EZP against DILI. Results A total of 23 bioactive compounds and 89 major proteins of EZP were screened out as potential players against DILI. Association for bioactive compounds, core targets, and related pathways was analyzed, implying that core targets related to these pathways are ALB, AKT1, MAPK1, EGFR, SRC, MAPK8, IGF1, CASP3, HSP90AA1, and MMP9, and potential mechanisms of EZP acting on DILI are closely related to negative regulation of apoptosis process, improvement of lipid metabolism, and positive regulation of liver regeneration process. Conclusion This study demonstrated the multicompound, multitarget, and multichannel characteristics of EZP, which provided a novel approach for further research the mechanism of EZP in the treatment of DILI.
Collapse
|
41
|
A Systems Pharmacology Approach for Identifying the Multiple Mechanisms of Action for the Rougui-Fuzi Herb Pair in the Treatment of Cardiocerebral Vascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5196302. [PMID: 32025235 PMCID: PMC6982690 DOI: 10.1155/2020/5196302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Cardiocerebral vascular diseases (CCVDs) are the main reasons for high morbidity and mortality all over the world, including atherosclerosis, hypertension, myocardial infarction, stroke, and so on. Chinese herbs pair of the Cinnamomum cassia Presl (Chinese name, rougui) and the Aconitum carmichaelii Debx (Chinese name, fuzi) can be effective in CCVDs, which is recorded in the ancient classic book Shennong Bencao Jing, Mingyibielu and Thousand Golden Prescriptions. However, the active ingredients and the molecular mechanisms of rougui-fuzi in treatment of CCVDs are still unclear. This study was designed to apply a system pharmacology approach to reveal the molecular mechanisms of the rougui-fuzi anti-CCVDs. The 163 candidate compounds were retrieved from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP). And 84 potential active compounds and the corresponding 42 targets were obtained from systematic model. The underlying mechanisms of the therapeutic effect for rougui-fuzi were investigated with gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, component-target-disease (C-T-D) and target-pathway (T-P) networks were constructed to further dissect the core pathways, potential targets, and active compounds in treatment of CCVDs for rougui-fuzi. We also constituted protein-protein in interaction (PPI) network by the reflect target protein of the crucial pathways against CCVDs. As a result, 21 key compounds, 8 key targets, and 3 key pathways were obtained for rougui-fuzi. Afterwards, molecular docking was performed to validate the reliability of the interactions between some compounds and their corresponding targets. Finally, UPLC-Q-Exactive-MSE and GC-MS/MS were analyzed to detect the active ingredients of rougui-fuzi. Our results may provide a new approach to clarify the molecular mechanisms of Chinese herb pair in treatment with CCVDs at a systematic level.
Collapse
|
42
|
Yang X, Li Y, Lv R, Qian H, Chen X, Yang CF. Study on the Multitarget Mechanism and Key Active Ingredients of Herba Siegesbeckiae and Volatile Oil against Rheumatoid Arthritis Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:8957245. [PMID: 31885670 PMCID: PMC6899322 DOI: 10.1155/2019/8957245] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Herba Siegesbeckiae (HS, Xixiancao in Chinese) is widely used to treat inflammatory joint diseases such as rheumatoid arthritis (RA) and arthritis, and its molecular mechanisms and active ingredients have not been completely elucidated. METHODS In this study, the small molecule ligand library of HS was built based on Traditional Chinese Medicine Systems Pharmacology (TCMSP). The essential oil from HS was extracted through hydrodistillation and analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). The target of RA was screened based on Comparative Toxicogenomics Database (CTD). The key genes were output by the four algorithms' maximum neighborhood component (MNC), degree, maximal clique centrality (MCC), and stress in cytoHubba in Cytoscape, while biological functions and pathways were also analyzed. The key active ingredients and mechanism of HS and essential oil against RA were verified by molecular docking technology (Sybyl 2.1.1) in treating RA. The interaction between 6 active ingredients (degree ≥ 5) and CSF2, IL1β, TNF, and IL6 was researched based on the software Ligplot. RESULTS There were 31 small molecule constituents of HS and 16 main chemical components of essential oil (relative content >1%) of HS. There were 47 chemical components in HS. Networks showed that 9 core targets (TNF, IL1β, CSF2, IFNG, CTLA4, IL18, CD26, CXCL8, and IL6) of RA were based on Venn diagrams. In addition, molecular docking simulation indicated that CSF2, IL1β, TNF, and IL6 had good binding activity with the corresponding compounds (degree > 10).The 6 compounds (degree ≥ 5) of HS and essential oil had good interaction with 5 or more targets. CONCLUSION This study validated and predicted the mechanism and key active ingredients of HS and volatile oil in treating RA. Additionally, this study provided a good foundation for further experimental studies.
Collapse
Affiliation(s)
- Xin Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yahui Li
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Runlin Lv
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Haibing Qian
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xiangyun Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chang Fu Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
43
|
Sun W, Chen Y, Li H, Liu H, Li J, Chen J, Feng D. Material basis and molecular mechanisms of Dachengqi decoction in the treatment of acute pancreatitis based on network pharmacology. Biomed Pharmacother 2019; 121:109656. [PMID: 31810129 DOI: 10.1016/j.biopha.2019.109656] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dachengqi decoction (DCQD) is a classical prescription in traditional Chinese medicine (TCM). It has been used to treat abdominal pain and acute pancreatitis (AP) for thousands of years in China. OBJECTIVE To predict the active components and signaling pathway of DCQD and to further explore the potential molecular mechanism of DCQD as a treatment of AP using network pharmacology. METHODS Network pharmacology and bioinformatics were used to determine the active components of DCQD and its potential target in the treatment of AP. The AP model was induced by Cerulein (Cer) combined with lipopolysaccharide (LPS). The pharmacodynamic basis of DCQD in the treatment of AP was evaluated in vitro and in vivo and Western blot analysis and immunofluorescence were used to determine the molecular mechanism of DCQD. RESULTS Screening using relevant databases and topological analysis revealed 71 active components and 535 potential target proteins in DCQD. In addition, 445 differential genes for AP were also screened. Pathway enrichment analysis, PPI network analysis and transcription factor prediction showed that DCQD played an important role in the PI3K-Akt signal pathway, and 17 DCQD monomers were found in this signal pathway. In the AP model, DCQD promoted pancreatic acinar cell apoptosis, reduction in inflammation, and regulation of the PI3K-AKT signaling pathway. DCQD inhibited the expression of p-AKT and p- NF-kB proteins in pancreatic tissue of the AP model both in vitro and in vivo. CONCLUSION This study reveals that 17 active components of DCQD improve AP by regulating the PI3K/AKT signaling pathway and promoting apoptosis and suppressing pathological injury and inflammation.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yafeng Chen
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Hongchang Li
- Department of general surgery, Minhang District Central Hospital, Shanghai 201100, China
| | - Huan Liu
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jie Li
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Jian Chen
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai 200082, China; Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Dianxu Feng
- Department of general surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|