1
|
Guo Y, Liu J, Tuo Q, Zhang D, Wanapat M, Xin G. The effect of dietary supplementation of Lycium barbarum leaves on the growth performance, organ indexes and intestinal microflora of rats. Front Vet Sci 2024; 11:1416793. [PMID: 39144075 PMCID: PMC11322056 DOI: 10.3389/fvets.2024.1416793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024] Open
Abstract
This study was conducted to investigate both fruit and different levels of leaf supplementation on the growth performance, organ indices and intestinal microflora of rats. Twenty-five healthy male Sprague-Dawley rats were randomly divided into five groups. The rats in the control (NC) and positive control (PC) groups were fed by gavage a basal diet and a basal diet with 4 g/kg of L. barbarum fruit homogenate, respectively. The test (LD, MD, and HD) groups were fed basal diets with additional 2, 4, and 8 g/kg of L. barbarum leaf homogenate, respectively. The feeding period was 35 d. The result revealed that the rats in the LD group had the highest average weight gain (p < 0.05). The cardiac and renal indexes in the LD and MD groups were significantly higher than in NC group, respectively (p < 0.05). Diversity analysis revealed that adding low concentrations of L. barbarum leaf homogenates markedly reduced the Shannon index of the rats cecum (p < 0.05). The relative abundance of Verrucomicrobiota was higher in the LD group than those in other groups (p < 0.05). The relative abundance of Actinobacteriota was found significantly higher in PC group than others (p < 0.05). The relative abundance of Akkermansia in LD group was the highest (p < 0.05). The relative abundance of Romboutsia in the PC group was considerably higher than that in other groups. The relative abundance of Candidatus_Saccharimonas in the supplementation groups was appreciably lower than those found in other groups. The relative abundance of Alloprevotella was significantly lower in PC, LD, and MD groups than in NC and HD groups (p < 0.05). The relative abundance of Oscillibacter was significantly higher in HD group than in other groups (p < 0.05). Thus, L. barbarum leaf homogenate fed to rats could increase their growth performance, internal organ weights and additionally enhance the relative abundance of beneficial bacteria. Therefore, based on the obtained data in the current study, a dose of L. barbarum leaf homogenate supplemented with 2 g/kg in diet is recommended, however, further studies are required to confirm, especially in animals.
Collapse
Affiliation(s)
- Yindi Guo
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Jie Liu
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Qiang Tuo
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Agricultural College, Ningxia University, Yinchuan, China
| | - Dongtao Zhang
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Metha Wanapat
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Khon Kaen Univ, Fac Agr, Trop Feed Resources Res & Dev Ctr TROFREC, Dept Anim Sci, Khon Kaen, Thailand
| | - Guosheng Xin
- School of Life Science, Ningxia University, Yinchuan, China
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M, Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr Metab (Lond) 2024; 21:49. [PMID: 39026248 PMCID: PMC11256480 DOI: 10.1186/s12986-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.
Collapse
Affiliation(s)
- Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingshuo Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Guang'anmen Hospital, Academician of Chinese Academy of Sciences, China Academy of Traditional Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Jiang C, Chen Z, Liao W, Zhang R, Chen G, Ma L, Yu H. The Medicinal Species of the Lycium Genus (Goji Berries) in East Asia: A Review of Its Effect on Cell Signal Transduction Pathways. PLANTS (BASEL, SWITZERLAND) 2024; 13:1531. [PMID: 38891336 PMCID: PMC11174690 DOI: 10.3390/plants13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Natural plants contain numerous chemical compounds that are beneficial to human health. The berries from the Lycium genus are widely consumed and are highly nutritious. Moreover, their chemical constituents have attracted attention for their health-promoting properties. In East Asia, there are three varieties of the Lycium genus (Lycium barbarum L., Lycium chinense Miller, and L. ruthenicum Murray) that possess medicinal value and are commonly used for treating chronic diseases and improving metabolic disorders. These varieties are locally referred to as "red Goji berries" or "black Goji berries" due to their distinct colors, and they differ in their chemical compositions, primarily in terms of carotenoid and anthocyanin content. The pharmacological functions of these berries include anti-aging, antioxidant, anti-inflammatory, and anti-exercise fatigue effects. This review aims to analyze previous and recent studies on the active ingredients and pharmacological activities of these Lycium varieties, elucidating their signaling pathways and assessing their impact on the gut microbiota. Furthermore, the potential prospects for using these active ingredients in the treatment of COVID-19 are evaluated. This review explores the potential targets of these Lycium varieties in the treatment of relevant diseases, highlighting their potential value in drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijuan Ma
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| | - Haijie Yu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (C.J.); (Z.C.); (W.L.); (R.Z.); (G.C.)
| |
Collapse
|
4
|
Zhou X, Xu S, Zhang Z, Tang M, Meng Z, Peng Z, Liao Y, Yang X, Nüssler AK, Liu L, Yang W. Gouqi-derived nanovesicles (GqDNVs) inhibited dexamethasone-induced muscle atrophy associating with AMPK/SIRT1/PGC1α signaling pathway. J Nanobiotechnology 2024; 22:276. [PMID: 38778385 PMCID: PMC11112783 DOI: 10.1186/s12951-024-02563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
With the increasing trend of global aging, sarcopenia has become a significant public health issue. Goji berry, also known as "Gou qi zi" in China, is a traditional Chinese herb that can enhance the structure and function of muscles and bones. Otherwise, previous excellent publications illustrated that plant-derived exosome-like nanoparticles can exert good bioactive functions in different aging or disease models. Thus, we issued the hypothesis that Gouqi-derived nanovesicles (GqDNVs) may also have the ability to improve skeletal muscle health, though the effect and its mechanism need to be explored. Hence, we have extracted GqDNVs from fresh berries of Lycium barbarum L. (goji) and found that the contents of GqDNVs are rich in saccharides and lipids. Based on the pathway annotations and predictions in non-targeted metabolome analysis, GqDNVs are tightly associated with the pathways in metabolism. In muscle atrophy model mice, intramuscular injection of GqDNVs improves the cross-sectional area of the quadriceps muscle, grip strength and the AMPK/SIRT1/PGC1α pathway expression. After separately inhibiting AMPK or PGC1α in C2C12 cells with dexamethasone administration, we have found that the activated AMPK plays the chief role in improving cell proliferation induced by GqDNVs. Furthermore, the energy-targeted metabolome analysis in the quadriceps muscle demonstrates that the GqDNVs up-regulate the metabolism of amino sugar and nucleotide sugar, autophagy and oxidative phosphorylation process, which indicates the activation of muscle regeneration. Besides, the Spearman rank analysis shows close associations between the quality and function of skeletal muscle, metabolites and expression levels of AMPK and SIRT1. In this study, we provide a new founding that GqDNVs can improve the quality and function of skeletal muscle accompanying the activated AMPK/SIRT1/PGC1α signaling pathway. Therefore, GqDNVs have the effect of anti-aging skeletal muscle as a potential adjuvant or complementary method or idea in future therapy and research.
Collapse
Affiliation(s)
- Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zixuan Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Mingmeng Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
5
|
Othman MB, Takeda R, Sekita M, Okazaki K, Sakamoto K. Amber (Succinite) Extract Enhances Glucose Uptake through the Up-Regulation of ATP and Down-Regulation of ROS in Mouse C2C12 Cells. Pharmaceuticals (Basel) 2024; 17:586. [PMID: 38794156 PMCID: PMC11124190 DOI: 10.3390/ph17050586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Traditionally, amber (Succinite) has been used to alleviate all types of pain, skin allergies, and headaches. However, no studies have been conducted on its antidiabetic and antioxidant effects. In this study, differentiated skeletal muscle C2C12 cells were used to demonstrate the protective effects of amber (AMB) against H2O2-induced cell death. In addition, the effects of AMB on glucose uptake and ATP production were investigated. Our results showed that AMB at 10, 25, and 50 μg/mL suppressed the elevation of ROS production induced by H2O2 in a dose-dependent manner. Moreover, AMB enhanced glucose utilization in C2C12 cells through the improvement of ATP production and an increase in PGC-1α gene expression resulting in an amelioration of mitochondrial activity. On the other hand, AMB significantly increased the gene expression of glucose transporters GLUT4 and GLUT1. Our finding suggests that AMB can be used as a natural supplement for diabetes treatment and for the promotion of skeletal muscle function.
Collapse
Affiliation(s)
- Mahmoud Ben Othman
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Reiko Takeda
- Kohaku Bio Technology Co., Ltd., Morioka 020-8551, Japan; (R.T.); (M.S.); (K.O.)
| | - Marie Sekita
- Kohaku Bio Technology Co., Ltd., Morioka 020-8551, Japan; (R.T.); (M.S.); (K.O.)
| | - Kazuma Okazaki
- Kohaku Bio Technology Co., Ltd., Morioka 020-8551, Japan; (R.T.); (M.S.); (K.O.)
| | - Kazuichi Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
6
|
Wang Z, Li Q, Yang H, Zhang D, Zhang Y, Wang J, Liu J. 5-Heptadecylresorcinol Ameliorates Obesity-Associated Skeletal Muscle Mitochondrial Dysfunction through SIRT3-Mediated Mitophagy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16032-16042. [PMID: 37862266 DOI: 10.1021/acs.jafc.3c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Skeletal muscle dysfunction caused by obesity is characterized by the decline in mitochondrial content and function. 5-Heptadecylresorcinol (AR-C17) is a specific bioactive component derived from whole wheat and rye, which has been evidenced to improve obesity-associated skeletal muscle dysregulation. However, the mechanism underlying its protective activity requires further exploration. Herein, we found that AR-C17 (5, 10, and 20 μM) intervention reversed PA-induced (0.5 mM) reduction in mitochondrial content, mitochondrial membrane potential, and mitochondrial energy metabolism in C2C12 cells. Meanwhile, AR-C17 evidently alleviated PA-mediated myotube mitochondrial dysfunction via elevating mitochondria autophagy flux and upregulating the expression level of autophagy-related protein, while this effect was abolished by an autophagy inhibitor (3-MA). Further analysis showed that SIRT3-FOXO3A-PINK-Parkin-mediated mitophagy was involved in the modulation of myocyte mitochondrial dysfunction by AR-C17. In addition, AR-C17 administration (30 and 150 mg/kg/day) significantly improved high-fat-diet-induced mitochondrial dysregulation in mice skeletal muscle tissue via SIRT3-dependent mitophagy. Our findings indicate that skeletal muscle cells are responsive to AR-C17, which improves myogenesis and mitophagy in vitro and in vivo.
Collapse
Affiliation(s)
- Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University (BTBU), 100048 Beijing, China
| | - Qing Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Haihong Yang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dandan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yiman Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University (BTBU), 100048 Beijing, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Special Food Supervision Technology for State Market Regulation, Beijing Technology & Business University (BTBU), 100048 Beijing, China
| |
Collapse
|
7
|
Kim A, Park SM, Kim NS, Lee H. Ginsenoside Rc, an Active Component of Panax ginseng, Alleviates Oxidative Stress-Induced Muscle Atrophy via Improvement of Mitochondrial Biogenesis. Antioxidants (Basel) 2023; 12:1576. [PMID: 37627571 PMCID: PMC10451796 DOI: 10.3390/antiox12081576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Loss of skeletal muscle mass and function has detrimental effects on quality of life, morbidity, and mortality, and is particularly relevant in aging societies. The enhancement of mitochondrial function has shown promise in promoting muscle differentiation and function. Ginsenoside Rc (gRc), a major component of ginseng, has various pharmacological activities; however, its effect on muscle loss remains poorly explored. In this study, we examined the effects of gRc on the hydrogen peroxide (H2O2)-induced reduction of cell viability in C2C12 myoblasts and myotubes and H2O2-induced myotube degradation. In addition, we investigated the effects of gRc on the production of intracellular reactive oxygen species (ROS) and mitochondrial superoxide, ATP generation, and peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) activity in myoblasts and myotubes under H2O2 treatment. Furthermore, to elucidate the mechanism of action of gRc, we conducted a transcriptome analysis of myotubes treated with or without gRc under H2O2 treatment. gRc effectively suppressed H2O2-induced cytotoxicity, intracellular ROS, and mitochondrial superoxide production, restored PGC-1α promoter activity, and increased ATP synthesis. Moreover, gRc significantly affected the expression levels of genes involved in maintaining mitochondrial mass and biogenesis, while downregulating genes associated with muscle degradation in C2C12 myotubes under oxidative stress. We provide compelling evidence supporting the potential of gRc as a promising treatment for muscle loss and weakness. Further investigations of the pharmacological effects of gRc under various pathological conditions of muscle loss will contribute to the clinical development of gRc as a therapeutic intervention.
Collapse
Affiliation(s)
- Aeyung Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Republic of Korea
| | - Sang-Min Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - No Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea;
| | - Haeseung Lee
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
8
|
Lu X, Huang L, Chen Y, Hu L, Zhong R, Chen L, Cheng W, Zheng B, Liang P. Effect of DHA-Enriched Phospholipids from Fish Roe on Rat Fecal Metabolites: Untargeted Metabolomic Analysis. Foods 2023; 12:foods12081687. [PMID: 37107484 PMCID: PMC10137559 DOI: 10.3390/foods12081687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lipid metabolism disorder has become an important hidden danger threatening human health, and various supplements to treat lipid metabolism disorder have been studied. Our previous studies have shown that DHA-enriched phospholipids from large yellow croaker (Larimichthys Crocea) roe (LYCRPLs) have lipid-regulating effects. To better explain the effect of LYCRPLs on lipid regulation in rats, the fecal metabolites of rats were analyzed from the level of metabolomics in this study, and GC/MS metabolomics measurements were performed to figure out the effect of LYCRPLs on fecal metabolites in rats. Compared with the control (K) group, 101 metabolites were identified in the model (M) group. There were 54, 47, and 57 metabolites in the low-dose (GA), medium-dose (GB), and high-dose (GC) groups that were significantly different from that of group M, respectively. Eighteen potential biomarkers closely related to lipid metabolism were screened after intervention with different doses of LYCRPLs on rats, which were classified into several metabolic pathways in rats, including pyrimidine metabolism, the citric acid cycle (TCA cycle), the metabolism of L-cysteine, carnitine synthesis, pantothenate and CoA biosynthesis, glycolysis, and bile secretion. L-cysteine was speculated to be a useful biomarker of LYCRPLs acting on rat fecal metabolites. Our findings indicated that LYCRPLs may regulate lipid metabolism disorders in SD rats by activating these metabolic pathways.
Collapse
Affiliation(s)
- Xiaodan Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyao Huang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanjun Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ling Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Liang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition Ministry of Education, Fuzhou 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Chen Q, Ruan D, Shi J, Du D, Bian C. The multifaceted roles of natural products in mitochondrial dysfunction. Front Pharmacol 2023; 14:1093038. [PMID: 36860298 PMCID: PMC9968749 DOI: 10.3389/fphar.2023.1093038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Mitochondria are the primary source of energy production in cells, supporting the metabolic demand of tissue. The dysfunctional mitochondria are implicated in various diseases ranging from neurodegeneration to cancer. Therefore, regulating dysfunctional mitochondria offers a new therapeutic opportunity for diseases with mitochondrial dysfunction. Natural products are pleiotropic and readily obtainable sources of therapeutic agents, which have broad prospects in new drug discovery. Recently, many mitochondria-targeting natural products have been extensively studied and have shown promising pharmacological activity in regulating mitochondrial dysfunction. Hence, we summarize recent advances in natural products in targeting mitochondria and regulating mitochondrial dysfunction in this review. We discuss natural products in terms of their mechanisms on mitochondrial dysfunction, including modulating mitochondrial quality control system and regulating mitochondrial functions. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products, emphasizing the potential value of natural products in mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Jiayan Shi
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongru Du
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Gynecology and Obstetrics, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
10
|
Bioactive Components in Whole Grains for the Regulation of Skeletal Muscle Function. Foods 2022; 11:foods11182752. [PMID: 36140879 PMCID: PMC9498156 DOI: 10.3390/foods11182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Collapse
|
11
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
12
|
Decapeptide from Potato Hydrolysate Induces Myogenic Differentiation and Ameliorates High Glucose-Associated Modulations in Protein Synthesis and Mitochondrial Biogenesis in C2C12 Cells. Biomolecules 2022; 12:biom12040565. [PMID: 35454154 PMCID: PMC9032802 DOI: 10.3390/biom12040565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/01/2023] Open
Abstract
Sarcopenia is characterized as an age-related loss of muscle mass that results in negative health consequences such as decreased strength, insulin resistance, slowed metabolism, increased body fat mass, and a substantially diminished quality of life. Additionally, conditions such as high blood sugar are known to further exacerbate muscle degeneration. Skeletal muscle development and regeneration following injury or disease are based on myoblast differentiation. Bioactive peptides are biologically active peptides found in foods that could have pharmacological functions. The aim of this paper was to investigate the effect of decapeptide DI-10 from the potato alcalase hydrolysate on myoblast differentiation, muscle protein synthesis, and mitochondrial biogenesis in vitro. The treatment of C2C12 myoblasts with DI-10 (10 µg/mL) did not induce cell death. DI-10 treatment in C2C12 myoblast cells accelerates the phosphorylation of promyogenic kinases such as ERK, Akt and mTOR proteins in a dose-dependent manner. DI-10 improves myotubes differentiation and upregulates the expression of myosin heavy chain (MyHC) protein in myoblast cells under differentiation medium with high glucose. DI-10 effectively increased the phosphorylation of promyogenic kinases Akt, mTOR, and mitochondrial-related transcription factors AMPK and PGC1α expression under hyperglycemic conditions. Further, decapeptide DI-10 decreased the expression of Murf1 and MAFbx proteins, which are involved in protein degradation and muscle atrophy. Our reports support that decapeptide DI-10 could be potentially used as a therapeutic candidate for preventing muscle degeneration in sarcopenia.
Collapse
|
13
|
Meng X, Yan J, Ma J, Kang AN, Kang SY, Zhang Q, Lyu C, Park YK, Jung HW, Zhang S. Effects of Jowiseungki-tang on high fat diet-induced obesity in mice and functional analysis on network pharmacology and metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114700. [PMID: 34600076 DOI: 10.1016/j.jep.2021.114700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese and Korean medicine, Jowiseungki-tang (JST) is a prescription for diabetes mellitus (DM) treatment. However, little scientific evidence is known of its effect in diabetic condition. AIMS We assessed the effects of JST on high-fat diet (HFD)-induced obesity with inflammatory condition in mice and to analyze the therapeutic function of JST on network pharmacology as well as targeted metabolomics. MATERIALS AND METHODS JST administration at 100 mg/kg and 500 mg/kg for a period of 4 weeks in HFD-induced obese mice, body weight gain, energy utility, calorie intake, and levels of glucose, insulin, total cholesterol, triglyceride, LDL-cholesterol as well as interleukin-6 were measured. Measurements of HDL-cholesterol (HDL-C) were performed and compared to those of the control group. Moreover, the therapeutic function of JST on obesity was analyzed furtherly based on network pharmacology and targeted metabolomics methods. RESULTS Administration of JST at 100 mg/kg and 500 mg/kg for a period of 4 weeks in HFD-induced obesity mice significantly decreased the body weight gain, energy utility, calorie intake, and levels of insulin, total cholesterol, LDL-cholesterol, triglyceride, and interleukin-6. However, HDL-cholesterol (HDL-C) levels showed marked elevation relative to control groups. JST administration strongly inhibited expressions of inducible nitric oxide synthase, inflammatory proteins, and cyclooxygenase-2 in the pancreas, stomach, and liver tissues, and reduced hepatic steatosis and pancreatic hyperplasia. In network pharmacological analysis, the putative functional targets of JST are underlie on modulation of cofactor-, coenzyme-, and fatty acid-bonding, insulin resistance, and inflammatory response, fine-tuned the phosphatase binding and signal pathway activation, such as mitogen activated protein kinases, phosphatidylinositol 3-kinases/protein kinase B, protein kinase C, and receptor of glycation end products as well-advanced glycation end products. According to the metabolomics analysis, the contents and energy metabolites, and medium and long chain fatty acids was significantly changed in mice pancreases. CONCLUSIONS JST is a valuable prescription for treatment of patients with DM in traditional clinics through inhibition of obesity, inflammatory condition and metabolism.
Collapse
Affiliation(s)
- Xianglong Meng
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Jingning Yan
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Junnan Ma
- Department of Formulaology, Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, China
| | - An Na Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea
| | - Seok Yong Kang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea
| | - Qi Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Benxi, 117004, China
| | - Chenzi Lyu
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| | - Shuosheng Zhang
- Engineering Laboratory for Modern Chinese Herbal Medicines of Shanxi Province, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
14
|
Li L, Zhang H, Chen B, Xia B, Zhu R, Liu Y, Dai X, Ye Z, Zhao D, Mo F, Gao S, Orekhov AN, Prentki M, Wang L, Guo S, Zhang D. BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114653. [PMID: 34547420 DOI: 10.1016/j.jep.2021.114653] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE BaZiBuShen formula (BZBS) is clinically used to counteract mental fatigue and to retard the aging process. Brain aging echoes in major risks of human sufferings and has become one of the main challenges to our societies and the health-care systems. AIM OF THE STUDY To investigate the effect and mode of action of BZBS on aging-associated cognitive impairments. MATERIALS AND METHODS BZBS was orally administered to D-galactose and NaNO2-induced aging mice. Premature senescence was assessed using the Morris water maze, step-down type passive avoidance, and pole-climbing tests. Telomere length was examined by qPCR analysis. Telomerase activity was assessed using PCR ELISA assay. Mitochondrial complex IV activity was examined by biochemical test. The levels of redox and immune status were determined by ELISA or biochemical assay. The expressions of sirtuin 6 (Sirt6), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), P53, telomerase reverse transcriptase (TERT), heme oxygenase-1 (HO-1), phospho(p)-nuclear factor erythroid-2 related factor 2 (NRF2), caspase-3, Bcl-2 associated x (Bax), and B-cell lymphoma-2 (Bcl-2) in the cerebral cortex were examined by Western blot and/or immunohistochemical staining. RESULTS BZBS intervention ameliorated reduced brain performances in aging mice, including memory, cognitive, and motor functions. In addition, BZBS administration to aging mice preserved redox homeostasis, attenuated immunosenescence, and maintained telomerase activity and telomere length. Moreover, BZBS treatment were associated with a declines in P53, caspase-3, Bax expressions and an increase in Sirt6, p-HO-1, p-NRF2, PGC-1α, and Bcl-2 expressions in the brains of this rapid aging mouse. CONCLUSIONS BZBS attenuates premature senescence possibly via the preservation of redox homeostasis and telomere integrity, and inhibition of apoptosis in rapid aging mouse. The mechanism governing the alterations may be associated with through the activation of Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways. The results suggest that BZBS may provide a novel strategy for confronting aging and age-associated diseases.
Collapse
Affiliation(s)
- Lin Li
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hao Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Beibei Chen
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Bingke Xia
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ruyuan Zhu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zimengwei Ye
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dandan Zhao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fangfang Mo
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Sihua Gao
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Marc Prentki
- Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montréal, H2X 0A9, QC, Canada.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shuzhen Guo
- Department of Scientific Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongwei Zhang
- Diabetes Research Centre, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
15
|
Wang P, Liu Y, Zhang T, Yin C, Kang SY, Kim SJ, Park YK, Jung HW. Effects of Root Extract of Morinda officinalis in Mice with High-Fat-Diet/Streptozotocin-Induced Diabetes and C2C12 Myoblast Differentiation. ACS OMEGA 2021; 6:26959-26968. [PMID: 34693116 PMCID: PMC8529596 DOI: 10.1021/acsomega.1c03372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Abstract
Type 2 diabetes is the most common type of diabetes and causes a decline in muscle quality. In this study, we investigated the effects of the root extract of Morinda officinalis (MORE) on skeletal muscle damage in mice with high-fat-diet (HFD)/streptozotocin (STZ)-induced diabetes and the expression of myogenic and biogenesis regulatory proteins in C2C12 myoblast differentiation. An in vivo model comprised C57BL/6N mice fed HFD for 8 weeks, followed by a single injection of STZ at 120 mg/kg. MORE was administered at 100 and 200 mg/kg once daily (p.o.) for 4 weeks. The changes in body weight, calorie intake, and serum levels of glucose, insulin, total cholesterol (TCHO), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), aspartate transaminase (AST), and alanine aminotransferase (ALT) were investigated in diabetic mice. The histological changes in the gastrocnemius muscle were observed by H&E staining, and then the myofiber size was measured. The expression of the myogenic (MHC, myogenin, and MyoD) and biogenesis (PGC-1α, SIRT1, NRF1, and TFAM) regulatory proteins was examined in the muscle tissues and differentiated C2C12 myoblasts by Western blot, respectively. The administration of MORE at 200 mg/kg in mice with HFD/STZ-induced diabetes significantly reduced weight gains, calorie intake, insulin resistance, and serum levels of glucose, TCHO, LDL-C, AST, and ALT. MORE administration at 100 and 200 mg/kg significantly increased serum insulin and HDL-C levels in diabetic mice. In addition, MORE significantly increased the expression of MHC, myogenin, MyoD, PGC-1α, SIRT1, NRF1, and TFAM in muscle tissues as well as increased the myofiber size in diabetic mice. In C2C12 myoblast differentiation, MORE treatment at 0.5, 1, and 2 mg/mL significantly increased the expression of myogenic and biogenesis regulatory proteins in a dose-dependent manner. MORE improves diabetes symptoms in mice with HFD/STZ-induced diabetes by improving muscle function. This suggests that MORE could be used to prevent or treat diabetes along with muscle disorders.
Collapse
Affiliation(s)
- Piao Wang
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Yi Liu
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Tong Zhang
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Cheng Yin
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Seok Yong Kang
- Korean
Medicine R&D Center, Dongguk University, 38066 Gyeongju, Korea
| | - Su Jin Kim
- Department
of Anesthesiology and Pain Medicine, College of Medicine, Dongguk University, 38066 Gyeongju, Korea
| | - Yong-Ki Park
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
- Korean
Medicine R&D Center, Dongguk University, 38066 Gyeongju, Korea
| | - Hyo Won Jung
- Department
of Herbology, College of Korean Medicine, Dongguk University, 38066 Gyeongju, Korea
- Korean
Medicine R&D Center, Dongguk University, 38066 Gyeongju, Korea
| |
Collapse
|
16
|
Chen S, Lu XT, He TT, Yishake D, Tan XY, Hou MJ, Luo Y, Long JA, Tang ZH, Zhong RH, Fang AP, Zhu HL. Betaine Delayed Muscle Loss by Attenuating Samtor Complex Inhibition for mTORC1 Signaling Via Increasing SAM Level. Mol Nutr Food Res 2021; 65:e2100157. [PMID: 34061446 DOI: 10.1002/mnfr.202100157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/29/2021] [Indexed: 01/26/2023]
Abstract
SCOPE The muscle loss during aging results from the blunt of protein synthesis and poses threat to the elderly health. This study aims to investigate whether betaine affects muscle loss by improving protein synthesis. METHODS AND RESULTS Male C57BL/6J mice are raised from age 12 or 15 months. Mice are fed with AIN-93M diet without or with 2% w/v betaine in distilled water as control group or betaine intervention group (Bet), respectively. Betaine supplementation to mice demonstrates better body composition, grip strength, and motor function. Muscle morphology upregulates expression of myogenic regulate factors, and elevates myosin heavy chain and also improves in Bet group. Betaine promotes muscle protein synthesis via tethering mammalian target of rapamycin complex1 protein kinase (mTORC1) on the lysosomal membrane thereby activating mTORC1 signaling. All these effects aforementioned are time-dependent (p < 0.05). Ultrahigh-performance liquid chromatography results show that betaine increases S-adenosyl-l-methionine (SAM) via methionine cycle. SAM sensor-Samtor-overexpression in C2C12 cells could displace mTORC1 from lysosome thereby inhibiting the mTORC1 signaling. Addition of betaine attenuates this inhibition by increasing SAM level and then disrupting interaction of Samtor complex. CONCLUSIONS These observations indicate that betaine could promisingly promote protein synthesis to delay age-related muscle loss.
Collapse
Affiliation(s)
- Si Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Xiao-Ting Lu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Tong-Tong He
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Dinuerguli Yishake
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Xu-Yin Tan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Meng-Jun Hou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Yun Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Jing-An Long
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Zhi-Hong Tang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Rong-Huan Zhong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Ai-Ping Fang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| | - Hui-Lian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, 510080, China
| |
Collapse
|
17
|
Lee I. Regulation of Cytochrome c Oxidase by Natural Compounds Resveratrol, (-)-Epicatechin, and Betaine. Cells 2021; 10:cells10061346. [PMID: 34072396 PMCID: PMC8229178 DOI: 10.3390/cells10061346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Numerous naturally occurring molecules have been studied for their beneficial health effects. Many compounds have received considerable attention for their potential medical uses. Among them, several substances have been found to improve mitochondrial function. This review focuses on resveratrol, (–)-epicatechin, and betaine and summarizes the published data pertaining to their effects on cytochrome c oxidase (COX) which is the terminal enzyme of the mitochondrial electron transport chain and is considered to play an important role in the regulation of mitochondrial respiration. In a variety of experimental model systems, these compounds have been shown to improve mitochondrial biogenesis in addition to increased COX amount and/or its enzymatic activity. Given that they are inexpensive, safe in a wide range of concentrations, and effectively improve mitochondrial and COX function, these compounds could be attractive enough for possible therapeutic or health improvement strategies.
Collapse
Affiliation(s)
- Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Korea
| |
Collapse
|
18
|
He Y, Huang W, Zhang C, Chen L, Xu R, Li N, Wang F, Han L, Yang M, Zhang D. Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharm Sin B 2021; 11:1098-1116. [PMID: 34094822 PMCID: PMC8144890 DOI: 10.1016/j.apsb.2020.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is a global public health problem with high morbidity and mortality. A large number of studies have shown that HF is caused by severe energy metabolism disorders, which result in an insufficient heart energy supply. This deficiency causes cardiac pump dysfunction and systemic energy metabolism failure, which determine the development of HF and recovery of heart. Current HF therapy acts by reducing heart rate and cardiac preload and afterload, treating the HF symptomatically or delaying development of the disease. Drugs aimed at cardiac energy metabolism have not yet been developed. In this review, we outline the main characteristics of cardiac energy metabolism in healthy hearts, changes in metabolism during HF, and related pathways and targets of energy metabolism. Finally, we discuss drugs that improve cardiac function via energy metabolism to provide new research ideas for the development and application of drugs for treating HF.
Collapse
|
19
|
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) poses a growing challenge in terms of its prevention and treatment. The 'multiple hits' hypothesis of multiple insults, such as dietary fat intake, de novo lipogenesis, insulin resistance, oxidative stress, mitochondrial dysfunction, gut dysbiosis and hepatic inflammation, can provide a more accurate explanation of the pathogenesis of NAFLD. Betaine plays important roles in regulating the genes associated with NAFLD through anti-inflammatory effects, increased free fatty oxidation, anti-lipogenic effects and improved insulin resistance and mitochondrial function; however, the mechanism of betaine remains elusive.
Collapse
|
20
|
Gill MSA, Saleem H, Ahemad N. Plant Extracts and their Secondary Metabolites as Modulators of Kinases. Curr Top Med Chem 2021; 20:1093-1104. [PMID: 32091334 DOI: 10.2174/1568026620666200224100219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Natural Products (NP), specifically from medicinal plants or herbs, have been extensively utilized to analyze the fundamental mechanisms of ultimate natural sciences as well as therapeutics. Isolation of secondary metabolites from these sources and their respective biological properties, along with their lower toxicities and cost-effectiveness, make them a significant research focus for drug discovery. In recent times, there has been a considerable focus on isolating new chemical entities from natural flora to meet the immense demand for kinase modulators, and also to overcome major unmet medical challenges in relation to signal transduction pathways. The signal transduction systems are amongst the foremost pathways involved in the maintenance of life and protein kinases play an imperative part in these signaling pathways. It is important to find a kinase inhibitor, as it can be used not only to study cell biology but can also be used as a drug candidate for cancer and metabolic disorders. A number of plant extracts and their isolated secondary metabolites such as flavonoids, phenolics, terpenoids, and alkaloids have exhibited activities against various kinases. In the current review, we have presented a brief overview of some important classes of plant secondary metabolites as kinase modulators. Moreover, a number of phytocompounds with kinase inhibition potential, isolated from different plant species, are also discussed.
Collapse
Affiliation(s)
- Muhammad Shoaib Ali Gill
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Petaling Jaya 47500, Selangor Darul Ehsan, Malaysia.,Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Hammad Saleem
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Petaling Jaya 47500, Selangor Darul Ehsan, Malaysia.,Institute of Pharmaceutical Sciences (IPS), University of Veterinary and Animal Sciences (UVAS), Lahore 54000, Pakistan
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Petaling Jaya 47500, Selangor Darul Ehsan, Malaysia.,Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Petaling Jaya 47500, Selangor Darul Ehsan, Malaysia.,Global Asia in 21st Century Platform, Monash University Malaysia, Jalan Lagoon Selatan, Petaling Jaya 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
21
|
Ma J, Meng X, Liu Y, Yin C, Zhang T, Wang P, Park YK, Jung HW. Effects of a rhizome aqueous extract of Dioscorea batatas and its bioactive compound, allantoin in high fat diet and streptozotocin-induced diabetic mice and the regulation of liver, pancreas and skeletal muscle dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112926. [PMID: 32380247 DOI: 10.1016/j.jep.2020.112926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dysfunction of glucose metabolism is associated with the occurrence of metabolic syndromes, including type 2 diabetes mellitus (T2DM). In this study, we investigated the anti-diabetic effects of yam aqueous extract and allantoin in high-fat-diet (HFD) and streptozotocin (STZ)-induced diabetic mice and the mechanism of action on the dysfunction of the liver, pancreas, and skeletal muscle. MATERIALS AND METHODS Male C57BL/6 mice were induced into a diabetic condition by HFD for 16 weeks and a single injection of STZ (120 mg/kg) and then orally administered yam aqueous extract (500 and 1000 mg/kg) or allantoin (20 and 50 mg/kg) once daily for 4 weeks. The changes in physiological parameters, serological parameters, and morphology of tissues were investigated. The expression levels of antioxidant enzymes, biogenetic proteins, and myogenetic proteins were determined in the liver, pancreas and skeletal muscle tissues of mice. RESULTS The administration of yam aqueous extract and allantoin at high doses in HFD/STZ-induced diabetic mice compared with the control group significantly decreased the increase in body weight, caloric intake, and water intake. Yam aqueous extract and allantoin significantly decreased high glucose and leptin, total cholesterol, triglyceride, low-density lipoprotein-cholesterol, aspartate transaminase, alanine aminotransferase levels and increased insulin and albumin levels in the plasma of mice. Yam aqueous extract and allantoin inhibited the structural damage of the liver with regard to fat accumulation, the pancreas with atrophy of Langerhans' islets, and skeletal muscle with regard to atrophy and significantly increased the expression of antioxidant enzymes and mitochondria-mediated biogenetic factors in the liver, pancreas, and muscle tissues. In addition, Yam aqueous extract and allantoin significantly increased the expression of myogenetic proteins in skeletal muscle tissues. CONCLUSION Our results indicated that Yam aqueous extract and allantoin improve diabetic symptoms through the regulation of oxidation and glucose imbalance in liver, pancreas, and skeletal muscle tissues in mice. These findings suggest that Yam aqueous extract and allantoin can be used as antidiabetic factors in supplementary foods and medications for T2DM patients.
Collapse
Affiliation(s)
- Junnan Ma
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Xianglong Meng
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Experimental Teaching Center, College of Chinese Materia Medica, Shanxi University of Chinese Medicine, Jinzhong, 030619, China.
| | - Yi Liu
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Cheng Yin
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Tong Zhang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Piao Wang
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea.
| | - Yong-Ki Park
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju, 38066, South Korea; Korean Medicine R&D Center, Dongguk University, Gyeongju, 38066, South Korea.
| |
Collapse
|