1
|
Wu D, Liao X, Gao J, Gao Y, Li Q, Gao W. Potential pharmaceuticals targeting neuroimmune interactions in treating acute lung injury. Clin Transl Med 2024; 14:e1808. [PMID: 39129233 PMCID: PMC11317502 DOI: 10.1002/ctm2.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND AND MAIN BODY Although interactions between the nervous and immune systems have been recognized decades ago, it has become increasingly appreciated that neuroimmune crosstalk is among the driving factors of multiple pulmonary inflammatory diseases including acute lung injury (ALI). Here, we review the current understanding of nerve innervations towards the lung and summarize how the neural regulation of immunity and inflammation participates in the onset and progression of several lung diseases, especially ALI. We then present advancements in the development of potential drugs for ALI targeting neuroimmune interactions, including cholinergic anti-inflammatory pathway, sympathetic-immune pathway, purinergic signalling, neuropeptides and renin-angiotensin system at different stages from preclinical investigation to clinical trials, including the traditional Chinese medicine. CONCLUSION This review highlights the importance of considering the therapeutic strategy of inflammatory diseases within a conceptual framework that integrates classical inflammatory cascade and neuroimmune circuits, so as to deepen the understanding of immune modulation and develop more sophisticated approaches to treat lung diseases represented by ALI. KEY POINTS The lungs present abundant nerve innervations. Neuroimmune interactions exert a modulatory effect in the onset and progression of lung inflammatory diseases, especially acute lung injury. The advancements of potential drugs for ALI targeting neuroimmune crosstalk at different stages from preclinical investigation to clinical trials are elaborated. Point out the direction for the development of neuroimmune pharmacology in the future.
Collapse
Affiliation(s)
- Di Wu
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Ximing Liao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Jing Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Yixuan Gao
- Department of GynaecologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanP. R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Wei Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| |
Collapse
|
2
|
Kadac-Czapska K, Ośko J, Knez E, Grembecka M. Microplastics and Oxidative Stress-Current Problems and Prospects. Antioxidants (Basel) 2024; 13:579. [PMID: 38790684 PMCID: PMC11117644 DOI: 10.3390/antiox13050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Microplastics (MPs) are plastic particles between 0.1 and 5000 µm in size that have attracted considerable attention from the scientific community and the general public, as they threaten the environment. Microplastics contribute to various harmful effects, including lipid peroxidation, DNA damage, activation of mitogen-activated protein kinase pathways, cell membrane breakages, mitochondrial dysfunction, lysosomal defects, inflammation, and apoptosis. They affect cells, tissues, organs, and overall health, potentially contributing to conditions like cancer and cardiovascular disease. They pose a significant danger due to their widespread occurrence in food. In recent years, information has emerged indicating that MPs can cause oxidative stress (OS), a known factor in accelerating the aging of organisms. This comprehensive evaluation exposed notable variability in the reported connection between MPs and OS. This work aims to provide a critical review of whether the harmfulness of plastic particles that constitute environmental contaminants may result from OS through a comprehensive analysis of recent research and existing scientific literature, as well as an assessment of the characteristics of MPs causing OS. Additionally, the article covers the analytical methodology used in this field. The conclusions of this review point to the necessity for further research into the effects of MPs on OS.
Collapse
Affiliation(s)
| | | | | | - Małgorzata Grembecka
- Department of Bromatology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (K.K.-C.); (J.O.); (E.K.)
| |
Collapse
|
3
|
Li Q, Xiang Y, Zhang Z, Qu X, Wu J, Fu J, Zhu F, Tang H. An integrated RNA-Seq and network pharmacology approach for exploring the preventive effect of Corydalis bungeana Turcz. Extract and Acetylcorynoline on LPS-induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117048. [PMID: 37586441 DOI: 10.1016/j.jep.2023.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalis bungeana Turcz. (KDD) is a Chinese herbal medicine with anti-inflammatory, lung cleansing, detoxification and other functions. Clinically, it is commonly used to treat respiratory infections. This study uses ALI as the research model, which is consistent with the clinical use of KDD. Acetylcorynoline (AC) is the main alkaloid component of the KDD extracts, and network pharmacology studies suggest that it may be the main active ingredient in the prevention of ALI. AIM OF THE STUDY The aim of this study is to explore the underlying mechanisms and to study the efficacy material basis of KDD in anti-ALI effect by LPS-induced mice and using a combination of RNA sequencing (RNA-Seq) technology and network pharmacology. MATERIALS AND METHODS Establish a mouse model of ALI by intraperitoneal injection of LPS (5 mg/kg). The main active ingredients of KDD were identified and analyzed by high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS) and network pharmacology. IL-18, IL-1β, and IL-6 levels in serum and bronchoalveolar lavage fluid (BALF), lung histopathological changes, and lung myeloperoxidase (MPO) activity were assessed. We investigated the possible molecular mechanisms of KDD and AC in an LPS-induced mouse ALI models with RNA-Seq technology. In addition, the anti-inflammatory effect of AC was verified in vitro by establishing an LPS-stimulated RAW264.7 inflammation model. Molecular docking further validated AC as the efficacy material basis of KDD in anti-ALI. RESULTS Based on HPLC-QTOF-MS technology and network pharmacology, KDD is more strongly associated with lung tissue, and that AC may be the main active ingredient of KDD. Subsequently, in vivo experiments results showed that KDD and AC reduced the levels of pro-inflammatory cytokines in serum and BALF, reduced MPO levels and reduced inflammatory damage in the lungs. To elucidate its underlying mechanism, based on RNA-Seq analysis techniques performed in lung tissue, enrichment analysis showed that KDD and AC intervened through the NLR signaling pathway, thereby mitigating LPS-induced ALI. Then, RT-qPCR, IF, WB and other technologies were used to verify the anti-ALI core difference genes of KDD and AC from the gene transcription and protein expression levels of the NLR signaling pathway, and confirmed the anti-ALI. In vitro experimental results also showed that AC has anti-inflammatory effects in RAW264.7. Finally, the biotransformation and molecular docking results also further indicated that AC is the active ingredient of KDD in anti-ALI. CONCLUSIONS Studies have shown that KDD has a good therapeutic effect on ALI, and AC is the main pharmacodynamic material basis for its therapeutic effect in ALI.
Collapse
Affiliation(s)
- Qinning Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Yan Xiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Zhenxu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyang Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jie Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Jun Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Hao Tang
- Department of Pharmacy, Jinling Hospital, Nanjing, 210002, China.
| |
Collapse
|
4
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
5
|
Mia GK, Hawley E, Yusuf M, Amat S, Ward AK, Keller WL, Dorsam G, Swanson KC. The impact of exogenous vasoactive intestinal polypeptide on inflammatory responses and mRNA expression of tight junction genes in lambs fed a high-grain diet. J Anim Sci 2024; 102:skae309. [PMID: 39396104 PMCID: PMC11537799 DOI: 10.1093/jas/skae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
This study assessed the impact of administering vasoactive intestinal polypeptide (VIP) on inflammation and intestinal VIP and tight junction mRNA expression in lambs fed grain-based finishing diets. Sixteen wether lambs (69.6 ± 1.9 kg) were individually housed, adapted to a corn-based diet containing no forage, and randomly assigned to 2 treatment groups. Lambs were intraperitoneally injected every other day for 28 d with either saline (0.9% NaCl) with no VIP (n = 8; control) or saline with VIP (n = 8; 1.3 nmol/kg BW). Blood samples were collected weekly for analysis of cytokine concentrations, and on days 0 and 28 for lipopolysaccharide (LPS), and LPS-binding protein (LBP) concentrations. Upon completion of the treatment period, lambs were euthanized and gastrointestinal tissues, including rumen, jejunum, cecum, and colon samples, were collected for analysis of the expression of tight junction mRNA (claudin-1, claudin-4, occludin, and ZO-1), endogenous VIP, and VIP receptor (VPAC-1). No treatment effects (P ≥ 0.38) were observed for VIP and VPAC-1 mRNA expression in the colon. Supplementation with VIP did not influence (P ≥ 0.28) the expression of claudin-1, claudin-4, occludin, and ZO-1 tight junction mRNA in the rumen, jejunum, cecum, and colon. Lambs treated with VIP had greater (P ≤ 0.01) plasma concentrations of the anti-inflammatory cytokines, IL-10 and IL-36RA. There were treatment-by-day interactions observed (P ≤ 0.02) for concentrations of the pro-inflammatory cytokines, MIP-1α and MIP-1β. Lambs that did not receive VIP had greater serum concentrations of LPS (P = 0.05) than the lambs receiving VIP. These data suggest that VIP administration may not influence tight junction mRNA expression but may decrease LPS concentrations and thus inflammation in lambs fed a grain-based diet.
Collapse
Affiliation(s)
- Golam K Mia
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Emma Hawley
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Mustapha Yusuf
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Alison K Ward
- Departments of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Wanda L Keller
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Glenn Dorsam
- Departments of Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Kendall C Swanson
- Departments of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
6
|
Ye T, Tao WY, Chen XY, Jiang C, Di B, Xu LL. Mechanisms of NLRP3 inflammasome activation and the development of peptide inhibitors. Cytokine Growth Factor Rev 2023; 74:1-13. [PMID: 37821254 DOI: 10.1016/j.cytogfr.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The Nucleotide-binding domain leucine-rich repeat and pyrin domain containing receptor 3 (NLRP3), a member of the nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) family, plays an important role in the innate immune response against pathogen invasions. NLRP3 inflammasome consisting of NLRP3 protein, the adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (CARD) (ASC), and the effector protein pro-caspase-1, is central to this process. Upon activation, NLRP3 inflammasome initiates the release of inflammatory cytokines and triggers a form of cell death known as pyroptosis. Dysregulation or inappropriate activation of NLRP3 has been implicated in various human diseases, including type 2 diabetes, colitis, depression, and gout. Consequently, understanding the mechanism underlying NLRP3 inflammasome activation is critical for the development of therapeutic drugs. In the pursuit of potential therapeutic agents, peptides present several advantages over small molecules. They offer higher selectivity, increased potency, reduced toxicity, and fewer off-target effects. The advancements in molecular biology have expanded the opportunities for applying peptides in medicine, unlocking their vast medical potential. This review begins by providing a comprehensive summary of recent research progress regarding the mechanisms governing NLRP3 inflammasome activation. Subsequently, we offer an overview of current peptide inhibitors capable of modulating the NLRP3 inflammasome activation pathway.
Collapse
Affiliation(s)
- Tao Ye
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Zhong HL, Li PZ, Li D, Guan CX, Zhou Y. The role of vasoactive intestinal peptide in pulmonary diseases. Life Sci 2023; 332:122121. [PMID: 37742737 DOI: 10.1016/j.lfs.2023.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Vasoactive intestinal peptide (VIP) is an abundant neurotransmitter in the lungs and other organs. Its discovery dates back to 1970. And VIP gains attention again due to the potential application in COVID-19 after a research wave in the 1980s and 1990s. The diverse biological impacts of VIP extend beyond its usage in COVID-19 treatment, encompassing its involvement in various pulmonary and systemic disorders. This review centers on the function of VIP in various lung diseases, such as pulmonary arterial hypertension, chronic obstructive pulmonary disease, asthma, cystic fibrosis, acute lung injury/acute respiratory distress syndrome, pulmonary fibrosis, and lung tumors. This review also outlines two main limitations of VIP as a potential medication and gathers information on extended-release formulations and VIP analogues.
Collapse
Affiliation(s)
- Hong-Lin Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Pei-Ze Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Di Li
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
9
|
Ma Y, Wang Z, Wu X, Ma Z, Shi J, He S, Li S, Li X, Li X, Li Y, Yu J. 5-Methoxytryptophan ameliorates endotoxin-induced acute lung injury in vivo and in vitro by inhibiting NLRP3 inflammasome-mediated pyroptosis through the Nrf2/HO-1 signaling pathway. Inflamm Res 2023; 72:1633-1647. [PMID: 37458783 DOI: 10.1007/s00011-023-01769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND AND AIM Endotoxin-induced acute lung injury (ALI) is a complicated and fatal condition with no specific or efficient clinical treatments. 5-Methoxytryptophan (5-MTP), an endogenous metabolite of tryptophan, was revealed to block systemic inflammation. However, the specific mechanism by which 5-MTP affects ALI still needs to be clarified. The purpose of this study was to determine whether 5-MTP protected the lung by inhibiting NLRP3 inflammasome-mediated pyroptosis through the Nrf2/HO-1 signaling pathway. METHODS AND RESULTS We used lipopolysaccharide (LPS)-stimulated C57BL/6 J mice and MH-S alveolar macrophages to create models of ALI, and 5-MTP (100 mg/kg) administration attenuated pathological lung damage in LPS-exposed mice, which was associated with decreased inflammatory cytokines and oxidative stress levels, upregulated protein expression of Nrf2 and HO-1, and suppressed Caspase-1 activation and NLRP3-mediated pyroptosis protein levels. Moreover, Nrf2-deficient mice or MH-S cells were treated with 5-MTP to further confirm the protective effect of the Nrf2/HO-1 pathway on lung damage. We found that Nrf2 deficiency partially eliminated the beneficial effect of 5-MTP on reducing oxidative stress levels and inflammatory responses and abrogating the inhibition of NLRP3-mediated pyroptosis induced by LPS. CONCLUSION These findings suggested that 5-MTP could effectively ameliorate ALI by inhibiting NLRP3-mediated pyroptosis via the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yang Ma
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zhixue Wang
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiaoyang Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Zijian Ma
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Simeng He
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaona Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangkun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
10
|
Afreen V, Hashmi K, Nasir R, Saleem A, Khan MI, Akhtar MF. Adverse health effects and mechanisms of microplastics on female reproductive system: a descriptive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27930-1. [PMID: 37247153 DOI: 10.1007/s11356-023-27930-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Microplastics (MPs), with a diameter of less than 5 mm, include polymers such as polystyrene, polypropylene, and polyethylene. The MPs occur in different morphologies including fragments, beads, fibers, and films that are swallowed by fresh water and land-based animals and enter their food chain, where they produce hazardous effects such as uterine toxicity, infertility, and neurotoxicity. The aim of this review is to explore the effects of polystyrene MPs (PS-MPs) on the female reproductive system and understand the mechanisms by which they produce reproductive toxicity. Several studies suggested that the exposure to PS-MPs increased the probability of larger ovaries with fewer follicles, decreased the number of embryos produced, and decreased the number of pregnancies in female mice. It also changed sex hormone levels and caused oxidative stress, which could have an impact on fertility and reproduction. Exposure to PS-MPs caused the death of granulosa cells through apoptosis and pyroptosis via activation of the NLRP3/caspase pathway and disruption of the Wnt-signaling pathway. Activation of TL4/NOX2 caused the uterine fibrosis resulting in endometrium thinning. The PS-MPs had a negative impact on ovarian capacity, oocyte maturation, and oocyte quality. Furthermore, the PS-MPs disrupted the hypothalamus-pituitary-gonadal axis in marine animals, resulting in a decrease in hatching rate and offspring body size, causing trans-generational effects. It also reduced fecundity and produced germ-line apoptosis. The main focus of this review was to explore the different mechanisms and pathways through which PS-MPs adversely impact the female reproductive system.
Collapse
Affiliation(s)
- Vishal Afreen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Kanza Hashmi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Rimsha Nasir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| |
Collapse
|
11
|
Qin T, Feng D, Zhou B, Bai L, Zhou S, Du J, Xu G, Yin Y. Melatonin attenuates lipopolysaccharide-induced immune dysfunction in dendritic cells. Int Immunopharmacol 2023; 120:110282. [PMID: 37224647 DOI: 10.1016/j.intimp.2023.110282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Melatonin, a ubiquitous hormone, is principally secreted from pineal gland in mammals and possesses strong antioxidant and anti-inflammatory properties. However, its specific roles in the immune functions of dendritic cells (DCs) during acute lung injury (ALI) remain unknown. In this study, we found that melatonin restored the body weight, decreased the lung weight/body weight ratio, alleviated the histopathological lung injury, and decreased the levels of cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-12p70, IL-17, and IL-10) in bronchoalveolar lavage fluid of the lipopolysaccharide (LPS)-induced ALI murine model. Moreover, melatonin inhibited the major histocompatibility complex II (MHCII) expression of lung CD11b+ DCs after LPS challenge in vivo. In vitro, melatonin reversed the shape index, promoted the endocytosis, and inhibited phenotypic expression of MHCII, CD40, CD80, and CD86 in LPS-activated DCs. Furthermore, melatonin decreased the expression of an activated marker, CD69, and the secretion of pro-inflammatory cytokines (TNF-α, IL-12p70, and IL-17) after LPS challenge. It hampered the LPS-activated DCs migration by downregulating the C-C chemokine receptor 7 (CCR7) expression, and then weakened the ability of LPS-induced DCs to stimulate allogeneic CD4+ T cell proliferation. Melatonin shaped the immune function of DCs in a nuclear factor erythroid-2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) axis-dependent manner. These findings indicate that melatonin protects DCs from ALI-induced immunological stress and may be used to develop novel DC-targeting strategies for ALI therapy.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Danni Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bangyue Zhou
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lirong Bai
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shengjie Zhou
- Clinical Medical College, Yangzhou University, Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Jiangtao Du
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gang Xu
- Clinical Medical College, Yangzhou University, Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| | - Yinyan Yin
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Guangling College, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
12
|
Zeng J, Liu J, Huang JH, Fu SP, Wang XY, Xi C, Cui YR, Qu F. Aloperine alleviates lipopolysaccharide-induced acute lung injury by inhibiting NLRP3 inflammasome activation. Int Immunopharmacol 2023; 120:110142. [PMID: 37210910 DOI: 10.1016/j.intimp.2023.110142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
RATIONALE Excessive activation of the NLRP3 inflammasome is involved in the pathological progression of acute lung injury (ALI). Aloperine (Alo) has anti-inflammatory effects in many inflammatory disease models; however, its role in ALI remains elusive. In this study, we addressed the role of Alo in NLRP3 inflammasome activation in both ALI mice and LPS-treated RAW264.7 cells. METHODS The activation of the NLRP3 inflammasome in LPS-induced ALI lungs was investigated in C57BL/6 mice. Alo was administered in order to study its effect on NLRP3 inflammasome activation in ALI. RAW264.7 cells were used to evaluate the underlying mechanism of Alo in the activation of the NLRP3 inflammasome in vitro. RESULTS The activation of the NLRP3 inflammasome occurs in the lungs and RAW264.7 cells under LPS stress. Alo attenuated the pathological injury of lung tissue as well as downregulates the mRNA expression of NLRP3 and pro-caspase-1 in ALI mice and LPS-stressed RAW264.7 cells. The expression of NLRP3, pro-caspase-1, and caspase-1 p10 were also significantly suppressed by Alo in vivo and in vitro. Furthermore, Alo decreased IL-1β and IL-18 release in ALI mice and LPS-induced RAW264.7 cells. In addition, ML385, a Nrf2 inhibitor, weakened the activity of Alo, which inhibited the activation of the NLRP3 inflammasome in vitro. CONCLUSION Alo reduces NLRP3 inflammasome activation via the Nrf2 pathway in ALI mice.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Jiangxi Medical College, Shangrao, Jiangxi 334000, China
| | - Jie Liu
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jun-Hao Huang
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | | | - Xin-Yi Wang
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Chao Xi
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Yan-Ru Cui
- Department of Physiology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan 410078, China.
| | - Fei Qu
- Department of Pharmacology, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330004, China.
| |
Collapse
|
13
|
Li S, Li Y, Liu Y, Wu Y, Wang Q, Jin L, Zhang D. Therapeutic Peptides for Treatment of Lung Diseases: Infection, Fibrosis, and Cancer. Int J Mol Sci 2023; 24:ijms24108642. [PMID: 37239989 DOI: 10.3390/ijms24108642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Various lung diseases endanger people's health. Side effects and pharmaceutical resistance complicate the treatment of acute lung injury, pulmonary fibrosis, and lung cancer, necessitating the development of novel treatments. Antimicrobial peptides (AMPs) are considered to serve as a viable alternative to conventional antibiotics. These peptides exhibit a broad antibacterial activity spectrum as well as immunomodulatory properties. Previous studies have shown that therapeutic peptides including AMPs had remarkable impacts on animal and cell models of acute lung injury, pulmonary fibrosis, and lung cancer. The purpose of this paper is to outline the potential curative effects and mechanisms of peptides in the three types of lung diseases mentioned above, which may be used as a therapeutic strategy in the future.
Collapse
Affiliation(s)
- Shujiao Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Yuying Li
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Qiuyu Wang
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
14
|
Anti-Oxidant and Pro-Oxidant Effects of Peroxiredoxin 6: A Potential Target in Respiratory Diseases. Cells 2023; 12:cells12010181. [PMID: 36611974 PMCID: PMC9818991 DOI: 10.3390/cells12010181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Peroxiredoxin 6 (PRDX6) is widely distributed in several organs, especially the lungs. The role of PRDX6 in oxidative stress is controversial and even contradictory, as indicated by research conducted over the past 20 years. PRDX6 has anti-oxidant or pro-oxidant effects on oxidative stress in different diseases. It can even exhibit both anti-oxidant and pro-oxidant effects in the same disease. These findings are attributed to the fact that PRDX6 is a multifunctional enzyme. The peroxidase and phospholipase A2 activity of PRDX6 is closely related to its anti-oxidant and pro-oxidant effects, which leads to the conflicting regulatory effects of PRDX6 on oxidative stress in respiratory diseases. Moreover, PRDX6 interacts with multiple redox signaling pathways to interfere with cell proliferation and apoptosis. PRDX6 has become a new target in respiratory disease research due to its important regulatory role in oxidative stress. In this paper, the role of PRDX6 in oxidative stress in respiratory diseases and the research progress in targeting PRDX6 are reviewed.
Collapse
|
15
|
C-Fiber Degeneration Enhances Alveolar Macrophage-Mediated IFN-α/β Response to Respiratory Syncytial Virus. Microbiol Spectr 2022; 10:e0241022. [PMID: 36350149 PMCID: PMC9769737 DOI: 10.1128/spectrum.02410-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stimulation of unmyelinated C fibers, the nociceptive sensory nerves, by noxious stimuli is able to initiate host responses. Host defensive responses against respiratory syncytial virus (RSV) infection rely on the induction of a robust alpha/beta interferon (IFN-α/β) response, which acts to restrict viral production and promote antiviral immune responses. Alveolar macrophages (AMs) are the major source of IFN-α/β upon RSV infection. Here, we found that C fibers are involved in host defense against RSV infection. Compared to the control mice post-RSV infection, degeneration and inhibition of C fibers by blockade of transient receptor potential vanilloid 1 (TRPV1) lowered viral replication and alleviated lung inflammation. Importantly, AMs were markedly elevated in C-fiber-degenerated (KCF) mice post-RSV infection, which was associated with higher IFN-α/β secretion as measured in bronchoalveolar lavage fluid (BALF) samples. Degeneration of C fibers contributed to the production of vasoactive intestinal peptide (VIP), which modulated AM and IFN-α/β levels to protect against RSV infection. Collectively, these findings revealed the key role of C fibers in regulating AM and IFN-α/β responses against RSV infection via VIP, opening the possibility for new therapeutic strategies against RSV. IMPORTANCE Despite continuous advances in medicine, safe and effective drugs against RSV infection remain elusive. As such, host-RSV interactions and host-directed therapies require further research. Unmyelinated C fibers, the nociceptive sensory nerves, play an important role in regulating the host response to virus. In the present study, from the perspective of neuroimmune interactions, we clarified that C-fiber degeneration enhanced the AM-mediated IFN-α/β response against RSV via VIP, providing potential therapeutic targets for the treatment of RSV infection.
Collapse
|
16
|
Sun K, Jiang J, Wang Y, Sun X, Zhu J, Xu X, Sun J, Shi J. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res Rev 2022; 81:101733. [PMID: 36113765 DOI: 10.1016/j.arr.2022.101733] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been the major contributor to chronic lower back pain (LBP). Abnormal apoptosis, senescence, and pyroptosis of IVD cells, extracellular matrix (ECM) degradation, and infiltration of immune cells are the major molecular alternations during IVDD. Changes at tissue level frequently occur at advanced IVD tissue. Ectopic ingrowth of nerves within inner annulus fibrosus (AF) and nucleus pulposus (NP) tissue has been considered as the primary cause for LBP. Innervation at IVD tissue mainly included sensory and sympathetic nerves, and many markers for these two types of nerves have been detected since 1940. In fact, in osteoarthritis (OA), beyond pain transmission, the direct regulation of neuropeptides on functions of chondrocytes have attracted researchers' great attention recently. Many physical and pathological similarities between joint and IVD have shed us the light on the neurogenic mechanism involved in IVDD. Here, an overview of the advances in the nervous system within IVD tissue will be performed, with a discussion on in the role of nerve fibers and their neurotransmitters in regulating IVDD. We hope this review can attract more research interest to address neuromodulation and IVDD itself, which will enhance our understanding of the contribution of neuromodulation to the structural changes within IVD tissue and inflammatory responses and will help identify novel therapeutic targets and enable the effective treatment of IVDD disease.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of PLA, China
| | - Jialin Jiang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
17
|
Du N, Lin H, Zhang A, Cao C, Hu X, Zhang J, Wang L, Pan X, Zhu Y, Qian F, Wang Y, Zhao D, Liu M, Huang Y. N-phenethyl-5-phenylpicolinamide alleviates inflammation in acute lung injury by inhibiting HIF-1α/glycolysis/ASIC1a pathway. Life Sci 2022; 309:120987. [PMID: 36155179 DOI: 10.1016/j.lfs.2022.120987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
AIMS Acute lung injury (ALI) is triggered by an acute inflammatory response. Lipopolysaccharide (LPS) is recognized as an important participant in the pathogenesis of sepsis, which may induce ALI. N-phenethyl-5-phenylpicolinamide (N5P) is a newly synthesized HIF-1α inhibitor. The purpose of the present study was to investigate the potential protective effects of N5P on LPS-induced ALI and the underlying mechanisms. MAIN METHODS In vivo experiment, the ALI rat model was induced by intratracheal injection of LPS, and various concentrations of N5P were injected intraperitoneally before LPS administration. In vitro experiment, RAW264.7 macrophages were administrated LPS and N5P to detect inflammatory cytokine changes. HIF-1α overexpression plasmid (HIF1α-OE) and granulocyte-macrophage colony-stimulating factor (GM-CSF), a glycolysis agonist, were used to examine the relationship between the HIF-1α/glycolysis/ASIC1a pathway. KEY FINDINGS Pretreatment with N5P inhibited not only the histopathological changes that occurred in the lungs but also lung dysfunction in LPS-induced ALI. N5P also decreased the levels of lactic acid in lung tissue and arterial blood, and inflammatory factors IL-1β and IL-6 levels in serum. LPS increased HIF-1α, glycolysis proteins GLUT1, HK2, ASIC1a, IL-1β, IL-6, and these changes were reversed by N5P in primary alveolar macrophages and RAW264.7 macrophages. Overexpression of HIF-1α significantly increased glycolysis genes and ASIC1a as well as inflammatory cytokines. Excessive glycolysis levels weaken the ability of N5P to inhibit inflammation. SIGNIFICANCE N5P may alleviate inflammation in ALI through the HIF-1α/glycolysis/ASIC1a signaling pathway. The present findings have provided pertinent information in the assessment of N5P as a potential, future therapeutic drug for ALI.
Collapse
Affiliation(s)
- Na Du
- Shanghai Songjiang District Central Hospital, Shanghai 201600, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Huimin Lin
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Anqi Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chun Cao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaojie Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jin Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lili Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xuesheng Pan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei 230031, China
| | - Fangyi Qian
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanyuan Wang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, Anhui, China
| | - Dahai Zhao
- Respiratory Department of the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei 230601, China
| | - Mingming Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yan Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Guan XX, Yang HH, Zhong WJ, Duan JX, Zhang CY, Jiang HL, Xiang Y, Zhou Y, Guan CX. Fn14 exacerbates acute lung injury by activating the NLRP3 inflammasome in mice. Mol Med 2022; 28:85. [PMID: 35907805 PMCID: PMC9338586 DOI: 10.1186/s10020-022-00514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uncontrolled inflammation is an important factor in the occurrence and development of acute lung injury (ALI). Fibroblast growth factor-inducible 14 (Fn14), a plasma membrane-anchored receptor, takes part in the pathological process of a variety of acute and chronic inflammatory diseases. However, the role of Fn14 in ALI has not yet been elucidated. This study aimed to investigate whether the activation of Fn14 exacerbated lipopolysaccharide (LPS)-induced ALI in mice. METHODS In vivo, ALI was induced by intratracheal LPS-challenge combined with/without Fn14 receptor blocker aurintricarboxylic acid (ATA) treatment in C57BL/6J mice. Following LPS administration, the survival rate, lung tissue injury, inflammatory cell infiltration, inflammatory factor secretion, oxidative stress, and NLRP3 inflammasome activation were assessed. In vitro, primary murine macrophages were used to evaluate the underlying mechanism by which Fn14 activated the NLRP3 inflammasome. Lentivirus was used to silence Fn14 to observe its effect on the activation of NLRP3 inflammasome in macrophages. RESULTS In this study, we found that Fn14 expression was significantly increased in the lungs of LPS-induced ALI mice. The inhibition of Fn14 with ATA downregulated the protein expression of Fn14 in the lungs and improved the survival rate of mice receiving a lethal dose of LPS. ATA also attenuated lung tissue damage by decreasing the infiltration of macrophages and neutrophils, reducing inflammation, and suppressing oxidative stress. Importantly, we found that ATA strongly inhibited the activation of NLRP3 inflammasome in the lungs of ALI mice. Furthermore, in vitro, TWEAK, a natural ligand of Fn14, amplified the activation of NLRP3 inflammasome in the primary murine macrophage. By contrast, inhibition of Fn14 with shRNA decreased the expression of Fn14, NLRP3, Caspase-1 p10, and Caspase-1 p20, and the production of IL-1β and IL-18. Furthermore, the activation of Fn14 promoted the production of reactive oxygen species and inhibited the activation of Nrf2-HO-1 in activated macrophages. CONCLUSIONS Our study first reports that the activation of Fn14 aggravates ALI by amplifying the activation of NLRP3 inflammasome. Therefore, blocking Fn14 may be a potential way to treat ALI.
Collapse
Affiliation(s)
- Xin-Xin Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Hui-Ling Jiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
19
|
Zuo R, Li XY, He YG. Ropivacaine has the potential to relieve PM2.5‑induced acute lung injury. Exp Ther Med 2022; 24:549. [PMID: 35978915 PMCID: PMC9366259 DOI: 10.3892/etm.2022.11486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/06/2022] Open
Abstract
Ropivacaine is a commonly used local anesthetic in the clinic due to its low toxicity to the cardiovascular system or central nervous system, good tolerance and high clearance rate. The present study intended to investigate the effect of ropivacaine on PM2.5-induced acute lung injury (ALI) and reveal the underlying mechanism. After ropivacaine exposure, cell viability, oxidative stress and inflammation in PM2.5-induced BEAS-2B cells were assessed by Cell Counting Kit-8 and DCFH-DA staining, corresponding commercial kits and ELISA, respectively. The effects of ropivacaine on the expression of MMP9 and MMP12 and the proteins related to NLRP3/Caspase-1 signaling were then determined by western blot and reverse transcription-quantitative PCR analyses. In addition, NLR family pyrin domain containing 3 (NLRP3) agonist monosodium urate (MSU) was used to treat BEAS-2B cells followed by ropivacaine treatment and the effects on the above-mentioned cellular behaviors were determined again. The results indicated that the viability of BEAS-2B cells was decreased after PM2.5 induction, accompanied by aggravated oxidative stress and inflammation. However, ropivacaine alleviated oxidative stress and inflammation in PM2.5-induced BEAS-2B cells in a dose-dependent manner. Ropivacaine was also indicated to decrease the expression levels of NLRP3/Caspase-1 signaling-related proteins in PM2.5-induced BEAS-2B cells. Furthermore, cell viability was decreased, while oxidative stress and inflammatory response were aggravated, in PM2.5-induced BEAS-2B cells treated with MSU. In summary, the present results implied that ropivacaine exerted protective effects on PM2.5-induced ALI, and this effect may be related to NLRP3/Caspase-1 signaling.
Collapse
Affiliation(s)
- Rui Zuo
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Xin-Yu Li
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Yong-Guan He
- Department of Anesthesiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
20
|
Fu Z, Wu X, Zheng F, Zhang Y. Activation of the AMPK-ULK1 pathway mediated protective autophagy by sevoflurane anesthesia restrains LPS-induced acute lung injury (ALI). Int Immunopharmacol 2022; 108:108869. [DOI: 10.1016/j.intimp.2022.108869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
|
21
|
VIP alleviates sepsis-induced cognitive dysfunction as the TLR-4/NF-κB signaling pathway is inhibited in the hippocampus of rats. J Mol Histol 2022; 53:369-377. [PMID: 35239068 DOI: 10.1007/s10735-022-10068-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 01/17/2023]
Abstract
Cognitive dysfunction caused by sepsis-associated encephalopathy (SAE) is still poorly understood. It is reported that vasoactive intestinal peptide (VIP) exerts its anti-inflammatory effects in multiple diseases, while its biological function in SAE remains unclear. We aimed to figure out whether VIP has influence on sepsis-induced neuroinflammation and cognitive dysfunction. To induce sepsis, rats were subjected to cecal ligation and puncture (CLP) operation. Morris water maze test and fear conditioning test were conducted to reveal cognitive dysfunctions. TUNEL assay was performed to evaluate apoptosis. We found out that the expression of VIP was downregulated in the hippocampus of septic rats. VIP was verified to attenuate sepsis-induced memory impairment following CLP. Additionally, we examined apoptosis and inflammation in rats' hippocampus. It is worth noting that VIP inhibited the apoptosis in the hippocampus and reduced the productions of proinflammatory cytokines TNF-α, IL-6 and IL-1β. Furthermore, our data confirmed that VIP was involved in regulating the TLR-4/NF-κB signaling. In conclusion, VIP inhibited neuroinflammation and cognitive impairment in hippocampus of septic rats through the TLR-4/NF-κB signaling pathway.
Collapse
|
22
|
Wang WB, Li JT, Hui Y, Shi J, Wang XY, Yan SG. Combination of pseudoephedrine and emodin ameliorates LPS-induced acute lung injury by regulating macrophage M1/M2 polarization through the VIP/cAMP/PKA pathway. Chin Med 2022; 17:19. [PMID: 35123524 PMCID: PMC8818149 DOI: 10.1186/s13020-021-00562-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/25/2021] [Indexed: 12/14/2022] Open
Abstract
Background Acute lung injury (ALI) is an acute multifactorial infectious disease induced by trauma, pneumonia, shock, and sepsis. This study aimed to investigate the protective effects of pseudoephedrine and emodin combined treatment in experimental ALI, as well as the mechanisms underlying the regulation of inflammation and pulmonary edema via the VIP/cAMP/PKA pathway. Methods The wistar rats were randomly divided into fifteen groups (n = 5). Rats in each group were given intragastric administration 1 h before LPS injection. Those in the control and LPS groups were given intragastric administrations of physiological saline, rats in other groups were given intragastrically administered of differential dose therapeutic agents. The rats in the LPS and treatment groups were then injected intraperitoneally with LPS (7.5 mg/kg) to induce ALI. After being treated with pseudoephedrine and emodin for 12 h, all animals were sacrifice. Anal temperatures were taken on an hourly basis for 8 h after LPS injection. Pathological examination of lung specimen was performed by H&E staining. Cytokines (IL-1β, TNF-α, IL-6, iNOS, IL-10, Arg-1, CD86, CD206, F4/80, VIP) in lung tissue were assayed by ELISA and immunofluorescence. The expression of VIP, CAMP, AQP-1, AQP-5, p-PKA, PKA, p-IκBα, IκBα, p-p65, p65, p-P38, P38, p-ERK1/2, ERK1/2, p-JNK1/2, JNK1/2 protein in lung was determined by western blotting. Results After rats being treated with pseudoephedrine + emodin, reduced of fever symptoms. The contents of inflammatory cytokines (IL-1β, TNF-α, IL-6, iNOS) were decreased and anti-inflammatory cytokines (IL-10, Arg-1) were significantly increased in serum. Pseudoephedrine + emodin treatment effectively promoted VIP cAMP and p-PKA protein expression in lung tissues, and significantly inhibited NF-κB, MAPK phosphorylation, Pseudoephedrine + emodin treatment can inhibit M1 polarization and promoted M2 polarization via the VIP/cAMP/PKA signaling pathway. Conclusions The combination of Pseudoephedrine and emodin was effective in ameliorating LPS-induced ALI in rats by inducing VIP/cAMP/PKA signaling. Inhibiting the NF-κB, MAPK inflammatory pathway, relief of pulmonary edema suppressing macrophage M1 polarization, and promoting macrophage M2 polarization.
Collapse
|
23
|
Yuan G, Liu Y, Wang Z, Wang X, Han Z, Yan X, Meng A. PM2.5 activated NLRP3 inflammasome and IL-1β release in MH-S cells by facilitating autophagy via activating Wnt5a. Int J Immunopathol Pharmacol 2022; 36:3946320221137464. [PMID: 36347039 PMCID: PMC9647284 DOI: 10.1177/03946320221137464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Particulate matter 2.5 (PM2.5)-induced pulmonary inflammation is an important
issue worldwide. NLRP3 inflammasome activation has been found to be involved in
pulmonary inflammation development. However, whether PM2.5 induces pulmonary
inflammation by activating the NLRP3 inflammasome has not yet been fully
elucidated. This study researched whether PM2.5 induces the NLRP3 inflammasomes
activation to trigger pulmonary inflammation. Mice and MH-S cells were exposed to PM2.5, BOX5, and Rapamycin. Hematoxylin and
eosin staining was performed on the lung tissues of mice. M1 macrophage marker
CD80 expression in the lung tissues of mice and LC3B expression in MH-S cells
was detected by immunofluorescence. IL-1β level in the lavage fluid and MH-S
cells were detected by enzyme-linked immunosorbent assay. Protein expression was
detected by Western blot. Autophagy assay in MH-S cells was performed by
LC3B-GFP punctae experiment.PM2.5 exposure induced the lung injury of mice and
increased NLRP3, P62, Wnt5a, LC3BII/I, and CD80 expression and IL-1β release in
the lung tissues. PM2.5 treatment increased NLRP3, pro-caspase-1, cleaved
caspase-1, Pro-IL-1β, Pro-IL-18, P62, LC3BII/I, and Wnt5a expression, IL-1β
release, and LC3B-GFP punctae in MH-S cells. However, BOX5 treatment
counteracted this effect of PM2.5 on lung tissues of mice and MH-S cells.
Rapamycin reversed the effect of BOX5 on PM2.5-induced lung tissues of mice and
MH-S cells.PM2.5 activated the NLRP3 inflammasome and IL-1β release in MH-S
cells by facilitating the autophagy via activating Wnt5a. The findings of this
study provided a new clue for the treatment of pulmonary inflammation caused by
PM2.5.
Collapse
Affiliation(s)
- Guanli Yuan
- Department of Respiratory and
Critical Care Medicine, The Second Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Yinfeng Liu
- Department of Breast Surgery, The First Hospital of
Qinhuangdao, Qinhuangdao, China
| | - Zheng Wang
- Department of Respiratory and
Critical Care Medicine, The Second Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Xiaotong Wang
- Department of Respiratory and
Critical Care Medicine, The Second Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Zhuoxiao Han
- Department of Breast Surgery, The First Hospital of
Qinhuangdao, Qinhuangdao, China
| | - Xixin Yan
- Department of Respiratory and
Critical Care Medicine, The Second Hospital of Hebei Medical
University, Shijiazhuang, China
| | - Aihong Meng
- Department of Respiratory and
Critical Care Medicine, The Second Hospital of Hebei Medical
University, Shijiazhuang, China
- Aihong Meng, Department of Respiratory and
Critical Care Medicine, The Second Hospital of Hebei Medical University,
Shijiazhuang 050000, China.
| |
Collapse
|
24
|
WU Q, WU B, LIU L, LAI X, DENG Y, HUANG X, ZENG L, BAI Y, YAO Y. Mechanism of curcumin inhibiting pyroptosis in infectious acute lung injury through NLRP3 inflammatory pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.45122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Qiwen WU
- Guangzhou Medical University, China
| | - Bo WU
- Guangzhou Medical University, China
| | | | | | | | - Xi HUANG
- Guangzhou Medical University, China
| | | | - Yan BAI
- Guangzhou Medical University, China
| | | |
Collapse
|
25
|
[Dexmedetomidine preconditioning alleviates acute lung injury induced by intestinal ischemia-reperfusion in rats by inhibiting NLRP3 inflammasome activation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1857-1863. [PMID: 35012919 PMCID: PMC8752431 DOI: 10.12122/j.issn.1673-4254.2021.12.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the protective effect of dexmedetomidine (Dex) against acute lung injury induced by intestinal ischemia-reperfusion (II/R) in rats and its effect on NLRP3 inflammasome activity. METHODS Thirty-two normal male SD rats were randomly divided into 4 groups (n=8): the sham operation group, where the superior mesenteric artery (SMA) was exposed only; II/R group, where the SMA was occluded for 1 h followed by reperfusion for 2 h; Dex+II/R group, where the rats were subjected to II/R and received intraperitoneal injection of Dex before reperfusion; and Dex group, where the rats received Dex pretreatment and sham operation. The rats in sham operation group and II/R group received intraperitoneal injection of normal saline. The wet/dry weight ratio (W/D) and myeloperoxidase (MPO) activity in the lung tissues were measured, and HE staining was used to evaluate lung pathologies and determine lung injury score of the rats. The levels of inflammatory cytokines (TNF-α, IL-18, and IL-1β) in the lung tissue were detected using ELISA, and the expressions of NLRP3, ASC, caspase-1 and p-AMPK proteins were determined with Western blotting. RESULTS Compared with the sham-operated rats, the rats with II/R injury showed obvious lung pathologies and significantly increased W/D value, MPO activity and expression of TNF-α, IL-18 and IL-1β in the lung tissue (P < 0.05) with also significantly increased expressions of NLRP3, ASC, and caspase-1 proteins (P < 0.05) but obviously lowered expression of p-AMPK protein (P < 0.05) in the lung tissues. Compared with those in II/R group, the rats in Dex+II/R group showed milder lung pathologies, significantly reduced W/D value, MPO activity and expressions of TNF-α, IL-18 and IL-1β in the lung tissue (P < 0.05), and significant lower expressions of NLRP3, ASC, and caspase-1 (P < 0.05) but higher expression of p-AMPK protein (P < 0.05). CONCLUSION Dex treatment reduces II/R-induced inflammatory response by inhibiting the activation of NLRP3 inflammasomes, thereby improving acute lung injury caused by II/R in rats.
Collapse
|
26
|
Duan JX, Jiang HL, Guan XX, Zhang CY, Zhong WJ, Zu C, Tao JH, Yang JT, Liu YB, Zhou Y, Chen P, Yang HH. Extracellular citrate serves as a DAMP to activate macrophages and promote LPS-induced lung injury in mice. Int Immunopharmacol 2021; 101:108372. [PMID: 34810128 DOI: 10.1016/j.intimp.2021.108372] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022]
Abstract
Citrate has a prominent role as a substrate in cellular energy metabolism. Recently, citrate has been shown to drive inflammation. However, the role of citrate in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Here, we aimed to clarify whether extracellular citrate aggravated the LPS-induced ALI and the potential mechanism. Our findings demonstrated that extracellular citrate aggravated the pathological lung injury induced by LPS in mice, characterized by up-regulation of pro-inflammatory factors and over-activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in the lungs. In vitro, we found that citrate treatment significantly augmented the expression of NLRP3 and pro-IL-1β and enhanced the translocation of NF-κB/p65 into the nucleus. Furthermore, extracellular citrate plus adenosine-triphosphate (ATP) significantly increased the production of reactive oxygen species (ROS) in primary murine macrophages. Inhibiting the production of ROS with a ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the activation of NLRP3 inflammasome. Altogether, we conclude that extracellular citrate may serve as a damage-associated molecular pattern (DAMP) and aggravates LPS-induced ALI by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Hui-Ling Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Cheng Zu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jin-Tong Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
27
|
Duan JX, Guan XX, Yang HH, Mei WX, Chen P, Tao JH, Li Q, Zhou Y. Vasoactive intestinal peptide attenuates bleomycin-induced murine pulmonary fibrosis by inhibiting epithelial-mesenchymal transition: Restoring autophagy in alveolar epithelial cells. Int Immunopharmacol 2021; 101:108211. [PMID: 34634687 DOI: 10.1016/j.intimp.2021.108211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Vasoactive intestinal peptide (VIP) is an intrapulmonary neuropeptide with multi-function, including anti-fibrosis. However, the exact role of VIP in pulmonary fibrosis has not been documented. Here, we investigated the protective effect of VIP against pulmonary fibrosis in a murine model induced by bleomycin (BLM). We found that the overexpression of VIP mediated by the adenoviral vector significantly attenuated the lung tissue destruction, reduced the deposition of the extracellular matrix, and inhibited the expression of alpha-smooth muscle actin (α-SMA) in the lungs of mice received BLM. Mechanismly, we found that VIP significantly suppressed the transforming growth factor-beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) and inhibited the matrix-producing ability of alveolar epithelial cells in vitro. Furthermore, we found that TGF-β1 depressed the autophagy and an autophagy inductor partly reversed the TGF-β1-induced EMT in alveolar epithelial cells. The impaired autophagy was also observed in the lungs of BLM-treated mice, which was restored by VIP treatment. And VIP treatment enhanced autophagy in TGF-β1-stimulated alveolar epithelial cells, contributing to its anti-EMT effect. In summary, our data, for the first time, show that VIP attenuates BLM-induced pulmonary fibrosis in mice with anti-EMT effect through restoring autophagy in alveolar epithelial cells. This study provides a possibility that inhaled long-acting VIP may be an anti-fibrotic drug in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Wen-Xiu Mei
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Qing Li
- Department of Physiology, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
28
|
Network Pharmacology-Based Identification of Potential Targets of Lonicerae japonicae Flos Acting on Anti-Inflammatory Effects. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5507003. [PMID: 34595237 PMCID: PMC8478540 DOI: 10.1155/2021/5507003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022]
Abstract
Lonicerae japonicae flos (LJF) is widely used for the treatment of inflammation-related diseases in traditional Chinese medicine (TCM). To clarify the anti-inflammatory mechanism of LJF, 29 compounds with high content in LJF were selected for network pharmacology. Then, a comprehensive network pharmacology strategy was implemented, which involved compound-inflammation-target construction, protein-protein interaction (PPI) network analysis, and enrichment analysis. Finally, molecular docking and in vitro experiments were performed to verify the anti-inflammatory activity and targets of the key compound. As a result, 279 inflammation-associated proteins were identified, which are mainly involved in the AGE/RAGE signaling pathway in diabetic complications, the HIF-1 signaling pathway, the PI3K-AKT signaling pathway, and EGFR tyrosine kinase inhibitor resistance. A total of 12 compounds were linked to more than 35 targets, including apigenin, kaempferol, quercetin, luteolin, and ferulic acid. The results of molecular docking showed that AKT has the most binding activity, exhibiting certain binding activity with 10 compounds, including vanillic acid, protocatechuic acid, secologanic acid, quercetin, and luteolin; the results of qRT-PCR and WB confirmed that two key compounds, secologanic acid and luteolin, could significantly decrease the secretion of TNF-α and the AKT expression of RAW264.7 murine macrophages stimulated by LPS (lipopolysaccharide). These results demonstrate that the comprehensive strategy can serve as a universal method to illustrate the anti-inflammatory mechanisms of traditional Chinese medicine by identifying the pathways or targets.
Collapse
|
29
|
YG-1 Extract Improves Acute Pulmonary Inflammation by Inducing Bronchodilation and Inhibiting Inflammatory Cytokines. Nutrients 2021; 13:nu13103414. [PMID: 34684415 PMCID: PMC8537401 DOI: 10.3390/nu13103414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
YG-1 extract used in this study is a mixture of Lonicera japonica, Arctic Fructus, and Scutellariae Radix. The present study was designed to investigate the effect of YG-1 extract on bronchodilatation (ex vivo) and acute bronchial and pulmonary inflammation relief (in vivo). Ex vivo: The bronchodilation reaction was confirmed by treatment with YG-1 concentration-accumulation (0.01, 0.03, 0.1, 0.3, and 1 mg/mL) in the bronchial tissue ring pre-contracted by acetylcholine (10 μM). As a result, YG-1 extract is considered to affect bronchodilation by increased cyclic adenosine monophosphate, cAMP) levels through the β2-adrenergic receptor. In vivo: experiments were performed in C57BL/6 mice were divided into the following groups: control group; PM2.5 (fine particulate matter)-exposed group (PM2.5, 200 μg/kg/mL saline); and PM2.5-exposed + YG-1 extract (200 mg/kg/day) group. The PM2.5 (200 μg/kg/mL saline) was exposed for 1 h for 5 days using an ultrasonic nebulizer aerosol chamber to instill fine dust in the bronchi and lungs, thereby inducing acute lung and bronchial inflammation. From two days before PM2.5 exposure, YG-1 extract (200 mg/kg/day) was administered orally for 7 days. The PM2.5 exposure was involved in airway remodeling and inflammation, suggesting that YG-1 treatment improves acute bronchial and pulmonary inflammation by inhibiting the inflammatory cytokines (NLRP3/caspase-1 pathway). The application of YG-1 extract with broncho-dilating effect to acute bronchial and pulmonary inflammation animal models has great significance in developing therapeutic agents for respiratory diseases. Therefore, these results can provide essential data for the development of novel respiratory symptom relievers. Our study provides strong evidence that YG-1 extracts reduce the prevalence of respiratory symptoms and the incidence of non-specific lung diseases and improve bronchial and lung function.
Collapse
|
30
|
Sui X, Liu W, Liu Z. Exosomal lncRNA-p21 derived from mesenchymal stem cells protects epithelial cells during LPS-induced acute lung injury by sponging miR-181. Acta Biochim Biophys Sin (Shanghai) 2021; 53:748-757. [PMID: 33891698 DOI: 10.1093/abbs/gmab043] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act as essential regulators of various diseases. However, the functions of lncRNAs in sepsis-induced acute lung injury (SALI) remain unclear. Here, we found that lipopolysaccharide could upregulate lncRNA-p21 expression in mesenchymal stem cells (MSCs) in a time- and dose-dependent manner and that lncRNA-p21 was packaged into exosomes. Furthermore, we demonstrated that treatment with exosomal lncRNA-p21 could increase the expression of sirtuin 1 (SIRT1) to protect MLE-12 cells from apoptosis during sepsis. Moreover, we identified SIRT1 as a direct target of miR-181 and found that the level of SIRT1 was negatively correlated with the level of miR-181. The luciferase reporter assay also confirmed the negative correlation between the levels of miR-181 and lncRNA-p21. Our results showed that the lncRNA-p21-induced downregulation of miR-181 might suppress epithelial cell apoptosis and alleviate lung tissue injury by upregulating SIRT1 expression, suggesting the potential therapeutic effects of lncRNA-p21 on SALI. In conclusion, we found that the novel lncRNA-p21/miR-181/SIRT1 pathway may play an important role in the progression of SALI, and MSC-derived exosomes may be a new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Xintong Sui
- Emergency Department, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Liu
- Emergency Department, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhi Liu
- Emergency Department, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
31
|
Jia H, Liu Y, Guo D, He W, Zhao L, Xia S. PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:298-307. [PMID: 32996690 PMCID: PMC7891361 DOI: 10.1002/tox.23035] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 05/07/2023]
Abstract
Particulate matter 2.5 (PM2.5)-induced pulmonary inflammation has become a public concern in recent years. In which, the activation of the NLRP3/caspase-1 pathway was closely related to the inflammatory response of various diseases. However, the promotion effect of the NLRP3/caspase-1 pathway on PM2.5-induced pulmonary inflammation remains largely unclear. Here, our data showed that PM2.5 exposure caused lung injury in the mice by which inflammatory cell infiltration occurred in lung and alveolar structure disorder. Meanwhile, the exposure of human bronchial epithelial cells (16HBE) to PM2.5 resulted in suppressed cell viability, as well as elevated cell apoptosis. Moreover, a higher level of inflammatory cytokine and activation of the NLRP3/caspase-1 pathway in PM2.5-induced inflammation mice models and 16HBE cells. Mechanistically, pretreatment with MCC950, a NLRP3/caspase-1 pathway inhibitor, prevented PM2.5-induced lung injury, inflammatory response, and the number of inflammatory cells in BALFs, as well as promoted cell viability and decreased inflammatory cytokine secretion. Collectively, our findings indicated that the NLRP3/caspase-1 pathway serves a vital role in the pathological changes of pulmonary inflammation caused by PM2.5 exposure. MCC950 was expected to be the therapeutic target of PM2.5 inhalation mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hui Jia
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Yang Liu
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Dan Guo
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Wei He
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Long Zhao
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| | - Shuyue Xia
- Department of Respiratory and Critical Care MedicineCentral Hospital Affiliated to Shenyang Medical CollegeShenyangChina
| |
Collapse
|
32
|
VIP modulates human macrophages phenotype via FPRL1 via activation of RhoA-GTPase and PLC pathways. Inflamm Res 2021; 70:309-321. [PMID: 33502586 DOI: 10.1007/s00011-021-01436-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/26/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE AND DESIGN This study is aimed at uncovering the signaling pathways activated by vasoactive intestinal peptide in human macrophages MATERIALS: Human peripheral blood mononuclear cell-derived macrophages were used for the in vitro investigation of the VIP-activated signaling pathways. METHODS AND TREATMENT Time-course and dose-response experiments and siRNA were used in human macrophages co-challenged with various concentrations of VIP and different MAPK pharmacologic inhibitors to investigate signaling pathways activated by VIP. Flow analysis was performed to assess the levels of CD11b, CD35 and CD66. Luminescence spectrometry was used to measure the levels of the released hydrogen peroxide and the intracellular calcium levels in the media. RESULTS Macrophages incubated with VIP showed increased phospho-AKT and phospho-ERK1/2 levels in a GTP-RhoA-GTPase-dependent manner. Similarly, VIP increased intracellular release of H2O2 and calcium via PLC and GTP-RhoA-GTPase, in addition to inducing the expression of CD11b, CD35, CD66 and MMP9. Furthermore, VIP activated P38 MAPK through the cAMP/PKA pathway but was independent of both PLC and RhoA signaling. The above-mentioned VIP effects were mediated via activation of the FPRL1 receptor. CONCLUSION VIP/FPRL1/VPAC/GTP-RhoA-GTPase signaling modulated macrophages phenotype through activation of multiple signaling pathways including ERK1/2, AKT, P38, ROS, cAMP and calcium.
Collapse
|
33
|
Lentiviral gene therapy vectors encoding VIP suppressed diabetes-related inflammation and augmented pancreatic beta-cell proliferation. Gene Ther 2020; 28:130-141. [PMID: 32733091 DOI: 10.1038/s41434-020-0183-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1DM) is an autoimmune condition in which the immune system attacks and destroys insulin-producing beta cells in the pancreas leading to hyperglycemia. Vasoactive intestinal peptide (VIP) manifests insulinotropic and anti-inflammatory properties, which are useful for the treatment of diabetes. Because of its limited half-life due to DPP-4-mediated degradation, constant infusions or multiple injections are needed to observe any therapeutic benefit. Since gene therapy has the potential to treat genetic diseases, an HIV-based lentiviral vector carrying VIP gene (LentiVIP) was generated to provide a stable VIP gene expression in vivo. The therapeutic efficacy of LentiVIP was tested in a multiple low-dose STZ-induced animal model of T1DM. LentiVIP delivery into diabetic animals reduced hyperglycemia, improved glucose tolerance, and prevented weight loss. Also, a decrease in serum CRP levels, and serum oxidant capacity, but an increase in antioxidant capacity were observed in LentiVIP-treated animals. Restoration of islet cell mass was correlated with an increase in pancreatic beta-cell proliferation. These beneficial results suggest the therapeutic effect of LentiVIP is due to the repression of diabetes-induced inflammation, its insulinotropic properties, and VIP-induced beta-cell proliferation.
Collapse
|
34
|
Luo XQ, Duan JX, Yang HH, Zhang CY, Sun CC, Guan XX, Xiong JB, Zu C, Tao JH, Zhou Y, Guan CX. Epoxyeicosatrienoic acids inhibit the activation of NLRP3 inflammasome in murine macrophages. J Cell Physiol 2020; 235:9910-9921. [PMID: 32452554 DOI: 10.1002/jcp.29806] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1β), and IL-1β p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.
Collapse
Affiliation(s)
- Xiao-Qin Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Basic Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China.,Department of Medical Technology, Changsha Health Vocational College, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Zu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jia-Hao Tao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Huang XF, Cheng WB, Jiang Y, Liu Q, Liu XH, Xu WF, Huang HT. A network pharmacology-based strategy for predicting anti-inflammatory targets of ephedra in treating asthma. Int Immunopharmacol 2020; 83:106423. [PMID: 32279042 DOI: 10.1016/j.intimp.2020.106423] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 01/24/2023]
Abstract
Asthma, the most common chronic respiratory disease in the world, is involved in a sustained inflammatory response caused by a variety of immune cells. Ephedra with multi-target, multi-pathway functions is an effective treatment for asthma. However, the ingredients and anti-inflammatory targets of ephedra in treating asthma are unclear. Therefore, there is a need for further research. Ephedra-related and anti-inflammatory targets were found and then combined to get intersection, which represented potential anti-inflammatory targets of ephedra. Moreover, compound-anti-inflammatory target and asthma-target protein-protein interaction network were merged to get the protein-protein interaction network intersection and core genes in asthma-target protein-protein interaction network. For the anti-inflammatory targets of ephedra in treating asthma, Gene Ontology and pathway analysis were executed to confirm gene functions of ephedra in antagonizing inflammation of asthma. Finally, molecular docking, qRT-PCR, WB and ELISA were performed to assess the binding activities between the compounds and anti-inflammatory targets of ephedra in treating asthma. Critical compounds and anti-inflammatory targets of ephedra in treating asthma were identified, including quercetin, luteolin, kempferol, naringenin, beta-sitosterol, SELE, IL-2 and CXCL10. The biological processes of anti-inflammatory targets of ephedra in treating asthma were involved in immune response, inflammatory response, cell-cell signaling and response to lipopolysaccharide. Moreover, 22 pathways were obtained and we proved that critical compounds inhabited the expression of SELE, IL-2 and CXCL10 at mRNA and protein levels.
Collapse
Affiliation(s)
- Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Wen-Bin Cheng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Yong Jiang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Qiong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| | - Wei-Fang Xu
- Shenzhen shi Futian Qu Chinese Hospital, China.
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
36
|
Yang HH, Duan JX, Liu SK, Xiong JB, Guan XX, Zhong WJ, Sun CC, Zhang CY, Luo XQ, Zhang YF, Chen P, Hammock BD, Hwang SH, Jiang JX, Zhou Y, Guan CX. A COX-2/sEH dual inhibitor PTUPB alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting NLRP3 inflammasome activation. Theranostics 2020; 10:4749-4761. [PMID: 32308747 PMCID: PMC7163435 DOI: 10.7150/thno.43108] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/08/2020] [Indexed: 01/11/2023] Open
Abstract
Rationale: Dysregulation of arachidonic acid (ARA) metabolism results in inflammation; however, its role in acute lung injury (ALI) remains elusive. In this study, we addressed the role of dysregulated ARA metabolism in cytochromes P450 (CYPs) /cyclooxygenase-2 (COX-2) pathways in the pathogenesis of lipopolysaccharide (LPS)-induced ALI in mice. Methods: The metabolism of CYPs/COX-2-derived ARA in the lungs of LPS-induced ALI was investigated in C57BL/6 mice. The COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation in ALI. Primary murine macrophages were used to evaluate the underlying mechanism of PTUPB involved in the activation of NLRP3 inflammasome in vitro. Results: Dysregulation of CYPs/COX-2 metabolism of ARA occurred in the lungs and in primary macrophages under the LPS challenge. Decrease mRNA expression of Cyp2j9, Cyp2j6, and Cyp2j5 was observed, which metabolize ARA into epoxyeicosatrienoic acids (EETs). The expressions of COX-2 and soluble epoxide hydrolase (sEH), on the other hand, was significantly upregulated. Pre-treatment with the dual COX-2 and sEH inhibitor, PTUPB, attenuated the pathological injury of lung tissues and reduced the infiltration of inflammatory cells. Furthermore, PTUPB decreased the pro-inflammatory factors, oxidative stress, and activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in LPS-induced ALI mice. PTUPB pre-treatment remarkably reduced the activation of macrophages and NLRP3 inflammasome in vitro. Significantly, both preventive and therapeutic treatment with PTUPB improved the survival rate of mice receiving a lethal dose of LPS. Conclusion: The dysregulation of CYPs/COX-2 metabolized ARA contributes to the uncontrolled inflammatory response in ALI. The dual COX-2 and sEH inhibitor PTUPB exerts anti-inflammatory effects in treating ALI by inhibiting the NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Hui-Hui Yang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Shao-Kun Liu
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jian-Bing Xiong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Wen-Jing Zhong
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen-Chen Sun
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chen-Yu Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xiao-Qin Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan-Feng Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ping Chen
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Army Medical University, Chongqing, 400038, China
| | - Yong Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|