1
|
Hao XD, Xu WH, Zhang X, Xue J. Targeting ferroptosis: a novel therapeutic strategy for the treatment of retinal diseases. Front Pharmacol 2024; 15:1489877. [PMID: 39539617 PMCID: PMC11557320 DOI: 10.3389/fphar.2024.1489877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis plays a vital role in the progression of various retinal diseases. The analysis of the mechanism of retinal cell ferroptosis has brought new targeted strategies for treating retinal vascular diseases, retinal degeneration and retinal nerve diseases, and is also a major scientific issue in the field of ferroptosis. In this review, we summarized results from currently available in vivo and in vitro studies of multiple eye disease models, clarified the pathological role and molecular mechanism of ferroptosis in retinal diseases, summed up the existing pharmacological agents targeting ferroptosis in retinal diseases as well as highlighting where future research efforts should be directed for the application of ferroptosis targeting agents. This review indicates that ferroptosis of retinal cells is involved in the progression of age-related/inherited macular degeneration, blue light-induced retinal degeneration, glaucoma, diabetic retinopathy, and retinal damage caused by retinal ischemia-reperfusion via multiple molecular mechanisms. Nearly 20 agents or extracts, including iron chelators and transporters, antioxidants, pharmacodynamic elements from traditional Chinese medicine, ferroptosis-related protein inhibitors, and neuroprotective agents, have a remissioning effect on retinal disease in animal models via ferroptosis inhibition. However, just a limited number of agents have received approval or are undergoing clinical trials for conditions such as iron overload-related diseases. The application of most ferroptosis-targeting agents in retinal diseases is still in the preclinical stage, and there are no clinical trials yet. Future research should focus on the development of more potent ferroptosis inhibitors, improved drug properties, and ideally clinical testing related to retinal diseases.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Wen-Hua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, China
| | - Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Li Q, Zhang Y, Liu P, Wang C, Pan Y, Nie Y, Tang W, Wang Q, Song Q. Astragaloside IV attenuates ferroptosis and protects against iron overload-induced retinal injury. Exp Eye Res 2024; 246:110021. [PMID: 39117136 DOI: 10.1016/j.exer.2024.110021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Retinal injury may be exacerbated by iron overload. Astragaloside IV (AS-IV) has potential applications in the food and healthcare industry to promote eye health. We sought to determine the mechanisms responsible for the protective effects of AS-IV on photoreceptor and retinal pigment epithelium cell death induced by iron overload. We conducted in vitro and in vivo experiments involving AS-IV pretreatment. We tested AS-IV for its ability to protect iron-overload mice from retinal injury. In particular, we analyzed the effects of AS-IV on iron overload-induced ferroptosis in 661W and ARPE-19 cells. AS-IV not only attenuated iron deposition and retinal injury in iron-overload mice but also effectively reduced iron overload-induced ferroptotic cell death in 661W and ARPE-19 cells. AS-IV effectively prevented ferroptosis by inhibiting iron accumulation and lipid peroxidation. In addition, inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) eliminated the protective effect of AS-IV against ferroptosis. The results suggest that ferroptosis might be a significant cause of retinal cell death associated with iron overload. AS-IV provides protection from iron overload-induced ferroptosis, partly by activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, 510555, Guangdong, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang, 050200, Hebei, China
| | - Pan Liu
- Department of General Surgery, Chengdu First People's Hospital/Chengdu Integrated TCM & Western Medicine Hospital, No. 18, Wangxiang North Road, Chengdu, 610041, Sichuan, China
| | - Cong Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Yuxu Pan
- Sichuan Vocational College of Health and Rehabilitation, No.3 Deming Road, Zigong, 643030, Sichuan, China
| | - Yingying Nie
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China
| | - Wen Tang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Qun Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Qiongtao Song
- Eye School of Chengdu University of Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of Traditional Chinese Medicine, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with Traditional Chinese Medicine, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, 510555, Guangdong, China.
| |
Collapse
|
3
|
Cui P, Sheng Y, Wu C, He D. Puerarin modulates proliferation, inflammation and ECM metabolism in human nucleus pulposus mesenchymal stem cells via the lncRNA LINC01535. Heliyon 2024; 10:e33083. [PMID: 39021929 PMCID: PMC11253265 DOI: 10.1016/j.heliyon.2024.e33083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a highly prevalent musculoskeletal disorder characterized by progressive destruction of the intervertebral disc, leading to chronic low back pain and disability. Emerging evidence suggests that dysregulation of ferroptosis, a recently discovered form of regulated cell death, participates in IVDD pathogenesis. Puerarin, a natural flavonoid compound from Pueraria lobata, has shown promise in modulating ferroptosis in various diseases. Methods Human nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated and identified by flow cytometry. We investigated the effects of puerarin on human NPMSCs and examined the underlying molecular mechanisms. Results Puerarin significantly promoted human NPMSC proliferation, as evidenced by the increased cell viability and colony formation ability. Furthermore, puerarin suppressed the expression of cyclooxygenase-2 and the proinflammatory cytokine interleukin-6 in NPMSCs, demonstrating the anti-inflammatory properties of the compound. Notably, puerarin attenuated ECM breakdown by downregulating the ECM-degrading enzymes MMP3, MMP13 and ADAMTS5, and it increased ECM component synthesis, including collagen type II and aggrecan, by NPMSCs. Moreover, puerarin inhibited ferroptosis in NPMSCs by modulating the expression of key ferroptosis-related genes, including ACSL4, PTGS2 and GPX4. Depletion of LINC01535 abolished the effects of puerarin on proliferation, inflammation and ECM metabolism, suggesting a key role of this lncRNA in mediating the effects of puerarin. Conclusion Our findings show that puerarin promotes the proliferation of human NPMSCs and ECM synthesis by these cells. Furthermore, puerarin inhibits inflammation and ECM degradation by suppressing ferroptosis via LINC01535. These results provide insights into the molecular mechanisms underlying the therapeutic effects of puerarin in IVDD. Targeting ferroptosis and its regulatory factors, such as LINC01535, may have therapeutic potential for the treatment of IDD and other degenerative disorders of the intervertebral disc. Further studies are needed to uncover the translational potential of puerarin and its downstream targets in preclinical and clinical applications.
Collapse
Affiliation(s)
- Penglei Cui
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Yueyang Sheng
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Chengai Wu
- Department of Molecular Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| | - Da He
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, PR China
| |
Collapse
|
4
|
Xu F, Cai W, Liu B, Qiu Z, Zhang X. Natural L-type calcium channels antagonists from Chinese medicine. Chin Med 2024; 19:72. [PMID: 38773596 PMCID: PMC11107034 DOI: 10.1186/s13020-024-00944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
L-type calcium channels (LTCCs), the largest subfamily of voltage-gated calcium channels (VGCCs), are the main channels for Ca2+ influx during extracellular excitation. LTCCs are widely present in excitable cells, especially cardiac and cardiovascular smooth muscle cells, and participate in various Ca2+-dependent processes. LTCCs have been considered as worthy drug target for cardiovascular, neurological and psychological diseases for decades. Natural products from Traditional Chinese medicine (TCM) have shown the potential as new drugs for the treatment of LTCCs related diseases. In this review, the basic structure, function of LTCCs, and the related human diseases caused by structural or functional abnormalities of LTCCs, and the natural LTCCs antagonist and their potential usages were summarized.
Collapse
Affiliation(s)
- Fangfang Xu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Wanna Cai
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Bo Liu
- The Second Clinical College , Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, People's Republic of China.
| | - Xiaoqi Zhang
- Guangdong Provincial Engineering Research Center for Modernization of TCM, NMPA Key Laboratory for Quality Evaluation of TCM, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
5
|
Li X, Liu L, Wan MX, Gong LM, Su J, Xu L. Active Components of Pueraria lobata through the MAPK/ERK Signaling Pathway Alleviate Iron Overload in Alcoholic Liver Disease. Chem Biodivers 2024; 21:e202400005. [PMID: 38504590 DOI: 10.1002/cbdv.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To delve into the primary active ingredients and mechanism of Pueraria lobata for alleviating iron overload in alcoholic liver disease. METHODS Pueraria lobata's potential targets and signaling pathways in treating alcohol-induced iron overloads were predicted using network pharmacology analysis. Then, animal experiments were used to validate the predictions of network pharmacology. The impact of puerarin or genistein on alcohol-induced iron accumulation, liver injury, oxidative stress, and apoptosis was assessed using morphological examination, biochemical index test, and immunofluorescence. Key proteins implicated in linked pathways were identified using RT-qPCR, western blot analysis, and immunohistochemistry. RESULTS Network pharmacological predictions combined with animal experiments suggest that the model group compared to the control group, exhibited activation of the MAPK/ERK signaling pathway, suppression of hepcidin expression, and aggravated iron overload, liver damage, oxidative stress, and hepatocyte death. Puerarin and genistein, the active compounds in Pueraria lobata, effectively mitigated the aforementioned alcohol-induced effects. No statistically significant disparities were seen in the effects above between the two groups receiving drug therapy. CONCLUSION This study preliminarily demonstrated that puerarin and genistein in Pueraria lobata may increase hepcidin production to alleviate alcohol-induced iron overload by inhibiting the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Xue Li
- College of Basic Medicine, Dali University, Dali, China
| | - Le Liu
- College of Basic Medicine, Dali University, Dali, China
| | - Mei-Xuan Wan
- College of Basic Medicine, Dali University, Dali, China
| | - Li-Min Gong
- College of Basic Medicine, Dali University, Dali, China
| | - Juan Su
- College of Basic Medicine, Dali University, Dali, China
| | - Li Xu
- College of Basic Medicine, Dali University, Dali, China
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Dali, China
| |
Collapse
|
6
|
Song Q, Jian W, Zhang Y, Li Q, Zhao Y, Liu R, Zeng Y, Zhang F, Duan J. Puerarin Attenuates Iron Overload-Induced Ferroptosis in Retina through a Nrf2-Mediated Mechanism. Mol Nutr Food Res 2024; 68:e2300123. [PMID: 38196088 DOI: 10.1002/mnfr.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/01/2023] [Indexed: 01/11/2024]
Abstract
SCOPE Age-related increases in retinal iron are involved in the development of retinal degeneration. The recently discovered iron-dependent mechanism of cell death known as ferroptosis has been linked to a wide range of pathologies. However, its role in iron overload-induced retinal degeneration is still uncertain. Puerarin has been associated with retinal protection. The purpose of this research is to determine how puerarin prevents retinal ferroptosis under iron overload conditions. METHODS AND RESULTS Models of iron overload in Kunming mice, 661W cell, and ARPE-19 cell are established. Increased iron deposition significantly worsens retinal pathology, decreases cell viability, and induces ferroptotic changes. Puerarin mitigates iron overload-induced ferroptosis by decreasing excessive iron through the regulation of iron handling proteins and lowering lipid peroxidation through the inhibition of cyclooxygenase 2 expression and activation of the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway and downstream ferroptosis-related proteins (solute carrier family 7 member 11, glutathione peroxidase 4 and heme oxygenase-1). The protective effect of puerarin on ferroptosis is diminished by the Nrf2-specific inhibitor ML385. CONCLUSION These findings suggest targeting ferroptosis may be a novel strategy for the management of retinal degeneration. Puerarin may exert some of its ocular benefits by attenuating ferroptosis.
Collapse
Affiliation(s)
- Qiongtao Song
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Wenyuan Jian
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang, Hebei, 050200, China
| | - Qiang Li
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Ying Zhao
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
| | - Rong Liu
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
| | - Yan Zeng
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
| | - Fuwen Zhang
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| | - Junguo Duan
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, Sichuan, 610084, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, Sichuan, 610075, China
- Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou, Guangdong, 510555, China
| |
Collapse
|
7
|
Dong Y, Ding YY, Gao WP. Puerarin alleviates hyperosmotic stress-induced oxidative stress, inflammation, apoptosis and barrier damage of human corneal epithelial cells by targeting SIRT1/NLRP3 signaling. Toxicol In Vitro 2024; 94:105722. [PMID: 37865300 DOI: 10.1016/j.tiv.2023.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The increase of tear osmolarity caused by excessive evaporation of tear phase is the main pathological mechanism of dry eye disease (DED). Puerarin, the major bioactive ingredient isolated from the root of the Pueraria lobata (Willd.) Ohwi, has been reported to improve ophthalmic diseases in clinic. However, the effect and the potential regulatory mechanism related to silent information regulator sirtuin 1 (SIRT1)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling of puerarin in DED has not been evaluated. In this study, we aimed to explore the effect and mechanism of hyperosmotic stress (Hyp)-induced human corneal epithelial cell line (HCE-2). The viability of HCE-2 cells induced by Hyp with or without puerarin treatment was assessed by a CCK-8 assay. Results indicated that puerarin treatment enhanced cell viability, reduced reactive oxygen species (ROS) content, increased CAT and SOD activities, and elevated the ratio of GSH/GSSG in HCE-2 cells exposed to Hyp. Besides, TNF-α, IL-1β and IL-6 contents were decreased by puerarin. Additionally, puerarin inhibited Hyp-induced apoptosis and barrier disruption of HCE-2 cells. Moreover, molecular docking method suggested that puerarin bound to SIRT1, and upregulated SIRT1 and downregulated NLRP3 inflammasome proteins after puerarin treatment was observed. Furthermore, SIRT1 silencing alleviated the protective effects of puerarin on Hyp-induced HCE-2 cell damage. Collectively, puerarin attenuates Hyp-induced injury of HCE-2 cells by targeting regulating SIRT1/NLRP3 signaling.
Collapse
Affiliation(s)
- Yue Dong
- Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210046, China; Department of Ophthalmology, Yangzhou Hospital affiliated to Nanjing University of Chinese Medicine, Yangzhou City, Jiangsu Province 225009, China
| | - Yin-Yin Ding
- Department of Ophthalmology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210022, China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210029, China.
| |
Collapse
|
8
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
9
|
Aalikhani M, Taheri E, Khalili M. Vanillin serves as a potential substitute for chemical chelator desferal in iron-overloaded mice. Eur J Pharmacol 2023; 960:176153. [PMID: 38059446 DOI: 10.1016/j.ejphar.2023.176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Iron toxicity occurs under iron-overloaded settings, such as a high iron diet and blood transfusion, and damages important organs. Vanillin has been proven to have potential iron chelation capability. Given the negative effects of commonly used iron chelators like deferoxamine (DFO), we sought to examine the iron chelation potency of vanillin and evaluate its potential effect in the treatment of iron overload-related disorders. METHODS 42 male NMRI mice were prepared for this purpose, and except for the negative control group, iron overload conditions were generated in them by injecting iron. Then normal saline (as a control), vanillin, and DFO (n = 7) were subsequently given to iron-overloaded mice. In the following, the activity of antioxidant enzymes catalase and superoxide dismutase were measured in the blood serum, brain, kidney, spleen, lung, and liver tissues of mice. Furthermore, the level of lipid peroxidation was determined by measuring the amount of malondialdehyde. Also, Perl's and H&E staining were used to examine the physiopathology changes of tissues. FINDINGS Vanillin, a natural antioxidant compound, outperformed deferoxamine, a chemical iron chelator. Along with a decrease in iron content, the activity of catalase and superoxide dismutase enhanced in the iron-overloaded groups that were treated with vanillin. The level of lipid peroxidation was also declined in the iron-overloaded mice receiving vanillin. CONCLUSION Vanillin can be used as a suitable substitute for chemical chelators with fewer side effects and equivalent efficiency. We encourage the use of this compound as a natural iron chelator following performing additional safety and efficacy studies.
Collapse
Affiliation(s)
- Mahdi Aalikhani
- Department of Medical Biotechnology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ensie Taheri
- Department of Medical Biotechnology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
10
|
Chhatwal S, Antony H, Lamei S, Kovács-Öller T, Klettner AK, Zille M. A systematic review of the cell death mechanisms in retinal pigment epithelium cells and photoreceptors after subretinal hemorrhage - Implications for treatment options. Biomed Pharmacother 2023; 167:115572. [PMID: 37742603 DOI: 10.1016/j.biopha.2023.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Humans rely on vision as their most important sense. This is accomplished by photoreceptors (PRs) in the retina that detect light but cannot function without the support and maintenance of the retinal pigment epithelium (RPE). In subretinal hemorrhage (SRH), blood accumulates between the neurosensory retina and the RPE or between the RPE and the choroid. Blood breakdown products subsequently damage PRs and the RPE and lead to poor vision and blindness. Hence, there is a high need for options to preserve the retina and visual functions. We conducted a systematic review of the literature in accordance with the PRISMA guidelines to identify the cell death mechanisms in RPE and PRs after SRH to deepen our understanding of the pathways involved. After screening 736 publications published until November 8, 2022, we identified 19 records that assessed cell death in PRs and/or RPE in experimental models of SRH. Among the different cell death mechanisms, apoptosis was the most widely investigated mechanism (11 records), followed by ferroptosis (4), whereas necroptosis, pyroptosis, and lysosome-dependent cell death were only assessed in one study each. We discuss different therapeutic options that were assessed in these studies, including the removal of the hematoma/iron chelation, cytoprotection, anti-inflammatory agents, and antioxidants. Further systematic investigations will be necessary to determine the exact cell death mechanisms after SRH with respect to different blood breakdown components, cell types, and time courses. This will form the basis for the development of novel treatment options for SRH.
Collapse
Affiliation(s)
- Sirjan Chhatwal
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Henrike Antony
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Saman Lamei
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Tamás Kovács-Öller
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Alexa Karina Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Quincke Research Center, Kiel, Germany
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria.
| |
Collapse
|
11
|
Li J, Zhang Y, Dong PY, Yang GM, Gurunathan S. A comprehensive review on the composition, biogenesis, purification, and multifunctional role of exosome as delivery vehicles for cancer therapy. Biomed Pharmacother 2023; 165:115087. [PMID: 37392659 DOI: 10.1016/j.biopha.2023.115087] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
All forms of life produce nanosized extracellular vesicles called exosomes, which are enclosed in lipid bilayer membranes. Exosomes engage in cell-to-cell communication and participate in a variety of physiological and pathological processes. Exosomes function via their bioactive components, which are delivered to target cells in the form of proteins, nucleic acids, and lipids. Exosomes function as drug delivery vehicles due to their unique properties of innate stability, low immunogenicity, biocompatibility, biodistribution, accumulation in desired tissues, low toxicity in normal tissues, and the stimulation of anti-cancer immune responses, and penetration capacity into distance organs. Exosomes mediate cellular communications by delivering various bioactive molecules including oncogenes, oncomiRs, proteins, specific DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), and circular RNA (circRNA). These bioactive substances can be transferred to change the transcriptome of target cells and influence tumor-related signaling pathways. After considering all of the available literature, in this review we discuss the biogenesis, composition, production, and purification of exosomes. We briefly review exosome isolation and purification techniques. We explore great-length exosomes as a mechanism for delivering a variety of substances, including proteins, nucleic acids, small chemicals, and chemotherapeutic drugs. We also talk about the benefits and drawbacks of exosomes. This review concludes with a discussion future perspective and challenges. We hope that this review will provide us a better understanding of the current state of nanomedicine and exosome applications in biomedicine.
Collapse
Affiliation(s)
- Jian Li
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Guo-Ming Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Pollachi Road, Eachanari, Coimbatore, Tamil Nadu 641021, India.
| |
Collapse
|
12
|
Zhao Y, Li Q, Jian W, Han X, Zhang Y, Zeng Y, Liu R, Wang Q, Song Q. Protective benefits of salvianic acid A against retinal iron overload by inhibition of ferroptosis. Biomed Pharmacother 2023; 165:115140. [PMID: 37429233 DOI: 10.1016/j.biopha.2023.115140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Both the accumulation of reactive oxygen species (ROS) and iron overload are significant variables that enhance the incidence of photoreceptor cell death and retinal degeneration. The discovery of ferroptosis, which is characterized by iron-dependent lipid peroxidation, has led to a new perspective on how retinal degeneration develops. As a natural phenolic acid, salvianic acid A (SAA) from Salvia miltiorrhiza has promise in treating eye diseases. The purpose of this research was to learn more about SAA and its function in the development of iron-overload-induced retinal degeneration. METHODS Models of iron overload in Kunming mice and the murine photoreceptor cell line 661 W were established, then the protective and antiferroptotic properties of SAA were assessed in vivo and in vitro. RESULTS Biochemical and histopathological findings on the retina confirmed that SAA successfully alleviated retinal injury. In photoreceptor cells, iron overload caused cell death, mitochondrial dysfunction, ROS generation, and iron deposition. Salvianic acid A relieved lipid peroxidation and decreased iron accumulation by modulating Acyl-CoA synthetase long-chain family member 4, glutathione peroxidase 4, solute carrier family 7 member 11, and iron-metabolism-related proteins. The mitochondrial morphology suggests that the retinal protective effect of SAA is mediated via antiferroptotic action. CONCLUSION Ferroptosis plays an important role in the pathogenesis of iron-overload-induced retinal degeneration. New roles of SAA in ferroptosis prevention via iron deposit inhibition, lipid peroxidation inhibition, and mitochondrial dysfunction reduction, were identified.
Collapse
Affiliation(s)
- Ying Zhao
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu 610084 Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou 510555 Guangdong, China
| | - Qiang Li
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu 610084 Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou 510555 Guangdong, China
| | - Wenyuan Jian
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu 610084 Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou 510555 Guangdong, China
| | - Xue Han
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang 050200 Hebei, China
| | - Yuanyuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang 050200 Hebei, China
| | - Yan Zeng
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China
| | - Rong Liu
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China
| | - Qun Wang
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu 610084 Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China
| | - Qiongtao Song
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu 610084 Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM, No.37 Twelve Bridge Road, Chengdu 610075 Sichuan, China; Guangzhou Ineye Vision Health Innovation Institute, No.2 Fenghuang 3rd Road, Guangzhou 510555 Guangdong, China.
| |
Collapse
|
13
|
Abo-Elghiet F, Mohamed SA, Yasin NAE, Temraz A, El-Tantawy WH, Ahmed SF. The effect of Alnus incana (L.) Moench extracts in ameliorating iron overload-induced hepatotoxicity in male albino rats. Sci Rep 2023; 13:7635. [PMID: 37169909 PMCID: PMC10175300 DOI: 10.1038/s41598-023-34480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Iron overload causes multiorgan dysfunction and serious damage. Alnus incana from the family Betulaceae, widely distributed in North America, is used for treating diseases. In this study, we investigated the iron chelating, antioxidant, anti-inflammatory, and antiapoptotic activities of the total and butanol extract from Alnus incana in iron-overloaded rats and identified the bioactive components in both extracts using liquid chromatography-mass spectrometry. We induced iron overload in the rats via six intramuscular injections of 12.5 mg iron dextran/100 g body weight for 30 days. The rats were then administered 60 mg ferrous sulfate /kg body weight once daily using a gastric tube. The total and butanol extracts were given orally, and the reference drug (deferoxamine) was administered subcutaneously for another month. After two months, we evaluated the biochemical, histopathological, histochemical, and immunohistochemical parameters. Iron overload significantly increased the serum iron level, liver biomarker activities, hepatic iron content, malondialdehyde, tumor necrosis factor-alpha, and caspase-3 levels. It also substantially (P < 0.05) reduced serum albumin, total protein, and total bilirubin content, and hepatic reduced glutathione levels. It caused severe histopathological alterations compared to the control rats, which were markedly (P < 0.05) ameliorated after treatment. The total extract exhibited significantly higher anti-inflammatory and antiapoptotic activities but lower antioxidant and iron-chelating activities than the butanol extract. Several polyphenolic compounds, including flavonoids and phenolic acids, were detected by ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) analysis. Our findings suggest that both extracts might alleviate iron overload-induced hepatoxicity and other pathological conditions characterized by hepatic iron overload, including thalassemia and sickle-cell anemia.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | - Shaza A Mohamed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | | | - Samah Fathy Ahmed
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt
| |
Collapse
|
14
|
Meng F, Guo B, Ma YQ, Li KW, Niu FJ. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154465. [PMID: 36166943 DOI: 10.1016/j.phymed.2022.154465] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Collapse
Affiliation(s)
- Fan Meng
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Yi-Qing Ma
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Kun-Wei Li
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| | - Feng-Ju Niu
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| |
Collapse
|
15
|
Zhang Q, Bai X, Lin T, Wang X, Zhang B, Dai L, Shi J, Zhang Y, Zhao X. HMOX1 Promotes Ferroptosis in Mammary Epithelial Cells via FTH1 and Is Involved in the Development of Clinical Mastitis in Dairy Cows. Antioxidants (Basel) 2022; 11:2221. [PMID: 36421410 PMCID: PMC9686786 DOI: 10.3390/antiox11112221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 08/26/2023] Open
Abstract
Ferroptosis is associated with inflammatory diseases as a lethal iron-dependent lipid peroxidation; its role in the development of clinical mastitis (CM) in dairy cows is not well understood. The aim of this study was to identify differentially expressed proteins (DEPs) associated with iron homeostasis and apoptosis, and to investigate further their roles in dairy cows with CM. The results suggested that ferroptosis occurs in the mammary glands of Holstein cows with CM. Using data-independent acquisition proteomics, 302 DEPs included in 11 GO terms related to iron homeostasis and apoptosis were identified. In particular, heme oxygenase-1 (HMOX1) was identified and involved in nine pathways. In addition, ferritin heavy chain 1 (FTH1) was identified and involved in the ferroptosis pathway. HMOX1 and FTH1 were located primarily in mammary epithelial cells (MECs), and displayed significantly up-regulated expression patterns compared to the control group (healthy cows). The expression levels of HMOX1 and FTH1 were up-regulated in a dose-dependent manner in LPS induced MAC-T cells with increased iron accumulation. The expression levels of HMOX1 and FTH1 and iron accumulation levels in the MAC-T cells were significantly up-regulated by using LPS, but were lower than the levels seen with Erastin (ERA). Finally, we deduced the mechanism of ferroptosis in the MECs of Holstein cows with CM. These results provide new insights for the prevention and treatment of ferroptosis-mediated clinical mastitis in dairy animals.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ting Lin
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueying Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bohao Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lijun Dai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jun Shi
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
16
|
Mo Q, Li S, You S, Wang D, Zhang J, Li M, Wang C. Puerarin Reduces Oxidative Damage and Photoaging Caused by UVA Radiation in Human Fibroblasts by Regulating Nrf2 and MAPK Signaling Pathways. Nutrients 2022; 14:nu14224724. [PMID: 36432411 PMCID: PMC9694396 DOI: 10.3390/nu14224724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Fibroblasts account for more than 95% of dermal cells maintaining dermal structure and function. However, UVA penetrates the dermis and causes oxidative stress that damages the dermis and accelerates skin aging. Puerarin, the main active ingredient of Puerariae lobata, has been demonstrated to withstand oxidative stress caused by a variety of factors. However, there are limited findings on whether puerarin protects fibroblasts from UVA-induced oxidative stress damage. The effects of puerarin on human skin fibroblasts (HSF) under UVA-induced oxidative stress were investigated in this study. It is found that puerarin upregulates antioxidant enzymes' mRNA expression level and their content through modulating the KEAP1-Nrf2/ARE signaling pathway, thus improving cell antioxidant capacity and successfully eliminating UVA-induced reactive oxygen species (ROS) and lipid oxidation product malondialdehyde (MDA). Additionally, puerarin blocks the overexpression of human extracellular signal-regulated kinase (ERK), human c-Jun amino-terminal kinase (JNK), and P38, which downregulates matrix metalloproteinase 1 (MMP-1) expression and increases type I collagen (COL-1) expression. Moreover, preliminary research on mouse skin suggests that puerarin can hydrate, moisturize, and increase the antioxidant capacity of skin tissue. These findings suggest that puerarin can protect the skin against photoaging.
Collapse
Affiliation(s)
- Qiuting Mo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology & Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing 100048, China
| | - Shuping Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology & Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing 100048, China
| | - Shiquan You
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology & Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing 100048, China
| | - Dongdong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology & Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing 100048, China
| | - Jiachan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology & Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing 100048, China
| | - Meng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology & Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Correspondence:
| | - Changtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Fucheng Road, Beijing 100048, China
- Institute of Cosmetic Regulatory Science, College of Chemistry and Materials Engineering, Beijing Technology & Business University, Fucheng Road, Haidian District, Beijing 100048, China
- Beijing Key Laboratory of Plant Resource Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
17
|
Huang Y, Wu H, Hu Y, Zhou C, Wu J, Wu Y, Wang H, Lenahan C, Huang L, Nie S, Gao X, Sun J. Puerarin Attenuates Oxidative Stress and Ferroptosis via AMPK/PGC1α/Nrf2 Pathway after Subarachnoid Hemorrhage in Rats. Antioxidants (Basel) 2022; 11:antiox11071259. [PMID: 35883750 PMCID: PMC9312059 DOI: 10.3390/antiox11071259] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Puerarin was shown to exert anti-oxidative and anti-ferroptosis effects in multiple diseases. The goal of this study was to explore the neuroprotective effect of puerarin on early brain injury (EBI) after subarachnoid hemorrhage (SAH) in rats. A total of 177 adult male Sprague Dawley rats were used. SAH was included via endovascular perforation. Intranasal puerarin or intracerebroventricular dorsomorphin (AMPK inhibitor) and SR18292 (PGC1α inhibitor) were administered. The protein levels of pAMPK, PGC1α, Nrf2, 4HNE, HO1, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere were significantly increased, whereas SOD, GPX4, and GSH were decreased at 24 h after SAH. Moreover, puerarin treatment significantly increased the protein levels of pAMPK, PGC1α, Nrf2, HO1, SOD, GPX4, and GSH, but decreased the levels of 4HNE, MDA, ACSL4, GSSG, and iron concentration in the ipsilateral hemisphere at 24 h after SAH. Dorsomorphin or SR18292 partially abolished the beneficial effects of puerarin exerted on neurological dysfunction, oxidative stress injury, and ferroptosis. In conclusion, puerarin improved neurobehavioral impairments and attenuated oxidative-stress-induced brain ferroptosis after SAH in rats. The neuroprotection acted through the activation of the AMPK/PGC1α/Nrf2-signaling pathway. Thus, puerarin may serve as new therapeutics against EBI in SAH patients.
Collapse
Affiliation(s)
- Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Honggang Wu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Neurosurgery, People’s Hospital of Leshan, Leshan 614099, China
| | - Yongmei Hu
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
- Department of Nursing, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, China
| | - Jiawei Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM 88001, USA;
| | - Lei Huang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA 92350, USA; (H.W.); (Y.H.); (L.H.)
| | - Sheng Nie
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| | - Jie Sun
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University School of Medicine, Ningbo 315010, China; (Y.H.); (C.Z.); (J.W.); (Y.W.); (H.W.); (S.N.)
- Correspondence: (X.G.); (J.S.)
| |
Collapse
|
18
|
Alikhani M, Aalikhani M, Khalili M. Reduction of iron toxicity in the heart of iron-overloaded mice with natural compounds. Eur J Pharmacol 2022; 924:174981. [PMID: 35487255 DOI: 10.1016/j.ejphar.2022.174981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Iron-overload is one of the risk factors in susceptible individuals. Iron-overload causes complications such as diastolic dysfunction, arrhythmias, ventricular dilation, and systolic dysfunction in the heart. Therefore, particular care is needed for those who need blood transfusions or patients with underlying heart diseases. PURPOSE In this study, we examined the ability of six compounds, hesperidin, coumarin, caffeic acid, ferulic acid, and vanillin, to reduce the effects of iron-overdose in the heart of iron-overloaded mice. METHODS For this purpose, 84 mice were prepared and except for the control group, iron-overload conditions were created in them by injecting iron. The hearts of mice were then harvested and the activities of the antioxidant enzymes catalase and superoxide dismutase were evaluated. Additionally, the amount of lipid peroxidation was measured by assessing the quantity of malondialdehyde. The physiopathology of cardiac tissue was considered by Perl's and H&E staining. RESULTS According to the results, almost all natural compounds showed better performance than desferal, as an iron chelator chemical. Meanwhile, hesperidin, vanillin, and ferulic acid were the best antioxidant compounds and were able to improve the activity of antioxidant enzymes by reducing the amount of deposited iron. CONCLUSION We recommend the use of the above compounds as natural iron chelators after completing additional studies.
Collapse
Affiliation(s)
- Mehrdad Alikhani
- Department of Cardiology, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Aalikhani
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
19
|
Aalikhani M, Alikhani M, Jahanshahi M, Elyasi L, Khalili M. Berberine Is a Promising Alkaloid to Attenuate Iron Toxicity Efficiently in Iron-Overloaded Mice. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211029522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron toxicity in iron-overloaded conditions, including high iron diet and blood transfusion, causes deleterious effects on vital organs. There currently are a number of chemical chelators in clinics to reduce iron concentration, for example , deferoxamine and deferiprone, but these produce diverse side effects. Hence, the need for a safe and effective iron chelator is demanded. To evaluate rigorously the potential of berberine on iron chelation and its anti-oxidant effect, 30 mice were divided into 5 groups of 6. Except for the control group, other groups received iron sucrose 5 times a week for 4 successive weeks as an i.p injection. Afterward, either berberine or deferoxamine was injected for 1 month. The mice were then euthanized and liver, kidney and lungs were carefully removed for biochemical and pathological analysis. In comparison with the iron group with an extraordinary amount of iron deposits, berberine (20 mg/kg/day) dramatically reduced iron sedimentation in all tissues ( P < 0.01). Moreover, berberine lowered clinical symptoms of iron overdose, including inflammation, fibrosis and tissue degeneration. In terms of the activity of antioxidant enzymes, catalase and superoxide dismutase, iron overdose greatly reduced their activity compared to the control group. Berberine progressively increased their activity in comparison with the controls by lowering oxidative conditions ( P < 0.05). Iron overdose similarly increased lipid peroxidation by increasing the level of malondialdehyde. Berberine promptly suppressed lipid peroxidation in an efficient manner and reduced the level of malondialdehyde, a marker of lipid peroxidation in the tissues. Accordingly, berberine, as a natural antioxidant compound, could adequately serve as a substitute for chemical chelators with fewer side effects and comparable effectiveness.
Collapse
Affiliation(s)
- Mahdi Aalikhani
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Alikhani
- Department of Cardiology, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Jahanshahi
- Department of Anatomy, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Leila Elyasi
- Department of Anatomy, Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoumeh Khalili
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
20
|
Khedr NF, Talkan OFA. New insights into arsenic, lead, and iron neurotoxicity: Activation of MAPK signaling pathway and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23040. [DOI: 10.1002/jbt.23040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/27/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023]
Affiliation(s)
- Naglaa F. Khedr
- Department of Biochemistry, Faculty of Pharmacy Tanta University Tanta Egypt
| | - Ola F. A. Talkan
- Chemistry Department, Animal Health Research Institute‐Shiben El‐Kom Lab. Agriculture Research Center Menofia Shiben El‐Kom Egypt
| |
Collapse
|
21
|
Kim Y, Cho AY, Kim HC, Ryu D, Jo SA, Jung YS. Effects of Natural Polyphenols on Oxidative Stress-Mediated Blood–Brain Barrier Dysfunction. Antioxidants (Basel) 2022; 11:antiox11020197. [PMID: 35204080 PMCID: PMC8868362 DOI: 10.3390/antiox11020197] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
The blood-brain barrier (BBB), which consists mainly of brain microvascular endothelial cells and astrocytes connected by tight junctions (TJs) and adhesion molecules (AMs), maintains the homeostatic balance between brain parenchyma and extracellular fluid. Accumulating evidence shows that BBB dysfunction is a common feature of neurodegenerative diseases, including stroke, traumatic brain injury, and Alzheimer’s disease. Among the various pathological pathways of BBB dysfunction, reactive oxygen species (ROS) are known to play a key role in inducing BBB disruption mediated via TJ modification, AM induction, cytoskeletal reorganization, and matrix metalloproteinase activation. Thus, antioxidants have been suggested to exert beneficial effects on BBB dysfunction-associated brain diseases. In this review, we summarized the sources of ROS production in multiple cells that constitute or surround the BBB, such as BBB endothelial cells, astrocytes, microglia, and neutrophils. We also reviewed various pathological mechanisms by which BBB disruption is caused by ROS in these cells. Finally, we summarized the effects of various natural polyphenols on BBB dysfunction to suggest a therapeutic strategy for BBB disruption-related brain diseases.
Collapse
Affiliation(s)
- Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - A Yeon Cho
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Hong Cheol Kim
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
| | - Sangmee Ahn Jo
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea;
- Department of Pharmacology, College of Pharmacy, Dankook University, Cheonan 31116, Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Korea; (Y.K.); (A.Y.C.); (H.C.K.); (D.R.)
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
22
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021; 78:7491-7503. [PMID: 34718826 PMCID: PMC11072988 DOI: 10.1007/s00018-021-04007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy.
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, 46010, Valencia, Spain
| | - Alex Lyakhovich
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, 60121, Ancona, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy
| |
Collapse
|
23
|
Belmouhand M, Eckmann-Hansen C, Ilginis T, Leinøe EB, Mortensen BK, Larsen M. Iron overload and iron chelating agent exposure in anemia-associated outer retinal degeneration: a case report and review of the literature. BMC Ophthalmol 2021; 21:277. [PMID: 34256738 PMCID: PMC8278719 DOI: 10.1186/s12886-021-02030-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background Deferoxamine retinopathy is the informally designated term used to describe a characteristic pattern of outer retinal degeneration in iron-overloaded chronic anemia patients who are treated with deferoxamine. We hypothesize that insufficiently treated iron overloading and not only deferoxamine is the cause of the retinal degeneration. Our case report is based on exposure histories of two anemia patients and literature review. Case presentation Both anemia patients presented with bilateral visual loss secondary to photoreceptor and retinal pigment epithelium degeneration. Chart review showed that visual loss came after a year-long slow, and rather monotonous rise in plasma ferritin concentrations, with no obvious relation to iron chelator exposure. In one patient, the onset of symptomatic visual loss came after a bout of fever followed by two additional febrile episodes, all accompanied by plasma ferritin spikes. Adjustment of iron chelation therapy did not improve visual function. Experimental studies clearly show that both systemic and intraocular exposure to iron ions can induce retinal degeneration. Conclusion The available evidence indicates that retinal degeneration in chronic anemia patients treated by deferoxamine is cause by insufficient iron chelation, not by deferoxamine. The actual role of iron chelating agents may be to promote a long enough survival to allow the slow development of retinal siderosis.
Collapse
Affiliation(s)
- Mohamed Belmouhand
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark. .,Department of Clinical Medicine, Faculty of Healthy and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| | - Christina Eckmann-Hansen
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Healthy and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tomas Ilginis
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark
| | - Eva Birgitte Leinøe
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bo Kok Mortensen
- Department of Hematology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Michael Larsen
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Healthy and Medical Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Wang X, Li Y, Han L, Li J, Liu C, Sun C. Role of Flavonoids in the Treatment of Iron Overload. Front Cell Dev Biol 2021; 9:685364. [PMID: 34291050 PMCID: PMC8287860 DOI: 10.3389/fcell.2021.685364] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022] Open
Abstract
Iron overload, a high risk factor for many diseases, is seen in almost all human chronic and common diseases. Iron chelating agents are often used for treatment but, at present, most of these have a narrow scope of application, obvious side effects, and other disadvantages. Recent studies have shown that flavonoids can affect iron status, reduce iron deposition, and inhibit the lipid peroxidation process caused by iron overload. Therefore, flavonoids with iron chelating and antioxidant activities may become potential complementary therapies. In this study, we not only reviewed the research progress of iron overload and the regulation mechanism of flavonoids, but also studied the structural basis and potential mechanism of their function. In addition, the advantages and disadvantages of flavonoids as plant iron chelating agents are discussed to provide a foundation for the prevention and treatment of iron homeostasis disorders using flavonoids.
Collapse
Affiliation(s)
- Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Han
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Jie Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
25
|
Song Q, Zhang F, Han X, Yang Y, Zhao Y, Duan J. Ameliorative effects and mechanisms of salvianic acid A on retinal iron overload in vivo and in vitro. Exp Eye Res 2021; 209:108642. [PMID: 34058232 DOI: 10.1016/j.exer.2021.108642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Excessive iron can be accumulated in the retina and lead to retinal iron overload. Salvianic acid A (SAA) has a variety of pharmacologic effects, but there is only a limited understanding of its benefits for retinal iron overload. The aim of this study was to examine the protective effects and latent mechanisms of SAA on retinal iron overload. SAA reduced iron in the serum and retina, attenuated pathophysiological changes, and reduced retinal iron deposition in the retinas of iron-overloaded mice. It also reduced intracellular iron in ARPE-19 cells by regulating iron-handling proteins and chelating with iron. It also significantly inhibited cellular oxidative and inflammatory damage by increasing the nuclear translocation of nuclear erythroid 2-related factor 2 (Nrf2) while decreasing nuclear factor-kappa B (NF-κB), protecting the ARPE-19 cells from apoptosis by suppressing the Bax/Bcl-2 ratio, cytochrome c release, caspase activation, and poly ADP-ribose polymerase cleavage. The ability of SAA to inhibit apoptosis, increase nuclear Nrf2 expression, and decrease nuclear NF-κB expression was further confirmed in the retinas of iron-overloaded mice. This study demonstrates that SAA shows significant protective effects against retinal iron overload; its mechanisms might be associated with iron chelation; regulation of iron-handling proteins; and inhibition of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Qiongtao Song
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Fuwen Zhang
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Xue Han
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, No.326 Xinshi South Road, Shijiazhuang, 050200, Hebei, China
| | - Yanrong Yang
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Ying Zhao
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China
| | - Junguo Duan
- Eye School of Chengdu University of TCM, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China; Ineye Hospital of Chengdu University of TCM, No.8 Xinghui Road, Chengdu, 610084, Sichuan, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection, No.37 Twelve Bridge Road, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
26
|
Effects of Traditional Chinese Medication-Based Bioactive Compounds on Cellular and Molecular Mechanisms of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617498. [PMID: 34093958 PMCID: PMC8139859 DOI: 10.1155/2021/3617498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the subsequent research.
Collapse
|
27
|
Zhou YQ, Mei W, Tian XB, Tian YK, Liu DQ, Ye DW. The therapeutic potential of Nrf2 inducers in chronic pain: Evidence from preclinical studies. Pharmacol Ther 2021; 225:107846. [PMID: 33819559 DOI: 10.1016/j.pharmthera.2021.107846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Chronic pain remains an enormous health problem affecting approximatively 30% of the world's population. Opioids as the first line analgesics often leads to undesirable side effects when used long term. Therefore, novel therapeutic targets are urgently needed to the development of more efficacious analgesics. Substantial evidence indicates that excessive reactive oxygen species (ROS) are extremely important to the development of chronic pain. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master transcription factor regulating endogenous antioxidant defense. Emerging evidence suggests that Nrf2 and its downstream effectors are implicated in chronic inflammatory and neuropathic pain. Notably, controversial results have been reported regarding the expression of Nrf2 and its downstream targets in peripheral and central regions involved in pain transmission. However, our recent studies and results from other laboratories demonstrate that Nrf2 inducers exert potent analgesic effects in various murine models of chronic pain. In this review, we summarized and discussed the preclinical evidence demonstrating the therapeutic potential of Nrf2 inducers in chronic pain. These evidence indicates that Nrf2 activation are beneficial in chronic pain mostly by alleviating ROS-associated pathological processes. Overall, Nrf2-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Ke Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Qiang Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Da-Wei Ye
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University; Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Zheng K, Dong Y, Yang R, Liang Y, Wu H, He Z. Regulation of ferroptosis by bioactive phytochemicals: Implications for medical nutritional therapy. Pharmacol Res 2021; 168:105580. [PMID: 33781874 DOI: 10.1016/j.phrs.2021.105580] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is an iron- and lipotoxicity-dependent regulated cell death that has been implicated in various diseases, such as cancer, neurodegeneration and stroke. The biosynthesis of phospholipids, coenzyme Q10, and glutathione, and the metabolism of iron, amino acids and polyunsaturated fatty acid, are tightly associated with cellular sensitivity to ferroptosis. Up to now, only limited drugs targeting ferroptosis have been documented and exploring novel effective ferroptosis-modulating compound is needed. Natural bioactive products are conventional resources for drug discovery, and some of them have been clinically used against cancers and neurodegenerative diseases as dietary supplements or pharmaceutic agents. Notably, increasing evidence demonstrates that natural compounds, such as saponins, flavonoids and isothiocyanates, can either induce or inhibit ferroptosis, further expanding their therapeutic potentials. In this review, we highlight current advances of the emerging molecular mechanisms and disease relevance of ferroptosis. We also systematically summarize the regulatory effects of natural phytochemicals on ferroptosis, and clearly indicate that saponins, terpenoids and alkaloids induce ROS- and ferritinophagy-dependent ferroptosis, whereas flavonoids and polyphenols modulate iron metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling to inhibit ferroptosis. Finally, we explore their clinical applications in ferroptosis-related diseases, which may facilitate the development of their dietary usages as nutraceuticals.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China.
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Rong Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Youfang Liang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Haiqiang Wu
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
29
|
Dai L, He J, Miao X, Guo X, Shang X, Wang W, Li B, Wang Y, Pan H, Zhang J. Multiple Biological Activities of Rhododendron przewalskii Maxim. Extracts and UPLC-ESI-Q-TOF/MS Characterization of Their Phytochemical Composition. Front Pharmacol 2021; 12:599778. [PMID: 33732152 PMCID: PMC7957927 DOI: 10.3389/fphar.2021.599778] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Backgroud:Rhododendron przewalskii Maxim. is an evergreen shrub that is used as a traditional medicine in China. However, the modern pharmacology and the chemical components of this plant has not been studied. In this paper, we aimed to investigate the antifungal, anti-inflammatory and antioxidant activities and underlying mechanism of its aqueous and ethanol extracts, and analyze their chemical composition and active compounds of R. przewalskii. Methods: The antifungal activity was determined in vitro, and anti-inflammatory and antioxidant activities and underlying mechanism of its aqueous and ethanol extracts were evaluated in vitro and in RAW 264.7 cells. The chemical composition were analyzed using UPLC-ESI-Q-TOF/MS, and the contents of six compounds were determined via HPLC. Results: Both extracts of R. przewalskii showed promising anti-inflammatory activity in vitro; decreased the production of four inflammatory cytokines, namely, nitric oxide, IL-1β, IL-6 and TNF-ɑ, in RAW 264.7 cells induced by lipopolysaccharide; and exhibited weak cytotoxicity. The extracts significantly scavenged DPPH radicals, superoxide radicals and hydroxyl radicals to exert antioxidant effects in vitro. The two extracts also exhibited cellular antioxidant activity by increasing superoxide dismutase and CAT activities and decreasing malondialdehyde content in RAW 264.7 cells induced by LPS. However, the antifungal activity of the two extracts was weak. Nine flavonoids were identified by UPLC-ESI-Q-TOF/MS. Of these, six compounds were analyzed quantitatively, including avicularin, quercetin, azaleatin, astragalin and kaempferol, and five compounds (myricetin 3-O-galactoside, paeoniflorin, astragalin, azaleatin and kaempferol) were found in this species for the first time. These compounds demonstrated antioxidant activities that were similar to those of the R. przewalskii extracts and were thought to be the active compounds in the extracts. Conclusion:R. przewalskii extracts presented promising anti-inflammatory and antioxidant activities. The extracts contained amounts of valuable flavonoids (8.98 mg/g fresh material) that were likely the active compounds in the extract contributing to the potential antioxidant activity. These results highlight the potential of R. przewalskii as a source of natural antioxidant and anti-inflammatory agents for the pharmaceutical industry.
Collapse
Affiliation(s)
- Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian He
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao Guo
- Tibetan Medical College of Qinghai University, Xining, China.,State Key Laboratory of Tibetan Medicine Research and Development, Xining, China
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,State Key Laboratory of Tibetan Medicine Research and Development, Xining, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hu Pan
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
30
|
Astragaloside IV protects against retinal iron overload toxicity through iron regulation and the inhibition of MAPKs and NF-κB activation. Toxicol Appl Pharmacol 2020; 410:115361. [PMID: 33285147 DOI: 10.1016/j.taap.2020.115361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
Iron overload toxicity has been implicated in retinal pigment epithelial cell injury in age-related macular degeneration. This study investigates the effects of astragaloside IV (AS-IV), a potential retinal protective agent, on the toxicity process of retinal iron overload in vivo and in vitro. AS-IV partially restored the retinal expression of rhodopsin and retinal pigment epithelium-specific 65 kDa protein, suppressed oxidative stress and inflammatory markers, and alleviated iron deposition and retinal pathological changes in vivo. Also, AS-IV inhibited the phosphorylation of p38 and ERK mitogen-activated protein kinases (MAPKs), as well as the nuclear translocation of nuclear factor-kappa B (NF-κB). Furthermore, AS-IV prevented cell death by decreasing the ratio of Bax/Bcl-2, caspase-3, and cleaved caspase-3 expression in vitro. Although there are no chelation effects between AS-IV and iron, AS-IV can reduce intracellular iron by regulating iron-handling proteins in ARPE-19 cells (Cav1.2, divalent metal transporter-1, transferrin receptor 1, and heavy-chain ferritin). In conclusion, the results show that AS-IV has significant protective effects against retinal iron overload toxicity and suggest that iron regulation and the inhibition of MAPKs and NF-κB activation might be mechanisms underlying the effects of AS-IV.
Collapse
|
31
|
Wu Z, Li C, Li Q, Li J, Lu X. Puerarin alleviates cisplatin-induced acute renal damage and upregulates microRNA-31-related signaling. Exp Ther Med 2020; 20:3122-3129. [PMID: 32855680 PMCID: PMC7444337 DOI: 10.3892/etm.2020.9081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Cisplatin (DDP) is a commonly used chemotherapy drug; however, the side effects associated with its use, particularly acute kidney injury (AKI), limit its clinical application. Puerarin is a natural flavonoid extracted from the Chinese medical herb Radix puerariae, which has been reported to alleviate DDP-induced nephrotoxicity. However, the mechanisms underlying puerarin regulation on microRNA (miR)-31-mediated signaling pathways in AKI remain unknown. Thus, the present study aimed to investigate the function of puerarin in a DDP-induced AKI rat model via reverse transcription-quantitative PCR and western blot analyses. The results demonstrated that DDP upregulated the levels of miR-31 in a concentration-dependent manner, both in vitro and in vivo. Furthermore, DDP significantly increased blood urea nitrogen and malondialdehyde content, serum creatinine and histopathological changes, while significantly decreasing the expression levels of superoxide dismutase, catalase and glutathione S-transferase in kidney tissues. TUNEL and western blot analyses indicated that DDP increased the expression levels of apoptotic proteins and affected the Numb/Notch1 signaling pathway, which is downstream of miR-31. The effects induced by DDP were counteracted following treatment with puerarin. Taken together, the results of the present study suggest that puerarin exhibits a renal protective effect against DDP-induced AKI by upregulating miR-31 expression and inhibiting the Numb/Notch1 signaling pathway.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunfeng Li
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250033, P.R. China
| | - Jing Li
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xin Lu
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
32
|
Peng X, Hu T, Zhang Y, Zhao A, Natarajan B, Wei J, Yan H, Chen H, Lin C. Synthesis of caffeic acid sulfonamide derivatives and their protective effect against H 2O 2 induced oxidative damage in A549 cells. RSC Adv 2020; 10:9924-9933. [PMID: 35692719 PMCID: PMC9122571 DOI: 10.1039/d0ra00227e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/27/2020] [Indexed: 11/21/2022] Open
Abstract
Exogenous antioxidants are considered as important therapeutic tools for oxidative stress associated disorders as they can regulate the redox state, which is associated with cell and organ function. Inspired by natural polyphenols, six new caffeic acid sulfonamide derivatives were synthesized by coupling sulfonamides to the backbone of caffeic acid with good yields. Their structure and lipophilicity were characterized by 1H nuclear magnetic resonance (NMR), 13C{1H} NMR, infrared spectroscopy (IR) and oil-water partition coefficient assay. Their free radical scavenging activity and antioxidant activity were assessed by DPPH assay and hydrogen peroxide (H2O2) induced oxidative stress in human lung carcinoma A549 cells. The oil-water partition coefficient results indicate that the conjugation of sulfonamides increases the lipophilicity of caffeic acid. The CASMD, CASDZ and CASN results show higher free radical scavenging effects compared with vitamin C. The derivatives do not show any inhibitory effect on the proliferation of A549 cells up to a concentration of 200 μM, except CASDZ which significantly inhibits the growth of A549 cells at a concentration of 200 μM. In addition, the obtained derivatives markedly attenuate H2O2 induced decrease of cell viability, inhibit the production of ROS and MDA, and promote the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px). Besides, treatment of H2O2 stimulated A549 cells with caffeic acid sulfonamide derivatives further increases mRNA expression of NF-E2-related factor 2 (Nrf2) and its target genes, including heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1) and thioredoxin reductase 1 (TXNRD1). These results suggest that these new caffeic acid sulfonamide derivatives have higher lipophilicity and better antioxidant activities than the parent caffeic acid, and they might be able to control the antioxidant response in cells via the Nrf2 pathway.
Collapse
Affiliation(s)
- Xiaoyu Peng
- Guangxi University Nanning 530004 Guangxi China
- China Academy of Science and Technology Development Guangxi Branch Nanning 530022 Guangxi China
| | - Tingjun Hu
- Guangxi University Nanning 530004 Guangxi China
| | - Yuxue Zhang
- Guangxi University Nanning 530004 Guangxi China
| | - Anran Zhao
- The First Affiliated Hospital of Guangxi Medical University Nanning 530021 Guangxi China
| | | | - Jiata Wei
- Guangxi University Nanning 530004 Guangxi China
| | - Hao Yan
- Guangxi University Nanning 530004 Guangxi China
| | - Hailan Chen
- Guangxi University Nanning 530004 Guangxi China
| | - Cuiwu Lin
- Guangxi University Nanning 530004 Guangxi China
| |
Collapse
|
33
|
Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway. Life Sci 2020; 247:117439. [PMID: 32070709 DOI: 10.1016/j.lfs.2020.117439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/03/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
AIM This study was aimed to synthesize novel caffeic acid derivatives and evaluate their potential applications for the treatment of oxidative stress associated disease. MAIN METHODS Caffeic acid sulfonamide derivatives were synthesized by coupling sulfonamides to the backbone of caffeic acid and fully characterized by melting point test, FT-IR, MS, NMR, UV-vis and n-octanol-water distribution assay. Their free radical scavenging ability was evaluated using DPPH assay and cytotoxicity against A549 cells were determined by MTT assay. The protective effect of these derivatives against hydrogen peroxide (H2O2) induced oxidative injury was assessed in A549 cells from cell viability, production of reactive oxygen species (ROS) and malondialdehyde (MDA), alternation of antioxidase activities, and expressions of Nrf2 and its target genes. KEY FINDINGS Six novel caffeic acid sulfonamide derivatives were obtained. The derivatives showed better liphophilicity than the parent caffeic acid. CASMZ, CAST and CASQ exhibited similar DPPH scavenging capability as caffeic acid, while the protection of hydroxyl groups on the benzene ring with acetyl groups caused decrease in radical scavenging activity. No inhibitory effect on the proliferation of A549 cells were observed up to a concentration of 50 μM. Pre-treatment of cells with these derivatives strongly inhibited H2O2 induced decrease of cell viability, reduced the production of ROS and MDA, promoted antioxidase activities, and further upregulated the expression of Nrf2 and its target genes. SIGNIFICANCE Caffeic acid sulfonamide derivatives were synthesized with simple reactions under mild conditions. They might protect cells from H2O2-induced oxidative injury via Nrf2 pathway.
Collapse
|