1
|
Jiang J, Lin F, Wu W, Zhang Z, Zhang C, Qin D, Xu Z. Exosomal long non-coding RNAs in lung cancer: A review. Medicine (Baltimore) 2024; 103:e38492. [PMID: 39705424 DOI: 10.1097/md.0000000000038492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Lung cancer is one of the most threatening malignancies among the different kinds of tumors. The incidence and mortality rate are increasing especially in male. Advances in diagnosis and treatment have been achieve in recent years. However, the lung tumor cells also developing chemo- and radio-resistance. Novel approaches and new treatments are stilled needed to develop for early diagnosis and treatment. Recently, long non-coding RNAs (lncRNAs) original exosomes were proved different expression in lung tumor, which mediate multiple biological processes and is responsible for tumor proliferation and metastasis. In this review, we focus on the emerging roles of both lncRNAs and exosomal lncRNAs in lung cancer and their roles on angiogenesis, metastasis, diagnosis, drug resistance, and immune regulation of lung cancer. Exosome lncRNAs were proved to serve as regulatory factors for gene expression, mediating intercellular communication, and participating in the occurrence and development of various diseases. In addition, exosomes lnc RNA has advantages on the early diagnosis of lung cancer, tumor cell metastasis, drug resistance, and immune regulation. Exosome lncRNAs an provide some unique ideas on how to improve the efficiency of diagnosis and treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Jingyuan Jiang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | |
Collapse
|
2
|
Wu Y, Zheng Z, Bai X, Liu P, Hu S, Wang L, Yang S. CircRNA_0003307 promoted brain microvascular endothelial cell angiogenesis, invasion, and migration in cerebral ischemia-reperfusion injury: Potential involvement of miRNA-191-5p/CDK6 pathway. Neuroscience 2024; 560:77-89. [PMID: 39284436 DOI: 10.1016/j.neuroscience.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUNDS The role of miR-191-5p in cerebral ischemia-reperfusion (I/R) injury has been established, with its expression in endothelial cells demonstrating anti-angiogenic effects. A potential circular RNA, circRNA_0003307, has been identified through bioinformatics analysis as a candidate for interaction with miR-191-5p, yet its functional significance in brain I/R injury remains unexplored. We aimed to investigate whether circRNA_0003307 regulates brain microvascular endothelial cell (BMEC) vascular tube formation, invasion, and migration by regulating the miR-191-5p cascade. METHODS Mouse BMECs (bEnd.3) were culturedand exposed to oxygen-glucose deprivation (OGD). The effects of circRNA_0003307 on vessel-like tube formation and cellular migration were examined. In addition, we investigated the protective effects of circRNA_0003307 on I/R injury in mice. RESULTS The results showed the level of circRNA_0003307 was concentration-dependently increased in OGD-induced bEnd.3 cells. ODG-induction enhanced angiogenesis, migration, and invasion of bEnd.3 cells, which were further promoted by the transfection of pcDNA-0003307. Silencing circRNA_0003307 expression showed the opposite results. The dual luciferase assay demonstrated miRNA-191-5p interacted with circRNA_00033073' UTR, and miRNA-191-5p could bind with CDK6. Meanwhile, circRNA_0003307 promoted the expression of CDK6 by sponging miRNA-191-5p. The overexpression of circRNA_0003307 activated the angiogenesis, migration, and invasion of OGD-induced bEnd.3 cells, which were hindered by miRNA-191-5p mimic or siRNA-CDK6. Thus, circRNA_0003307 promoted ODG-induced angiogenesis, migration, and invasion of bEnd.3 cells by targeting miR-191-5p/CDK6 axis. In vivo, circRNA_0003307 had protective effects on brain I/R injury, including neuroprotection, anti-apoptosis and angiogenesis. CONCLUSION CircRNA_0003307 may be a promisingtherapeutictarget forthe treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Ying Wu
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhi Zheng
- Department of Orthopedics, Luzhou People's Hospital, Luzhou 646000, Sichuan, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shanshan Hu
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Lingxue Wang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sijing Yang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
3
|
Smail SW, Hirmiz SM, Ahmed AA, Albarzinji N, Awla HK, Amin K, Janson C. Decoding the intricacies: a comprehensive analysis of microRNAs in the pathogenesis, diagnosis, prognosis and therapeutic strategies for COVID-19. Front Med (Lausanne) 2024; 11:1430974. [PMID: 39434774 PMCID: PMC11492531 DOI: 10.3389/fmed.2024.1430974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
The pandemic of coronavirus disease-19 (COVID-19), provoked by the appearance of a novel coronavirus named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), required a worldwide healthcare emergency. This has elicited an immediate need for accelerated research into its mechanisms of disease, criteria for diagnosis, methods for forecasting outcomes, and treatment approaches. microRNAs (miRNAs), are diminutive RNA molecules, that are non-coding and participate in gene expression regulation post-transcriptionally, having an important participation in regulating immune processes. miRNAs have granted substantial interest in their impact on viral replication, cell proliferation, and modulation of how the host's immune system responds. This narrative review delves into host miRNAs' multifaceted roles within the COVID-19 context, highlighting their involvement in disease progression, diagnostics, and prognostics aspects, given their stability in biological fluids and varied expression profiles when responding to an infection. Additionally, we discuss complicated interactions between SARS-CoV-2 and host cellular machinery facilitated by host miRNAs revealing how dysregulation of host miRNA expression profiles advances viral replication, immune evasion, and inflammatory responses. Furthermore, it investigates the potential of host miRNAs as therapeutic agents, whether synthetic or naturally occurring, which could be harnessed to either mitigate harmful inflammation or enhance antiviral responses. However, searching more deeply is needed to clarify how host's miRNAs are involved in pathogenesis of COVID-19, its diagnosis processes, prognostic assessments, and treatment approaches for patients.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Akhter Ahmed Ahmed
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Niaz Albarzinji
- Department of Medicine, Hawler Medical University, Erbil, Iraq
| | - Harem Khdir Awla
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Kawa Amin
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Christer Janson
- Department of Medical Sciences: Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Li S, Zhou Y, Li K, Liu L, Fang M, Gao H. Inhibition of circDGKZ ameliorates myocardial ischemia/reperfusion injury by targeting miR-345-5p/TLR4. ESC Heart Fail 2024; 11:2730-2741. [PMID: 38725137 PMCID: PMC11424286 DOI: 10.1002/ehf2.14809] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 09/27/2024] Open
Abstract
AIMS This study aims to explore the molecular mechanism of circular RNAs' (circRNAs) potential involvement in myocardial ischaemia-reperfusion injury (MIRI). METHODS AND RESULTS Differently expressed genes in myocardial infarction (MI) were identified by screening the GEO database. Serum was collected from MI patients and healthy volunteers (n = 5 for each group). AC16 cells were cultured and exposed to hypoxia/reperfusion (H/R) treatment for the cell experiments. Then candidate genes were validated in human serum and the H/R model. Quantitative real-time PCR and western blot were used to detect expression of key molecules such as circDGKZ, miR-345-5p, and Toll-like receptor 4 (TLR4), as well as pyroptosis markers such as NOD-like receptor thermal protein domain-associated protein 3 (NLRP3), ASC, C-caspase1, interleukin (IL)-1β, and IL-18. CircDGKZ was positively correlated in human serum (P < 0.05) and in AC16 cells (P < 0.01). Knockdown of circDGKZ inhibited cardiomyocyte pyroptosis and the TLR4/nuclear factor kappa B (NF-κB) signalling pathway (all P < 0.05). A luciferase assay was used to detect the molecule interaction. MiR-345-5p was regulated by circDGKZ and regulated TLR4 in cardiomyocytes both through direct interaction (P < 0.01). The stability and distribution of circRNA or linear RNA were examined by subcellular localization and RNA decay assays. CircDGKZ was stably expressed in cardiomyocytes and mainly distributed in the cytoplasm (P < 0.01). Knockdown of circDGKZ also promoted the degradation of NLRP3 by inducing autophagy (P < 0.05). MIRI rat models were constructed (n = 5 for each group), and the cellular results were further confirmed in rat models (P < 0.05). CONCLUSIONS Knockdown of circDGKZ interrupted pyroptosis and induced autophagy of cardiomyocytes via regulating miR-345-5p/TLR4/NF-κB.
Collapse
Affiliation(s)
- Shiliang Li
- Division of Cardiothoracic and Vascular SurgeryTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Yan Zhou
- Department of OtolaryngologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - KunSheng Li
- Department of Cardiovascular SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Lu Liu
- Department of PharmacyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Ming Fang
- Health Management CenterUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Hongfeng Gao
- Department of Emergency MedicineWuhan Wuchang Hospital, Wuchang Hospital Affiliated to Wuhan University of Science and TechnologyNo. 116, Yangyuan StreetWuhan430000Hubei ProvinceChina
| |
Collapse
|
5
|
Long CM, Li Z, Song W, Zeng X, Yang R, Lu L. The Roles of Non-coding RNA Targeting Astrocytes in Cerebral Ischemia. Mol Neurobiol 2024; 61:5814-5825. [PMID: 38236344 DOI: 10.1007/s12035-023-03898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Astrocytes are key targets for treating cerebral ischemia in the central nervous system. Non-coding RNAs (ncRNAs) participate in the pathological processes of astrocytes in cerebral ischemia. Recent reports suggest that ncRNAs ameliorate the outcome of cerebral ischemia by mediating astrocytes' inflammatory reaction, oxidative stress, excitotoxicity, autophagy, and apoptosis. Reconstructing cellular systems might offer a promising strategy for treating cerebral ischemia. This review briefly discusses the potential of ncRNAs as drug targets and explores the molecular regulatory mechanisms through which ncRNAs target astrocytes in cerebral ischemia. It provides an overview of the current research, discusses ncRNAs' implications as clinical markers for cerebral ischemia, and anticipates that ongoing research on ncRNAs may contribute to novel therapeutic approaches for treating this condition.
Collapse
Affiliation(s)
- Chun-Mei Long
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Zhen Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Wang Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Xin Zeng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Rui Yang
- The Endocrinology Department, Lanzhou Hospital of Traditional Chinese Medicine, Lanzhou, 73000, Gansu, China
| | - Li Lu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China.
- Medical College of Lanzhou University, 199 Dong gang West Road, Cheng guan District, Lanzhou, China.
| |
Collapse
|
6
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2024:10.1007/s12035-024-04359-2. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
7
|
Giraudi PJ, Laraño AA, Monego SD, Pravisani R, Bonazza D, Gondolesi G, Tiribelli C, Baralle F, Baccarani U, Licastro D. Genome-wide DNA methylation and transcriptomic analysis of liver tissues subjected to early ischemia/reperfusion injury upon human liver transplantation. Ann Hepatol 2024; 29:101506. [PMID: 38710471 DOI: 10.1016/j.aohep.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION AND OBJECTIVES Epigenetic changes represent a mechanism connecting external stresses with long-term modifications of gene expression programs. In solid organ transplantation, ischemia-reperfusion injury (IRI) appears to induce epigenomic changes in the graft, although the currently available data are extremely limited. The present study aimed to characterize variations in DNA methylation and their effects on the transcriptome in liver transplantation from brain-dead donors. PATIENTS AND METHODS 12 liver grafts were evaluated through serial biopsies at different timings in the procurement-transplantation process: T0 (warm procurement, in donor), T1 (bench surgery), and T2 (after reperfusion, in recipient). DNA methylation (DNAm) and transcriptome profiles of biopsies were analyzed using microarrays and RNAseq. RESULTS Significant variations in DNAm were identified, particularly between T2 and T0. Functional enrichment of the best 1000 ranked differentially methylated promoters demonstrated that 387 hypermethylated and 613 hypomethylated promoters were involved in spliceosomal assembly and response to biotic stimuli, and inflammatory immune responses, respectively. At the transcriptome level, T2 vs. T0 showed an upregulation of 337 and downregulation of 61 genes, collectively involved in TNF-α, NFKB, and interleukin signaling. Cell enrichment analysis individuates macrophages, monocytes, and neutrophils as the most significant tissue-cell type in the response. CONCLUSIONS In the process of liver graft procurement-transplantation, IRI induces significant epigenetic changes that primarily act on the signaling pathways of inflammatory responses dependent on TNF-α, NFKB, and interleukins. Our DNAm datasets are the early IRI methylome literature and will serve as a launch point for studying the impact of epigenetic modification in IRI.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato, Trieste, Italy.
| | - Allen A Laraño
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato, Trieste, Italy; Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | | | - Riccardo Pravisani
- Liver-Kidney Transplant Unit, Department of Medicine, University of Udine, Italy
| | - Deborah Bonazza
- Anatomia ed Istologia Patologica, Cattinara Hospital, ASUGI, Trieste, Italy
| | - Gabriel Gondolesi
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Universidad Favaloro, Buenos Aires, Argentina
| | - Claudio Tiribelli
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato, Trieste, Italy
| | - Francisco Baralle
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato, Trieste, Italy
| | - Umberto Baccarani
- Liver-Kidney Transplant Unit, Department of Medicine, University of Udine, Italy
| | | |
Collapse
|
8
|
Zhu M, Yuan Z, Wen C, Wei X. DEX Inhibits H/R-induced Cardiomyocyte Ferroptosis by the miR-141-3p/lncRNA TUG1 Axis. Thorac Cardiovasc Surg 2024. [PMID: 38889747 DOI: 10.1055/s-0044-1787691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND Ferroptosis is emerging as a critical pathway in ischemia/reperfusion (I/R) injury, contributing to compromised cardiac function and predisposing individuals to sepsis and myocardial failure. The study investigates the underlying mechanism of dexmedetomidine (DEX) in hypoxia/reoxygenation (H/R)-induced ferroptosis in cardiomyocytes, aiming to identify novel targets for myocardial I/R injury treatment. METHODS H9C2 cells were subjected to H/R and treated with varying concentrations of DEX. Additionally, H9C2 cells were transfected with miR-141-3p inhibitor followed by H/R treatment. Levels of miR-141-3p, long noncoding RNA (lncRNA) taurine upregulated 1 (TUG1), Fe2+, glutathione (GSH), and malondialdehyde were assessed. Reactive oxygen species (ROS) generation was measured via fluorescent labeling. Expression of ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) was determined using Western blot. The interaction between miR-141-3p and lncRNA TUG1 was evaluated through RNA pull-down assay and dual-luciferase reporter gene assays. The stability of lncRNA TUG1 was assessed using actinomycin D. RESULTS DEX ameliorated H/R-induced cardiomyocyte injury and elevated miR-141-3p expression in cardiomyocytes. DEX treatment increased cell viability, Fe2+, and ROS levels while decreasing ACSL4 protein expression. Furthermore, DEX upregulated GSH and GPX4 protein levels. miR-141-3p targeted lncRNA TUG1, reducing its stability and overall expression. Inhibition of miR-141-3p or overexpression of lncRNA TUG1 partially reversed the inhibitory effect of DEX on H/R-induced ferroptosis in cardiomyocytes. CONCLUSION DEX mitigated H/R-induced ferroptosis in cardiomyocytes by upregulating miR-141-3p expression and downregulating lncRNA TUG1 expression, unveiling a potential therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Mei Zhu
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Zhiguo Yuan
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Chuanyun Wen
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| | - Xiaojia Wei
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, People's Republic of China
| |
Collapse
|
9
|
Zhu G, Jiang L, Tan K, Li Y, Hu M, Zhang S, Liu Z, Li L. MSCs-derived exosomes containing miR-486-5p attenuate cerebral ischemia and reperfusion (I/R) injury. Gene 2024; 906:148262. [PMID: 38346456 DOI: 10.1016/j.gene.2024.148262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVES This study aims to investigate the impact of mesenchymal stem cell (MSC)-derived exosomes (Exo) on cerebral ischemia and reperfusion (I/R) injury, along with the underlying mechanism. METHODS An animal model of cerebral ischemia was induced using middle cerebral artery occlusion (MCAO), and a cell model utilizing Neuro-2a cells was established through oxygen-glucose deprivation/reoxygenation (OGD/R). Exosomes isolated from mouse MSCs were administered to mice or used to stimulate Neuro-2a cells. Exosomes from MSCs transfected with miR-NC, miR-486-5p mimics, miR-486-5p inhibitor, or phosphatase and tensin homolog (PTEN) short hairpin RNAs (sh-PTEN) were employed to stimulate Neuro-2a cells. The regulatory axis of miR-486-5p and PTEN was confirmed through rescue experiments. RESULTS Exo-miR-486-5p mimics alleviated cerebral I/R injury, improving neurological deficits and reducing the infarct ratio. Furthermore, Exo-miR-486-5p mimics attenuated OGD/R-induced defects in cell viability and inhibited apoptosis in Neuro-2a cells. These mimics also reduced levels of lactate dehydrogenase (LDH) and malondialdehyde (MDA) while enhancing superoxide dismutase (SOD) activity, both in brain tissue homogenates of mice and cell supernatants. Mechanistically, PTEN was identified as a target of miR-486-5p, and the downregulation of PTEN notably elevated Exo-miR-486-inhibitor-induced reductions in cell viability while mitigating cell apoptosis. CONCLUSION The results of this study demonstrate the potential of exosomes derived from MSCs to protect against cerebral I/R injury via the miR-486-5p and PTEN axis.
Collapse
Affiliation(s)
- Genbao Zhu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - La Jiang
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - Kemeng Tan
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - Yafen Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - Mengxue Hu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - Shengnan Zhang
- The Department of Neurosurgery, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - Zhenlin Liu
- The Department of Neurosurgery, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| |
Collapse
|
10
|
Zhao C, Li J. METTL14-mediated N6-methyladenosine modification induces the ferroptosis of hypoxia/reoxygenation-induced cardiomyocytes. J Cardiothorac Surg 2024; 19:265. [PMID: 38664788 PMCID: PMC11044313 DOI: 10.1186/s13019-024-02711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Hypoxia/reoxygenation (H/R) induces cardiomyocyte ferroptosis, a core remodeling event in myocardial ischemia/reperfusion injury. Methyltransferase-like 14 (METTL14) emerges as a writer of N6-methyladenosine (m6A) modification. This study was conducted to decipher the role of METTL14 in H/R-induced cardiomyocyte ferroptosis. METHODS Mouse cardiomyocytes HL-1 were cultured and underwent H/R treatment. The degree of ferroptosis after H/R treatment was appraised by the cell counting kit-8 assay, assay kits (ROS/GSH/Fe2+), and Western blotting (GPX4/ACSL4). The intracellular expressions of METTL14, pri-miR-146a-5p, miR-146a-5p, or adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) were examined by real-time quantitative polymerase chain reaction or Western blotting, with m6A quantification analysis and RNA immunoprecipitation to determine the total m6A level and the expression of pri-miR-146a-5p bound to DiGeorge critical region 8 (DGCR8) and m6A-modified pri-miR-146a-5p. The binding of miR-146a-5p to APPL1 was testified by the dual-luciferase assay. RESULTS H/R treatment induced cardiomyocyte ferroptosis (increased ROS, Fe2+, and ACSL4 and decreased GSH and GPX4) and upregulated METTL14 expression. METTL14 knockdown attenuated H/R-induced cardiomyocyte ferroptosis. METTL14 induced the recognition of pri-miR-146a-5p by DGCR8 by increasing m6A modification on pri-miR-146a-5p, which promoted the conversion of pri-miR-146a-5p into miR-146a-5p and further repressed APPL1 transcription. miR-146a-5p upregulation or APPL1 downregulation limited the inhibitory effect of METTL14 downregulation on H/R-induced cardiomyocyte ferroptosis. CONCLUSION METTL14 promoted miR-146a-5p expression through the recognition and processing of pri-miR-146a-5p by DGCR8, which repressed APPL1 transcription and triggered H/R-induced cardiomyocyte ferroptosis.
Collapse
Affiliation(s)
- Chunyu Zhao
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, Heilongjiang, 150000, China
| | - Jianing Li
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, No.37, Yiyuan Street, Nangang District, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
11
|
Break MKB, Syed RU, Hussein W, Alqarni S, Magam SM, Nawaz M, Shaikh S, Otaibi AA, Masood N, Younes KM. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy. Pathol Res Pract 2024; 256:155225. [PMID: 38442448 DOI: 10.1016/j.prp.2024.155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Aden University, Aden 6075, Yemen
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sami M Magam
- Basic Science Department, Preparatory Year, University of Hail, Hail City 1560, Kingdom of Saudi Arabia; Department of Marine Chemistry and Pollution, Faculty of Marine Science and Environment, Hodeidah University, Hodeidah City, Yemen
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sameer Shaikh
- Division of Oral Diagnosis and Oral Medicine, Department of OMFS and Diagnostic Sciences, College of Dentistry, University of Hail, Ha'il, Saudi Arabia
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
12
|
Tang RF, Li WJ, Lu Y, Wang XX, Gao SY. LncRNA SNHG1 alleviates myocardial ischaemia-reperfusion injury by regulating the miR-137-3p/KLF4/TRPV1 axis. ESC Heart Fail 2024; 11:1009-1021. [PMID: 38234046 DOI: 10.1002/ehf2.14660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
AIMS Myocardial ischaemia-reperfusion injury (MIRI) contributes to serious myocardial injury and even death. Long non-coding RNAs (lncRNAs) have been reported to play pivotal roles in the occurrence and development of MIRI. Here, the detailed molecular mechanism of lncRNA SNHG1 in MIRI was explored. METHODS AND RESULTS A cell model of MIRI was established through hypoxia/reoxygenation (H/R) stimulation. Cell viability and pyroptosis were evaluated utilizing MTT, PI staining, and flow cytometry. Interleukin (IL)-1β and IL-18 secretion levels were examined by ELISA. The gene and protein expression were detected by RT-qPCR and western blot, respectively. Dual luciferase reporter gene, RIP and ChIP assays were performed to analyse the molecular interactions. The results showed that lncRNA SNHG1 overexpression alleviated H/R-induced HL-1 cell pyroptosis (all P < 0.05). LncRNA SNHG1 promoted KLF4 expression by sponging miR-137-3p. miR-137-3p silencing alleviated H/R-induced pyroptosis in HL-1 cells (all P < 0.05), which was abolished by KLF4 knockdown (all P < 0.05). KLF4 activated the AKT pathway by transcriptionally activating TRPV1 in HL-1 cells (all P < 0.05). TRPV1 knockdown reversed the alleviation of SNHG1 upregulation on H/R-induced pyroptosis in HL-1 cells (all P < 0.05). CONCLUSIONS These results showed that lncRNA SNHG1 assuaged cardiomyocyte pyroptosis during MIRI progression by regulating the KLF4/TRPV1/AKT axis through sponging miR-137-3p. Our findings may provide novel therapeutic targets for MIRI.
Collapse
Affiliation(s)
- Ruo-Fu Tang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
- The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Wen-Jing Li
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun Lu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan-Xuan Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Su-Yu Gao
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Li J, Wang Z, Tan H, Tang M. ALKBH5-mediated m6A demethylation of pri-miR-199a-5p exacerbates myocardial ischemia/reperfusion injury by regulating TRAF3-mediated pyroptosis. J Biochem Mol Toxicol 2024; 38:e23710. [PMID: 38605440 DOI: 10.1002/jbt.23710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Myocardial ischemia‒reperfusion injury (MI/RI) is closely related to pyroptosis. alkB homolog 5 (ALKBH5) is abnormally expressed in the MI/RI models. However, the detailed molecular mechanism of ALKBH5 in MI/RI has not been elucidated. In this study, rats and H9C2 cells served as experimental subjects and received MI/R induction and H/R induction, respectively. The abundance of the targeted molecules was evaluated using RT-qPCR, Western blotting, immunohistochemistry, immunofluorescence, and enzyme-linked immunosorbent assay. The heart functions of the rats were evaluated using echocardiography, and heart injury was evaluated. Cell viability and pyroptosis were determined using cell counting Kit-8 and flow cytometry, respectively. Total m6A modification was measured using a commercial kit, and pri-miR-199a-5p m6A modification was detected by Me-RNA immunoprecipitation (RIP) assay. The interactions among the molecules were validated using RIP and luciferase experiments. ALKBH5 was abnormally highly expressed in H/R-induced H9C2 cells and MI/RI rats. ALKBH5 silencing improved injury and inhibited pyroptosis. ALKBH5 reduced pri-miR-199a-5p m6A methylation to block miR-199a-5p maturation and inhibit its expression. TNF receptor-associated Factor 3 (TRAF3) is a downstream gene of miR-199a-5p. Furthermore, in H/R-induced H9C2 cells, the miR-199a-5p inhibitor-mediated promotion of pyroptosis was reversed by ALKBH5 silencing, and the TRAF3 overexpression-mediated promotion of pyroptosis was offset by miR-199a-5p upregulation. ALKBH5 silencing inhibited pri-miR-199a-5p expression and enhanced pri-miR-199a-5p m6A modification to promote miR-199a-5p maturation and enhance its expression, thereby suppressing pyroptosis to alleviate MI/RI through decreasing TRAF3 expression.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| | - Zhirong Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| | - Huayi Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| | - Mi Tang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha City, Hunan Province, P.R. China
| |
Collapse
|
14
|
Zhang Y, Xie J. Ferroptosis-related exosomal non-coding RNAs: promising targets in pathogenesis and treatment of non-malignant diseases. Front Cell Dev Biol 2024; 12:1344060. [PMID: 38385027 PMCID: PMC10879574 DOI: 10.3389/fcell.2024.1344060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death, introduces a novel perspective on cellular demise. This study investigates the regulatory network of exosomal non-coding RNAs (ncRNAs), including miRNAs, circRNAs, and lncRNAs, in ferroptosis modulation. The primary goal is to examine the pathological roles of ferroptosis-related exosomal ncRNAs, particularly in ischemic reperfusion injuries. The research reveals intricate molecular interactions governing the regulatory interplay between exosomal ncRNAs and ferroptosis, elucidating their diverse roles in different non-malignant pathological contexts. Attention is given to their impact on diseases, including cardiac, cerebral, liver, and kidney ischemic injuries, as well as lung, wound, and neuronal injuries. Beyond theoretical exploration, the study provides insights into potential therapeutic applications, emphasizing the significance of mesenchymal stem cells (MSCs)-derived exosomes. Findings underscore the pivotal role of MSC-derived exosomal ncRNAs in modulating cellular responses related to ferroptosis regulation, introducing a cutting-edge dimension. This recognition emphasizes the importance of MSC-derived exosomes as crucial mediators with broad therapeutic implications. Insights unveil promising avenues for targeted interventions, capitalizing on the diverse roles of exosomal ncRNAs, providing a comprehensive foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Science, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| | - Jun Xie
- School of Life Science, Fudan University, Shanghai, China
- Wanchuanhui (Shanghai) Medical Technology Co., Ltd., Shanghai, China
| |
Collapse
|
15
|
Pan Y, Xin W, Wei W, Tatenhorst L, Graf I, Popa-Wagner A, Gerner ST, Huber SE, Kilic E, Hermann DM, Bähr M, Huttner HB, Doeppner TR. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy. Cell Mol Life Sci 2024; 81:30. [PMID: 38212456 PMCID: PMC10784396 DOI: 10.1007/s00018-023-05045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Lipid droplets (LD), lipid-storing organelles containing neutral lipids like glycerolipids and cholesterol, are increasingly accepted as hallmarks of inflammation. The nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA with over 200 nucleotides, exerts an indispensable impact on regulating both LD agglomeration and autophagy in multiple neurological disorders. However, knowledge as to how NEAT1 modulates the formation of LD and associated signaling pathways is limited. METHODS In this study, primary microglia were isolated from newborn mice and exposed to oxygen-glucose-deprivation/reoxygenation (OGD/R). To further explore NEAT1-dependent mechanisms, an antisense oligonucleotide (ASO) was adopted to silence NEAT1 under in vitro conditions. Studying NEAT1-dependent interactions with regard to autophagy and LD agglomeration under hypoxic conditions, the inhibitor and activator of autophagy 3-methyladenine (3-MA) and rapamycin (RAPA) were used, respectively. In a preclinical stroke model, mice received intraventricular injections of ASO NEAT1 or control vectors in order to yield NEAT1 knockdown. Analysis of readout parameters included qRT-PCR, immunofluorescence, western blot assays, and behavioral tests. RESULTS Microglia exposed to OGD/R displayed a temporal pattern of NEAT1 expression, peaking at four hours of hypoxia followed by six hours of reoxygenation. After effectively silencing NEAT1, LD formation and autophagy-related proteins were significantly repressed in hypoxic microglia. Stimulating autophagy in ASO NEAT1 microglia under OGD/R conditions by means of RAPA reversed the downregulation of LD agglomeration and perilipin 2 (PLIN2) expression. On the contrary, application of 3-MA promoted repression of both LD agglomeration and expression of the LD-associated protein PLIN2. Under in vivo conditions, NEAT1 was significantly increased in mice at 24 h post-stroke. Knockdown of NEAT1 significantly alleviated LD agglomeration and inhibited autophagy, resulting in improved cerebral perfusion, reduced brain injury and increased neurological recovery. CONCLUSION NEAT1 is a key player of LD agglomeration and autophagy stimulation, and NEAT1 knockdown provides a promising therapeutic value against stroke.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Irina Graf
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Sabine E Huber
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
- Department of Neurology, University of Giessen Medical School, Giessen, Germany.
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany.
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey.
| |
Collapse
|
16
|
Hu Y, Wang G, Yang G. Overexpression of MiR-188-5p Downregulates IL6ST/STAT3/ NLRP3 Pathway to Ameliorate Neuron Injury in Oxygen-glucose Deprivation/Reoxygenation. Curr Neurovasc Res 2024; 21:263-273. [PMID: 38778610 DOI: 10.2174/0115672026313555240515103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND CI/R, characterized by ischemic injury following abrupt reestablishment of blood flow, can cause oxidative stress, mitochondrial dysfunction, and apoptosis. We used oxygen-glucose deprivation/reoxygenation (OGD/R) induced injury in HT22 and primary mouse cortical neurons (MCN) as a model for CI/R. OBJECTIVE This study investigates the role of miR-188-5p in hippocampal neuron cell injury associated with Cerebral Ischemia-Reperfusion (CI/R). METHODS HT22 and MCN cells were induced by OGD/R to construct an in vitro model of CI/R. Cell apoptosis and proliferation were assessed using flow cytometry and the Cell Counting Kit-8 (CCK8). ELISA was conducted to measure the levels of IL-1β, IL-6, and TNF-α. Moreover, the interaction between miR-188-5p and IL6ST was investigated using dual luciferase assay, the expression of miR-188-5p, Bax, cleaved-caspase3, IL-6, Bcl-2, IL-1β, TNF-α, IL6ST, NFκB, NLRP3 and STAT3 was evaluated using RT-qPCR or Western blot, and immunofluorescence was used to analyze the co-expression of p-STAT3 and NLRP3 in neuronal cells. RESULTS OGD/R reduced proliferation and miR-188-5p levels and increased IL6ST expression, inflammation, and apoptosis in HT22 and MCN cells. Moreover, miR-188-5p was found to bind to IL6ST. Mimics of miR-188-5p reduced apoptosis, lowered the expression of cleaved-caspase3 and Bax proteins, and elevated Bcl-2 protein expression in cells treated with OGD/R. Overexpression of miR-188-5p decreased the levels of NLRP3 and p-STAT3 in the OGD/R group. Furthermore, the overexpression of miR-188-5p reduced IL6ST, p- NFκB/NFκB, p-STAT3/STAT3, and NLRP3 proteins in OGD/R, and these effects could be reversed by IL6ST overexpression. CONCLUSION Mimics of miR-188-5p were found to inhibit inflammation and the STAT3/NLRP3 pathway via IL6ST, thereby ameliorating injury in HT22 and MCN cells treated with OGD/R in the context of CI/R.
Collapse
Affiliation(s)
- Yujie Hu
- Department of Neurology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Ganlan Wang
- Department of Neurology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Guoshuai Yang
- Department of Neurology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
17
|
Wan Z, zhang Y, Lv J, Yuan Y, Guo W, Leng Y. Exosomes derived from bone marrow mesenchymal stem cells regulate pyroptosis via the miR-143-3p/myeloid differentiation factor 88 axis to ameliorate intestinal ischemia-reperfusion injury. Bioengineered 2023; 14:2253414. [PMID: 37674357 PMCID: PMC10486297 DOI: 10.1080/21655979.2023.2253414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 09/08/2023] Open
Abstract
Intestinal ischemia-reperfusion (I/R) injury is a condition in which tissue injury is aggravated after ischemia due to recovery of blood supply. Bone marrow mesenchymal stem cell-derived exosome (BMSC-exo) showed a protective effect on I/R injury. This study aimed to investigate the possible mechanisms by which BMSC-exos ameliorate intestinal I/R injury. We isolated mouse BMSC-exos by super-centrifugation and found that they effectively increased cell viability in a cell model, alleviated intestinal barrier injury in a mouse model, and downregulated the expression of inflammatory cytokines and pyroptosis-related proteins, suggesting that BMSC-exos may alleviate intestinal I/R injury in vitro and in vivo by regulating pyroptosis. We identified miR-143-3p as a differentially expressed miRNA by microarray sequencing. Bioinformatic analysis predicted a binding site between miR-143-3p and myeloid differentiation factor 88 (MyD88); a dual-luciferase reporter assay confirmed that miR-143-3p could directly regulate the expression of MyD88. Our findings suggest that miR-143-3p regulates pyroptosis by regulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) through the toll-like receptor (TLR)-4/MyD88/nuclear factor kappa-B (NF-кB) pathway. This study describes a potential strategy for the treatment of intestinal I/R injury using BMSC-exos that act by regulating pyroptosis through the miR-143-3p mediated TLR4/MyD88/NF-кB pathway.
Collapse
Affiliation(s)
- Zhanhai Wan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yan zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jipeng Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yuan Yuan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Wenwen Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yufang Leng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Qu Y, Liu Y, Zhang H. ALDH2 activation attenuates oxygen-glucose deprivation/reoxygenation-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. Clin Transl Oncol 2023; 25:3203-3216. [PMID: 37103763 DOI: 10.1007/s12094-023-03190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
PURPOSE It is previously reported that aldehyde dehydrogenase 2 family member (ALDH2) shows neuroprotective effects in cerebral ischemia/reperfusion injury. However, whether the protective effects are through mediating the programmed cell death is yet to be fully elucidated. METHODS In vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model was established in HT22 cells and mouse cortical neurons. Subsequently, ALDH2 expression were assessed by qRT-PCR and western blot. The methylation status was examined by methylation-specific PCR (MS-PCR). Then, ALDH2 expression was promoted and suppressed to explore the role of ALDH2 in OGD/R-treated cells. CCK-8 assay was applied to detect cell viability, and flow cytometry was applied to evaluate cell apoptosis. Western blot was applied to detect the apoptosis-related proteins (Caspase 3, Bcl-2 and Bax), necroptosis-related proteins (RIP3 and MLKL), pyroptosis-related proteins (NLRP3 and GSDMD), ferroptosis-related protein (ACSL4 and GPX4), and autophagy-related proteins (LC3B, and p62). IL-1β and IL-18 production was evaluated by ELISA assay. Reactive oxygen species production and Fe2+ content were evaluated by the corresponding detection kit. RESULTS In OGD/R-treated cells, ALDH2 expression was decreased, which was due to the hypermethylation of ALDH2 in the promoter region. ALDH2 overexpression improved cell viability and ALDH2 knockdown suppressed cell viability in OGD/R-treated cells. We also found that ALDH2 overexpression attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy, while ALDH2 knockdown facilitated the OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy. CONCLUSIONS Collectively, our results implied that ALDH2 attenuated OGD/R-induced cell apoptosis, pyroptosis, ferroptosis and autophagy to promote cell viability in HT22 cells and mouse cortical neurons.
Collapse
Affiliation(s)
- Yun Qu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Yuanyuan Liu
- Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, Shandong, China
| | - Huilong Zhang
- Department of Neurology, Yuhuangding Hospital Affiliated to Qingdao University, No. 20 Yudong Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
19
|
Hou D, Pei C, Yu D, Yang G. miR-188-5p silencing improves cerebral ischemia/reperfusion injury by targeting Lin28a. Metab Brain Dis 2023; 38:2327-2338. [PMID: 37572229 DOI: 10.1007/s11011-023-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
This report aimed to explore whether miR-188-5p regulated the pathological regulatory network of cerebral ischemia/reperfusion (I/R) injury. We simulated the cerebral I/R injury model with MACO/R and OGD/R treatments. Neuronal viability and apoptosis were assessed. The contents of miR-188-5p and Lin 28a were evaluated. The abundances of apoptosis-related proteins (Bax, Bcl-2, and cleaved caspase-3) and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were measured. The interaction of miR-188-5p and Lin28a was confirmed. Lin28a silencing was supplemented to determine the delicate regulation of miR-188-5p. We revealed that miR-188-5p was upregulated and Lin28a was downregulated in I/R rats and OGD/R-induced cells. miR-188-5p silencing remarkably reduced the cerebral infarction volume, neurobehavioral score, brain edema, and Evans blue leakage. miR-188-5p silencing enhanced neuronal viability and alleviated apoptosis. The abundance of Bax and cleaved caspase-3 was reduced by miR-188-5p silencing, while Bcl-2 was augmented. miR-188-5p silencing impeded the contents of TNF-α, IL-1β, and IL-6. miR-188-5p interacted with Lin28a and negatively regulated its expression. Interestingly, extra Lin28a silencing reversed apoptosis and the content of inflammatory cytokines. Our studies confirmed that miR-188-5p silencing alleviated neuronal apoptosis and inflammation by mediating the expression of Lin28a. The crosstalk of miR-188-5p and Lin28a offered a different direction for ischemic stroke therapy.
Collapse
Affiliation(s)
- Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China.
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, 570208, China.
| |
Collapse
|
20
|
Jian H, Wang F, Wang Y, Dou L. Clinical Significance of MicroRNA-330-3p in Plasma Level for Acute Cerebral Infarction. Cerebrovasc Dis 2023; 53:411-419. [PMID: 37778331 DOI: 10.1159/000533605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/10/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION The present study was to investigate the clinical role of miR-330-3p in acute cerebral infarction (ACI), including its diagnostic and prognostic potential. Preliminary exploration of its target genes was archived by bioinformatics analysis. METHODS miR-330-3p in plasma of the patients with ACI and controls were quantified by real-time quantitative PCR. The 1-month prognosis of the ACI patients was evaluated by the Glasgow Outcome Scale (GOS). The correlation between the plasma levels of miR-330-3p and the GOS scores was tested by Pearson correlation analysis. The receiver operating characteristic (ROC) curves were established based on the expression level of miR-330-3p in different groups. The miR-330-3p-targeting genes were analyzed using Venn diagram, protein-protein interaction network, and Gene Ontology enrichment analysis. RESULTS miR-330-3p was significantly increased in the plasma of ACI patients compared with that in healthy controls, and ROC curve revealed its diagnostic value for ACI. miR-330-3p was significantly increased in the plasma of patients with poor 1-month prognosis compared with those with good 1-month prognosis. miR-330-3p expression was negatively correlated with GOS score, suggesting its potential to predict the 1-month prognosis for ACI. One-year survival analysis revealed surviving patients had lower levels of miR-330-3p than the deceased. miR-330-3p was proven to predict the death of patients with ACI. The miR-330-3p-targeting genes were associated with synapse-related Gene Ontology terms. CONCLUSION miR-330-3p was upregulated in the plasma of patients with ACI, making it a promising diagnostic and prognostic marker for patients with ACI. miR-330-3p could facilitate synaptic plasticity following cerebral infarction.
Collapse
Affiliation(s)
- Huiru Jian
- The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Fei Wang
- Department of Neurosurgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ying Wang
- Department of Medical Record Room, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Liping Dou
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Shao JL, Wang LJ, Xiao J, Yang JF. Non-coding RNAs: The potential biomarker or therapeutic target in hepatic ischemia-reperfusion injury. World J Gastroenterol 2023; 29:4927-4941. [PMID: 37731999 PMCID: PMC10507504 DOI: 10.3748/wjg.v29.i33.4927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is the major complication of liver surgery and liver transplantation, that may increase the postoperative morbidity, mortality, tumor progression, and metastasis. The underlying mechanisms have been extensively investigated in recent years. Among these, oxidative stress, inflammatory responses, immunoreactions, and cell death are the most studied. Non-coding RNAs (ncRNAs) are defined as the RNAs that do not encode proteins, but can regulate gene expressions. In recent years, ncRNAs have emerged as research hotspots for various diseases. During the progression of HIRI, ncRNAs are differentially expressed, while these dysregulations of ncRNAs, in turn, have been verified to be related to the above pathological processes involved in HIRI. ncRNAs mainly contain microRNAs, long ncRNAs, and circular RNAs, some of which have been reported as biomarkers for early diagnosis or assessment of liver damage severity, and as therapeutic targets to attenuate HIRI. Here, we briefly summarize the common pathophysiology of HIRI, describe the current knowledge of ncRNAs involved in HIRI in animal and human studies, and discuss the potential of ncRNA-targeted therapeutic strategies. Given the scarcity of clinical trials, there is still a long way to go from pre-clinical to clinical application, and further studies are needed to uncover their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jia-Li Shao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Li-Juan Wang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Ji Xiao
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jin-Feng Yang
- Department of Anesthesiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
22
|
Wu H, Fu Q, Li Z, Wei H, Qin S. Inhibition of microRNA-122 alleviates pyroptosis by targeting dual-specificity phosphatase 4 in myocardial ischemia/reperfusion injury. Heliyon 2023; 9:e18238. [PMID: 37539226 PMCID: PMC10393637 DOI: 10.1016/j.heliyon.2023.e18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Pyroptosis is a type of programmed cell death that induces myocardial ischemia-reperfusion injury (I/RI), which leads to cardiac dysfunction and even lethal reperfusion injury. MiR-122 is a liver-specific miRNA associated with coronary heart disease, but its role in pyroptosis activation in myocardial I/RI remains unclear. Thus, this study aimed to determine whether miR-122 inhibition exerts myocardial I/RI protection in in vivo and in vitro models. An I/RI model was established in vivo using C57BL/J6 male mice. MiR-122 expression was upregulated in the heart tissues from the I/RI group. Quantitative results of echocardiography parameters showed that miR-122 inhibition improved cardiac function and downregulated interleukin (IL)-1β, IL-18, caspase 1, and caspase 11. However, pretransfection with recombinant adeno-associated virus type 9 encoding a DUSP4-specific siRNA (AAV9-siDUSP4) blocked the protective effects of miR-122 inhibition. A hypoxia/reoxygenation (H/R) model was established to mimic the I/R condition in vitro using H9C2 cells. Results showed that miR-122 inhibition increased superoxide dismutase activity (SOD) and cell viability and decreased malondialdehyde (MDA) level, IL-1β, IL-18, caspase 1, caspase 11, and cell death. These protective effects were abolished by transfection with DUSP4-specific siRNA. In summary, miR-122 expression is upregulated in I/RI, and miR-122 inhibition alleviates I/RI by suppressing pyroptosis through targeting DUSP4. Thus, miR-122 may be a novel therapeutic target for treating myocardial I/RI.
Collapse
Affiliation(s)
- Hongjin Wu
- Boao International Hospital, Shanghai University of Traditional Chinese Medicine, Hainan 571437, China
| | - Qiang Fu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhong Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Huamin Wei
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shuyan Qin
- Department of Cardiology, Nanyang Second General Hospital, Henan 473000, China
| |
Collapse
|
23
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07480-x. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
24
|
Xu Q, Zhou D, Yu D. Bone Marrow Mesenchymal Stem Cells-derived Exosomal Long Non-coding RNA KLF3 antisense RNA 1 Enhances Autophagy to Protect Against Cerebral Ischemia/Reperfusion Injury Via ETS Variant Transcription Factor 4/Silent Information Regulator 1 Axis. Neuroscience 2023; 521:44-57. [PMID: 37080449 DOI: 10.1016/j.neuroscience.2023.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal stem cells (MSCs)-derived exosomes are demonstrated to exert neuroprotective effects in stroke. We aimed to explore the role and mechanism of long non-coding RNA (lncRNA) KLF3 antisense RNA 1 (KLF3-AS1) in bone marrow mesenchymal stem cells-derived exosomes (BMSCs-Exos) in cerebral ischemia/reperfusion (I/R) injury. Exosomes were isolated from the culture medium of BMSCs. A mouse model of middle cerebral artery occlusion (MCAO) in vivo and a BV-2 cell model of oxygen and glucose deprivation/reoxygenation (OGD/RX) in vitro were established. Cell viability and apoptosis were detected using MTT assay, TUNEL staining and flow cytometry, respectively. Related proteins were determined with western blot and immunohistochemistry, while related RNAs were analyzed by RT-qPCR. Neurological deficit and cerebral infarct volume were evaluated by the modified neurological severity score (mNSS) and TTC staining, respectively. Our observations indicate that exosomes derived from BMSCs-preconditioned medium exerted neuroprotective effects, as indicated by the increased cell viability and the suppressed apoptosis in OGD/RX-suffered BV-2 cells. KLF3-AS1 expression was upregulated in BMSCs-Exos. Furthermore, KLF3-AS1 knockdown antagonized the protective effects of BMSCs-Exos. Mechanistically, BMSCs-Exos carrying KLF3-AS1 inhibited apoptosis via enhancing autophagy. KLF3-AS1 was found to recruit ETS variant transcription factor 4 (ETV4), which upregulated Sirt1 expression. Knockdown of KLF3-AS1 neutralized the protective effects of BMSCs-Exos on MCAO-induced brain injury, which was then reversed by the treatment with Sirt1 inhibitor EX527. We concluded that KLF3-AS1 derived from BMSCs-Exos promoted autophagy to alleviate I/R injury via ETV4/Sirt1 axis.
Collapse
Affiliation(s)
- Qian Xu
- Department of Neurology, Haikou City People's Hospital, Xiangya School of Medicine, Central South University, Haikou 57020, Hainan Province, PR China
| | - Dingzhou Zhou
- Department of Neurosurgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan Province, PR China
| | - Dan Yu
- Department of Neurology, Haikou City People's Hospital, Xiangya School of Medicine, Central South University, Haikou 57020, Hainan Province, PR China.
| |
Collapse
|
25
|
Li S, Qu X, Qin Z, Gao J, Li J, Liu J. lncfos/miR-212-5p/CASP7 Axis-Regulated miR-212-5p Protects the Brain Against Ischemic Damage. Mol Neurobiol 2023; 60:2767-2785. [PMID: 36715920 DOI: 10.1007/s12035-023-03216-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023]
Abstract
miR-212-5p has been reported to be involved in many biological processes. However, the role of miR-212-5p in ischemic stroke remains unclear. This study explored the biological role and potential mechanism of miR-212-5p in ischemic stroke by investigating the lncfos/miR-212-5p/CASP7 axis. A total of 32 patients with ischemic stroke and 32 age- and sex-matched healthy controls (HCs) were enrolled in this study. In addition, 336 rats were used in this study. The rats were subjected to middle cerebral artery occlusion (MCAO) and intracerebroventricular injection of a microRNA (miRNA) agomir, a miRNA antagomir, a short hairpin RNA (shRNA) lentiviral vector, or a negative control. The neurological deficit score was calculated; the infarct volume was measured; histopathological assays were performed; the neuronal apoptosis rate was determined; and the lncfos, miR-212-5p, and CASP7 expression levels in the peri-infarct area were assessed. In this study, we found that the expression level of miR-212-5p was significantly downregulated in the peri-infarct area and blood of the MCAO model rats and the blood of patients with ischemic stroke. A double-luciferase experiment showed that CASP7 was a direct target gene of miR-212-5p and that miR-212-5p was a target miRNA of lncfos. Lateral ventricular injection of the miR-212-5p agomir effectively inhibited the apoptosis induced by ischemic brain damage, reduced the infarct volume, attenuated the neurological deficit symptoms, and downregulated the expression of CASP7 in the peri-infarct area of the MCAO model rats. Suppressing lncfos with sh-fos led to the upregulated expression of miR-212-5p and played a neuroprotective role in the rat MCAO models. We concluded that miR-212-5p plays a neuroprotective role in ischemic stroke and that its function is regulated by the lncfos/miR-212-5p/CASP7 axis. Moreover, miR-212-5p may be a potential biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Shenghua Li
- Department of Neurology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiang Qu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenxiu Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinggui Gao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinpin Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingli Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
26
|
Zhao H, Wang L, Zhang L, Zhao H. Phytochemicals targeting lncRNAs: A novel direction for neuroprotection in neurological disorders. Biomed Pharmacother 2023; 162:114692. [PMID: 37058817 DOI: 10.1016/j.biopha.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023] Open
Abstract
Neurological disorders with various etiologies impacting the nervous system are prevalent in clinical practice. Long non-coding RNA (lncRNA) molecules are functional RNA molecules exceeding 200 nucleotides in length that do not encode proteins, but participate in essential activities. Research indicates that lncRNAs may contribute to the pathogenesis of neurological disorders, and may be potential targets for their treatment. Phytochemicals in traditional Chinese herbal medicine (CHM) have been found to exert neuroprotective effects by targeting lncRNAs and regulating gene expression and various signaling pathways. We aim to establish the development status and neuroprotective mechanism of phytochemicals that target lncRNAs through a thorough literature review. A total of 369 articles were retrieved through manual and electronic searches of PubMed, Web of Science, Scopus and CNKI databases from inception to September 2022. The search utilized combinations of natural products, lncRNAs, neurological disorders, and neuroprotective effects as keywords. The included studies, a total of 31 preclinical trials, were critically reviewed to present the current situation and the progress in phytochemical-targeted lncRNAs in neuroprotection. Phytochemicals have demonstrated neuroprotective effects in preclinical studies of various neurological disorders by regulating lncRNAs. These disorders include arteriosclerotic ischemia-reperfusion injury, ischemic/hemorrhagic stroke, Alzheimer's disease, Parkinson's disease, glioma, peripheral nerve injury, post-stroke depression, and depression. Several phytochemicals exert neuroprotective roles through mechanisms such as anti-inflammatory, antioxidant, anti-apoptosis, autophagy regulation, and antagonism of Aβ-induced neurotoxicity. Some phytochemicals targeted lncRNAs and served a neuroprotective role by regulating microRNA and mRNA expression. The emergence of lncRNAs as pathological regulators provides a novel direction for the study of phytochemicals in CHM. Elucidating the mechanism of phytochemicals regulating lncRNAs will help to identify new therapeutic targets and promote their application in precision medicine.
Collapse
Affiliation(s)
- Hang Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lin Wang
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Hongyu Zhao
- Department of Emergency medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
27
|
Xu Y, Chen Y, Yao M, You Y, Nie B, Zeng M, Jiang H. MicroRNA-146a Improved Acute Lung Injury Induced by hepatic Ischemia-reperfusion Injury by Inhibiting PRDX1. Dose Response 2023; 21:15593258231169805. [PMID: 37063344 PMCID: PMC10103257 DOI: 10.1177/15593258231169805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI)-induced acute lung injury (ALI) is characterized by high incidence and poor prognosis. The regulatory role of microRNA-146a (miR-146a) in HIRI has been reported, but if miR-146a could affect the progression of HIRI-induced ALI has not been reported. The mice HIRI model was established by ligating left hepatic portal vein and hepatic artery for 60 minutes and then treating with reperfusion for 4 hours. Hypoxia-reoxygenation (HR) was performed to establish cell model. The binding site between miR-146a and Peroxidase 1 (PRDX1) was predicted and validated. The levels of inflammation factors and redox markers were detected with commercial kits. Significant lower expression of miR-146a and higher expression of PRDX1 in HIRI animal model were observed. miR-146a inhibited the liver injury after HIRI induction through targeting PRDX1. miR-146a inhibited the lung injury caused by HIRI via regulating PRDX1. The inhibition of cell apoptosis and inflammation factors by miR-146a were reversed by pcDNA-PRDX1. This research demonstrated that miR-146a improved ALI caused by HIRI by inhibiting apoptosis, inflammation, oxidative condition through targeting PRDX1. This study might provide a novel thought for the prevention and treatment of ALI caused by HIRI by regulating miR-146a/PRDX1 axis.
Collapse
Affiliation(s)
- Yiping Xu
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yili Chen
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Mengxia Yao
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Yisheng You
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Bin Nie
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Meina Zeng
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
| | - Hui Jiang
- Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, China
- Hui Jiang, Department of Anesthesiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No 420 Fuma Road, 350014, Fuzhou, Fujian Province, China.
| |
Collapse
|
28
|
Zhu L, Yang X, Yao Z, Wang Z, Lai Y, Xu S, Liu K, Zhao B. Bioinformatic Analysis of lncRNA Mediated CeRNA Network in Intestinal Ischemia/Reperfusion Injury. J Surg Res 2023; 284:280-289. [PMID: 36621258 DOI: 10.1016/j.jss.2022.11.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Recently, accumulating studies have reported the roles of competitive endogenous RNA (ceRNA) networks in ischemia/reperfusion (I/R) injury in several organs, including the liver, kidney, heart, brain, and intestine. However, the functions and mechanisms of long noncoding RNAs (lncRNAs)-which serve as ceRNA networks in intestinal I/R injury-remain elusive. METHODS RNA expression data were retrieved from the National Center for Biotechnology Information-Gene Expression Omnibus database. Differentially expressed microRNAs (miRNAs) (miDEGs) were explored between the sham and intestinal I/R injury samples. Next, targeted lncRNAs and messenger RNAs in the database were matched based on miDEGs. Hub ceRNA networks were constructed and visualized via Cytoscape. Intersection analysis was performed to screen mDEGs between two datasets. Finally, the vital nodes of the ceRNA networks were validated by quantitative PCR. RESULTS A total of 189 miDEGs were identified. Forty miRNAs were found to be associated with 240 predicted target genes from miRWalk 3.0. The ceRNA network was constructed with 10 miRNAs, including the 1700020114Rik/mmu-miR-7a-5p/Klf4 axis. Furthermore, the expression of lncRNA 1700020114Rik (P < 0.05) and messenger RNA Klf4 (P < 0.01) was markedly decreased in mouse models of intestinal I/R injury, whereas the expression level of mmu-miR-7a-5p was significantly increased (P < 0.05). CONCLUSIONS The results provide novel insights into the molecular mechanism of ceRNA networks in intestinal I/R injury and highlight the potential of the 170002700020114Rik/mmu-miR-7a-5p/Klf4 axis in the prevention and treatment of intestinal I/R injury.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiwen Yao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyi Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yupei Lai
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shiting Xu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kexuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bingcheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Chen JY, Ruan HJ, Chen SY, Wang XQ, Wen JM, Wang ZX. MiR-144-5p/CCL12 Signaling Axis Modulates Ischemic Preconditioning-Mediated Cardio-protection by Reducing Cell Viability, Enhancing Cell Apoptosis, Fibrosis, and Pyroptosis. Appl Biochem Biotechnol 2023; 195:1999-2014. [PMID: 36401720 DOI: 10.1007/s12010-022-04208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Ischemic postconditioning (IPost) represents short periods of nonlethal ischemia-reperfusion performed at the onset of reperfusion. Studies have shown that IPost involves various biological processes such as cell proliferation, apoptosis, and pyroptosis and can activate complex signaling pathways. CCL12 is a critical mediator in the inflammatory process after tissue injury. In the present study, we examined the potential actions of CCL12-mediated signaling pathways in cardioprotection after IPost using a cardiomyocyte model. By applying the bioinformatics analysis, we found that CCL12 was upregulated in the rat heart tissues after I/R injury, and the expression level of CCL12 was restored in rats with IPost. The in vitro studies showed that CCL12 and CCR2 expression levels were upregulated in the hypoxia/reoxygenation (H/R)-induced H9C2 cells, which was attenuated in the H/R + hypoxia post-conditioning (PostC) group. The functional assays showed that H/R treatment reduced cell viability, increased cell apoptosis, and promoted fibrosis and pyroptosis of H9C2 cells, which was attenuated in the H/R + PostC group. Overexpression of CCL12 impaired the protective action of hypoxia post-conditioning in the H9C2 cells. Further mechanistic studies showed that miR-144-5p could directly target the 3' untranslated region of CCL12. Overexpression of miR-144-5p markedly repressed the expression levels of CCL12 and CCR2 in H9C2 cells, while miR-144-5p inhibition had the opposite effects. Furthermore, the inhibition of miR-144-5p reduced the cell viability, increased cell apoptosis, and enhanced fibrosis and pyroptosis of H9C2 cells after H/R or H/R + PostC treatment. In conclusion, CCL12 was downregulated in cardiomyocytes following ischemic postconditioning, and CCL12 overexpression impaired the cardioprotective actions of ischemic postconditioning by reducing cell viability, enhancing cell apoptosis, fibrosis, and pyroptosis. Further mechanistic evidence revealed that CCL12 was a direct target of miR-144-5p, and miR-144-5p/CCL12/CCR2 signaling may represent a critical pathway in mediating the cardioprotective effects of ischemic postconditioning.
Collapse
Affiliation(s)
- Jun-Yu Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Huan-Jun Ruan
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Shi-Yu Chen
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Xiao-Qing Wang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, China
| | - Jun-Min Wen
- Shenzhen Health Administrative Center for Cadre and Talent, Shenzhen, China. .,Department of Intensive Care Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), 5108057, Shenzhen, China.
| | - Zan-Xin Wang
- Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 5108057, China. .,Department of Cardiac Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
30
|
Zhu SF, Yuan W, Du YL, Wang BL. Research progress of lncRNA and miRNA in hepatic ischemia-reperfusion injury. Hepatobiliary Pancreat Dis Int 2023; 22:45-53. [PMID: 35934611 DOI: 10.1016/j.hbpd.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgeries, such as hepatectomy and liver transplantation. In recent years, several non-coding RNAs (ncRNAs) including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been identified as factors involved in the pathological progression of HIRI. In this review, we summarized the latest research on lncRNAs, miRNAs and the lncRNA-miRNA regulatory networks in HIRI. DATA SOURCES The PubMed and Web of Science databases were searched for articles published up to December 2021 using the following keywords: "hepatic ischemia-reperfusion injury", "lncRNA", "long non-coding RNA", "miRNA" and "microRNA". The bibliography of the selected articles was manually screened to identify additional studies. RESULTS The mechanism of HIRI is complex, and involves multiple lncRNAs and miRNAs. The roles of lncRNAs such as AK139328, CCAT1, MALAT1, TUG1 and NEAT1 have been established in HIRI. In addition, numerous miRNAs are associated with apoptosis, autophagy, oxidative stress and cellular inflammation that accompany HIRI pathogenesis. Based on the literature, we conclude that four lncRNA-miRNA regulatory networks mediate the pathological progression of HIRI. Furthermore, the expression levels of some lncRNAs and miRNAs undergo significant changes during the progression of HIRI, and thus are potential prognostic markers and therapeutic targets. CONCLUSIONS Complex lncRNA-miRNA-mRNA networks regulate HIRI progression through mutual activation and antagonism. It is necessary to screen for more HIRI-associated lncRNAs and miRNAs in order to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Shan-Fei Zhu
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Wei Yuan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Yong-Liang Du
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Bai-Lin Wang
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| |
Collapse
|
31
|
Xie X, Cao Y, Dai L, Zhou D. Bone marrow mesenchymal stem cell-derived exosomal lncRNA KLF3-AS1 stabilizes Sirt1 protein to improve cerebral ischemia/reperfusion injury via miR-206/USP22 axis. Mol Med 2023; 29:3. [PMID: 36627572 PMCID: PMC9830826 DOI: 10.1186/s10020-022-00595-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) is a pathological process that occurs in ischemic stroke. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been verified to relieve cerebral I/R-induced inflammatory injury. Hence, we intended to clarify the function of BMSC-Exos-delivered lncRNA KLF3-AS1 (BMSC-Exos KLF3-AS1) in neuroprotection and investigated its potential mechanism. METHODS To mimic cerebral I/R injury in vivo and in vitro, middle cerebral artery occlusion (MCAO) mice model and oxygen-glucose deprivation (OGD) BV-2 cell model were established. BMSC-Exos KLF3-AS1 were administered in MCAO mice or OGD-exposed cells. The modified neurological severity score (mNSS), shuttle box test, and cresyl violet staining were performed to measure the neuroprotective functions, while cell injury was evaluated with MTT, TUNEL and reactive oxygen species (ROS) assays. Targeted genes and proteins were detected using western blot, qRT-PCR, and immunohistochemistry. The molecular interactions were assessed using RNA immunoprecipitation, co-immunoprecipitation and luciferase assays. RESULTS BMSC-Exos KLF3-AS1 reduced cerebral infarction and improved neurological function in MCAO mice. Similarly, it also promoted cell viability, suppressed apoptosis, inflammatory injury and ROS production in cells exposed to OGD. BMSC-Exos KLF3-AS1 upregulated the decreased Sirt1 induced by cerebral I/R. Mechanistically, KLF3-AS1 inhibited the ubiquitination of Sirt1 protein through inducing USP22. Additionally, KLF3-AS1 sponged miR-206 to upregulate USP22 expression. Overexpression of miR-206 or silencing of Sirt1 abolished KLF3-AS1-mediated protective effects. CONCLUSION BMSC-Exos KLF3-AS1 promoted the Sirt1 deubiquitinating to ameliorate cerebral I/R-induced inflammatory injury via KLF3-AS1/miR-206/USP22 network.
Collapse
Affiliation(s)
- Xiaowei Xie
- grid.452708.c0000 0004 1803 0208Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan People’s Republic of China
| | - Yu Cao
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| | - Liangping Dai
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| | - Dingzhou Zhou
- grid.477407.70000 0004 1806 9292Department of Comprehensive Surgery, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005 Hunan People’s Republic of China
| |
Collapse
|
32
|
Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023; 353:563-590. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is becoming a typical cardiovascular disease with increasing worldwide incidence. It is usually induced by the restoration of normal blood flow to the ischemic myocardium after a period of recanalization and directly leads to myocardial damage. Notably, the pathological mechanism of myocardial IRI is closely related to inflammation, oxidative stress, Ca2+ overload, and the opening of mitochondrial permeability transition pore channels. Therefore, monitoring of these changes and imaging lesions is a key to timely clinical diagnosis. Nanomedicines have shown great value in the diagnosis and treatment of myocardial IRI, with advantages including passive/active targeting, prolonged circulation, improved bioavailability, versatile carrier selection, and synergistic integration of different imaging and therapeutic agents in single particles with the same pharmaceutics. Because theranostic nanomedicines for myocardial IRI have advanced rapidly, we conduct an updated review on this topic. The special focus is on how to rationally design the nanomedicines to achieve optimal imaging and therapy. We hope this review would stimulate the interest of researchers with different backgrounds and expedite the development of nanomedicines for myocardial IRI.
Collapse
|
33
|
Zhu MX, Ma XF, Niu X, Fan GB, Li Y. Mitochondrial unfolded protein response in ischemia-reperfusion injury. Brain Res 2022; 1797:148116. [PMID: 36209898 DOI: 10.1016/j.brainres.2022.148116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Hainan, China
| | - Xiao-Fei Ma
- Department of ICU, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
34
|
Wu C, Chen RL, Wang Y, Wu WY, Li G. Acacetin alleviates myocardial ischaemia/reperfusion injury by inhibiting oxidative stress and apoptosis via the Nrf-2/HO-1 pathway. PHARMACEUTICAL BIOLOGY 2022; 60:553-561. [PMID: 35244510 PMCID: PMC8903787 DOI: 10.1080/13880209.2022.2041675] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
CONTEXT Acacetin is a natural source of flavonoids with anti-inflammatory and antioxidant effects. OBJECTIVE This study determines acacetin's protective effect and mechanism on myocardial ischaemia/reperfusion (I/R) injury. MATERIALS AND METHODS Sprague-Dawley rats were divided into sham and I/R injury and treatment with acacetin. Acacetin (10 mg/kg) was subcutaneously injected for 7 days. ECG and echocardiography were conducted to determine arrhythmia and heart function. The pathological characters of the heart were determined with triphenyl tetrazolium chloride staining, Haematoxylin & Eosin staining, and Masson staining. Expression of proteins in infarct tissues was examined with western blots. RESULTS Administrated with acacetin in I/R rats significantly reduced the arrhythmia score from 4.90 to 2.50 and the reperfusion arrhythmia score from 3.79 to 1.82 in the vehicle or the acacetin group, respectively. LVEF was improved from 33.5% in the I/R group to 43.7% in the acacetin group, LVFS was increased from 16.4% to 24.5%, LVIDs was decreased from 6.5 to 5.3 mm. The inflammatory cell infiltration, myocardial fibrosis, and collagen 1 and 3 were reduced by acacetin. Acacetin promoted SOD and decreased MDA. In myocardial tissues, the expression level of TLR4 and IL-6 were restrained, and IL-10 was promoted. Apoptotic protein Bax was suppressed, and anti-apoptotic protein Bcl-2 was promoted in the acacetin group. Interestingly, the transcription factor Nrf-2/HO-1 pathway was also reversed by acacetin. DISCUSSION AND CONCLUSION Our findings indicated that acacetin has a potential therapeutic effect in clinical application on treating I/R-induced heart injury.
Collapse
Affiliation(s)
- Chan Wu
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ruo-Lan Chen
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan Wang
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei-Yin Wu
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Wei-Yin Wu Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian Province361015, People’s Republic of China
| | - Gang Li
- Institute of Cardiovascular Research, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- CONTACT Gang Li ;
| |
Collapse
|
35
|
Zhang X, Qin Q, Lv X, Wang Y, Luo F, Xue L. Natural emodin reduces myocardial ischemia/reperfusion injury by modulating the RUNX1/miR‑142‑3p/DRD2 pathway and attenuating inflammation. Exp Ther Med 2022; 24:745. [PMID: 36561980 PMCID: PMC9748643 DOI: 10.3892/etm.2022.11681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/18/2022] [Indexed: 11/09/2022] Open
Abstract
Acute myocardial infarction is one of the leading causes of death worldwide. Although timely reperfusion could attenuate myocardial ischemia injury and reduce mortality, it causes severe secondary injury to the myocardium known as myocardial ischemia/reperfusion injury (MIRI) with unmet clinical needs. Emodin has a protective effect on MIRI in rodents. However, the precise mechanism underlying its pharmacological effect remains poorly understood. Accordingly, the present study used mRNA and microRNA (miRNA) sequencing based on MIRI mouse models to determine the mechanism involved. Emodin was found to prevent MIRI and attenuate the inflammation of myocardium in the MIRI model. In addition, by using an interdisciplinary approach, the present study uncovered that emodin suppressed the runt-related transcription factor 1 (RUNX1), which is a transcription factor of miR-142-3p, in either MIRI or the hypoxia/reoxygenation injury model. Furthermore, miR-142-3p can negatively regulate dopamine receptor D2 (DRD2), which acted as an anti-inflammatory factor to suppress NF-κB-dependent inflammation and prevent MIRI. These results were demonstrated by both cellular hypoxia/reoxygenation and mouse MIRI models. Overall, the present study provided an unrevealed molecular mechanism for emodin function. Emodin could inhibit NF-κB-triggered inflammation in MIRI by regulating the RUNX1/miR-142-3p/DRD2 pathway. Therefore, the RUNX1/miR-142-3p/DRD2 pathway presented a novel target for MIRI treatment, and the application of emodin in clinical practice may improve the treatment of MIRI.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China,Correspondence to: Professor Xuezhi Zhang, Department of Cardiology, The Affiliated Hospital of Qingdao University, 369 Shanghai Road, Qingdao, Shandong 266003, P.R. China
| | - Qiaoji Qin
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xianghong Lv
- Department of Pediatrics, The Qingdao Central Hospital, Qingdao, Shandong 266042, P.R. China
| | - Yongbin Wang
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Feng Luo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li Xue
- Department of Endoscopy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
36
|
METTL3-modified lncRNA-SNHG8 binds to PTBP1 to regulate ALAS2 expression to increase oxidative stress and promote myocardial infarction. Mol Cell Biochem 2022; 478:1217-1229. [PMID: 36282350 DOI: 10.1007/s11010-022-04570-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Myocardial infarction (MI) is one of the important factors leading to death in today's society. Therefore, to study the related mechanism of MI and reduce myocardial ischemia-reperfusion injury is an important link to reduce MI injury. MI mice in vivo and cell model in vitro were constructed. The cardiac function and MI area of mice were detected, and myocardial tissue injury was detected by HE staining. ALAS2 expression in mice myocardial tissue was detected by IHC. The expressions of lncRNA-SNHG8, METTL3, PTBP1 and ALAS2 in myocardial tissue or cardiomyocytes were detected by qRT-PCR assay. MTT assay was used to measured viability of cardiomyocytes. The oxidative stress level in myocardial tissue or cardiomyocytes was detected by ELISA assay and ROS assay. RIP-qPCR and RNA pulldown assays determined the interaction between METTL3 and lncRNA-SNHG8, as well as PTBP1 and ALAS2. lncRNA-SNHG8 knockdown in MI mice was reduced myocardial infarction size, alleviated myocardial tissue injury and oxidative stress, and inhibited ALAS2 expression in myocardial tissue. RNA pulldown and RIP assays showed that lncRNA-SNHG8 binged with PTBP1 and PTBP1 interacted with ALAS2 mRNA. Knockdown of lncRNA-SNHG8, METTL3 or PTBP1 in MI cells enhanced viability of myocardial cells, attenuated ROS release and MDA level, increased SOD level, alleviated oxidative stress. ALAS overexpression attenuated the corresponding effect of knockdown of lncRNA-SNHG8 and/or PTBP1 on MI cells. In sum, our paper is demonstrated for the first time that METTL3 can promote lncRNA-SNHG8 through m6A modification, thereby regulating ALAS2 to induce oxidative stress and aggravate myocardial injury.
Collapse
|
37
|
Yang K, Zeng L, Ge A, Wang S, Zeng J, Yuan X, Mei Z, Wang G, Ge J. A systematic review of the research progress of non-coding RNA in neuroinflammation and immune regulation in cerebral infarction/ischemia-reperfusion injury. Front Immunol 2022; 13:930171. [PMID: 36275741 PMCID: PMC9585453 DOI: 10.3389/fimmu.2022.930171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebral infarction/ischemia-reperfusion injury is currently the disease with the highest mortality and disability rate of cardiovascular disease. Current studies have shown that nerve cells die of ischemia several hours after ischemic stroke, which activates the innate immune response in the brain, promotes the production of neurotoxic substances such as inflammatory cytokines, chemokines, reactive oxygen species and − nitrogen oxide, and mediates the destruction of blood-brain barrier and the occurrence of a series of inflammatory cascade reactions. Meanwhile, the expression of adhesion molecules in cerebral vascular endothelial cells increased, and immune inflammatory cells such as polymorphonuclear neutrophils, lymphocytes and mononuclear macrophages passed through vascular endothelial cells and entered the brain tissue. These cells recognize antigens exposed by the central nervous system in the brain, activate adaptive immune responses, and further mediate secondary neuronal damage, aggravating neurological deficits. In order to reduce the above-mentioned damage, the body induces peripheral immunosuppressive responses through negative feedback, which increases the incidence of post-stroke infection. This process is accompanied by changes in the immune status of the ischemic brain tissue in local and systemic systems. A growing number of studies implicate noncoding RNAs (ncRNAs) as novel epigenetic regulatory elements in the dysfunction of various cell subsets in the neurovascular unit after cerebral infarction/ischemia-reperfusion injury. In particular, recent studies have revealed advances in ncRNA biology that greatly expand the understanding of epigenetic regulation of immune responses and inflammation after cerebral infarction/ischemia-reperfusion injury. Identification of aberrant expression patterns and associated biological effects of ncRNAs in patients revealed their potential as novel biomarkers and therapeutic targets for cerebral infarction/ischemia-reperfusion injury. Therefore, this review systematically presents recent studies on the involvement of ncRNAs in cerebral infarction/ischemia-reperfusion injury and neuroimmune inflammatory cascades, and elucidates the functions and mechanisms of cerebral infarction/ischemia-reperfusion-related ncRNAs, providing new opportunities for the discovery of disease biomarkers and targeted therapy. Furthermore, this review introduces clustered regularly interspaced short palindromic repeats (CRISPR)-Display as a possible transformative tool for studying lncRNAs. In the future, ncRNA is expected to be used as a target for diagnosing cerebral infarction/ischemia-reperfusion injury, judging its prognosis and treatment, thereby significantly improving the prognosis of patients.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Liuting Zeng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Yuan
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, China
- *Correspondence: Jinwen Ge,
| |
Collapse
|
38
|
Cai J, Chen X, Liu X, Li Z, Shi A, Tang X, Xia P, Zhang J, Yu P. AMPK: The key to ischemia-reperfusion injury. J Cell Physiol 2022; 237:4079-4096. [PMID: 36134582 DOI: 10.1002/jcp.30875] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Ischemia-reperfusion injury (IRI) refers to a syndrome in which tissue damage is further aggravated and organ function further deteriorates when blood flow is restored after a period of tissue ischemia. Acute myocardial infarction, stress ulcer, pancreatitis, intestinal ischemia, intermittent claudication, acute tubular necrosis, postshock liver failure, and multisystem organ failure are all related to reperfusion injury. AMP-activated protein kinase (AMPK) has been identified in multiple catabolic and anabolic signaling pathways. The functions of AMPK during health and diseases are intriguing but still need further research. Except for its conventional roles as an intracellular energy switch, emerging evidence reveals the critical role of AMPK in IRI as an energy-sensing signal molecule by regulating metabolism, autophagy, oxidative stress, inflammation, and other progressions. At the same time, drugs based on AMPK for the treatment of IRI are constantly being researched and applied in clinics. In this review, we summarize the mechanisms underlying the effects of AMPK in IRI and describe the AMPK-targeting drugs in treatment, hoping to increase the understanding of AMPK in IRI and provide new insights into future clinical treatment.
Collapse
Affiliation(s)
- Jie Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Chen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingyu Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ao Shi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Biochemistry and Molecular Biology, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, Nanchang, China
| |
Collapse
|
39
|
Cell Death Mechanisms in Cerebral Ischemia-Reperfusion Injury. Neurochem Res 2022; 47:3525-3542. [PMID: 35976487 DOI: 10.1007/s11064-022-03697-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
Ischemic stroke is one of the major causes of morbidity and mortality, affecting millions of people worldwide. Inevitably, the interruption of cerebral blood supply after ischemia may promote a cascade of pathophysiological processes. Moreover, the subsequent restoration of blood flow and reoxygenation may further aggravate brain tissue injury. Although recombinant tissue plasminogen activator (rt-PA) is the only approved therapy for restoring blood perfusion, the reperfusion injury and the narrow therapeutic time window restrict its application for most stroke patients. Increasing evidence indicates that multiple cell death mechanisms are relevant to cerebral ischemia-reperfusion injury, including apoptosis, necrosis, necroptosis, autophagy, pyroptosis, ferroptosis, and so on. Therefore, it is crucial to comprehend various cell death mechanisms and their interactions. In this review, we summarize the various signaling pathways underlying cerebral ischemia-reperfusion injury and elaborate on the crosstalk between the different mechanisms.
Collapse
|
40
|
Shu J, Yang L, Wei W, Zhang L. Identification of programmed cell death-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury. Front Genet 2022; 13:934154. [PMID: 35991562 PMCID: PMC9385974 DOI: 10.3389/fgene.2022.934154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Numerous studies have suggested that programmed cell death (PCD) pathways play vital roles in cerebral ischemia/reperfusion (I/R) injury. However, the specific mechanisms underlying cell death during cerebral I/R injury have yet to be completely clarified. There is thus a need to identify the PCD-related gene signatures and the associated regulatory axes in cerebral I/R injury, which should provide novel therapeutic targets against cerebral I/R injury. Methods: We analyzed transcriptome signatures of brain tissue samples from mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) and matched controls, and identified differentially expressed genes related to the three types of PCD(apoptosis, pyroptosis, and necroptosis). We next performed functional enrichment analysis and constructed PCD-related competing endogenous RNA (ceRNA) regulatory networks. We also conducted hub gene analysis to identify hub nodes and key regulatory axes. Results: Fifteen PCD-related genes were identified. Functional enrichment analysis showed that they were particularly associated with corresponding PCD-related biological processes, inflammatory response, and reactive oxygen species metabolic processes. The apoptosis-related ceRNA regulatory network was constructed, which included 24 long noncoding RNAs (lncRNAs), 41 microRNAs (miRNAs), and 4 messenger RNAs (mRNAs); the necroptosis-related ceRNA regulatory network included 16 lncRNAs, 20 miRNAs, and 6 mRNAs; and the pyroptosis-related ceRNA regulatory network included 15 lncRNAs, 18 miRNAs, and 6 mRNAs. Hub gene analysis identified hub nodes in each PCD-related ceRNA regulatory network and seven key regulatory axes in total, namely, lncRNA Malat1/miR-181a-5p/Mapt, lncRNA Malat1/miR-181b-5p/Mapt, lncRNA Neat1/miR-181a-5p/Mapt, and lncRNA Neat1/miR-181b-5p/Mapt for the apoptosis-related ceRNA regulatory network; lncRNA Neat1/miR-181a-5p/Tnf for the necroptosis-related ceRNA regulatory network; lncRNA Malat1/miR-181c-5p/Tnf for the pyroptosis-related ceRNA regulatory network; and lncRNAMalat1/miR-181a-5p for both necroptosis-related and pyroptosis-related ceRNA regulatory networks. Conclusion: The results of this study supported the hypothesis that these PCD pathways (apoptosis, necroptosis, pyroptosis, and PANoptosis) and crosstalk among them might be involved in ischemic stroke and that the key nodes and regulatory axes identified in this study might play vital roles in regulating the above processes. This may offer new insights into the potential mechanisms underlying cell death during cerebral I/R injury and provide new therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
| | | | - Wenshi Wei
- *Correspondence: Wenshi Wei, ; Li Zhang,
| | - Li Zhang
- *Correspondence: Wenshi Wei, ; Li Zhang,
| |
Collapse
|
41
|
Ma C, Yao MD, Han XY, Shi ZH, Yan B, Du JL. Silencing of circular RNA‑ZYG11B exerts a neuroprotective effect against retinal neurodegeneration. Int J Mol Med 2022; 50:106. [PMID: 35730627 PMCID: PMC9239035 DOI: 10.3892/ijmm.2022.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
Ischemic retinal diseases are the major cause of vision impairment worldwide. Currently, there are no available treatments for ischemia‑induced retinal neurodegeneration. Circular RNAs (circRNAs) have emerged as important regulators of several biological processes and human diseases. The present study investigated the role of circRNA‑ZYG11B (circZYG11B; hsa_circ_0003739) in retinal neurodegeneration. Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) demonstrated that circZYG11B expression was markedly increased during retinal neurodegeneration in vivo and in vitro. Cell Counting Kit‑8, TUNEL and caspase‑3 activity assays revealed that silencing of circZYG11B was able to protect against oxidative stress‑ or hypoxic stress‑induced retinal ganglion cell (RGC) injury. Furthermore, immunofluorescence staining and hematoxylin and eosin staining revealed that silencing of circZYG11B alleviated ischemia/reperfusion‑induced retinal neurodegeneration, as indicated by reduced RGC injury and decreased retinal reactive gliosis. In addition, luciferase reporter, biotin‑coupled miRNA capture and RNA immunoprecipitation assays revealed that circZYG11B could regulate RGC function through circZYG11B/microRNA‑620/PTEN signaling. Clinically, RT‑qPCR assays demonstrated that circZYG11B expression was markedly increased in the aqueous humor of patients with glaucoma. In conclusion, circZYG11B may be considered a promising target for the diagnosis and treatment of retinal ischemic diseases.
Collapse
Affiliation(s)
- Cong Ma
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Mu-Di Yao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, P.R. China
| | - Xiao-Yan Han
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, P.R. China
| | - Ze-Hui Shi
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, P.R. China
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200030, P.R. China
| | - Jian-Ling Du
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
42
|
Kaltenmeier C, Wang R, Popp B, Geller D, Tohme S, Yazdani HO. Role of Immuno-Inflammatory Signals in Liver Ischemia-Reperfusion Injury. Cells 2022; 11:cells11142222. [PMID: 35883665 PMCID: PMC9323912 DOI: 10.3390/cells11142222] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is a major obstacle in liver resection and liver transplantation. The initial step of IRI is mediated through ischemia which promotes the production of reactive oxygen species in Kupffer cells. This furthermore promotes the activation of pro-inflammatory signaling cascades, including tumor necrosis factor-alpha, IL-6, interferon, inducible nitric oxide synthase, TLR9/nuclear-factor kappa B pathway, and the production of damage-associated molecular patterns (DAMPs), such as ATP, histone, high mobility group box 1 (HMGB1), urate, mitochondrial formyl peptides and S100 proteins. With ongoing cell death of hepatocytes during the ischemic phase, DAMPs are built up and released into the circulation upon reperfusion. This promotes a cytokines/chemokine storm that attracts neutrophils and other immune cells to the site of tissue injury. The effect of IRI is further aggravated by the release of cytokines and chemokines, such as epithelial neutrophil activating protein (CXCL5), KC (CXCL1) and MIP-2 (CXCL2), the complement proteins C3a and C5a, mitochondrial-derived formyl peptides, leukotriene B4 and neutrophil extracellular traps (NETs) from migrating neutrophils. These NETs can also activate platelets and form Neutrophil-platelet microthrombi to further worsen ischemia in the liver. In this review we aim to summarize the current knowledge of mediators that promote liver IRI, and we will discuss the role of neutrophils and neutrophil extracellular traps in mediating IRI.
Collapse
Affiliation(s)
- Christof Kaltenmeier
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.W.); (D.G.); (S.T.)
| | - Ronghua Wang
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.W.); (D.G.); (S.T.)
| | - Brandon Popp
- Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA;
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.W.); (D.G.); (S.T.)
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.W.); (D.G.); (S.T.)
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (C.K.); (R.W.); (D.G.); (S.T.)
- Correspondence:
| |
Collapse
|
43
|
Song Y, Ren X, Gao F, Li F, Zhou J, Chen J, Zhang Y. LINC01588 regulates WWP2-mediated cardiomyocyte injury by interacting with HNRNPL. ENVIRONMENTAL TOXICOLOGY 2022; 37:1629-1641. [PMID: 35258167 DOI: 10.1002/tox.23512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Cardiomyocyte dysfunction and apoptosis induced by ischemia-hypoxia are common features of many acute and chronic heart diseases. WW domain-containing E3 ubiquitin ligase (WWP2) has been identified as an important regulator in pathogenesis of some health-threatening diseases. Although a couple of recent reports prompted the potential role of WWP2 in heart dysfunction, however, its exact role and how its expression was regulated in ischemic-hypoxic cardiomyocytes are still elusive. Here, we found that WWP2 protein level was induced in anoxia/reoxygenation (A/R) treated cardiomyocytes in a time-dependent manner, accompanied by synchronous expression of LINC01588 and HNRNPL. Knockdown of LINC01588 increased cardiomyocyte apoptosis, the level of oxidative stress, and expression of pro-inflammatory cytokine genes, down-regulated the expression of WWP2 and promoted expression of SEPT4 gene that contributed to cardiomyocyte dysfunction and was a target gene of WWP2. LINC01588 overexpression improved the functions of A/R treated cardiomyocytes, up-regulated WWP2 and reduced SEPT4 expression. In the mechanism exploration, we found that LINC01588 could directly bind with HNRNPL protein that could interact with WWP2, suggesting that WWP2 was involved in the regulation of LINC01588 in A/R treated cardiomyocytes. Moreover, WWP2 inhibition declined the protective role of LINC01588 in cardiomyocyte dysfunction induced by A/R. Finally, we demonstrated that LINC01588 overexpression improved acute myocardial infarction in mice in vivo. In conclusion, LINC01588 improved A/R-induced cardiomyocyte dysfunction by interacting with HNRNPL and promoting WWP2-mediated degradation of SEPT4.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Xiaoyue Ren
- Department of Oncology, Yan'an University Affiliated Hospital, China
| | - Feng Gao
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Fei Li
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Jing Zhou
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Junmin Chen
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Yunqing Zhang
- Department of Pathology, Yan'an University Affiliated Hospital, China
| |
Collapse
|
44
|
Neag MA, Mitre AO, Burlacu CC, Inceu AI, Mihu C, Melincovici CS, Bichescu M, Buzoianu AD. miRNA Involvement in Cerebral Ischemia-Reperfusion Injury. Front Neurosci 2022; 16:901360. [PMID: 35757539 PMCID: PMC9226476 DOI: 10.3389/fnins.2022.901360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia reperfusion injury is a debilitating medical condition, currently with only a limited amount of therapies aimed at protecting the cerebral parenchyma. Micro RNAs (miRNAs) are small, non-coding RNA molecules that via the RNA-induced silencing complex either degrade or prevent target messenger RNAs from being translated and thus, can modulate the synthesis of target proteins. In the neurological field, miRNAs have been evaluated as potential regulators in brain development processes and pathological events. Following ischemic hypoxic stress, the cellular and molecular events initiated dysregulate different miRNAs, responsible for long-terming progression and extension of neuronal damage. Because of their ability to regulate the synthesis of target proteins, miRNAs emerge as a possible therapeutic strategy in limiting the neuronal damage following a cerebral ischemic event. This review aims to summarize the recent literature evidence of the miRNAs involved in signaling and modulating cerebral ischemia-reperfusion injuries, thus pointing their potential in limiting neuronal damage and repair mechanisms. An in-depth overview of the molecular pathways involved in ischemia reperfusion injury and the involvement of specific miRNAs, could provide future perspectives in the development of neuroprotective agents targeting these specific miRNAs.
Collapse
Affiliation(s)
- Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Otto Mitre
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carina Mihu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen-Stanca Melincovici
- Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marius Bichescu
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
45
|
Long Noncoding RNA SCIRT Promotes HUVEC Angiogenesis via Stabilizing VEGFA mRNA Induced by Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9102978. [PMID: 35698607 PMCID: PMC9187973 DOI: 10.1155/2022/9102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion injury (IRI) is closely associated the abnormal expression of long noncoding RNAs (lncRNAs), especially for their regulatory roles in IRI-related angiogenesis. This study applied a hypoxia-reoxygenation (HR) cell model to simulate the IRI condition, as well as RNA sequencing and RNA pull-down experiments to reveal roles of the lncRNA and Stem Cell Inhibitory RNA Transcript (SCIRT), in endothelial angiogenesis. We found that SCIRT was increased under the HR condition and exhibited a high expression correlation with angiogenesis marker VEGFA. RNA-seq data analysis further revealed that VEGFA-related angiogenesis was regulated by SCIRT in HUVECs. Gain and loss of function experiments proved that SCIRT posttranscriptionally regulated VEGFA via affecting its mRNA stability. Furthermore, HuR (ELAVL1), an RNA binding protein (RBP), was identified as a SCIRT-binding partner, which bound and stabilized VEGFA. Moreover, SCIRT promoted HuR expression posttranslationally by inhibiting its ubiquitination under the HR condition. These findings reveal that lncRNA SCIRT can mediate endothelial angiogenesis by stabilizing the VEGFA mRNA via modulating RBP HuR stability under the HR condition.
Collapse
|
46
|
MSC-Derived Extracellular Vesicles Activate Mitophagy to Alleviate Renal Ischemia/Reperfusion Injury via the miR-223-3p/NLRP3 Axis. Stem Cells Int 2022; 2022:6852661. [PMID: 35646124 PMCID: PMC9142309 DOI: 10.1155/2022/6852661] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/30/2022] [Indexed: 11/29/2022] Open
Abstract
Background MSC-derived extracellular vehicles (EVs) exhibit a protective functional role in renal ischemia/reperfusion injury (RIRI). Recent studies have revealed that mitophagy could be a potential target process in the treatment of RIRI. However, whether MSC-derived EVs are involved in the regulation of mitophagy in RIRI remains largely unknown to date. Methods RIRI model was established in vivo in mice by subjecting them to renal ischemia/reperfusion. TCMK-1 cells were subjected to hypoxia/reoxygenation (H/R) stimulation to mimic RIRI in vitro. BMSCs and BMSC-derived EVs were isolated and identified. Renal injury was assessed using H&E staining. The qPCR and western blot analyses were conducted to detect the mRNA and protein levels. Apoptosis was evaluated using the TUNEL assay and flow cytometry analysis. The EVs, autophagosomes, and mitochondria were observed using TEM. The colocalization of autophagosomes with mitochondria was confirmed through the confocal assay. The direct binding of miR-223-3p to NLRP3 was validated through the dual-luciferase assay. Results BMSCs and BMSC-derived EVs were successfully isolated from mice and identified. The protective effect of BMSC-derived EVs against RIRI was validated both in vitro and in vivo, which was indicated by a decrease in apoptosis and inflammasome activation and an increase in mitophagy. However, this protective effect was impaired in the miR-223-3p-depleted EVs, suggesting that miR-223-3p mediated this protective effect. Further mechanistic investigation revealed that miR-223-3p suppressed inflammasome activation to enhance mitophagy by directly targeting NLRP3. Conclusion In conclusion, the protective role of BMSC-derived EVs and exosome-delivered miR-223-3p in RIRI was validated. Exogenous miR-223-3p directly targeted NLRP3 to attenuate inflammasome activation, thereby promoting mitophagy.
Collapse
|
47
|
Du H, Ding L, Zeng T, Li D, Liu L. LncRNA SNHG15 Modulates Ischemia-Reperfusion Injury in Human AC16 Cardiomyocytes Depending on the Regulation of the miR-335-3p/TLR4/NF-κB Pathway. Int Heart J 2022; 63:578-590. [DOI: 10.1536/ihj.21-511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Haibo Du
- Heart Disease Center, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine
| | - Lianqin Ding
- Department of Cardiology, Shenzhen Samii Medical Center (The Fourth People's Hospital of Shenzhen)
| | - Tian Zeng
- Department of Cardiology, Yibin Second People's Hospital
| | - Di Li
- Department of Cardiology, Daqing Oil Field General Hospital
| | - Li Liu
- Department of Cardiology, Yibin Second People's Hospital
| |
Collapse
|
48
|
Luo J, Li J, Xiong L, Fan L, Peng L, Yang Y, Lu D, Shao J. MicroRNA-27a-3p relieves inflammation and neurologic impairment after cerebral ischemia reperfusion via inhibiting LITAF and the TLR4/NF-κB pathway. Eur J Neurosci 2022; 56:4013-4030. [PMID: 35584745 DOI: 10.1111/ejn.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/12/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Cerebral ischemia reperfusion (CIR) affects microRNA (miR) expression and causes substantial inflammation. Here, we investigated the influence and underlying mechanism of miR-27a-3p in rats with CIR. Firstly, Biliverdin treatment relieved cerebral infarction and decreased the levels of serum interleukin (IL)-1β, IL-6 and TNF-α. Through our previous study, we found key miR-27a-3p and its targeted gene LITAF might involve in the molecular mechanism of CIR. Then, the regulation between miR-27a-3p and LITAF was verified by the temporal miR-27a-3p and LITAF expression profiles and luciferase assay. Moreover, intracerebroventricular injection of the miR-27a-3p mimic significantly decreased the LITAF, TLR4, NF-κB and IL-6 levels at 24h post-surgery, whereas miR-27a-3p inhibitor reversed these effects. Furthermore, miR-27a-3p mimic could relieve cerebral infarct and neurologic deficit after CIR. In addition, injection of miR-27a-3p mimic decreased neuronal damage induced by CIR. Taken together, our results suggest that miR-27a-3p protect against CIR by relieving inflammation, neuronal damage and neurologic deficit via regulating LITAF and the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Jing Luo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Li Xiong
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Linna Fan
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Lijia Peng
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Yuan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| | - Di Lu
- Incubation center for Scientific and technological achievements, Kunming Medical University
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University
| |
Collapse
|
49
|
Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, Zhou C, Xu H, Yang S. NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia–Reperfusion Injury. Front Mol Neurosci 2022; 15:847440. [PMID: 35600078 PMCID: PMC9122020 DOI: 10.3389/fnmol.2022.847440] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Millions of patients are suffering from ischemic stroke, it is urgent to figure out the pathogenesis of cerebral ischemia–reperfusion (I/R) injury in order to find an effective cure. After I/R injury, pro-inflammatory cytokines especially interleukin-1β (IL-1β) upregulates in ischemic brain cells, such as microglia and neuron. To ameliorate the inflammation after cerebral I/R injury, nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome is well-investigated. NLRP3 inflammasomes are complicated protein complexes that are activated by endogenous and exogenous danger signals to participate in the inflammatory response. The assembly and activation of the NLRP3 inflammasome lead to the caspase-1-dependent release of pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. Furthermore, pyroptosis is a pro-inflammatory cell death that occurs in a dependent manner on NLRP3 inflammasomes after cerebral I/R injury. In this review, we summarized the assembly and activation of NLRP3 inflammasome; moreover, we also concluded the pivotal role of NLRP3 inflammasome and inhibitors, targeting the NLRP3 inflammasome in cerebral I/R injury.
Collapse
Affiliation(s)
- Lixia Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingjuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianzhu Liu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ying Wei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiru Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhou
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Houping Xu
| | - Sijin Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang
| |
Collapse
|
50
|
Xiong Y, Song J, Huang X, Pan Z, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Exosomes Derived From Mesenchymal Stem Cells: Novel Effects in the Treatment of Ischemic Stroke. Front Neurosci 2022; 16:899887. [PMID: 35585925 PMCID: PMC9108502 DOI: 10.3389/fnins.2022.899887] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is defined as an infarction in the brain, caused by impaired cerebral blood supply, leading to local brain tissue ischemia, hypoxic necrosis, and corresponding neurological deficits. At present, revascularization strategies in patients with acute ischemic stroke include intravenous thrombolysis and mechanical endovascular treatment. However, due to the short treatment time window (<4.5 h) and method restrictions, clinical research is focused on new methods to treat ischemic stroke. Exosomes are nano-sized biovesicles produced in the endosomal compartment of most eukaryotic cells, containing DNA, complex RNA, and protein (30-150 nm). They are released into surrounding extracellular fluid upon fusion between multivesicular bodies and the plasma membrane. Exosomes have the characteristics of low immunogenicity, good innate stability, high transmission efficiency, and the ability to cross the blood-brain barrier, making them potential therapeutic modalities for the treatment of ischemic stroke. The seed sequence of miRNA secreted by exosomes is base-paired with complementary mRNA to improve the microenvironment of ischemic tissue, thereby regulating downstream signal transduction activities. With exosome research still in the theoretical and experimental stages, this review aims to shed light on the potential of exosomes derived from mesenchymal stem cells in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Jianping Song
- Department of Neurosurgery, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurosurgery, National Regional Medical Center, Fudan University Huashan Hospital Fujian Campus, The First Affiliated Hospital Binhai Campus, Fujian Medical University, Fuzhou, China
| | - Xinyue Huang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, “Attikon” University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
- Department of Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|