1
|
Sethi P, Mehan S, Khan Z, Maurya PK, Kumar N, Kumar A, Tiwari A, Sharma T, Das Gupta G, Narula AS, Kalfin R. The SIRT-1/Nrf2/HO-1 axis: Guardians of neuronal health in neurological disorders. Behav Brain Res 2025; 476:115280. [PMID: 39368713 DOI: 10.1016/j.bbr.2024.115280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
SIRT1 (Sirtuin 1) is a NAD+-dependent deacetylase that functions through nucleoplasmic transfer and is present in nearly all mammalian tissues. SIRT1 is believed to deacetylate its protein substrates, resulting in neuroprotective actions, including reduced oxidative stress and inflammation, increased autophagy, increased nerve growth factors, and preserved neuronal integrity in aging or neurological disease. Nrf2 is a transcription factor that regulates the genes responsible for oxidative stress response and substance detoxification. The activation of Nrf2 guards cells against oxidative damage, inflammation, and carcinogenic stimuli. Several neurological abnormalities and inflammatory disorders have been associated with variations in Nrf2 activation caused by either pharmacological or genetic factors. Recent evidence indicates that Nrf2 is at the center of a complex cellular regulatory network, establishing it as a transcription factor with genuine pleiotropy. HO-1 is most likely a component of a defense mechanism in cells under stress, as it provides negative feedback for cell activation and mediator synthesis. This mediator is upregulated by Nrf2, nitric oxide (NO), and other factors in various inflammatory states. HO-1 or its metabolites, such as CO, may mitigate inflammation by modulating signal transduction pathways. Neurological diseases may be effectively treated by modulating the activity of HO-1. Multiple studies have demonstrated that SIRT1 and Nrf2 share an important connection. SIRT1 enhances Nrf2, activates HO-1, protects against oxidative injury, and decreases neuronal death. This has been associated with numerous neurodegenerative and neuropsychiatric disorders. Therefore, activating the SIRT1/Nrf2/HO-1 pathway may help treat various neurological disorders. This review focuses on the current understanding of the SIRT1 and Nrf2/HO-1 neuroprotective processes and the potential therapeutic applications of their target activators in neurodegenerative and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Pankaj Kumar Maurya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar), Moga, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, Sofia 1113, Bulgaria; Department of Healthcare, South-West University "NeofitRilski", Ivan Mihailov St. 66, Blagoevgrad 2700, Bulgaria
| |
Collapse
|
2
|
Mesas C, Moreno J, Doello K, Peña M, López-Romero JM, Prados J, Melguizo C. Cannabidiol effects in stem cells: A systematic review. Biofactors 2025; 51:e2148. [PMID: 39653426 DOI: 10.1002/biof.2148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Stem cells play a critical role in human tissue regeneration and repair. In addition, cancer stem cells (CSCs), subpopulations of cancer cells sharing similar characteristics as normal stem cells, are responsible for tumor metastasis and resistance to chemo- and radiotherapy and to tumor relapse. Interestingly, all stem cells have cannabinoid receptors, such as cannabidiol (CBD), that perform biological functions. The aim of this systematic review was to analyze the effect of CBD on both somatic stem cells (SSCs) and CSCs. Of the 276 articles analyzed, 38 were selected according to the inclusion and exclusion criteria. A total of 27 studied the effect of CBD on SSCs, finding that 44% focused on CBD differentiation effect and 56% on its protective activity. On the other hand, 11 articles looked at the effect of CBD on CSCs, including glioblastoma (64%), lung cancer (27%), and breast cancer (only one article). Our results showed that CBD exerted a differentiating and protective effect on SCCs. In addition, this molecule demonstrated an antiproliferative effect on some CSCs, although most of the analyses were performed in vitro. Therefore, although in vivo studies should be necessary to justify its clinical use, CBD and its receptors could be a specific target to act on both SSCs and CSCs.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Service of Medical Oncology, Hospital Virgen de las Nieves, Granada, Spain
| | - Mercedes Peña
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
| | - Juan M López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, Málaga, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, (ibs.GRANADA), Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
3
|
Eryilmaz IE, Egeli U, Cecener G. Association between the apoptotic effect of Cabazitaxel and its pro-oxidant efficacy on the redox adaptation mechanisms in prostate cancer cells with different resistance phenotypes. Cancer Biol Ther 2024; 25:2329368. [PMID: 38485703 PMCID: PMC10950270 DOI: 10.1080/15384047.2024.2329368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Redox adaptation causes poor prognosis by adapting cancer cells to excessive oxidative stress. Previously, we introduced an oxidative stress-resistant metastatic prostate cancer (mPC) model (LNCaP-HPR) that redox adaptation reduced the effect of Cabazitaxel (Cab), the last taxane-derivative for metastatic castration-resistant PC (mCRPC). Whereas, we investigated for the first time whether there is an association between the altered apoptotic effect and pro-oxidant efficacy of Cab on the redox adaptation in PC cells with different phenotypes, including LNCaP mPC, LNCaP-HPR, C4-2 mCRPC, and RWPE-1 cells. Cab was shown pro-oxidant efficacy proportionally with the apoptotic effect, more prominent in the less aggressive LNCaP cells, by increasing the endogenous ROS, mitochondrial damage, and inhibiting nuclear ROS scavengers, p-Nrf2 and HIF-1α. However, the pro-oxidant and apoptotic effect was lower in the LNCaP-HPR and C4-2 cells, indicating that the drug sensitivity of the cells adapted to survive with more ROS was reduced via altered regulation of redox adaptation. Additionally, unlike LNCaP, Cab caused an increase in the p-NF-κB activation, suggesting that the p-NF-κB might accompany maintaining survival with the increased ROS in the aggressive PC cells. Moreover, the cytotoxic and apoptotic effects of Cab were less on RWPE-1 cells compared to LNCaP but were closer to those on the more aggressive LNCaP-HPR and C4-2 cells, except for the changing pro-oxidant effect of Cab. Consequently, this study indicates the variable pro-oxidant effects of Cab on redox-sensitive proteins, which could be a target for improving Cab's apoptotic effect more in aggressive PC cells.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
4
|
Sun C, Ma Q, Feng L, Ji J, Du D, Shang P, Guo X. MCP-enhanced SOD3 activity inhibits gastric cancer and potentiate chemotherapy via modulating EGFR signaling. Life Sci 2024; 362:123358. [PMID: 39746602 DOI: 10.1016/j.lfs.2024.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
AIMS This study aims to investigate the role of SOD3 in gastric cancer (GC) progression and its impact on chemotherapy efficacy and toxicity. It further seeks to evaluate the therapeutic potential of MCP in enhancing SOD3 activity to improve treatment outcomes and reduce chemotherapy-induced peripheral neurotoxicity (CIPN). MATERIALS AND METHODS We used overexpression plasmids and small interfering RNAs (siRNAs) to modulate the expression of SOD3 and Desmocollin2 (DSC2) in gastric cancer cells. Molecular biology experiments were performed to analyze pathway-related protein expression and molecular interactions. In vitro and in vivo experiments were conducted to evaluate the effects of modified citrus pectin (MCP) and oxaliplatin (OXA), individually and in combination, on gastric cancer progression and CIPN. KEY FINDINGS SOD3 inhibited the proliferation, migration, and invasion of GC cells via SOD3/EGFR/PKP3/DSC2 axis. MCP selectively increased SOD3 levels and enhanced its anti-tumor effects. Combined treatment with MCP and OXA synergistically inhibited GC progression in vitro and in vivo, while MCP alleviated CIPN, enabling OXA dose reduction without compromising efficacy. SIGNIFICANCE The findings revealed that SOD3 played a critical tumor-suppressive role in gastric cancer by modulating the SOD3/EGFR/PKP3/DSC2 axis. MCP, a natural compound that selectively boosted SOD3 levels, enhanced chemotherapy efficacy while reducing peripheral neurotoxicity, providing a promising strategy to improve gastric cancer treatment and mitigate chemotherapy-related side effects.
Collapse
Affiliation(s)
- Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qiushuang Ma
- Department of Pharmacology, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Liya Feng
- Department of Pharmacology, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jianbo Ji
- Department of Pharmacology, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Dandan Du
- Department of Pharmacology, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Pengfei Shang
- Department of Pharmacology, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiuli Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
5
|
Eryilmaz IE, Colakoglu Bergel C, Arioz B, Huriyet N, Cecener G, Egeli U. Luteolin induces oxidative stress and apoptosis via dysregulating the cytoprotective Nrf2-Keap1-Cul3 redox signaling in metastatic castration-resistant prostate cancer cells. Mol Biol Rep 2024; 52:65. [PMID: 39699825 DOI: 10.1007/s11033-024-10178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The treatment of metastatic castration-resistant prostate cancer (mCRPC) is still challenging clinically. Due to the refractor and highly metastatic phenotype of mCRPC, novel therapy strategies need to be investigated. Luteolin, a promising anticancer agent with various biological targets in many cancer types, also has a pro-oxidant effect that selectively triggers ROS and apoptosis. In recent years, among its ROS-mediated mechanisms, the inhibitory effect of luteolin on the nuclear factor-E2-related factor 2 (Nrf2), the main ROS scavenger protein in cancer cells, has been reported. However, no evidence exists that luteolin potentially regulates the Nrf2 or its regulator signaling pathway, Nrf2-Keap1-Cul3 axis, concerning its pro-oxidant effects associated with ROS-triggered apoptosis in any PCa cells or tumor model. METHODS AND RESULTS In the present study, we investigated for the first time whether the anticancer effect of luteolin is associated with pro-oxidant activity via the regulation of the Nrf2-Keap1-Cul3 redox signaling in PC3 and DU145 mCRPC cells. The results showed that luteolin significantly caused more cytotoxic, apoptotic, and pro-oxidant effects in a dose-dependent manner in mCRPC cells than in WPMY-1 normal prostate fibroblast cells for 72 h. Moreover, significant inhibition of Nrf2-Keap1-Cul3 redox signaling has occurred in response to increasing doses of luteolin in mCRPC cells. CONCLUSIONS The current study put forth the potential pro-oxidant inhibitory effect of luteolin on the Nrf2-Keap1-Cul3 axis in mCRPC cells for the first time. Thus, luteolin might be an attractive therapy strategy with an inhibitory effect on the cytoprotective Nrf2-Keap1-Cul3 redox signaling for treating mCRPC.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey.
| | | | - Bilge Arioz
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nuseybe Huriyet
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Medical Biology Department, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
6
|
Liu R, Cui H, Li D, Guo X, Zhang Z, Tan S, Zhu X. Roles and Mechanisms of Ferroptosis in Sorafenib Resistance for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:2493-2504. [PMID: 39717509 PMCID: PMC11665174 DOI: 10.2147/jhc.s500084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent malignant tumor, characterized by a poor prognosis. In recent decades, both the incidence and mortality rates of HCC have risen sharply. Sorafenib has emerged as the first conventional drug approved by the US Food and Drug Administration for first-line treatment in advanced HCC patients due to its favorable safety profile. However, its effectiveness is severely hindered by acquired drug resistance, which leads to only approximately 30% of HCC patients benefited from sorafenib therapy. Sorafenib resistance involves various mechanisms that inhibit cellular uptake of iron and reactive oxygen species (ROS). Consequently, ferroptosis a novel form of cell death contingent upon the accumulation of intracellular iron and ROS plays a critical role in mediating sorafenib resistance through the Hippo YAP pathway or Keap1-Nrf2 system. This review aimed to comprehensively elucidate the mechanisms underlying sorafenib resistance in HCC, particularly focusing on ferroptosis and its pathways, to provide valuable insights into targeting ferroptosis or its pathways for sorafenib-resistant HCC treatment.
Collapse
Affiliation(s)
- Ruyuan Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Huanyu Cui
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
- Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Xiaonian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, 541199, People’s Republic of China
| |
Collapse
|
7
|
Sadiq A, Chen P, Fert-Bober J. Silencing PADI-2 induces antitumor effects by downregulating NF-κB, Nrf2/HO-1 and AKT1 in A549 lung cancer cells. Int Immunopharmacol 2024; 146:113830. [PMID: 39700962 DOI: 10.1016/j.intimp.2024.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE This study aimed to investigate the tumorigenic role and regulatory pathways of peptidyl arginine deiminase 2 (PAD-2) in A549 lung cancer cells following treatment with small interfering RNA (PADI-2 siRNA) or the pharmacological pan-PAD inhibitor BB-Cl amidine. MATERIALS AND METHODS A549 lung cancer cells were treated with PADI-2 siRNA to knock down PADI-2 expression or with BB-Cl amidine to inhibit PAD2 activity. The effects on cell proliferation, migration, invasion, and cell cycle phases were assessed. Additionally, the expression levels of nuclear factor erythroid 2 p45-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), AKT serine/threonine kinase 1 (AKT), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin 6 (IL6), and p53 were analyzed to elucidate the underlying mechanisms involved. RESULTS The manipulation of PAD-2 expression or activity significantly influenced tumor cell behavior. Knockdown of PADI-2 in A549 cells reduced cell proliferation by inhibiting the S and G2 phases and decreasing cell migration and invasion. Inhibition of PADI-2 expression also suppressed the protein levels of Nrf2 and HO-1 via suppression of the AKT/NF-κB pathway. Furthermore, this inhibition enhanced the senescence-associated secretory phenotype (SASP) through the regulation of IL6 and p53, resulted in significant upregulation of SASP factors mainly, p21, Lamin B1 and HMGB1. CONCLUSION Downregulation of PADI-2 attenuated the proliferation, migration, and invasion of A549 lung cancer cells by modulating the Nrf2/HO-1/AKT signaling pathway. It also increased senescence in A549 lung cancer cells via IL6 and p53 key regulators. These findings highlight the potential of PADI-2 as a therapeutic target in lung cancer treatment.
Collapse
Affiliation(s)
- Alia Sadiq
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Peter Chen
- Women's Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Justyna Fert-Bober
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Ajibare AJ, Odetayo AF, Akintoye OO, Olayaki LA. Zinc ameliorates acrylamide-induced oxidative stress and apoptosis in testicular cells via Nrf2/HO-1/NfkB and Bax/Bcl2 signaling pathway. Redox Rep 2024; 29:2341537. [PMID: 38629506 PMCID: PMC11025409 DOI: 10.1080/13510002.2024.2341537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1β and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.
Collapse
Affiliation(s)
- Ayodeji Johnson Ajibare
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Lead City University, Ibadan, Nigeria
| | | | - Olabode Oluwadare Akintoye
- Department of Physiology, Faculty of Basic Medical Science, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | | |
Collapse
|
9
|
Rubino V, Hüppi M, Höpner S, Tortola L, Schnüriger N, Legenne H, Taylor L, Voggensperger S, Keller I, Bruggman R, Kronig MN, Bacher U, Kopf M, Ochsenbein AF, Riether C. IL-21/IL-21R signaling renders acute myeloid leukemia stem cells more susceptible to cytarabine treatment and CAR T cell therapy. Cell Rep Med 2024; 5:101826. [PMID: 39536753 PMCID: PMC11604404 DOI: 10.1016/j.xcrm.2024.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Self-renewal programs in leukemia stem cells (LSCs) predict poor prognosis in patients with acute myeloid leukemia (AML). We identify CD4+ T cell-derived interleukin (IL)-21 as an important negative regulator of self-renewal of LSCs. IL-21/IL-21R signaling favors asymmetric cell division and differentiation in LSCs through the activation of p38-MAPK signaling, resulting in reduced LSC numbers and significantly prolonged survival in murine AML models. In human AML, serum IL-21 at diagnosis is identified as an independent positive prognostic biomarker for outcome and correlates with improved survival and higher complete remission rates in patients that underwent high-dose chemotherapy. IL-21 treatment inhibits primary LSC function and enhances the effect of cytarabine and CD70 CAR T cell treatment on LSCs in vitro. Low-dose IL-21 treatment prolongs the survival of AML mice in syngeneic and xenograft experiments. Therefore, promoting IL-21/IL-21R signaling on LSCs may be an approach to reduce stemness and increase differentiation in AML.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/metabolism
- Animals
- Humans
- Cytarabine/pharmacology
- Cytarabine/therapeutic use
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Interleukins/metabolism
- Signal Transduction/drug effects
- Mice
- Immunotherapy, Adoptive/methods
- Female
- Mice, Inbred C57BL
- Male
- Receptors, Interleukin-21/metabolism
- Receptors, Interleukin-21/genetics
- Cell Differentiation/drug effects
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/drug effects
Collapse
Affiliation(s)
- Viviana Rubino
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michelle Hüppi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sabine Höpner
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Luigi Tortola
- Institute for Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Noah Schnüriger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Hugo Legenne
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lea Taylor
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Svenja Voggensperger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Remy Bruggman
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Marie-Noëlle Kronig
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manfred Kopf
- Institute for Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Tan YT, Li T, Wang RB, Liu ZK, Ma MY, Huang RZ, Mo HY, Luo SY, Lin JF, Xu RH, Ju HQ. WTAP weakens oxaliplatin chemosensitivity of colorectal cancer by preventing PANoptosis. Cancer Lett 2024; 604:217254. [PMID: 39270768 DOI: 10.1016/j.canlet.2024.217254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/17/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
As the most abundant post-transcriptional modification in eukaryotes, N6-methyladenosine (m6A) plays a crucial role in cancer cell proliferation, invasion and chemoresistance. However, its specific effects on chemosensitivity to oxaliplatin-based regimens and the impact of these drugs on m6A methylation levels in colorectal cancer (CRC) remain largely unexplored. In this study, we demonstrated that the m6A methyltransferase Wilms tumor 1-associating protein (WTAP) weakens oxaliplatin chemosensitivity in HCT116 and DLD1 cells. Mechanistically, oxaliplatin treatment upregulated WTAP expression, preventing multiple forms of cell death simultaneously, a process known as PANoptosis, by decreasing intracellular oxidative stress through maintaining the expression of nuclear factor erythroid-2-related factor 2 (NRF2), a major antioxidant response element, in an m6A-dependent manner. In addition, high WTAP expression in CRC patients is associated with a poor prognosis and reduced benefit from standard chemotherapy by clinical data analysis of The Cancer Genome Atlas (TCGA) database and patient cohort study. These findings suggest that targeting WTAP-NRF2-PANoptosis axis could enhance the antitumor efficacy of oxaliplatin-based chemotherapy in CRC treatment.
Collapse
Affiliation(s)
- Yue-Tao Tan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Ting Li
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, PR China
| | - Ruo-Bing Wang
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ze-Kun Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Meng-Yao Ma
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632, PR China
| | - Ren-Ze Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Hai-Yu Mo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Shu-Yu Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jin-Fei Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China; Department of Clinical Laboratory, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Rui-Hua Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, PR China.
| | - Huai-Qiang Ju
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, PR China.
| |
Collapse
|
11
|
Chen CY, Ye YZ, Huang YH, Tzeng YM, Gurbanov R, Wang WL, Chang WW. Ovatodiolide inhibits endometrial cancer stemness via reactive oxygen species-mediated DNA damage and cell cycle arrest. Chem Biol Interact 2024; 403:111244. [PMID: 39276908 DOI: 10.1016/j.cbi.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide, often associated with a poor prognosis after recurrence or metastasis. Ovatodiolide (OVA) is a macrocyclic diterpenoid derived from Anisomeles indica that shows anticancer effects in various malignancies. This study aimed to evaluate the cytotoxic effects of OVA on EC cell proliferation and cancer stem cell (CSC) activity and explore its underlying molecular mechanisms. OVA treatment dose-dependently reduced the viability and colony formation of three EC cell lines (AN3CA, HEC-1A, and EMC6). It induced G2/M phase cell cycle arrest, associated with decreased cell division cycle 25C (CDC25C) expression and reduced activation of cyclin-dependent kinases 1 (CDK1) and 2 (CDK2). OVA also increased reactive oxygen species (ROS) production and DNA damage, activating the DNA damage-sensitive cell cycle checkpoint kinases 1 (CHK1) and 2 (CHK2) and upregulating the DNA damage marker γ-H2A.X variant histone (H2AX). It also suppressed the activation of mechanistic target of rapamycin kinase (mTOR) and nuclear factor kappa B (NF-κB) and downregulated glutathione peroxidase 1 (GPX1), an antioxidant enzyme counteracting oxidative stress. Moreover, OVA reduced the self-renewal capacity of CSCs, reducing the expression of key stemness proteins Nanog homeobox (NANOG) and octamer-binding transcription factor 4 (OCT4). The ROS inhibitor N-acetylcysteine attenuated the anti-proliferative and anti-CSC effects of OVA. Our findings suggest that OVA acts via ROS generation, leading to oxidative stress and DNA damage, culminating in cell cycle arrest and the suppression of CSC activity in EC. Therefore, OVA is a promising therapeutic agent for EC, either as a standalone treatment or an adjunct to existing therapies.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Emergency Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, 435403, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 35664, Taiwan.
| | - Yu-Zhen Ye
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Yu-Hao Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Sec. 2, University Rd., Taitung, 95092, Taiwan.
| | - Ranal Gurbanov
- School of Medicine, Gazi University, Emniyet Mah., Bandırma Cad., No:6/1, 06560, Yenimahalle, Ankara, Turkey.
| | - Wen-Ling Wang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| |
Collapse
|
12
|
Wang C, Li M, Huang S, Huang W, He T, Wusiman M, Zhu H, Liu Z. Choline ameliorates tris (2‐chloroisopropyl) phosphate‐induced hepatocellular carcinoma metastasis by inhibiting ROS/Nrf2/Keap1‐mediated autophagy. FOOD FRONTIERS 2024. [DOI: 10.1002/fft2.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
AbstractTris (2‐chloroisopropyl) phosphate (TCPP) is an emerging environmental pollutant associated with liver diseases. However, its effects on hepatocellular carcinoma (HCC) remain unknown. Choline, a necessary dietary nutrient, has previously demonstrated inhibitory effects on HCC. Therefore, elucidating the underlying mechanism of TCPP exposure on HCC development and investigating whether choline could mitigate these effects may improve the prognosis of HCC patients. In this study, we examined the tumor‐promoting effects of TCPP on HCC and explored the protective effects of choline. Our findings revealed that choline treatment attenuated the tumor‐promoting effects of TCPP exposure on HCC cells’ epithelial‐mesenchymal transition (EMT) and lung metastasis. Further investigation showed that TCPP exposure induced ROS production via NOX4 upregulation, while choline inhibited ROS generation, thereby mitigating the effects of TCPP on EMT and metastasis in HCC cells. Mechanistic analysis demonstrated that excessive ROS inhibited levels of Keap1, leading to upregulation and nuclear translocation of Nrf2, which promoted autophagy flux and accelerated EMT and metastasis of HCC cells. However, choline treatment significantly impaired TCPP‐induced autophagy by attenuating the ROS/Nrf2/Keap1 pathway. Overall, our data illustrate the adverse effects of TCPP on the malignant progression of HCC and suggest that choline may serve as a potential nutrient to counteract the tumor‐promoting effects of TCPP on HCC.
Collapse
Affiliation(s)
- Chen Wang
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Meng‐chu Li
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Si‐yu Huang
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Wen‐ge Huang
- Center of Experimental Animals Sun Yat‐sen University Guangzhou Guangdong Province China
| | - Tong‐tong He
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Maierhaba Wusiman
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Hui‐lian Zhu
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| | - Zhao‐yan Liu
- Department of Nutrition, School of Public Health Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health Sun Yat‐sen University Guangzhou China
| |
Collapse
|
13
|
Zhang G, Duan G, Yang Z, Deng X, Han L, Zhu M, Jia X, Li L. Fractionated irradiation promotes radioresistance and decreases oxidative stress by increasing Nrf2 of ALDH-positive nasopharyngeal cancer stem cells. Ann Med Surg (Lond) 2024; 86:5793-5801. [PMID: 39359823 PMCID: PMC11444553 DOI: 10.1097/ms9.0000000000002559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Radiotherapy is widely regarded as the primary therapeutic modality for nasopharyngeal cancer (NPC). Studies have shown that cancer cells with high resistance to radiation, known as radioresistant cancer cells, may cause residual illness, which in turn might contribute to the occurrence of cancer recurrence and metastasis. It has been shown that cancer stem-like cells (CSCs) exhibit resistance to radiation therapy. In the present study, fractionated doses of radiation-induced epithelial-mesenchymal transition (EMT) and ALDH+ CSCs phenotype of NPC tumor spheroids. Furthermore, it has been shown that cells with elevated ALDH activity have increased resistance to the effects of fractionated irradiation. Nuclear factor erythroid-2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular antioxidant systems. A large body of evidence suggests that Nrf2 plays a significant role in the development of radioresistance in cancer. The authors' research revealed that the application of fractionated irradiation resulted in a decline in Nrf2-dependent reactive oxygen species (ROS) levels, thereby mitigating DNA damage in ALDH+ stem-like NPC cells. In addition, immunofluorescence analysis revealed that subsequent to the process of fractionated irradiation of ALDH+ cells, activated Nrf2 was predominantly localized inside the nucleus. Immunofluorescent analysis also revealed that the presence of the nuclear Nrf2+/NQO1+/ALDH1+ axis might potentially serve as an indicator of poor prognosis and resistance to radiotherapy in patients with NPC. Thus, the authors' findings strongly suggest that the radioresistance of ALDH-positive NPC CSCs to fractionated irradiation is regulated by nuclear Nrf2 accumulation. Nrf2 exerts its effects through the downstream effector NQO1/ALDH1, which depends on ROS attenuation.
Collapse
Affiliation(s)
- Gong Zhang
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Guosheng Duan
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Zhengyan Yang
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Xubin Deng
- Department of Oncology of the Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Luwei Han
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Meiling Zhu
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Xiaorong Jia
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| | - Lei Li
- Department of Radiotherapy of the Fifth Clinical Medical College of Shanxi Medical University, People’s Hospital of Shanxi Province, Taiyuan, Shanxi
| |
Collapse
|
14
|
Kimura R, Hashimoto S, Eguchi H, Morikawa Y, Suenami K, Yoshino Y, Matsunaga T, Endo S, Ikari A. Enhancement of chemoresistance by claudin-1-mediated formation of amino acid barriers in human lung adenocarcinoma A549 cells. Arch Biochem Biophys 2024; 759:110106. [PMID: 39067558 DOI: 10.1016/j.abb.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Claudin-1 (CLDN1) is highly expressed in human lung adenocarcinoma-derived A549 cells and is involved in the augmentation of chemoresistance. However, the mechanism of chemoresistance is not fully understood. In the tumor microenvironment, cancer cells are exposed to stress conditions such as hypoxia and malnutrition. Here, we investigated the effect of CLDN1 expression on amino acid (AA) flux and chemoresistance using A549 cells. The expression of L-type AA transporters, LAT1 and LAT3, was decreased by CLDN1 silencing in A549 spheroids. A reduction in extracellular AA concentration increased the expression of these AA transporters in two-dimensional (2D) cultured cells. The paracellular AA flux except for Ser, Thr, Tyr, Ala, and Gly was enhanced by CLDN1 silencing. These results suggest that CLDN1 forms a paracellular barrier to some AAs, leading to the elevation of LAT1/3 expression in spheroids. The production of reactive oxygen species in the mitochondria and cytosol was decreased by CLDN1 silencing in spheroids, resulting in downregulation of the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target antioxidant genes. CLDN1 silencing enhanced the cytotoxicity of anticancer drugs including doxorubicin and cisplatin, which was blocked by sulforaphane, an inducer of Nrf2 signaling. Similarly, the anticancer-induced toxicity was enhanced by Nrf2 silencing. In 2D cultured cells, the anticancer-induced toxicity was attenuated by AA deficiency and sulforaphane. We suggest that CLDN1 forms an AA barrier in spheroids, leading to the augmentation of Nrf2-dependent chemoresistance in A549 cells.
Collapse
Affiliation(s)
- Riho Kimura
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Shotaro Hashimoto
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hiroaki Eguchi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Satoshi Endo
- Drug Design Laboratory, Gifu University, Gifu, 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
15
|
Lv Z, Ali A, Zou C, Wang Z, Ma M, Cheng N, Shad M, Hao H, Zhang Y, Rahman FU. Salicylaldehyde-derived piperazine-functionalized hydrazone ligand-based Pt(II) complexes: inhibition of EZH2-dependent tumorigenesis in pancreatic ductal adenocarcinoma, synergism with PARP inhibitors and enhanced apoptosis. Dalton Trans 2024; 53:13871-13889. [PMID: 39091221 DOI: 10.1039/d4dt01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Piperazine is an important functional unit of many clinically approved drugs, including chemotherapeutic agents. In the current study, methyl piperazine was incorporated and eight salicylaldehyde-derived piperazine-functionalized hydrazone ONN-donor ligands (L) and their Pt(II) complexes (L-PtCl) were prepared. The structures of all these ligands (L1-L8) and Pt(II) complexes (C1-C8) were determined using 1H and 13C NMR, UV-vis, FT-IR and HR-ESI MS analyses, whereas the structures of C1, C5, C6, C7 and C8 were determined in the solid state using single crystal X-ray diffraction analysis. Solution state stabilities of C3, C4, C5 and C6 were determined via time-dependent UV-vis spectroscopy. All these complexes (C1-C8) were studied for their anticancer effect in pancreatic ductal adenocarcinoma cells, including BxPC3, MIAPaCa-2 and PANC1 cells. C1-C8 displayed a potential cytotoxic effect in all these cancer cells, among which C5, C6 and C8 showed the strongest inhibitory effect in comparison with standard chemotherapeutic agents, including 5-fluorouracil (5-FU), cisplatin (CP), oxaliplatin and doxorubicin (DOX). C5, C6 and C8 suppressed the growth of pancreatic cancer cells in a dose-dependent manner. Moreover, C5, C6 and C8 inhibited clonogenic potential and invasion ability and induced apoptosis in PANC1 cells. Importantly, C5, C6 and C8 synergized the anticancer effect with PARP inhibitors, including olaparib, veliparib and niraparib, in pancreatic cancer cells, thus suggesting an important role of C5, C6 and C8 in induction of apoptosis in combination with PARP inhibitors. C5 combined with PARP inhibitors induced caspase3/7 activity and suppressed ATP production. Mechanistically, C5, C6 and C8 inhibited EZH2 protein expression to suppress EZH2-dependent tumorigenesis. Overall, these results highlighted the importance of these piperazine-functionalized Pt(II) complexes as potential anticancer agents to suppress pancreatic ductal adenocarcinoma tumorigenesis by targeting the EZH2-dependent pathway.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Cheng Zou
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Zerui Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Minglu Ma
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Na Cheng
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
16
|
Ajuwon OR, Nsole-Biteghe FA, Ndong JD, Davids LM, Ajiboye BO, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke BO, Ntwasa M, Lebelo SL, Ayeleso AO. Nrf2-Mediated Antioxidant Response and Drug Efflux Transporters Upregulation as Possible Mechanisms of Resistance in Photodynamic Therapy of Cancers. Onco Targets Ther 2024; 17:605-627. [PMID: 39131905 PMCID: PMC11313505 DOI: 10.2147/ott.s457749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Photodynamic therapy (PDT) is a groundbreaking approach involving the induction of cytotoxic reactive oxygen species (ROS) within tumors through visible light activation of photosensitizers (PS) in the presence of molecular oxygen. This innovative therapy has demonstrated success in treating various cancers. While PDT proves highly effective in most solid tumors, there are indications that certain cancers exhibit resistance, and some initially responsive cancers may develop intrinsic or acquired resistance to PDT. The molecular mechanisms underlying this resistance are not fully understood. Recent evidence suggests that, akin to other traditional cancer treatments, the activation of survival pathways, such as the KEAP1/Nrf2 signaling pathway, is emerging as an important mechanism of post-PDT resistance in many cancers. This article explores the dual role of Nrf2, highlighting evidence linking aberrant Nrf2 expression to treatment resistance across a range of cancers. Additionally, it delves into the specific role of Nrf2 in the context of photodynamic therapy for cancers, emphasizing evidence that suggests Nrf2-mediated upregulation of antioxidant responses and induction of drug efflux transporters are potential mechanisms of resistance to PDT in diverse cancer types. Therefore, understanding the specific role(s) of Nrf2 in PDT resistance may pave the way for the development of more effective cancer treatments using PDT.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | | | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Ekiti-State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, Osun State, Nigeria
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
- Biochemistry Programme, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
17
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
18
|
Qing L, Li Q, Yang Y, Xu W, Wang Y, Li R, You C, Dong Z. Hypoxia-mediated attenuation of EGLN2 inhibition of the NF-κB signaling pathway leads to the formation of a loop between HIF-1α and MUC1-C promoting chemoresistance in bladder cancer. Mol Carcinog 2024; 63:1303-1318. [PMID: 38634741 DOI: 10.1002/mc.23725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/30/2024] [Accepted: 03/29/2024] [Indexed: 04/19/2024]
Abstract
The expression pattern of MUC1-C in tumors is closely linked to tumor progression; however, its specific mechanism remains unclear. The expression of MUC1-C in cancer and adjacent normal tissues was detected using immunohistochemistry and Western blot. The IC50 of cells to gemcitabine was determined using the CCK8 assay. The effects of hypoxia and MUC1-C on the behavioral and metabolic characteristics of bladder cancer cells were investigated. Gene expression was assessed through Western blot and polymerase chain reaction. The relationship between the genes was analyzed by co-immunoprecipitation, immunofluorescence and Western blot. Finally, the role of the EGLN2 and NF-κB signaling pathways in the interaction between MUC1-C and hypoxia-inducible factor-1α (HIF-1α) was investigated. MUC1-C expression is significantly higher in bladder cancer tissues than in adjacent normal tissues, particularly in large-volume tumors, and is closely correlated with clinical features such as tumor grade. Tumor volume-mediated hypoxia resulted in increased expression of MUC1-C and HIF-1α in bladder cancer cells. Under stimulation of hypoxia, the inhibitory effect of EGLN2 on the NF-κB signaling pathway was weakened, allowing NF-κB to promote the positive feedback formation of MUC1-C and HIF-1α. Simultaneously, EGLN2-mediated degradation of HIF-1α was reduced. This ultimately led to elevated HIF-1α-mediated downstream gene expression, promoting increased glucose uptake and glycolysis, and ultimately resulting in heightened chemotherapy resistance and malignancy.
Collapse
Affiliation(s)
- Liangliang Qing
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Qingchao Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yongjin Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenbo Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanan Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Rongxing Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengyu You
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhilong Dong
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Urological Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
19
|
Liu M, Li H, Li X, Pan B, Zhang J, Pan Y, Shen M, Liu L. A Novel lncRNA FUAT1/TNS4 Axis Confers Chemoresistance by Suppressing Reactive Oxygen Species-Mediated Apoptosis in Gastric Cancer. Antioxid Redox Signal 2024; 41:24-41. [PMID: 37658838 DOI: 10.1089/ars.2023.0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
- Mingliang Liu
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hehe Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Translational Research Center for Cell Immunotherapy, National Clinical Research Center for Cancer, Tianjin Cancer Hospital Airport Hospital, Tianjin Medical University Cancer Institute and Hospital, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Boyu Pan
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ya Pan
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Miaomiao Shen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Liren Liu
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
20
|
Ji SY, Yin ZC, Ma CL, Bai JX, Min JY, Wang BY, Gao ML, Yang XY, Yang XJ, Lei XG. Dietary Selenium Insufficiency Induces Cardiac Inflammatory Injury in Chicks. J Nutr 2024; 154:2315-2325. [PMID: 38763264 DOI: 10.1016/j.tjnut.2024.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1β), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.
Collapse
Affiliation(s)
- Shu Yun Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen Chen Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chun Lai Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Xia Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ji Yang Min
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bo Yan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Lu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiang Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Jun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
21
|
Wang Y. The interplay of exercise and polyphenols in cancer treatment: A focus on oxidative stress and antioxidant mechanisms. Phytother Res 2024; 38:3459-3488. [PMID: 38690720 DOI: 10.1002/ptr.8215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Exercise has been demonstrated to induce an elevated production of free radicals, leading to the onset of oxidative stress. Numerous studies highlight the positive impacts of aerobic exercise, primarily attributed to the increase in overall antioxidant capacity. The evidence suggests that engaging in aerobic exercise contributes to a reduction in the likelihood of advanced cancer and mortality. Oxidative stress occurs when there is an imbalance between the generation of free radicals and the collective antioxidant defense system, encompassing both enzymatic and nonenzymatic antioxidants. Typically, oxidative stress triggers the formation of reactive oxygen or nitrogen species, instigating or advancing various issues in cancers and other diseases. The pro-oxidant-antioxidant balance serves as a direct measure of this imbalance in oxidative stress. Polyphenols contain a variety of bioactive compounds, including flavonoids, flavanols, and phenolic acids, conferring antioxidant properties. Previous research highlights the potential of polyphenols as antioxidants, with documented effects on reducing cancer risk by influencing processes such as proliferation, angiogenesis, and metastasis. This is primarily attributed to their recognized antioxidant capabilities. Considering the extensive array of signaling pathways associated with exercise and polyphenols, this overview will specifically focus on oxidative stress, the antioxidant efficacy of polyphenols and exercise, and their intricate interplay in cancer treatment.
Collapse
Affiliation(s)
- Yubing Wang
- College of Physical Education, Qilu Normal University, Jinan, Shandong, China
| |
Collapse
|
22
|
Skrzeszewski M, Maciejewska M, Kobza D, Gawrylak A, Kieda C, Waś H. Risk factors of using late-autophagy inhibitors: Aspects to consider when combined with anticancer therapies. Biochem Pharmacol 2024; 225:116277. [PMID: 38740222 DOI: 10.1016/j.bcp.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Cancer resistance to therapy is still an unsolved scientific and clinical problem. In 2022, the hallmarks of cancer have been expanded to include four new features, including cellular senescence. Therapy-induced senescence (TIS) is a stressor-based response to conventional treatment methods, e.g. chemo- and radiotherapy, but also to non-conventional targeted therapies. Since TIS reinforces resistance in cancers, new strategies for sensitizing cancer cells to therapy are being adopted. These include macroautophagy as a potential target for inhibition due to its potential cytoprotective role in many cancers. The mechanism of late-stage autophagy inhibitors is based on blockage of autophagolysosome formation or an increase in lysosomal pH, resulting in disrupted cargo degradation. Such inhibitors are relevant candidates for increasing anticancer therapy effectiveness. In particular, 4-aminoquoline derivatives: chloroquine/hydroxychloroquine (CQ/HCQ) have been tested in multiple clinical trials in combination with senescence-inducing anti-cancer drugs. In this review, we summarize the properties of selected late-autophagy inhibitors and their role in the regulation of autophagy and senescent cell phenotype in vitro and in vivo models of cancer as well as treatment response in clinical trials on oncological patients. Additionally, we point out that, although these compounds increase the effectiveness of treatment in some cases, their practical usage might be hindered due to systemic toxicity, hypoxic environment, dose- ant time-dependent inhibitory effects, as well as a possible contribution to escaping from TIS.
Collapse
Affiliation(s)
- Maciej Skrzeszewski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Doctoral School of Translational Medicine, Centre of Postgraduate Medical Education, Poland
| | - Monika Maciejewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland
| | - Dagmara Kobza
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; School of Chemistry, University of Leeds, Leeds, UK
| | - Aleksandra Gawrylak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland; Centre for Molecular Biophysics, UPR CNRS 4301, Orléans, France; Department of Molecular and Translational Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Halina Waś
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Poland.
| |
Collapse
|
23
|
Li Z, Mo RL, Gong JF, Han L, Wang WF, Huang DK, Xu JG, Sun YJ, Chen S, Han GC, Sun DQ. Dihydrotanshinone I inhibits gallbladder cancer growth by targeting the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155661. [PMID: 38677269 DOI: 10.1016/j.phymed.2024.155661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. PURPOSE To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. METHODS The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. RESULTS Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. CONCLUSION Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.
Collapse
Affiliation(s)
- Zhuang Li
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China; Research Technology Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Rong-Liang Mo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun-Feng Gong
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Lin Han
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Wen-Fei Wang
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Da-Ke Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jie-Gou Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Yan-Jun Sun
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China
| | - Shuo Chen
- Research Technology Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Gen-Cheng Han
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China.
| | - Deng-Qun Sun
- Department of General Surgery, The Chinese People's Armed Police Forces Anhui Provincial Corps Hospital, Hefei 230041, China.
| |
Collapse
|
24
|
Liu D, Zhao Q, Tu Z, Zhang S, Deng S, Xiong Z, Zeng J, Wu F, Zhang X, Xing B. Inhibitory effects of black phosphorus nanosheets on tumor cell proliferation through downregulation of ADIPOQ and downstream signaling pathways. Chem Biol Interact 2024; 395:110994. [PMID: 38582339 DOI: 10.1016/j.cbi.2024.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.
Collapse
Affiliation(s)
- Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Xiong
- Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 0100, USA
| |
Collapse
|
25
|
Bel’skaya LV, Dyachenko EI. Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production. Curr Issues Mol Biol 2024; 46:4646-4687. [PMID: 38785550 PMCID: PMC11120394 DOI: 10.3390/cimb46050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
This review systematizes information about the metabolic features of breast cancer directly related to oxidative stress. It has been shown those redox changes occur at all levels and affect many regulatory systems in the human body. The features of the biochemical processes occurring in breast cancer are described, ranging from nonspecific, at first glance, and strictly biochemical to hormone-induced reactions, genetic and epigenetic regulation, which allows for a broader and deeper understanding of the principles of oncogenesis, as well as maintaining the viability of cancer cells in the mammary gland. Specific pathways of the activation of oxidative stress have been studied as a response to the overproduction of stress hormones and estrogens, and specific ways to reduce its negative impact have been described. The diversity of participants that trigger redox reactions from different sides is considered more fully: glycolytic activity in breast cancer, and the nature of consumption of amino acids and metals. The role of metals in oxidative stress is discussed in detail. They can act as both co-factors and direct participants in oxidative stress, since they are either a trigger mechanism for lipid peroxidation or capable of activating signaling pathways that affect tumorigenesis. Special attention has been paid to the genetic and epigenetic regulation of breast tumors. A complex cascade of mechanisms of epigenetic regulation is explained, which made it possible to reconsider the existing opinion about the triggers and pathways for launching the oncological process, the survival of cancer cells and their ability to localize.
Collapse
Affiliation(s)
- Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| | | |
Collapse
|
26
|
Haider S, Chakraborty S, Chowdhury G, Chakrabarty A. Opposing Interplay between Nuclear Factor Erythroid 2-Related Factor 2 and Forkhead BoxO 1/3 is Responsible for Sepantronium Bromide's Poor Efficacy and Resistance in Cancer cells: Opportunity for Combination Therapy in Triple Negative Breast Cancer. ACS Pharmacol Transl Sci 2024; 7:1237-1251. [PMID: 38751638 PMCID: PMC11091984 DOI: 10.1021/acsptsci.3c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Survivin, a cancer-cell-specific multifunctional protein, is regulated by many oncogenic signaling pathways and an effective therapeutic target. Although, several types of survivin-targeting agents have been developed over the past few decades, none of them received clinical approval. This could be because survivin expression is tightly controlled by the feedback interaction between different signaling molecules. Of the several signaling pathways that are known to regulate survivin expression, the phosphatidylinositol 3-kinase/AKT serine-threonine kinase/forkhead boxO (PI3K/AKT/FoxO) pathway is well-known for feedback loops constructed by cross-talk among different molecules. Using sepantronium bromide (YM155), the first of its class of survivin-suppressant, we uncovered the existence of an interesting cross-talk between Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) and FoxO transcription factors that also contributes to YM155 resistance in triple negative breast cancer (TNBC) cells. Pharmacological manipulation to interrupt this interaction not only helped restore/enhance the drug-sensitivity but also prompted effective immune clearance of cancer cells. Because the YM155-induced reactive oxygen species (ROS) initiates this feedback, we believe that it will be occurring for many ROS-producing chemotherapeutic agents. Our work provides a rational explanation for the poor efficacy of YM155 compared to standard chemotherapy in clinical trials. Finally, the triple drug combination approach used herein might help reintroducing YM155 into the clinical pipeline, and given the high survivin expression in TNBC cells in general, it could be effective in treating this subtype of breast cancer.
Collapse
Affiliation(s)
- Shaista Haider
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| | - Shayantani Chakraborty
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| | - Goutam Chowdhury
- Independent
Researcher, Greater Noida Gautam Buddha Nagar Uttar Pradesh 201308, India
| | - Anindita Chakrabarty
- Department
of Life Sciences, Shiv Nadar Institution
of Eminence, Greater Noida Gautam
Buddha Nagar Uttar Pradesh 201314, India
| |
Collapse
|
27
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
28
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
29
|
Lee HK, Na YJ, Seong SM, Ahn D, Choi KC. Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties. Biomol Ther (Seoul) 2024; 32:369-378. [PMID: 38589021 PMCID: PMC11063483 DOI: 10.4062/biomolther.2023.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 04/10/2024] Open
Abstract
Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yun-Jung Na
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
30
|
Qu Z, Zhang B, Kong L, Zhang Y, Zhao Y, Gong Y, Gao X, Feng M, Zhang J, Yan L. Myeloid zinc finger 1 knockdown promotes osteoclastogenesis and bone loss in part by regulating RANKL-induced ferroptosis of osteoclasts through Nrf2/GPX4 signaling pathway. J Leukoc Biol 2024; 115:946-957. [PMID: 38266238 DOI: 10.1093/jleuko/qiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
The overactivation of the osteoclasts is a crucial pathological factor in the development of osteoporosis. MZF1, belonging to the scan-zinc finger family, plays a significant role in various processes associated with tumor malignant progression and acts as an essential transcription factor regulating osteoblast expression. However, the exact role of MZF1 in osteoclasts has not been determined. In this study, the purpose of our study was to elucidate the role of MZF1 in osteoclastogenesis. First, we established MZF1-deficient female mice and evaluated the femur bone phenotype by micro-computed tomography and histological staining. Our findings indicate that MZF1-/- mice exhibited a low bone mass osteoporosis phenotype. RANKL could independently induce the differentiation of RAW264.7 cells into osteoclasts, and we found that the expression level of MZF1 protein decreased gradually. Then, the CRISPR/Cas 9 gene-editing technique was used to build a RAW264.7 cell model with MZF1 knockout, and RANKL was used to independently induce MZF1-/- and wild-type cells to differentiate into mature osteoclasts. Tartrate-resistant acid phosphatase staining and F-actin fluorescence results showed that the MZF1-/- group produced more tartrate-resistant acid phosphatase-positive mature osteoclasts and larger actin rings. The expression of osteoclast-associated genes (including tartrate-resistant acid phosphatase, CTSK, c-Fos, and NFATc1) was evaluated by reverse transcription quantitative polymerase chain reaction and Western blot. The expression of key genes of osteoclast differentiation in the MZF1-/- group was significantly increased. Furthermore, we found that cell viability was increased in the early stages of RANKL-induced cell differentiation in the MZF1-/- group cells. We examined some prevalent ferroptosis markers, including malondialdehyde, glutathione, and intracellular Fe, the active form of iron in the cytoplasm during the early stages of osteoclastogenesis. The results suggest that MZF1 may be involved in osteoclast differentiation by regulating RANKL-induced ferroptosis of osteoclasts. Collectively, our findings shed light on the essential involvement of MZF1 in the regulation of osteoclastogenesis in osteoporosis and provide insights into its potential underlying mechanism.
Collapse
Affiliation(s)
- Zechao Qu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Bo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yong Zhang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yiwei Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Yining Gong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Xiangcheng Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Mingzhe Feng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| | - Jingjun Zhang
- Health Science Centre, Xi'an Jiaotong University, No. 76, Yanta West Road, Yanta District, Xi'an City, Shaanxi Province 710061, China
| | - Liang Yan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiao University, No. 555 East Youyi Road, Beilin District, Xi'an City, Shaanxi Province 710054, China
| |
Collapse
|
31
|
Fanelli G, Alloisio G, Lelli V, Marini S, Rinalducci S, Gioia M. Mechano-induced cell metabolism disrupts the oxidative stress homeostasis of SAOS-2 osteosarcoma cells. Front Mol Biosci 2024; 10:1297826. [PMID: 38726050 PMCID: PMC11079223 DOI: 10.3389/fmolb.2023.1297826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 05/12/2024] Open
Abstract
There has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Veronica Lelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
32
|
Li J, Jiang H, Zhu Y, Ma Z, Li B, Dong J, Xiao C, Hu A. Fine particulate matter (PM 2.5) induces the stem cell-like properties of hepatocellular carcinoma by activating ROS/Nrf2/Keap1-mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116052. [PMID: 38325274 DOI: 10.1016/j.ecoenv.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) has been linked to an increased incidence and mortality of hepatocellular carcinoma (HCC). However, the impact of PM2.5 exposure on HCC progression and the underlying mechanisms remain largely unknown. This study aimed to investigate the effects of PM2.5 exposure on the stem cell-like properties of HCC cells. Our findings indicate that PM2.5 exposure significantly enhances the stemness of HCC cells (p < 0.01). Subsequently, male nude mice were divided into two groups (n = 8/group for tumor-bearing assay, n = 5/group for metastasis assay) for control and PM2.5 exposure. In vivo assays revealed that exposure to PM2.5 promoted the growth, metastasis, and epithelial-mesenchymal transition (EMT) of HCC cells (p < 0.01). Further exploration demonstrated that PM2.5 enhances the stemness of HCC cells by inducing cellular reactive oxygen species (ROS) generation (p < 0.05). Mechanistic investigation indicated that elevated intracellular ROS inhibited kelch-like ECH-associated protein 1 (Keap1) levels, promoting the upregulation and nucleus translocation of NFE2-like bZIP transcription factor 2 (Nrf2). This, in turn, induced autophagy activation, thereby promoting the stemness of HCC cells (p < 0.01). Our present study demonstrates the adverse effects of PM2.5 exposure on HCC development and highlights the mechanism of ROS/Nrf2/Keap1-mediated autophagy. For the first time, we reveal the impact of PM2.5 exposure on the poor prognosis-associated cellular phenotype of HCC and its underlying mechanism, which is expected to provide new theoretical basis for the improvement of public health.
Collapse
Affiliation(s)
- Jiujiu Li
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Haoqi Jiang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhu
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Zijian Ma
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Bin Li
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jun Dong
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, Hefei 230032, China.
| | - Anla Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
33
|
Wufuer R, Liu K, Feng J, Wang M, Hu S, Chen F, Lin S, Zhang Y. Distinct mechanisms by which Nrf1 and Nrf2 as drug targets contribute to the anticancer efficacy of cisplatin on hepatoma cells. Free Radic Biol Med 2024; 213:488-511. [PMID: 38278308 DOI: 10.1016/j.freeradbiomed.2024.01.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/23/2023] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Cisplatin (cis-Dichlorodiamineplatinum[II], CDDP) is generally accepted as a platinum-based alkylating agent type of the DNA-damaging anticancer drug, which is widely administrated in clinical treatment of many solid tumors. The pharmacological effect of CDDP is mainly achieved by replacing the chloride ion (Cl-) in its structure with H2O to form active substances with the strong electrophilic properties and then react with any nucleophilic molecules, primarily leading to genomic DNA damage and subsequent cell death. In this process, those target genes driven by the consensus electrophilic and/or antioxidant response elements (EpREs/AREs) in their promoter regions are also activated or repressed by CDDP. Thereby, we here examined the expression profiling of such genes regulated by two principal antioxidant transcription factors Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) in diverse cellular signaling responses to this intervention. The results demonstrated distinct cellular metabolisms, molecular pathways and signaling response mechanisms by which Nrf1 and Nrf2 as the drug targets differentially contribute to the anticancer efficacy of CDDP on hepatoma cells and xenograft tumor mice. Interestingly, the role of Nrf1, rather than Nrf2, is required for the anticancer effect of CDDP, to suppress malignant behavior of HepG2 cells by differentially monitoring multi-hierarchical signaling to gene regulatory networks. To our surprise, it was found there exists a closer relationship of Nrf1α than Nrf2 with DNA repair, but the hyperactive Nrf2 in Nrf1α-∕- cells manifests a strong correlation with its resistance to CDDP, albeit their mechanistic details remain elusive.
Collapse
Affiliation(s)
- Reziyamu Wufuer
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Keli Liu
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Jing Feng
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China.
| | - Meng Wang
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Shaofan Hu
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Feilong Chen
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China.
| | - Shanshan Lin
- Bioengineering College and Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China; Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, 402260, China; The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing, 400044, China.
| |
Collapse
|
34
|
Li HY, Feng YH, Lin CL, Hsu TI. Mitochondrial Mechanisms in Temozolomide Resistance: Unraveling the Complex Interplay and Therapeutic Strategies in Glioblastoma. Mitochondrion 2024; 75:101836. [PMID: 38158149 DOI: 10.1016/j.mito.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor, with temozolomide (TMZ) being the standard chemotherapeutic agent for its treatment. However, TMZ resistance often develops, limiting its therapeutic efficacy and contributing to poor patient outcomes. Recent evidence highlights the crucial role of mitochondria in the development of TMZ resistance through various mechanisms, including alterations in reactive oxygen species (ROS) production, metabolic reprogramming, apoptosis regulation, biogenesis, dynamics, stress response, and mtDNA mutations. This review article aims to provide a comprehensive overview of the mitochondrial mechanisms involved in TMZ resistance and discuss potential therapeutic strategies targeting these mechanisms to overcome resistance in GBM. We explore the current state of clinical trials targeting mitochondria or related pathways in primary GBM or recurrent GBM, as well as the challenges and future perspectives in this field. Understanding the complex interplay between mitochondria and TMZ resistance will facilitate the development of more effective therapeutic strategies and ultimately improve the prognosis for GBM patients.
Collapse
Affiliation(s)
- Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich 81377, Germany; Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | | | | | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
35
|
Tatsuda D, Amemiya M, Nosaka C, Sawa R, Muramatsu H, Igarashi M, Yoshida J, Ohishi T, Kawada M. Two new adenopeptins B and C inhibit sphere formation of pancreatic cancer cells. J Antibiot (Tokyo) 2024; 77:73-84. [PMID: 38001285 DOI: 10.1038/s41429-023-00679-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023]
Abstract
Cancer remains one of the leading causes of death worldwide, particularly pancreatic cancer being lethal because of its aggressiveness and lack of early detection methods. A factor that contributes to malignancy are cancer stem cell-like characteristics promoted by the tumor-stromal interaction. Given that fibroblast conditioned medium (CM) promotes sphere formation of cancer cells, a cancer stem cell-like characteristic, its inhibitor could be a new anticancer agent. By exploring microbial cultures as a source, we found new compounds, namely, adenopeptins B (1) and C (2), from Acremonium sp. ESF00140. 1 and 2 selectively and potently inhibited the sphere formation of pancreatic cancer cells cultured in the fibroblast CM compared with the control medium. Oxygen consumption rate (OCR) assays showed that 1 and 2 inhibit OCR in pancreatic cancer cells. Studies of similar compounds suggested mitochondrial complex V inhibition. Therefore, results of measuring the activity of human mitochondrial complex V revealed that 1 and 2 inhibited its activity. Oligomycin A, an inhibitor of mitochondrial complex V, as well as 1 and 2, strongly inhibited the sphere formation of pancreatic cancer cells cultured in fibroblast CM. The addition of 1 and 2 to pancreatic cancer cells cultured in fibroblast CM increased reactive oxygen species (ROS) production compared with that in the control medium. In pancreatic cancer cells cultured in fibroblast CM, mitochondria significantly influence sphere formation, and targeting their function with 1 and 2 might provide a new therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Daisuke Tatsuda
- Laboraroty of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masahide Amemiya
- Laboraroty of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Chisato Nosaka
- Laboraroty of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Ryuichi Sawa
- Laboratory of Molecular Structure Analysis, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hideyuki Muramatsu
- Laboraroty of Microbiology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masayuki Igarashi
- Laboraroty of Microbiology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Junjiro Yoshida
- Laboraroty of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Tomokazu Ohishi
- Laboraroty of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, 18-24 Miyamoto, Numazu-shi, Shizuoka, 410-0301, Japan
| | - Manabu Kawada
- Laboraroty of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan.
| |
Collapse
|
36
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
37
|
Chen L, Yu W, Tang H, Zhang S, Wang J, Ouyang Q, Guo M, Zhu X, Huang Z, Chen J. Cyclometalated ruthenium complexes overcome cisplatin resistance through PI3K/mTOR/Nrf2 signaling pathway. Metallomics 2024; 16:mfae002. [PMID: 38183290 DOI: 10.1093/mtomcs/mfae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Currently, cisplatin resistance remains a primary clinical obstacle in the successful treatment of non-small cell lung cancer. Here, we designed, synthesized, and characterized two novel cyclometalated Ru(II) complexes, [Ru(bpy)2(1-Ph-7-OCH3-IQ)] (PF6) (bpy = 2,2'-bipyridine, IQ = isoquinoline, RuIQ7)and [Ru(bpy)2(1-Ph-6,7-(OCH3)2-IQ)] (PF6) (RuIQ8). As experimental controls, we prepared complex [Ru(bpy)2(1-Ph-IQ)](PF6) (RuIQ6) lacking a methoxy group in the main ligand. Significantly, complexes RuIQ6-8 displayed higher in vitro cytotoxicity when compared to ligands, precursor cis-[Ru(bpy)2Cl2], and clinical cisplatin. Mechanistic investigations revealed that RuIQ6-8 could inhibit cell proliferation by downregulating the phosphorylation levels of Akt and mTOR proteins, consequently affecting the rapid growth of human lung adenocarcinoma cisplatin-resistant cells A549/DDP. Moreover, the results from qRT-PCR demonstrated that these complexes could directly suppress the transcription of the NF-E2-related factor 2 gene, leading to the inhibition of downstream multidrug resistance-associated protein 1 expression and effectively overcoming cisplatin resistance. Furthermore, the relationship between the chemical structures of these three complexes and their anticancer activity, ability to induce cell apoptosis, and their efficacy in overcoming cisplatin resistance has been thoroughly examined and discussed. Notably, the toxicity test conducted on zebrafish embryos indicated that the three Ru-IQ complexes displayed favorable safety profiles. Consequently, the potential of these developed compounds as innovative therapeutic agents for the efficient and low-toxic treatment of NSCLC appears highly promising.
Collapse
Affiliation(s)
- Lanmei Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| | - Wenzhu Yu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| | - Hong Tang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| | - Shenting Zhang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| | - Jie Wang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Qianqian Ouyang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| | - Miao Guo
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| | - Jincan Chen
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P. R. China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, P. R. China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, P. R. China
| |
Collapse
|
38
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
39
|
Hu X, Huang S, Ye S, Jiang J. The Natural Product Oridonin as an Anticancer Agent: Current Achievements and Problems. Curr Pharm Biotechnol 2024; 25:655-664. [PMID: 37605407 DOI: 10.2174/1389201024666230821110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/23/2023]
Abstract
Oridonin, an active diterpenoid isolated from traditional Chinese herbal medicine, has received a rising attention for its remarkable roles in cancer therapy. In recent years, increasing evidences have revealed that oridonin inhibits the occurrence and development of tumor cells through multiple mechanisms, including induction of apoptosis and autophagy, cell cycle arrest, and inhibition of angiogenesis as well as migration and invasion. In addition, several molecular signal targets have been identified, including ROS, EGFR, NF-κB, PI3K/Akt, and MAPK. In this paper, we review considerable knowledge about the molecular mechanisms and signal targets of oridonin, which has been studied in recent years. It is expected that oridonin may be developed as a novel anti-tumor herbal medicine in human cancer treatment.
Collapse
Affiliation(s)
- Xiangyan Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Sisi Huang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Pharmacy School of Fudan University, Shanghai, 200032, P.R. China
| | - Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P.R. China
| |
Collapse
|
40
|
Xia Y, Tan W, Yuan F, Lin M, Luo H. Luteolin Attenuates Oxidative Stress and Colonic Hypermobility in Water Avoidance Stress Rats by Activating the Nrf2 Signaling Pathway. Mol Nutr Food Res 2024; 68:e2300126. [PMID: 38037466 DOI: 10.1002/mnfr.202300126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/30/2023] [Indexed: 12/02/2023]
Abstract
SCOPE Irritable bowel syndrome (IBS) is an intestinal disorder, whose symptoms can be alleviated by certain dietary phytochemicals. This study explores the role and potential mechanisms of a natural flavonoid luteolin (LUT) in alleviating the excessive motility of colonic smooth muscles and reducing oxidative stress in IBS with diarrhea (IBS-D) rats. METHODS AND RESULTS LUT reduces excessive intestinal motility and lowers reactive oxygen species (ROS) levels in a water avoidance stress (WAS) rat model. Moreover, LUT increases the protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), activates the nuclear translocation of Nrf2, and greatly reduces the hydrogen peroxide (H2 O2 )-induced oxidative damage in intestinal epithelial cells. CONCLUSIONS LUT, a phyto-active component, protects against excessive intestinal motility and diarrhea by regulating the Nrf2 signaling pathway and effectively reduces oxidative stress damage in the colon.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wei Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fangting Yuan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mengjuan Lin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
- Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
41
|
Rawat L, Balan M, Sasamoto Y, Sabarwal A, Pal S. A novel combination therapy with Cabozantinib and Honokiol effectively inhibits c-Met-Nrf2-induced renal tumor growth through increased oxidative stress. Redox Biol 2023; 68:102945. [PMID: 37898101 PMCID: PMC10628632 DOI: 10.1016/j.redox.2023.102945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Receptor tyrosine kinase (RTK), c-Met, is overexpressed and hyper active in renal cell carcinoma (RCC). Most of the therapeutic agents mediate cancer cell death through increased oxidative stress. Induction of c-Met in renal cancer cells promotes the activation of redox-sensitive transcription factor Nrf2 and cytoprotective heme oxygenase-1 (HO-1), which can mediate therapeutic resistance against oxidative stress. c-Met/RTK inhibitor, Cabozantinib, has been approved for the treatment of advanced RCC. However, acquired drug resistance is a major hurdle in the clinical use of cabozantinib. Honokiol, a naturally occurring phenolic compound, has a great potential to downregulate c-Met-induced pathways. In this study, we found that a novel combination treatment with cabozantinib + Honokiol inhibits the growth of renal cancer cells in a synergistic manner through increased production of reactive oxygen species (ROS); and it significantly facilitates apoptosis-and autophagy-mediated cancer cell death. Activation of c-Met can induce Rubicon (a negative regulator of autophagy) and p62 (an autophagy adaptor protein), which can stabilize Nrf2. By utilizing OncoDB online database, we found a positive correlation among c-Met, Rubicon, p62 and Nrf2 in renal cancer. Interestingly, the combination treatment significantly downregulated Rubicon, p62 and Nrf2 in RCC cells. In a tumor xenograft model, this combination treatment markedly inhibited renal tumor growth in vivo; and it is associated with decreased expression of Rubicon, p62, HO-1 and vessel density in the tumor tissues. Together, cabozantinib + Honokiol combination can significantly inhibit c-Met-induced and Nrf2-mediated anti-oxidant pathway in renal cancer cells to promote increased oxidative stress and tumor cell death.
Collapse
Affiliation(s)
- Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yuzuru Sasamoto
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Division of Genetics, Brigham and Women's Hospital, MA, USA; Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Cai BQ, Chen WM, Chen MW, Chen YH, Tang JC. Nrf3 alleviates oxidative stress and promotes the survival of colon cancer cells by activating AKT/BCL-2 signal pathway. Open Life Sci 2023; 18:20220790. [PMID: 38027228 PMCID: PMC10668112 DOI: 10.1515/biol-2022-0790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Oxidative stress is closely linked to tumor initiation and development, conferring a survival advantage to cancer cells. Therefore, understanding cancer cells' antioxidant molecular mechanisms is crucial to cancer therapy. In this study, we discovered that H2O2-induced oxidative stress increased Nrf3 expression in colon cancer cells. Overexpression of Nrf3 decreased H2O2-mediated cytotoxicity and apoptosis. Furthermore, Nrf3 reduced reactive oxygen species levels and malondialdehyde concentrations after H2O2 treatment. Mechanistically, H2O2-mediated cell apoptosis involves multiple signaling proteins, including Akt, bcl-2, JNK, and p38. An increase in Nrf3 expression in colon cancer cells treated with H2O2 partly reversed Akt/Bcl-2 inhibition, whereas it decreased activation of p38 and JNK. In addition, we found that increasing Nrf3 decreased stress-associated chemical-induced cell death, resulting in drug resistance. According to these results, Nrf3 is critical for drug resistance and oxidant adaptation.
Collapse
Affiliation(s)
- Bi-Qing Cai
- Institute of Basic Medicine and Forensics Medicine, North Sichuan Medical College, Fu Jiang Road 234, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Wan-Meng Chen
- Institute of Basic Medicine and Forensics Medicine, North Sichuan Medical College, Fu Jiang Road 234, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Meng-Wei Chen
- Institute of Basic Medicine and Forensics Medicine, North Sichuan Medical College, Fu Jiang Road 234, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Ya-Hui Chen
- Institute of Basic Medicine and Forensics Medicine, North Sichuan Medical College, Fu Jiang Road 234, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Jian-Cai Tang
- Institute of Basic Medicine and Forensics Medicine, North Sichuan Medical College, Fu Jiang Road 234, Shunqing District, Nanchong, Sichuan, 637000, China
- Key Laboratory of Metabolic Drugs and Biological Products, Nanchong, China
| |
Collapse
|
43
|
Kim MJ, Kim HS, Kang HW, Lee DE, Hong WC, Kim JH, Kim M, Cheong JH, Kim HJ, Park JS. SLC38A5 Modulates Ferroptosis to Overcome Gemcitabine Resistance in Pancreatic Cancer. Cells 2023; 12:2509. [PMID: 37887353 PMCID: PMC10605569 DOI: 10.3390/cells12202509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023] Open
Abstract
Pancreatic cancer is characterized by a poor prognosis, with its five-year survival rate lower than that of any other cancer type. Gemcitabine, a standard treatment for pancreatic cancer, often has poor outcomes for patients as a result of chemoresistance. Therefore, novel therapeutic targets must be identified to overcome gemcitabine resistance. Here, we found that SLC38A5, a glutamine transporter, is more highly overexpressed in gemcitabine-resistant patients than in gemcitabine-sensitive patients. Furthermore, the deletion of SLC38A5 decreased the proliferation and migration of gemcitabine-resistant PDAC cells. We also found that the inhibition of SLC38A5 triggered the ferroptosis signaling pathway via RNA sequencing. Also, silencing SLC38A5 induced mitochondrial dysfunction and reduced glutamine uptake and glutathione (GSH) levels, and downregulated the expressions of GSH-related genes NRF2 and GPX4. The blockade of glutamine uptake negatively modulated the mTOR-SREBP1-SCD1 signaling pathway. Therefore, suppression of SLC38A5 triggers ferroptosis via two pathways that regulate lipid ROS levels. Similarly, we observed that knockdown of SLC38A5 restored gemcitabine sensitivity by hindering tumor growth and metastasis in the orthotopic mouse model. Altogether, our results demonstrate that SLC38A5 could be a novel target to overcome gemcitabine resistance in PDAC therapy.
Collapse
Affiliation(s)
- Myeong Jin Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
| | - Hyung Sun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| | - Hyeon Woong Kang
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
| | - Da Eun Lee
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| | - Woosol Chris Hong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Ju Hyun Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Minsoo Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
| | - Jae-Ho Cheong
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea;
- Department of Surgery, Yonsei University College of Medicine, Seoul 06229, Republic of Korea
| | - Hyo Jung Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| | - Joon Seong Park
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06229, Republic of Korea; (M.J.K.); (H.S.K.); (H.W.K.); (D.E.L.); (W.C.H.); (J.H.K.); (M.K.)
| |
Collapse
|
44
|
Wang M, Cao G, Zhou J, Cai J, Ma X, Liu Z, Huang X, Wang H. Ligustrazine-Derived Chalcones-Modified Platinum(IV) Complexes Intervene in Cisplatin Resistance in Pancreatic Cancer through Ferroptosis and Apoptosis. J Med Chem 2023; 66:13587-13606. [PMID: 37766483 DOI: 10.1021/acs.jmedchem.3c00922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Developing multitarget platinum(IV) prodrugs is an important strategy to attenuate cisplatin (CDDP) resistance in tandem with reduced toxicity. Herein, six novel ligustrazine-derived chalcones-modified platinum(IV) complexes were synthesized and evaluated for their anti-proliferative activities. Among them, 16a displayed higher cytotoxicity toward the tested cancer cell lines and lower cytotoxicity toward the human normal cells than CDDP or the combined group. Mechanistic studies revealed that 16a efficiently induced DNA damage and initiated a mitochondria-dependent apoptosis pathway. Besides, 16a significantly triggered ferroptosis by down-regulating expression levels of nuclear factor erythroid 2-related factor 2, glutathione peroxidase 4, and solute carrier family 7 member 11. Further, 16a obtained superior in vivo anti-tumor efficiency than CDDP in CDDP-resistant pancreatic cancer xenograft models but showed no significant side effects. In summary, our study suggested that 16a acts via a different anti-cancer mechanistic pathway than CDDP and may therefore encompass a novel practical strategy for cancer treatment.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Guoxiu Cao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Junjie Zhou
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jinyuan Cai
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xianjie Ma
- Department of Pharmacy, People's Hospital of Rizhao, Rizhao 276827, China
| | - Zhikun Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiaochao Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
45
|
Qin J, Ye L, Wen X, Zhang X, Di Y, Chen Z, Wang Z. Fatty acids in cancer chemoresistance. Cancer Lett 2023; 572:216352. [PMID: 37597652 DOI: 10.1016/j.canlet.2023.216352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Despite the remarkable clinical success of immunotherapy and molecular targeted therapy in patients with advanced tumors, chemotherapy remains the most commonly used treatment for most tumor patients. Chemotherapy drugs effectively inhibit tumor cell proliferation and survival through their remarkable mechanisms. However, tumor cells often develop severe intrinsic and acquired chemoresistance under chemotherapy stress, limiting the effectiveness of chemotherapy and leading to treatment failure. Growing evidence suggests that alterations in lipid metabolism may be implicated in the development of chemoresistance in tumors. Therefore, in this review, we provide a comprehensive overview of fatty acid metabolism and its impact on chemoresistance mechanisms. Additionally, we discuss the potential of targeting fatty acid metabolism as a therapeutic strategy to overcome drug resistance.
Collapse
Affiliation(s)
- Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Guangxi, 530025, China.
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
46
|
Zhou X, An B, Lin Y, Ni Y, Zhao X, Liang X. Molecular mechanisms of ROS-modulated cancer chemoresistance and therapeutic strategies. Biomed Pharmacother 2023; 165:115036. [PMID: 37354814 DOI: 10.1016/j.biopha.2023.115036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Drug resistance is the main obstacle to achieving a cure in many cancer patients. Reactive oxygen species (ROS) are master regulators of cancer development that act through complex mechanisms. Remarkably, ROS levels and antioxidant content are typically higher in drug-resistant cancer cells than in non-resistant and normal cells, and have been shown to play a central role in modulating drug resistance. Therefore, determining the underlying functions of ROS in the modulation of drug resistance will contribute to develop therapies that sensitize cancer resistant cells by leveraging ROS modulation. In this review, we summarize the notable literature on the sources and regulation of ROS production and highlight the complex roles of ROS in cancer chemoresistance, encompassing transcription factor-mediated chemoresistance, maintenance of cancer stem cells, and their impact on the tumor microenvironment. We also discuss the potential of ROS-targeted therapies in overcoming tumor therapeutic resistance.
Collapse
Affiliation(s)
- Xiaoting Zhou
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Biao An
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yi Lin
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanghong Ni
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
47
|
Bouchab H, Essadek S, El Kamouni S, Moustaid K, Essamadi A, Andreoletti P, Cherkaoui-Malki M, El Kebbaj R, Nasser B. Antioxidant Effects of Argan Oil and Olive Oil against Iron-Induced Oxidative Stress: In Vivo and In Vitro Approaches. Molecules 2023; 28:5924. [PMID: 37570894 PMCID: PMC10420636 DOI: 10.3390/molecules28155924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023] Open
Abstract
Recently, the study of the protective powers of medicinal plants has become the focus of several studies. Attention has been focused on the identification of new molecules with antioxidant and chelating properties to counter reactive oxygen species (ROS) involved as key elements in several pathologies. Considerable attention is given to argan oil (AO) and olive oil (OO) due to their particular composition and preventive properties. Our study aimed to determine the content of AO and OO on phenolic compounds, chlorophylls, and carotenoid pigments and their antioxidant potential by FRAP and DPPH tests. Thus, several metallic elements can induce oxidative stress, as a consequence of the formation of ROS. Iron is one of these metal ions, which participates in the generation of free radicals, especially OH from H2O2 via the Fenton reaction, initiating oxidative stress. To study the antioxidant potential of AO and OO, we evaluated their preventives effects against oxidative stress induced by ferrous sulfate (FeSO4) in the protozoan Tetrahymena pyriformis and mice. Then, we evaluated the activities of the enzymatic (superoxide dismutase (SOD), glutathione peroxidase (GPx)) and metabolite markers (lipid peroxidation (MDA) and glutathione (GSH)) of the antioxidant balance. The results of the antioxidant compounds show that both oils contain phenolic compounds and pigments. Moreover, AO and OO exhibit antioxidant potential across FRAP and DPPH assays. On the other hand, the results in Tetrahymena pyriformis and mice show a variation in the level of iron-changed SOD and GPx activities and MDA and GSH levels. By contrast, treating Tetrahymena pyriformis and mice with argan and olive oils shows significant prevention in the SOD and GPx activities. These results reveal that the iron-changed ROS imbalance can be counteracted by AO and OO, which is probably related to their composition, especially their high content of polyphenols, sterols, and tocopherols, which is underlined by their antioxidant activities.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Soukaina Essadek
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Soufiane El Kamouni
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Khadija Moustaid
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco;
| | - Abdelkhalid Essamadi
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, EA7270, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France; (P.A.); (M.C.-M.)
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University, Settat 26000, Morocco
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Technologies, Hassan First University, Settat 26000, Morocco; (H.B.); (S.E.); (S.E.K.); (A.E.)
| |
Collapse
|
48
|
Chen D, Wirth KM, Kizy S, Muretta JM, Markowski TW, Yong P, Sheka A, Abdelwahab H, Hertzel AV, Ikramuddin S, Yamamoto M, Bernlohr DA. Desmoglein 2 Functions as a Receptor for Fatty Acid Binding Protein 4 in Breast Cancer Epithelial Cells. Mol Cancer Res 2023; 21:836-848. [PMID: 37115197 PMCID: PMC10524127 DOI: 10.1158/1541-7786.mcr-22-0763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023]
Abstract
Fatty acid binding protein 4 (FABP4) is a secreted adipokine linked to obesity and progression of a variety of cancers. Obesity increases extracellular FABP4 (eFABP4) levels in animal models and in obese breast cancer patients compared with lean healthy controls. Using MCF-7 and T47D breast cancer epithelial cells, we show herein that eFABP4 stimulates cellular proliferation in a time and concentration dependent manner while the non-fatty acid-binding mutant, R126Q, failed to potentiate growth. When E0771 murine breast cancer cells were injected into mice, FABP4 null animals exhibited delayed tumor growth and enhanced survival compared with injections into control C57Bl/6J animals. eFABP4 treatment of MCF-7 cells resulted in a significant increase in phosphorylation of extracellular signal-regulated kinase 1/2 (pERK), transcriptional activation of nuclear factor E2-related factor 2 (NRF2) and corresponding gene targets ALDH1A1, CYP1A1, HMOX1, SOD1 and decreased oxidative stress, while R126Q treatment did not show any effects. Proximity-labeling employing an APEX2-FABP4 fusion protein revealed several proteins functioning in desmosomes as eFABP4 receptor candidates including desmoglein (DSG), desmocollin, junction plankoglobin, desomoplankin, and cytokeratins. AlphaFold modeling predicted an interaction between eFABP4, and the extracellular cadherin repeats of DSG2 and pull-down and immunoprecipitation assays confirmed complex formation that was potentiated by oleic acid. Silencing of DSG2 in MCF-7 cells attenuated eFABP4 effects on cellular proliferation, pERK levels, and ALDH1A1 expression compared with controls. IMPLICATIONS These results suggest desmosomal proteins, and in particular desmoglein 2, may function as receptors of eFABP4 and provide new insight into the development and progression of obesity-associated cancers.
Collapse
Affiliation(s)
- Dongmei Chen
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Keith M. Wirth
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Scott Kizy
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Joseph M. Muretta
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Todd W Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Adam Sheka
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Hisham Abdelwahab
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Ann V. Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Sayeed Ikramuddin
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - Masato Yamamoto
- Department of Surgery, The University of Minnesota-Twin Cities, Minneapolis, MN USA
- Department of Masonic Cancer Center, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN USA
| |
Collapse
|
49
|
Farrash WF, Aslam A, Almaimani R, Minshawi F, Almasmoum H, Alsaegh A, Iqbal MS, Tabassum A, Elzubier ME, El-Readi MZ, Mahbub AA, Idris S, Refaat B. Metformin and thymoquinone co-treatment enhance 5-fluorouracil cytotoxicity by suppressing the PI3K/mTOR/HIF1α pathway and increasing oxidative stress in colon cancer cells. Biofactors 2023; 49:831-848. [PMID: 36929658 DOI: 10.1002/biof.1947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
This study investigated the chemotherapeutic effects of 5-fluorouracil (5-FU), metformin (Met), and/or thymoquinone (TQ) single/dual/triple therapies in the HT29, SW480 and SW620 colon cancer (CRC) cell lines. Cell cycle/apoptosis were measured by flow cytometry. The gene and protein expression of apoptosis (PCNA/survivin/BAX/Cytochrome-C/Caspase-3) and cell cycle (CCND1/CCND3/p21/p27) molecules, the PI3K/mTOR/HIF1α oncogenic pathway, and glycolysis regulatory enzymes were measured by quantitative-PCR and Western blot. Markers of oxidative stress were also measured by colorimetric assays. Although all treatments induced anti-cancer effects related to cell cycle arrest and apoptosis, the triple therapy showed the highest pro-apoptotic actions that coincided with the lowest expression of CCND1/CCND3/PCNA/survivin and the maximal increases in p21/p27/BAX/Cytochrome-C/Caspase-3 in all cell lines. The triple therapy also revealed the best suppression of the PI3K/mTOR/HIF1α pathway by increasing its endogenous inhibitors (PTEN/AMPKα) in all cell lines. Moreover, the lowest expression of lactate dehydrogenase and pyruvate dehydrogenase kinase-1 with the highest expression of pyruvate dehydrogenase were seen with the triple therapy, which also showed the highest increases in oxidative stress markers (ROS/RNS/MDA/protein carbonyl groups) alongside the lowest antioxidant levels (GSH/CAT) in all cell lines. In conclusion, this is the first study to reveal enhanced anti-cancer effects for metformin/thymoquinone in CRC that were superior to all monotherapies and the other dual therapies. However, the triple therapy approach showed the best tumoricidal actions related to cell cycle arrest and apoptosis in all cell lines, possibly by enhancing oxidative glycolysis and augmenting oxidative stress through stronger modulation of the PI3K/mTOR/HIF1α oncogenic network.
Collapse
Affiliation(s)
- Wesam F Farrash
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Akhmed Aslam
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal Minshawi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aiman Alsaegh
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad S Iqbal
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Aisha Tabassum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed E Elzubier
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud Z El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Biochemistry Department, Faculty of Pharmacy, Al-Azhar University, Assuit, Egypt
| | - Amani A Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
50
|
Si Y, Hui C, Guo T, Liu M, Chen X, Dong C, Feng S. Phellodendronoside A Exerts Anticancer Effects Depending on Inducing Apoptosis Through ROS/Nrf2/Notch Pathway and Modulating Metabolite Profiles in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:935-948. [PMID: 37361906 PMCID: PMC10290457 DOI: 10.2147/jhc.s403630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose To reveal the potential mechanism of PDA on hepatocellular carcinoma SMMC-7721 cells in vitro. Methods The cytotoxic activity, colony formation, cell cycle distribution, apoptosis and their associated protein analysis, intracellular reactive oxygen species (ROS) and Ca2+ levels, proteins in Nrf2 and Ntoch pathways and metabolite profiles of PDA against hepatocellular carcinoma were investigated. Results PDA with cytotoxic activity inhibited cell proliferation and migration, increased intracellular ROS, Ca2+ levels and MCUR1 protein expression in a dose-dependent manner, caused cell cycle arrest in the S phase and induced apoptosis via adjusting the levels of Bcl-2, Bax, and Caspase 3 proteins, and inhibited the activation of Notch1, Jagged, Hes1, Nrf2 and HO-1 proteins. Metabonomics data showed that PDA significantly regulated 144 metabolite levels tend to be normal level, especially carnitine derivatives, bile acid metabolites associated with hepatocellular carcinoma, and mainly enriched in ABC transporter, arginine and proline metabolism, primary bile acid biosynthesis, Notch signaling pathway, etc, and proved that PDA markedly adjusted Notch signaling pathway. Conclusion PDA exhibited the proliferation inhibition of SMMC-7721 cells by inhibiting ROS/Nrf2/Notch signaling pathway and significantly affected the metabolic profile, suggesting PDA could be a potential therapeutic agent for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanpo Si
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Chengcheng Hui
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Mengqi Liu
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xiaohui Chen
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Chunhong Dong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Chinese Medicine for Polysaccharides and Drugs Research, Zhengzhou, People’s Republic of China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|