1
|
Jin T, Wang Z, Fan F, Wei W, Zhou C, Zhang Z, Gao Y, Li W, Zhu L, Hao J. HDAC1 Promotes Mitochondrial Pathway Apoptosis and Inhibits the Endoplasmic Reticulum Stress Response in High Glucose-Treated Schwann Cells via Decreased U4 Spliceosomal RNA. Neurochem Res 2024; 49:2699-2724. [PMID: 38916813 DOI: 10.1007/s11064-024-04200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziming Wang
- Experimental Center of Clinical College, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fan Fan
- Department of Investigation, Hebei Vocational College of Public Security Police, Shijiazhuang, Hebei, China
| | - Wandi Wei
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chenming Zhou
- Department of Electron Microscopy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ziyu Zhang
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yue Gao
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wenhui Li
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Zhu
- Department of Electromyogram, the Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Zhang W, Jiao B, Yu S, Zhang C, Zhang K, Liu B, Zhang X. Histone deacetylase as emerging pharmacological therapeutic target for neuropathic pain: From epigenetic to selective drugs. CNS Neurosci Ther 2024; 30:e14745. [PMID: 38715326 PMCID: PMC11077000 DOI: 10.1111/cns.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuropathic pain remains a formidable challenge for modern medicine. The first-line pharmacological therapies exhibit limited efficacy and unfavorable side effect profiles, highlighting an unmet need for effective therapeutic medications. The past decades have witnessed an explosion in efforts to translate epigenetic concepts into pain therapy and shed light on epigenetics as a promising avenue for pain research. Recently, the aberrant activity of histone deacetylase (HDAC) has emerged as a key mechanism contributing to the development and maintenance of neuropathic pain. AIMS In this review, we highlight the distinctive role of specific HDAC subtypes in a cell-specific manner in pain nociception, and outline the recent experimental evidence supporting the therapeutic potential of HDACi in neuropathic pain. METHODS We have summarized studies of HDAC in neuropathic pain in Pubmed. RESULTS HDACs, widely distributed in the neuronal and non-neuronal cells of the dorsal root ganglion and spinal cord, regulate gene expression by deacetylation of histone or non-histone proteins and involving in increased neuronal excitability and neuroinflammation, thus promoting peripheral and central sensitization. Importantly, pharmacological manipulation of aberrant acetylation using HDAC-targeted inhibitors (HDACi) has shown promising pain-relieving properties in various preclinical models of neuropathic pain. Yet, many of which exhibit low-specificity that may induce off-target toxicities, underscoring the necessity for the development of isoform-selective HDACi in pain management. CONCLUSIONS Abnormally elevated HDACs promote neuronal excitability and neuroinflammation by epigenetically modulating pivotal gene expression in neuronal and immune cells, contributing to peripheral and central sensitization in the progression of neuropathic pain, and HDACi showed significant efficacy and great potential for alleviating neuropathic pain.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Caixia Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
3
|
Shi Y, Li H, Lin Y, Wang S, Shen G. Effective constituents and protective effect of Mudan granules against Schwann cell injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117692. [PMID: 38176668 DOI: 10.1016/j.jep.2023.117692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Mudan granules (MD) is a Chinese patent medicine for treating DPN, which is composed of nine Chinese medicinal herbs, including the radix of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. (Huangqi in Chinese), rhizome of Corydalis yanhusuo W.T. Wang (Yanhusuo), radix and rhizome of Panax notoginseng (Burk.) F. H. Chen (Sanqi), radix of Paeonia lactiflora Pall. or Paeonia veitchii Lynch (Chishao), radix and rhizome of Salvia miltiorrhiza Bge. (Danshen), rhizome of Ligusticum chuanxiong Hort. (Chuanxiong), flowers of Carthamus tinctorius L. (Honghua), lignum of Caesalpinia sappan L. (Sumu), and caulis of Spatholobus suberectus Dunn (Jixueteng). MD was reported to have a protective effect on Schwann cell (SC) that is considered as an important therapeutic target of DPN. However, the constituents of MD have not been reported, and the effective constituents and protective pathways for MD against SC injury remain unclear. AIM OF THE STUDY This study aimed to identify the constituents in MD, and to investigate the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC. MATERIALS AND METHODS The chemical constituents of MD were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Protective effect and effective constituents screening were performed in an in vitro SC injury model induced by high glucose and lipid levels. The protective pathways of MD and its effective constituents were investigated by western blotting assay of related proteins. RESULTS A total of 136 constituents were identified in MD. MD downregulated the phosphorylation of extracellular-regulated protein kinases 1/2 (ERK1/2) and expression of cyclooxygenase-2 (COX-2) and upregulated the expression of sirtuin 2 (SIRT2). Seven effective constituents were screened out, including three from Sanqi [20(R)-ginsenoside Rh2, 20(S)-ginsenoside Rh2, and ginsenoside Rk3], one from Huangqi (astragaloside II), one from Danshen (danshensu), and two from Chuanxiong (chlorogenic and cryptochlorogenic acid). Six of the seven compounds, excluding danshensu, inhibited the phosphorylation of ERK1/2. Both astragaloside II and chlorogenic acid upregulated the expression of SIRT2, and cryptochlorogenic acid and danshensu downregulated the expression of COX-2. CONCLUSIONS The constituents of MD were firstly identified, and seven effective constituents were found. MD can protect SC against high-glucose and -lipid injury by downregulating ERK1/2 phosphorylation and COX-2 expression and upregulating SIRT2 expression. Seven effective constituents regulated the expression of these proteins. This study presented an important advance toward elucidating the chemical constituents, and the effective constituents and protective pathways of MD against high-glucose/lipid injury in SC, which is very helpful for investigating the action mechanism of MD on treating DPN, and could ultimately inform the development of effective quality control procedures for MD production.
Collapse
Affiliation(s)
- Yingqiu Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haoran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yugang Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shufang Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321016, China.
| | - Guofang Shen
- Hangzhou Institute for Food and Drug Control, Hangzhou, 310022, China
| |
Collapse
|
4
|
Zhang L, Zhang J, Ye ZW, Muhammad A, Li L, Culpepper JW, Townsend DM, Tew KD. Adaptive changes in tumor cells in response to reductive stress. Biochem Pharmacol 2024; 219:115929. [PMID: 38000559 PMCID: PMC10895707 DOI: 10.1016/j.bcp.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Reductive stress is characterized by an excess of cellular electron donors and can be linked with various human pathologies including cancer. We developed melanoma cell lines resistant to reductive stress agents: rotenone (ROTR), n-acetyl-L-cysteine, (NACR), or dithiothreitol (DTTR). Resistant cells divided more rapidly and had intracellular homeostatic redox-couple ratios that were shifted towards the reduced state. Resistance caused alterations in general cell morphology, but only ROTR cells had significant changes in mitochondrial morphology with higher numbers that were more isolated, fragmented and swollen, with greater membrane depolarization and decreased numbers of networks. These changes were accompanied by lower basal oxygen consumption and maximal respiration rates. Whole cell flux analyses and mitochondrial function assays showed that NACR and DTTR preferentially utilized tricarboxylic acid (TCA) cycle intermediates, while ROTR used ketone body substrates such as D, L-β-hydroxybutyric acid. NACR and DTTR cells had constitutively decreased levels of reactive oxygen species (ROS), although this was accompanied by activation of nuclear factor erythroid 2-related factor 2 (Nrf2), with concomitant increased expression of the downstream gene products such as glutathione S-transferase P (GSTP). Further adaptations included enhanced expression of endoplasmic reticulum proteins controlling the unfolded protein response (UPR). Although expression patterns of these UPR proteins were distinct between the resistant cells, a trend implied that resistance to reductive stress is accompanied by a constitutively increased UPR phenotype in each line. Overall, tumor cells, although tolerant of oxidative stress, can adapt their energy and survival mechanisms in lethal reductive stress conditions.
Collapse
Affiliation(s)
- Leilei Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Aslam Muhammad
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Li Li
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - John W Culpepper
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Drug Discovery and Experimental Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, S.C. 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
5
|
Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, Wang YL, Zhang PX. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother 2024; 170:116024. [PMID: 38113623 DOI: 10.1016/j.biopha.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Ming-Yu Qin
- Suzhou Medical College, Soochow University, Suzhou 215026, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China; Peking University People's Hospital Qingdao Hospital, Qingdao 266000, China.
| |
Collapse
|
6
|
Wei W, Zhang Q, Jin T, Zhu L, Zhao J, Li F, Zhao S, Kong D, Hao J. Quantitative Proteomics Characterization of the Effect and Mechanism of Trichostatin A on the Hippocampus of Type II Diabetic Mice. Cell Mol Neurobiol 2023; 43:4309-4332. [PMID: 37864628 DOI: 10.1007/s10571-023-01424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Diabetic encephalopathy (DE) is one of the complications of diabetes mellitus with mild-to-moderate cognitive impairment. Trichostatin A (TSA) has been revealed to show protective effect on central nervous systems in Alzheimer's disease (AD) and hypoxic-ischemic brain injury. However, the effect and molecular mechanism of TSA on cognitive function of DE are unknown. Here, we demonstrated that cognitive function was damaged in diabetic mice versus normal mice and treatment with TSA improved cognitive function in diabetic mice. Proteomic analysis of the hippocampus revealed 174 differentially expressed proteins in diabetic mice compared with normal mice. TSA treatment reversed the expression levels of 111 differentially expressed proteins grouped into functional clusters, including the longevity regulating pathway, the insulin signaling pathway, peroxisomes, protein processing in the endoplasmic reticulum, and ribosomes. Furthermore, protein-protein interaction network analysis of TSA-reversed proteins revealed that UBA52, CAT, RPL29, RPL35A, CANX, RPL37, and PRKAA2 were the main hub proteins. Multiple KEGG pathway-enriched CAT and PRKAA2 levels were significantly decreased in the hippocampus of diabetic mice versus normal mice, which was reversed by TSA administration. Finally, screening for potential similar or ancillary drugs for TSA treatment indicated that HDAC inhibitors ISOX, apicidin, and panobinostat were the most promising similar drugs, and the PI3K inhibitor GSK-1059615, the Aurora kinase inhibitor alisertib, and the nucleophosmin inhibitor avrainvillamide-analog-6 were the most promising ancillary drugs. In conclusion, our study revealed that CAT and PRKAA2 were the key proteins involved in the improvement of DE after TSA treatment. ISOX, apicidin, and panobinostat were promising similar drugs and that GSK-1059615, alisertib, and avrainvillamide-analog-6 were promising ancillary drugs to TSA in the treatment of DE.
Collapse
Affiliation(s)
- Wandi Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Qingning Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Tingting Jin
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Lin Zhu
- Department of Electromyogram, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jialing Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Fan Li
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, China
| | - Song Zhao
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang, China.
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, China.
| |
Collapse
|
7
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common neuropathy in the world, mainly manifested as bilateral symmetry numbness, pain or paresthesia, with a high rate of disability and mortality. Schwann cells (SCs), derived from neural ridge cells, are the largest number of glial cells in the peripheral nervous system, and play an important role in DPN. Studies have found that SCs are closely related to the pathogenesis of DPN, such as oxidative stress, endoplasmic reticulum stress, inflammation, impaired neurotrophic support and dyslipidemia. This article reviews the mechanism of SCs in DPN.
Collapse
Affiliation(s)
- Jingjing Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- * Correspondence: Jingjing Li, Heilongjiang University of Traditional Chinese Medicine, 24 Heping Road, Harbin, Heilongjiang Province 150000, China (e-mail: )
| | - Ruiqian Guan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Limin Pan
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
8
|
Xestospongia muta Fraction-7 and Linoleic Acid: Effects on SR-BI Gene Expression and HDL Cholesterol Uptake. Mar Drugs 2022; 20:md20120762. [PMID: 36547909 PMCID: PMC9784671 DOI: 10.3390/md20120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Xestospongia muta is a marine sponge belonging to the family Petrosiidae. It is an important source of biologically active marine natural products, with different kinds of essential fatty acids. Scavenger receptor class B type I (SR-BI) is the main receptor for high-density lipoprotein (HDL) cholesterol, which plays a pivotal role in preventing atherosclerosis. It removes cholesterol from HDL cholesterol, returning lipid-poor lipoprotein into blood circulation. The present study investigated the effects of X. muta Fraction-7 and linoleic acid on SR-BI gene expression and HDL cholesterol uptake. In vitro studies of the activity of X. muta and linoleic acid against the therapeutic target for hypercholesterolemia were conducted using the HDL receptor SR-BI via luciferase assay and HepG2 cells. In the present study, Fraction-7 of X. muta showed the highest expression level of the SR-BI gene via luciferase assay. Profiling of Fraction-7 of X. muta by GC-MS revealed 58 compounds, comprising various fatty acids, particularly linoleic acid. The in vitro study in HepG2 cells showed that the Fraction-7 of X. muta and linoleic acid (an active compound in X. muta) increased SR-BI mRNA expression by 129% and 85%, respectively, compared to the negative control. Linoleic acid increased HDL uptake by 3.21-fold compared to the negative control. Thus, the Fraction-7 of X. muta and linoleic acid have the potential to be explored as adjuncts in the treatment of hypercholesterolemia to prevent or reduce the severity of atherosclerosis development.
Collapse
|
9
|
SIRT1-Enriched Exosomes Derived from Bone Marrow Mesenchymal Stromal Cells Alleviate Peripheral Neuropathy via Conserving Mitochondrial Function. J Mol Neurosci 2022; 72:2507-2516. [PMID: 36534294 DOI: 10.1007/s12031-022-02091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is a highly prevalent diabetic complication characterized at the molecular level by mitochondrial dysfunction and deleterious oxidative damage. No effective treatments for DPN are currently available. The present study was developed to examine the impact of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) overexpressing sirtuin 1 (SIRT1) on DPN through antioxidant activity and the preservation of mitochondrial homeostasis. A DPN model was established using 20-week-old diabetic model mice (db/db). Exosomes were prepared from control BMSCs (exo-control) and BMSCs that had been transduced with a SIRT1 lentivirus (exo-SIRT1). Sensory and motor nerve conduction velocity values were measured to assess neurological function, and mechanical and thermal sensitivity were analyzed in these animals. Exo-SIRT1 preparations exhibited a high loading capacity and readily accumulated within peripheral nerves following intravenous administration, whereupon they were able to promote improved neurological recovery relative to exo-control treatment. DPN mice exhibited significantly improved nerve conduction velocity following exo-SIRT1 treatment. Relative to exo-control-treated mice, those that underwent exo-SIRT1 treatment exhibited significantly elevated TOMM20 and Nrf2/HO-1 expression, reduced MDA levels, increased GSH and SOD activity, and increased MMP. Together, these results revealed that both exo-control and exo-SIRT1 administration was sufficient to reduce the morphological and behavioral changes observed in DPN model mice, with exo-SIRT1 treatment exhibiting superior therapeutic efficacy. These data thus provide a foundation for future efforts to explore other combinations of gene therapy and exosome treatment in an effort to alleviate DPN.
Collapse
|
10
|
Bouyahya A, El Omari N, Bakha M, Aanniz T, El Menyiy N, El Hachlafi N, El Baaboua A, El-Shazly M, Alshahrani MM, Al Awadh AA, Lee LH, Benali T, Mubarak MS. Pharmacological Properties of Trichostatin A, Focusing on the Anticancer Potential: A Comprehensive Review. Pharmaceuticals (Basel) 2022; 15:ph15101235. [PMID: 36297347 PMCID: PMC9612318 DOI: 10.3390/ph15101235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Trichostatin A (TSA), a natural derivative of dienohydroxamic acid derived from a fungal metabolite, exhibits various biological activities. It exerts antidiabetic activity and reverses high glucose levels caused by the downregulation of brain-derived neurotrophic factor (BDNF) expression in Schwann cells, anti-inflammatory activity by suppressing the expression of various cytokines, and significant antioxidant activity by suppressing oxidative stress through multiple mechanisms. Most importantly, TSA exhibits potent inhibitory activity against different types of cancer through different pathways. The anticancer activity of TSA appeared in many in vitro and in vivo investigations that involved various cell lines and animal models. Indeed, TSA exhibits anticancer properties alone or in combination with other drugs used in chemotherapy. It induces sensitivity of some human cancers toward chemotherapeutical drugs. TSA also exhibits its action on epigenetic modulators involved in cell transformation, and therefore it is considered an epidrug candidate for cancer therapy. Accordingly, this work presents a comprehensive review of the most recent developments in utilizing this natural compound for the prevention, management, and treatment of various diseases, including cancer, along with the multiple mechanisms of action. In addition, this review summarizes the most recent and relevant literature that deals with the use of TSA as a therapeutic agent against various diseases, emphasizing its anticancer potential and the anticancer molecular mechanisms. Moreover, TSA has not been involved in toxicological effects on normal cells. Furthermore, this work highlights the potential utilization of TSA as a complementary or alternative medicine for preventing and treating cancer, alone or in combination with other anticancer drugs.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Mohamed Bakha
- Unit of Plant Biotechnology and Sustainable Development of Natural Resources “B2DRN”, Polydisciplinary Faculty of Beni Mellal, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat B.P. 6203, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, Imouzzer Road Fez, Fez 30050, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amma 11942, Jordan
- Correspondence: (A.B.); (L.-H.L.); (M.S.M.)
| |
Collapse
|
11
|
Eftekharpour E, Fernyhough P. Oxidative Stress and Mitochondrial Dysfunction Associated with Peripheral Neuropathy in Type 1 Diabetes. Antioxid Redox Signal 2022; 37:578-596. [PMID: 34416846 DOI: 10.1089/ars.2021.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: This review highlights the many intracellular processes generating reactive oxygen species (ROS) in the peripheral nervous system in the context of type 1 diabetes. The major sources of superoxide and hydrogen peroxide (H2O2) are described, and scavenging systems are explained. Important roles of ROS in regulating normal redox signaling and in a disease setting, such as diabetes, contributing to oxidative stress and cellular damage are outlined. The primary focus is the role of hyperglycemia in driving elevated ROS production and oxidative stress contributing to neurodegeneration in diabetic neuropathy (within the dorsal root ganglia [DRG] and peripheral nerve). Recent Advances: Contributors to ROS production under high intracellular glucose concentration such as mitochondria and the polyol pathway are discussed. The primarily damaging impact of ROS on multiple pathways including mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and epigenetic signaling is covered. Critical Issues: There is a strong focus on mechanisms of diabetes-induced mitochondrial dysfunction and how this may drive ROS production (in particular superoxide). The mitochondrial sites of superoxide/H2O2 production via mitochondrial metabolism and aerobic respiration are reviewed. Future Directions: Areas for future development are highlighted, including the need to clarify diabetes-induced changes in autophagy and ER function in neurons and Schwann cells. In addition, more clarity is needed regarding the sources of ROS production at mitochondrial sites under high glucose concentration (and lack of insulin signaling). New areas of study should be introduced to investigate the role of ROS, nuclear lamina function, and epigenetic signaling under diabetic conditions in peripheral nerve.
Collapse
Affiliation(s)
- Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology and Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Paul Fernyhough
- Department of Pharmacology & Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
12
|
Curcumin protect Schwann cells from inflammation response and apoptosis induced by high glucose through the NF-κB pathway. Tissue Cell 2022; 77:101873. [PMID: 35868051 DOI: 10.1016/j.tice.2022.101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
Abstract
Demyelination disease as diabetes mellitus (DM) complication is characterized by apoptosis of Schwann cells (SCs) and several reports have demonstrated that high glucose content can induce an inflammation response and lead to the apoptosis of SCs. For NF-κB plays a pivotal role in the inflammatory response, hence we hypothesized that high glucose content can induce inflammation though the NF-κB pathway. First we verified that 150 mM high glucose can increase the expression of cleaved caspase 3, interleukin (IL)- 1β, Cyto-C and NF-κB with time through Western blot and increase the apoptosis of RSC96s through Flow Cytometry. Then we found that high glucose can increase the nuclear translocation NF-κB through confocal system which can promote the expression of inflammation genes such as IL-1β. Curcumin has been reported to possess anti-inflammation activities to protect cells. In this study, we found that application with 25 μM curcumin could alleviate the inflammation response and protect the cells from apoptosis. We revealed that the expression of NF-κB and p-NF-κB was decreased and the translocation was also inhibited after curcumin application. Accordingly, the secretion of IL-1β and the apoptosis of RSC96s induce by high glucose was suppressed. Our cumulative findings suggest that curcumin can protect SCs from apoptosis through the inhibition of the inflammatory response though the NF-κB pathway.
Collapse
|
13
|
Li Y, Yao W, Gao Y. Effects of Tang Luo Ning on diabetic peripheral neuropathy in rats revealed by LC-MS metabolomics approach. Biomed Chromatogr 2022; 36:e5374. [PMID: 35302257 DOI: 10.1002/bmc.5374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 11/07/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes with limited therapies. Tang Luo Ning (TLN), a traditional Chinese medicine compound, has been proved to be effective in the treatment of DPN in clinical and experimental studies. However, the potential metabolic mechanism of TLN for the treatment of DPN is still unclear. Here the therapeutic effect of TLN on DPN was studied, and HPLC-IT-TOF/MS was used to explore the metabolic changes related to DPN and to explore the mechanism of TLN on DPN induced by high glucose. Furthermore, metabolic pathway analysis was used to explore the metabolic changes induced by DPN and TLN. As a result, TLN could improve the peripheral nerve function of DPN rats, and TLN could reduce the demyelination of the sciatic nerve in DPN rats. Metabolomics analysis showed that 14 potential biomarkers (citrate, creatine, fumarate, glyceric acid, glycine, succinate, etc.) of both DPN and TLN treatment were identified. Pathway analysis showed that the changes in these metabolites were mainly related to the citrate cycle (TCA cycle), glycine, serine and threonine metabolism, and glyoxylate and dicarboxylate metabolism.
Collapse
Affiliation(s)
- Yangfan Li
- Department of Traditional Chinese Medcine, Beijing Friendship Hospital, Capital Medical University
| | - Weijie Yao
- Department of pharmacy, Beijing Maternity Hospital, Capital Medical University
| | - Yanbin Gao
- College of Traditional Chinese Medicine, Capital Medical University, No.10, Youanmenwai Xitoutiao, Fengtai District, Beijing, China
| |
Collapse
|
14
|
Gomez-Sanchez JA, Patel N, Martirena F, Fazal SV, Mutschler C, Cabedo H. Emerging Role of HDACs in Regeneration and Ageing in the Peripheral Nervous System: Repair Schwann Cells as Pivotal Targets. Int J Mol Sci 2022; 23:ijms23062996. [PMID: 35328416 PMCID: PMC8951080 DOI: 10.3390/ijms23062996] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The peripheral nervous system (PNS) has a remarkable regenerative capacity in comparison to the central nervous system (CNS), a phenomenon that is impaired during ageing. The ability of PNS axons to regenerate after injury is due to Schwann cells (SC) being reprogrammed into a repair phenotype called Repair Schwann cells. These repair SCs are crucial for supporting axonal growth after injury, myelin degradation in a process known as myelinophagy, neurotropic factor secretion, and axonal growth guidance through the formation of Büngner bands. After regeneration, repair SCs can remyelinate newly regenerated axons and support nonmyelinated axons. Increasing evidence points to an epigenetic component in the regulation of repair SC gene expression changes, which is necessary for SC reprogramming and regeneration. One of these epigenetic regulations is histone acetylation by histone acetyl transferases (HATs) or histone deacetylation by histone deacetylases (HDACs). In this review, we have focused particularly on three HDAC classes (I, II, and IV) that are Zn2+-dependent deacetylases. These HDACs are important in repair SC biology and remyelination after PNS injury. Another key aspect explored in this review is HDAC genetic compensation in SCs and novel HDAC inhibitors that are being studied to improve nerve regeneration.
Collapse
Affiliation(s)
- Jose A. Gomez-Sanchez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-919-594
| | - Nikiben Patel
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Fernanda Martirena
- Department of Hematology, General University Hospital of Elda, 03600 Elda, Spain;
| | - Shaline V. Fazal
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
- Wellcome—MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Clara Mutschler
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, UK; (S.V.F.); (C.M.)
| | - Hugo Cabedo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández—Consejo Superior de Investigaciones Científicas, 03550 San Juan de Alicante, Spain; (N.P.); (H.C.)
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
15
|
Liu YP, Yang YD, Mou FF, Zhu J, Li H, Zhao TT, Zhao Y, Shao SJ, Cui GH, Guo HD. Exosome-Mediated miR-21 Was Involved in the Promotion of Structural and Functional Recovery Effect Produced by Electroacupuncture in Sciatic Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7530102. [PMID: 35132352 PMCID: PMC8817850 DOI: 10.1155/2022/7530102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Our study is aimed at investigating the mechanism by which electroacupuncture (EA) promoted nerve regeneration by regulating the release of exosomes and exosome-mediated miRNA-21 (miR-21) transmission. Furthermore, the effects of Schwann cells- (SC-) derived exosomes on the overexpression of miR-21 for the treatment of PNI were investigated. METHODS A sciatic nerve injury model of rat was constructed, and the expression of miR-21 in serum exosomes and damaged local nerves was detected using RT-qPCR after EA treatment. The exosomes were identified under a transmission electron microscope and using western blotting analysis. Then, the exosome release inhibitor, GW4869, and the miR-21-5p-sponge used for the knockdown of miR-21 were used to clarify the effects of exosomal miR-21 on nerve regeneration promoted by EA. The nerve conduction velocity recovery rate, sciatic nerve function index, and wet weight ratio of gastrocnemius muscle were determined to evaluate sciatic nerve function recovery. SC proliferation and the level of neurotrophic factors were assessed using immunofluorescence staining, and the expression levels of SPRY2 and miR-21 were detected using RT-qPCR analysis. Subsequently, the transmission of exosomal miR-21 from SC to the axon was verified in vitro. Finally, the exosomes derived from the SC infected with the miR-21 overexpression lentivirus were collected and used to treat the rat SNI model to explore the therapeutic role of SC-derived exosomes overexpressing miR-21. RESULTS We found that EA inhibited the release of serum exosomal miR-21 in a PNI model of rats during the early stage of PNI, while it promoted its release during later stages. EA enhanced the accumulation of miR-21 in the injured nerve and effectively promoted the recovery of nerve function after PNI. The treatment effect of EA was attenuated when the release of circulating exosomes was inhibited or when miR-21 was downregulated in local injury tissue via the miR-21-5p-sponge. Normal exosomes secreted by SC exhibited the ability to promote the recovery of nerve function, while the overexpression of miR-21 enhanced the effects of the exosomes. In addition, exosomal miR-21 secreted by SC could promote neurite outgrowth in vitro. CONCLUSION Our results demonstrated the mechanism of EA on PNI from the perspective of exosome-mediated miR-21 transport and provided a theoretical basis for the use of exosomal miR-21 as a novel strategy for the treatment of PNI.
Collapse
Affiliation(s)
- Yu-pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-duo Yang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-tian Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shui-jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Hai-dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Endoplasmic Reticulum Stress in Diabetic Nephrology: Regulation, Pathological Role, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7277966. [PMID: 34394833 PMCID: PMC8355967 DOI: 10.1155/2021/7277966] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Recent progress has been made in understanding the roles and mechanisms of endoplasmic reticulum (ER) stress in the development and pathogenesis of diabetic nephropathy (DN). Hyperglycemia induces ER stress and apoptosis in renal cells. The induction of ER stress can be cytoprotective or cytotoxic. Experimental treatment of animals with ER stress inhibitors alleviated renal damage. Considering these findings, the normalization of ER stress by pharmacological agents is a promising approach to prevent or arrest DN progression. The current article reviews the mechanisms, roles, and therapeutic aspects of these findings.
Collapse
|
17
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|