1
|
Cao X, Xiao N, Huang J, Li L, Zhong L, Zhang J, Wang F. Synergistic in vitro activity and mechanism of KBN lotion and miconazole nitrate against drug-resistant Candida albicans biofilms. Front Cell Infect Microbiol 2024; 14:1426791. [PMID: 39268490 PMCID: PMC11390680 DOI: 10.3389/fcimb.2024.1426791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Background In the face of increasing antifungal resistance among Candida albicans biofilms, this study explores the efficacy of a combined treatment using Kangbainian lotion (KBN) and miconazole nitrate (MN) to address this challenge. Methods Using UPLC-Q-TOF/MS Analysis for Identification of Active Compounds in KBN Lotion; FICI for synergy evaluation, XTT and ROS assays for biofilm viability and oxidative stress, fluorescence and confocal laser scanning microscopy (CLSM) for structural and viability analysis, and real-time fluorescence for gene expression. Conclusion Our study indicates that the combined application of KBN and MN somewhat impacts the structural integrity of Candida albicans biofilms and affects the expression of several key genes involved in biofilm formation, including ALS1, ALS3, HWP1, HSP90, and CSH1. These preliminary findings suggest that there may be a synergistic effect between KBN and MN, potentially influencing not only the structural aspects of fungal biofilms but also involving the modulation of genetic pathways during their formation.
Collapse
Affiliation(s)
- Xiaoyu Cao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ni Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingyi Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lian Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengyun Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Engle K, Kumar G. Tackling multi-drug resistant fungi by efflux pump inhibitors. Biochem Pharmacol 2024; 226:116400. [PMID: 38945275 DOI: 10.1016/j.bcp.2024.116400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
The emergence of multidrug-resistant fungi is of grave concern, and its infections are responsible for significant deaths among immunocompromised patients. The treatment of fungal infections primarily relies on a clinical class of antibiotics, including azoles, polyenes, echinocandins, polyketides, and a nucleotide analogue. However, the incidence of fungal infections is increasing as the treatment for human and plant fungal infections overlaps with antifungal drugs. The need for new antifungal agents acting on different targets than known targets is undeniable. Also, the pace at which loss of fungal susceptibility to antibiotics cannot be undermined. There are several modes by which fungi can develop resistance to antibiotics, including reduced drug uptake, drug target alteration, and a reduction in the cellular concentration of the drug due to active extrusions and biofilm formation. The efflux pump's overexpression in the fungi primarily reduced the antibiotic's concentration to a sub-lethal concentration, thus responsible for developing resistant fungus strains. Several strategies are used to check antibiotic resistance in multi-drug resistant fungi, including synthesizing antibiotic analogs and giving antibiotics in combination therapies. Among them, the efflux pump protein inhibitors are considered potential adjuvants to antibiotics and can block the efflux of antibiotics by inhibiting efflux pump protein transporters. Moreover, it can sensitize the antifungal drugs to multi-drug resistant fungi with overexpressed efflux pump proteins. This review discusses the natural lead molecules, repurposable drugs, and formulation strategies to overcome the efflux pump activity in the fungi.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar 500037, India
| | - Gautam Kumar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
3
|
Yue D, Zheng D, Bai Y, Yang L, Yong J, Li Y. Insights into the anti-Candida albicans properties of natural phytochemicals: An in vitro and in vivo investigation. Phytother Res 2024; 38:2518-2538. [PMID: 38450815 DOI: 10.1002/ptr.8148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Invasive candidiasis, attributed to Candida albicans, has long been a formidable threat to human health. Despite the advent of effective therapeutics in recent decades, the mortality rate in affected patient populations remains discouraging. This is exacerbated by the emergence of multidrug resistance, significantly limiting the utility of conventional antifungals. Consequently, researchers are compelled to continuously explore novel solutions. Natural phytochemicals present a potential adjunct to the existing arsenal of agents. Previous studies have substantiated the efficacy of phytochemicals against C. albicans. Emerging evidence also underscores the promising application of phytochemicals in the realm of antifungal treatment. This review systematically delineates the inhibitory activity of phytochemicals, both in monotherapy and combination therapy, against C. albicans in both in vivo and in vitro settings. Moreover, it elucidates the mechanisms underpinning the antifungal properties, encompassing (i) cell wall and plasma membrane damage, (ii) inhibition of efflux pumps, (iii) induction of mitochondrial dysfunction, and (iv) inhibition of virulence factors. Subsequently, the review introduces the substantial potential of nanotechnology and photodynamic technology in enhancing the bioavailability of phytochemicals. Lastly, it discusses current limitations and outlines future research priorities, emphasizing the need for high-quality research to comprehensively establish the clinical efficacy and safety of phytochemicals in treating fungal infections. This review aims to inspire further contemplation and recommendations for the effective integration of natural phytochemicals in the development of new medicines for patients afflicted with C. albicans.
Collapse
Affiliation(s)
- Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Gomaa SE, Abbas HA, Mohamed FA, Ali MAM, Ibrahim TM, Abdel Halim AS, Alghamdi MA, Mansour B, Chaudhary AA, Elkelish A, Boufahja F, Hegazy WAH, Yehia FAZA. The anti-staphylococcal fusidic acid as an efflux pump inhibitor combined with fluconazole against vaginal candidiasis in mouse model. BMC Microbiol 2024; 24:54. [PMID: 38341568 PMCID: PMC10858509 DOI: 10.1186/s12866-024-03181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Salwa E Gomaa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Fatma A Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Medical Microbiology and Immunology-Medical School, University of Pécs, Szigeti Út 12, Pécs, H-7624, Hungary
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mashael A Alghamdi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Belqas, 11152, Egypt
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman.
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Ma Y, Sui J, Wang Y, Sun W, Yi G, Wu J, Qiu S, Wang L, Zhang A, He X. RNA-Seq-Based Transcriptomics and GC-MS Quantitative Analysis Reveal Antifungal Mechanisms of Essential Oil of Clausena lansium (Lour.) Skeels Seeds against Candida albicans. Molecules 2023; 28:8052. [PMID: 38138542 PMCID: PMC10745804 DOI: 10.3390/molecules28248052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Infections caused by Candida albicans (C. albicans) and increasing resistance to commonly used drugs lead to a variety of mucosal diseases and systemic infectious diseases. We previously confirmed that the essential oil of Clausena lansium (Lour.) Skeels seeds (CSEO) had antifungal activity against C. albicans, but the detailed mechanism between the chemical components and antifungal activity is unclear. In this study, a quantitative analysis of five volatile components of CSEO, including sabinene, α-phellandrene, β-phellandrene, 4-terpineol, and β-caryophyllene, was carried out using the gas chromatography-mass spectrometry (GC-MS) method. Both the broth dilution and kinetic growth methods proved that the antifungal activity of CSEO against fluconazole-resistant C. albicans was better than that of its main components (sabinene and 4-terpineol). To further investigate the inhibitory mechanism, the transcriptional responses of C. albicans to CSEO, sabinene, and 4-terpineol treatment were determined based on RNA-seq. The Venn diagram and clustering analysis pattern of differential expression genes showed the mechanism of CSEO and 4-terpineol's anti-C. albicans activity might be similar from the perspective of the genes. Functional enrichment analysis suggested that CSEO regulated adherence-, hyphae-, and biofilm-formation-related genes, which may be CSEO's active mechanism of inhibiting the growth of fluconazole-resistant C. albicans. Overall, we preliminarily revealed the molecular mechanism between the chemical components and the antifungal activity of CSEO against C. albicans. This study provides new insights to overcome the azole resistance of C. albicans and promote the development and application of C. lansium (Lour.) Skeels seeds.
Collapse
Affiliation(s)
- Yinzheng Ma
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Jinlei Sui
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Yan Wang
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Wanying Sun
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Guohui Yi
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Jinyan Wu
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Shi Qiu
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Lili Wang
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Aihua Zhang
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
| | - Xiaowen He
- Public Research Center, Hainan Medical University, Haikou 571199, China; (Y.M.); (J.S.); (Y.W.); (W.S.); (G.Y.); (J.W.); (S.Q.); (L.W.)
- School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island, Emergency Medicine of Chinese Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
6
|
Ranđelović M, Dimitrijević M, Otašević S, Stanojević L, Išljamović M, Ignjatović A, Arsić-Arsenijević V, Stojanović-Radić Z. Antifungal Activity and Type of Interaction of Melissa officinalis Essential Oil with Antimycotics against Biofilms of Multidrug-Resistant Candida Isolates from Vulvovaginal Mucosa. J Fungi (Basel) 2023; 9:1080. [PMID: 37998884 PMCID: PMC10672467 DOI: 10.3390/jof9111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: Vulvovaginal candidosis (VVC) is a major therapy issue due to its high resistance rate and virulence factors such as the ability to form biofilms. The possibility of combining commonly used antifungals with natural products might greatly improve therapeutic success. (2) Methods: A total of 49 vulvovaginal isolates, causative agents of recurrent VVC, were tested for their susceptibility to fluconazole, nystatin, and Melissa officinalis essential oil (MOEO). This examination included testing the antibiofilm potential of antifungals and MOEO and the determination of their types of interaction with mature biofilms. (3) Results: Antimicrobial testing showed that 94.4% of the Candida albicans isolates and all the Candida krusei isolates were resistant to fluconazole, while all strains showed resistance to nystatin. The same strains were susceptible to MOEO in 0.156-2.5 mg/mL concentrations. Additionally, the results revealed very limited action of fluconazole, while nystatin and MOEO reduced the amount of biofilm formed by as much as 17.7% and 4.6%, respectively. Testing of the combined effect showed strain-specific synergistic action. Furthermore, the lower concentrations exhibited antagonistic effects even in cases where synergism was detected. (4) Conclusions: This study showed that MOEO had a very good antibiofilm effect. However, combining MOEO with antimycotics demonstrated that the type of action depended on the choice of antifungal drugs as well as the applied concentration.
Collapse
Affiliation(s)
- Marina Ranđelović
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Marina Dimitrijević
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| | - Suzana Otašević
- Department of Microbiology and Immunology, Medical Faculty, University of Nis, 18000 Nis, Serbia;
- Centre of Microbiology, Public Health Institute Nis, 18000 Nis, Serbia
| | - Ljiljana Stanojević
- Department of Chemistry and Chemical Technology, Faculty of Technology, University of Nis, 18000 Nis, Serbia;
| | - Milica Išljamović
- Department of Dental Health Care, Health Center Niš, 18000 Nis, Serbia;
| | - Aleksandra Ignjatović
- Department of Medical Statistics and Informatics, Medical Faculty, University of Nis, 18000 Nis, Serbia;
| | | | - Zorica Stojanović-Radić
- Department of Biology, Faculty of Science and Mathematics, University of Nis, 18000 Nis, Serbia; (M.D.); (Z.S.-R.)
| |
Collapse
|
7
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
8
|
de Lima Silva MG, de Lima LF, Alencar Fonseca VJ, Santos da Silva LY, Calixto Donelardy AC, de Almeida RS, de Morais Oliveira-Tintino CD, Pereira Bezerra Martins AOB, Ribeiro-Filho J, Bezerra Morais-Braga MF, Tintino SR, Alencar de Menezes IR. Enhancing the Antifungal Efficacy of Fluconazole with a Diterpene: Abietic Acid as a Promising Adjuvant to Combat Antifungal Resistance in Candida spp. Antibiotics (Basel) 2023; 12:1565. [PMID: 37998767 PMCID: PMC10668680 DOI: 10.3390/antibiotics12111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
The increasing antifungal resistance rates against conventional drugs reveal the urgent need to search for new therapeutic alternatives. In this context, natural bioactive compounds have a critical role in antifungal drug development. Since evidence demonstrates that abietic acid, a diterpene found in Pinus species, has significant antimicrobial properties, this study aimed to evaluate the antifungal activity of abietic acid against Candida spp and its ability to potentiate the activity of fluconazole. Abietic acid was tested both individually and in combination with fluconazole against Candida albicans (CA INCQS 40006), Candida krusei (CK INCQS 40095), and Candida tropicalis (CT INCQS 40042). The microdilution method was used to determine the IC50 and the cell viability curve. Minimum Fungicidal Concentration (MFC) was determined by subculture in a solid medium. The plasma membrane permeability was measured using a fluorescent SYTOX Green probe. While the IC50 of the drugs alone ranged between 1065 and 3255 μg/mL, the IC50 resulting from the combination of abietic acid and fluconazole ranged between 7563 and 160.1 μg/mL. Whether used in combination with fluconazole or isolated, abietic acid exhibited Minimum Fungicidal Concentration (MFC) values exceeding 1024 μg/mL against Candida albicans, Candida krusei and Candida tropicalis. However, it was observed that the antifungal effect of fluconazole was enhanced when used in combination with abietic acid against Candida albicans and Candida tropicalis. These findings suggest that while abietic acid alone has limited inherent antifungal activity, it can enhance the effectiveness of fluconazole, thereby reducing antifungal resistance.
Collapse
Affiliation(s)
- Maria Gabriely de Lima Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Luciene Ferreira de Lima
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Victor Juno Alencar Fonseca
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ana Cecília Calixto Donelardy
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Ray Silva de Almeida
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | | | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio 61773-270, Ceará, Brazil;
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Applied Mycology of Cariri (LMAC), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (L.F.d.L.); (V.J.A.F.); (M.F.B.M.-B.)
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (R.S.d.A.); (C.D.d.M.O.-T.)
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, Ceará, Brazil; (M.G.d.L.S.); (L.Y.S.d.S.); (A.C.C.D.); (A.O.B.P.B.M.)
| |
Collapse
|
9
|
Luo Z, Lin Y, Zhou X, Yang L, Zhang Z, Liu Z, Zhou M, Jiang J, Wu J, Liu Z, Jing P, Zhong Z. Biomineral-binding liposomes with dual antibacterial effects for preventing and treating dental caries. Biomater Sci 2023; 11:5984-6000. [PMID: 37503566 DOI: 10.1039/d3bm00756a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dental caries is a chronic oral disease that results from the demineralization of dental hard tissues caused by the long-term interaction of various pathogenic factors in the human oral cavity. Although magnolol (Mag) and fluconazole (FLC) have shown promising antibacterial activity against Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), their clinical application is limited due to hydrophobicity. In this study, we constructed biomineral-binding liposomes co-loaded with Mag and FLC (PPi-Mag/FLC-LPs) to overcome the hydrophobicity and achieve a dual antibacterial activity in the acidic microenvironment of caries. PPi-Mag/FLC-LPs were characterized by laser particle size analysis, transmission electron microscopy, and high-performance liquid chromatography (HPLC). The ability of PPi-Mag/FLC-LPs to bind hydroxyapatite was assessed in vitro using fluorescence microscopy and HPLC, while the antibacterial activity was examined by measuring drug effects on the acidogenicity, acid resistance, biofilm formation and survival of C. albicans and S. mutans. The pharmacodynamics of PPi-Mag/FLC-LPs was also evaluated in vivo in a rat model of dental caries. Mag and FLC were released rapidly from PPi-Mag/FLC-LPs in a pH-sensitive manner, and they bound effectively to hydroxyapatite, leading to a better antibacterial effect on C. albicans and S. mutans compared to free drugs or liposomes loaded with a single drug. PPi-Mag/FLC-LPs improved the medicinal properties of Mag and FLC and provided a rapid, pH-sensitive release of both drugs in vitro. PPi-Mag/FLC-LPs displayed good antibacterial activity in vivo, showing promise as a dual-drug delivery system for the prevention and treatment of caries.
Collapse
Affiliation(s)
- Zhongling Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
- The Second People's Hospital of Neijiang, Sichuan 641000, China
| | - Yan Lin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Xiaoling Zhou
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Lingling Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zijun Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhongbing Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Pei Jing
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhirong Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China.
- Key Laboratory of Luzhou City for Aging Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
10
|
Zhang J, Sun J, Zhang Y, Zhang M, Liu X, Yang L, Yin Y. Dehydrocostus lactone inhibits Candida albicans growth and biofilm formation. AMB Express 2023; 13:82. [PMID: 37540386 PMCID: PMC10403490 DOI: 10.1186/s13568-023-01587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Candida albicans infections are threatening public health but there are only several antifungal drugs available. This study was to assess the effects of dehydrocostus lactone (DL) on the Candida albicans growth and biofilms Microdilution assays revealed that DL inhibits a panel of standard Candida species, including C. albicans, as well as 9 C. albicans clinical isolates. The morphological transition of C. albicans in RPMI-1640 medium and the adhesion to polystyrene surfaces can also be decreased by DL treatment, as evidenced by microscopic, metabolic activity and colony forming unit (CFU) counting assays. The XTT assay and microscopy inspection demonstrated that DL can inhibit the biofilms of C. albicans. Confocal microscopy following propidium iodide (PI) staining and DCFH-DA staining after DL treatment revealed that DL can increase the membrane permeability and intracellular reactive oxygen species (ROS) production. N-acetyl-cysteine could mitigate the inhibitory effects of DL on growth, morphological transition and biofilm formation, further confirming that ROS production induced by DL contributes to its antifungal and antibiofilm effects. This study showed that DL demonstrated antifungal and antibiofilm activity against C. albicans. The antifungal mechanisms may involve membrane damage and ROS overproduction. This study shows the potential of DL to fight Candida infections.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Jian Sun
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Yu Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Min Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Longfei Yang
- Jilin provincial key laboratory on molecular and chemical genetic, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun, 130041, China.
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
11
|
Ding L, Liu T, Ma J. Neuroprotective mechanisms of Asiatic acid. Heliyon 2023; 9:e15853. [PMID: 37180926 PMCID: PMC10172897 DOI: 10.1016/j.heliyon.2023.e15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Asiatic acid (AA) is the most crucial component of Asiaticoside in many edible and medicinal plants. It has diverse biological activities such as anti-inflammatory, antioxidant, anti-infective, and anti-tumor. Additionally, AA has been intensively studied in the last decades. It has shown great potential in the treatment of various neurological diseases such as spinal cord injury (SCI), cerebral ischemia, epilepsy, traumatic brain injury (TBI), neural tumors, Alzheimer's disease (AD), and Parkinson's disease (PD). Moreover, AA provides pertinent data for neuroprotective signaling pathways, and its substantial neuroprotective ability makes it a novel candidate for developing drugs that target the central nervous system.
Collapse
Affiliation(s)
- Liuyun Ding
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
| | - Tiantian Liu
- Shanghai Seventh's People's Hospital, An Affiliate of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Jin Ma
- Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, China
- Corresponding author. Department of Emergency Medicine, Affiliated Kunshan Hospital of Jiangsu University, No. 91 Qianjin West Road, Kunshan, 215300, China.
| |
Collapse
|
12
|
Antifungal activity and potential mechanism of action of caspofungin in combination with ribavirin against Candida albicans. Int J Antimicrob Agents 2023; 61:106709. [PMID: 36640848 DOI: 10.1016/j.ijantimicag.2023.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The number of invasive fungal infections has increased dramatically, resulting in high morbidity and mortality among immunocompromised patients. With increasing use of caspofungin (CAS), resistant strains have emerged frequently and led to limitations in the treatment of patients with severe invasive Candida albicans infections. Combination therapy is an important method to deal with this issue. As such, this study investigated the activity of CAS in combination with ribavirin (RBV) against C. albicans. The results of this in-vitro study showed that the minimum inhibitory concentrations (MICs) of CAS and RBV when they were used as monotherapy were 0.5-1 μg/mL and 2-8 μg/mL, respectively, while the MIC of CAS decreased from 0.5-1 μg/mL to 0.0625-0.25 μg/mL when used in combination with RBV, with a fractional inhibitory concentration index (FICI) ≤0.5. In addition, the RBV + CAS combination group displayed synergistic effects against C. albicans biofilm over 4 h; the sessile MIC (sMIC) of CAS decreased from 0.5-1 µg/mL to 0.0625-0.25µg/mL and the sMIC of RBV decreased from 4-16 µg/mL to 1-2 µg/mL, with FICI <0.5. The survival of C. albicans-infected Galleria mellonella was prolonged, the fungal burden was decreased, and the area of tissue damage was reduced after combination therapy. Further study showed that the mechanisms of action of the synergistic effect were related to the inhibition of biofilm formation, the inhibition of hyphal growth, and the activation of metacaspases, but were not related to the accumulation of reactive oxygen species. It is hoped that these findings will contribute to the understanding of drug resistance in C. albicans, and provide new insights for the application of RBV.
Collapse
|
13
|
Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential. Metabolites 2023; 13:metabo13020276. [PMID: 36837896 PMCID: PMC9966672 DOI: 10.3390/metabo13020276] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
An intense effort has been focused on new therapeutic approaches and the development of technologies for more efficient and rapid wound healing. The research for plants used for long time in traditional medicine in the treatment of wound has become a promising strategy to obtain drugs therapeutically useful in the acute and chronic wound management. In this context, Centella asiatica (Apiaceae) has been used to treat a variety of skin diseases, such as leprosy, lupus, varicose ulcers, eczema and psoriasis, in Asiatic traditional medicine for thousands of years. Studies have shown that Centella asiatica extracts (CAE) display activity in tissue regeneration, cell migration and wound repair process by promoting fibroblast proliferation and collagen synthesis. Preliminary findings have shown that the asiatic acid is one of the main active constituents of C. asiatica, directly associated with its healing activity. Thus, this study discusses aspects of the effects of Centella asiatica and its active component, asiatic acid, in different stages of the healing process of cutaneous wounds, including phytochemical and antimicrobial aspects that contribute to its therapeutic potential.
Collapse
|
14
|
Domfeh SA, Kyeremeh G, Belifini M. Evaluation of Anti- Candida albicans Activities of Herbal Preparations Sold at the Kumasi Central Market in the Ashanti Region of Ghana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6162532. [PMID: 37082250 PMCID: PMC10113043 DOI: 10.1155/2023/6162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 04/22/2023]
Abstract
Candida albicans (C. albicans) is predominantly the leading cause of candidiasis among women with urogenital candidiasis. Since most people in resource-limited countries depend on herbal medicine for their primary care needs, many herbal drugs are sold to manage various infectious diseases. This study, therefore, evaluated the anti-C. albicans activities of five selected herbal preparations indicated for treating candidiasis sold at the Kumasi Central Market in the Ashanti Region of Ghana. The market was divided into five clusters, and one herbal preparation was randomly selected from each cluster. Using the Kirby Bauer disc diffusion antimicrobial susceptibility test, the herbal preparations were tested against clinically isolated C. albicans. Fluconazole, a standard antifungal drug, was included in the evaluation as a positive control. The experiments were performed on three different days and each in triplicates. Among the five selected herbal preparations, only one was effective against C. albicans with a mean inhibition zone of 19.1 mm. This effective herbal drug was prepared from Centella asiatica sap, Turnera microphylla leaves, and Vitex agnus-castus leaves. The results suggest that not all the herbal preparations selected were effective against C. albicans. Hence, we recommend that the authorities continually check the effectiveness of the herbal preparations on the market.
Collapse
Affiliation(s)
- Seth A. Domfeh
- Department of Biochemistry and Biotechnology, Faculty of Biosciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Garden City University College, Kenyasi-Kumasi, Ghana
| | - Godfred Kyeremeh
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Garden City University College, Kenyasi-Kumasi, Ghana
| | - Mark Belifini
- Department of Medical Laboratory Technology, Faculty of Health Sciences, Garden City University College, Kenyasi-Kumasi, Ghana
| |
Collapse
|
15
|
Zhong H, Han L, Lu RY, Wang Y. Antifungal and Immunomodulatory Ingredients from Traditional Chinese Medicine. Antibiotics (Basel) 2022; 12:antibiotics12010048. [PMID: 36671249 PMCID: PMC9855100 DOI: 10.3390/antibiotics12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Fungal infections have become a growing public health challenge due to the clinical transmission of pathogenic fungi. The currently available antifungal drugs leave very limited choices for clinical physicians to deal with such situation, not to mention the long-standing problems of emerging drug resistance, side effects and heavy economic burdens imposed to patients. Therefore, new antifungal drugs are urgently needed. Screening drugs from natural products and using synthetic biology strategies are very promising for antifungal drug development. Chinese medicine is a vast library of natural products of biologically active molecules. According to traditional Chinese medicine (TCM) theory, preparations used to treat fungal diseases usually have antifungal and immunomodulatory functions. This suggests that if antifungal drugs are used in combination with immunomodulatory drugs, better results may be achieved. Studies have shown that the active components of TCM have strong antifungal or immunomodulatory effects and have broad application prospects. In this paper, the latest research progress of antifungal and immunomodulatory components of TCM is reviewed and discussed, hoping to provide inspiration for the design of novel antifungal compounds and to open up new horizons for antifungal treatment strategies.
Collapse
Affiliation(s)
- Hua Zhong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Han
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Ren-Yi Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Correspondence:
| |
Collapse
|
16
|
Li L, She P, Liu S, Li Y, Li Z, Yang Y, Zhou L, Wu Y. Identification of a small molecule 0390 as a potent antimicrobial agent to combat antibiotic-resistant Escherichia coli. Front Microbiol 2022; 13:1078318. [PMID: 36590392 PMCID: PMC9800007 DOI: 10.3389/fmicb.2022.1078318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Antibiotic resistance has posed a serious challenge to global public health. With the increasing resistance emergence of E. coli and mortality caused by drug-resistant E. coli infections, it is urgent to develop novel antibiotics. Methods By high-throughput screening assay, we found a bioactive molecule, 0390 (6056-0390), which demonstrated antimicrobial effects against E. coli. The antimicrobial effects of 0390 alone or in combination with conventional antibiotics were assessed by scanning electron microscopy, transmission electron microscopy, drug combination assay, and growth inhibition assay. In addition, we investigated the antimicrobial efficacy in subcutaneous infection model in vivo. Results 0390 showed significant synergistic antimicrobial effects in combination with SPR741, a polymyxin B derivative, against E. coli standard strain and extensively drug-resistant (XDR) clinical isolates, and the combination exhibited good safety property in vitro. In addition, we demonstrated that the combinational treatment of 0390 and SPR741 exhibited a considerable antibacterial activity in vivo, and no tissue damage or other toxicity was observed after the therapeutic dose treatment. Discussion To confront the issue of the infectious diseases related to E. coli and its multidrug resistant strains, potential approaches, such as new antibacterial agents with different structures from conventional antibiotics and drug combinations, are urgently needed. In this study, we have determined the in vitro and in vivo antimicrobial potential of 0390 alone or in combination with SPR741, which might be used as a treatment option for E. coli related infections.
Collapse
Affiliation(s)
- Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
17
|
Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Rocha CHL, Rocha FMG, Bitencourt TA, Martins MP, Sanches PR, Rossi A, Martinez-Rossi NM. Synergism between the Antidepressant Sertraline and Caspofungin as an Approach to Minimise the Virulence and Resistance in the Dermatophyte Trichophyton rubrum. J Fungi (Basel) 2022; 8:jof8080815. [PMID: 36012803 PMCID: PMC9409809 DOI: 10.3390/jof8080815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Trichophyton rubrum is responsible for several superficial human mycoses. Novel strategies aimed at controlling this pathogen are being investigated. The objective of this study was to evaluate the antifungal activity of the antidepressant sertraline (SRT), either alone or in combination with caspofungin (CASP). We calculated the minimum inhibitory concentrations of SRT and CASP against T. rubrum. Interactions between SRT and CASP were evaluated using a broth microdilution chequerboard. We assessed the differential expression of T. rubrum cultivated in the presence of SRT or combinations of SRT and CASP. We used MTT and violet crystal assays to compare the effect of SRT alone on T. rubrum biofilms with that of the synergistic combination of SRT and CASP. A human nail infection assay was performed. SRT alone, or in combination with CASP, exhibited antifungal activity against T. rubrum. SRT targets genes involved in the biosyntheses of cell wall and ergosterol. Furthermore, the metabolic activity of the T. rubrum biofilm and its biomass were affected by SRT and the combination of SRT and CASP. SRT alone, or in combination, shows potential as an approach to minimise resistance and reduce virulence.
Collapse
|
19
|
Cheng Q, Zhang S, Zhong B, Chen Z, Peng F. Asiatic acid re-sensitizes multidrug-resistant A549/DDP cells to cisplatin by down regulating long non-coding RNA metastasis associated lung adenocarcinoma transcript 1/β-catenin signaling. Bioengineered 2022; 13:12972-12984. [PMID: 35609308 PMCID: PMC9275950 DOI: 10.1080/21655979.2022.2079302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drug resistance becomes a challenge in the therapeutic management of non-small cell lung cancer (NSCLC). According to our former research, asiatic acid (AA) re-sensitized A549/DDP cells to cisplatin (DDP) through decreasing multidrug resistance protein 1 (MDR1) expression level. However, the relevant underlying mechanisms are still unclear. Long non-coding RNA (lncRNA) MALAT1 shows close association with chemo-resistance. As reported in this research, AA increased apoptosis rate, down regulated the expression of MALAT1, p300, β-catenin, and MDR1, up regulated the expression of miR-1297, and decreased β-catenin nuclear translocation in A549/DDP cells. MALAT1 knockdown expression abolished the drug resistance of A549/DDP cells and increased cell apoptosis. MALAT1 could potentially produce interactions with miR-1297, which targeted to degradation of p300. In addition, p300 overexpression effectively rescued the effects of MALAT1 knockdown expression on A549/DDP cells and activate the expression of β-catenin/MDR1 signaling, and these could be effectively blocked by AA treatment. Conclusively, AA could re-sensitize A549/DDP cells to DDP through down-regulating MALAT1/miR-1297/p300/β-catenin signaling.
Collapse
Affiliation(s)
- Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shanshan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bing Zhong
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fang Peng
- Department of Pathology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
21
|
Discovery of polypyridyl iridium(III) complexes as potent agents against resistant Candida albicans. Eur J Med Chem 2022; 233:114250. [DOI: 10.1016/j.ejmech.2022.114250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
|
22
|
Sycz Z, Tichaczek-Goska D, Wojnicz D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes-Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022; 12:98. [PMID: 35053246 PMCID: PMC8774094 DOI: 10.3390/biom12010098] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the ever-increasing number of multidrug-resistant bacteria, research concerning plant-derived compounds with antimicrobial mechanisms of action has been conducted. Pentacyclic triterpenes, which have a broad spectrum of medicinal properties, are one of such groups. Asiatic acid (AA) and ursolic acid (UA), which belong to this group, exhibit diverse biological activities that include antioxidant, anti-inflammatory, diuretic, and immunostimulatory. Some of these articles usually contain only a short section describing the antibacterial effects of AA or UA. Therefore, our review article aims to provide the reader with a broader understanding of the activity of these acids against pathogenic bacteria. The bacteria in the human body can live in the planktonic form and create a biofilm structure. Therefore, we found it valuable to present the action of AA and UA on both planktonic and biofilm cultures. The article also presents mechanisms of the biological activity of these substances against microorganisms.
Collapse
Affiliation(s)
| | - Dorota Tichaczek-Goska
- Department of Biology and Medical Parasitology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (Z.S.); (D.W.)
| | | |
Collapse
|
23
|
Pan M, Wang Q, Cheng T, Wu D, Wang T, Yan G, Shao J. Paeonol assists fluconazole and amphotericin B to inhibit virulence factors and pathogenicity of Candida albicans. BIOFOULING 2021; 37:922-937. [PMID: 34615415 DOI: 10.1080/08927014.2021.1985473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/04/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the mono- and dual- antifungal activities of paeonol (PAE) and fluconazole (FLZ)/amphotericin B (AmB). To this end, the effects of PAE and FLZ/AmB on cell surface hydrophobicity, hydrolase activity, morphological transition were investigated in vitro and in a Galleria mellonella infection model. The results showed a relatively high minimum inhibitory concentration (MIC) and sessile MIC (SMIC) of PAE alone. However, compared with the single drug, the combined use of PAE and FLZ/AmB had a potent synergistic potential to inhibit the virulence factors for Candida. The concomitant use of two drugs was consistently more effective than either drug alone for increasing survival rate, decreasing the fungal burden, and alleviating the pathological features of G. mellonella infected by the fungus. Taken together, these findings demonstrate the anti-Candida effects of PAE plus FLZ/AmB and their potential to increase the sensitivity of C. albicans to FLZ/AmB of PAE.
Collapse
Affiliation(s)
- Min Pan
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Qirui Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Daqiang Wu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, P. R. China
| | - Tianming Wang
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, P. R. China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Guiming Yan
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, P. R. China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, P. R. China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui Academy of Chinese Medicine, Hefei, P. R. China
- Anhui Provincial Key Laboratory for Chinese Herbal Compound, Anhui Academy of Chinese Medicine, Hefei, P. R. China
| |
Collapse
|