1
|
Yadav K, Ebenezer Gnanakani SP, Kumar Sahu K, Sucheta, Dubey A, Minz S, Raza W, Pradhan M. Unleashing the potential of natural protein based nanoparticles for the delivery of therapeutic nucleic Acid: A comprehensive review. Int J Pharm 2025; 669:125049. [PMID: 39674384 DOI: 10.1016/j.ijpharm.2024.125049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Nucleic acid-based therapeutics represent a revolutionary approach in treating genetic disorders, offering unprecedented potential for addressing pathologies at their molecular level. However, effective cellular delivery remains a critical challenge hindering their clinical implementation. While existing delivery systems, including viral vectors and lipid nanoparticles, have shown utility, they face limitations in immunogenicity, cargo capacity, and manufacturing complexity. Natural protein-based nanoparticles, derived from proteins such as albumin, ferritin, and elastin, have emerged as promising alternative delivery systems. These carriers offer distinct advantages including reduced immunogenicity, enhanced biocompatibility, and optimal biodegradation profiles. Their engineerable nature enables precise control over particle size, surface charge, and ligand conjugation, facilitating selective cellular targeting and improved pharmacokinetics. Recent technological advances have expanded the application of protein nanoparticles across various nucleic acid modalities, including mRNA, siRNA, and plasmid DNA. Extensive research has characterized these systems through rigorous in vitro and in vivo studies, advancing our understanding of their biological behavior and clinical potential. Advanced engineering methodologies have further enhanced their optimization for specific therapeutic applications. This review examines the development and potential of protein-based nanoparticles in nucleic acid delivery, highlighting their advantages and addressing current challenges. By analyzing recent advances and clinical progress, we underscore their significant potential to enhance the safety, specificity, and efficacy of nucleic acid therapeutics, potentially revolutionizing the treatment of genetic disorders.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - S Princely Ebenezer Gnanakani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Limda, Waghodia, Vadodara, Gujarat 391760, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Wasim Raza
- Central Laboratory Facility, Chhattisgarh Council of Science and Technology, Vigyan Bhawan, Raipur, Chhattisgarh, India
| | | |
Collapse
|
2
|
Vihal S, Pundir S, Rathore C, Ranjan Lal U, Gupta G, Kumar Singh S, Dua K, Kumar Chellappan D, Negi P. Nigella sativa Oil-loaded Ethanolic Vesicular Gel for Imiquimod-induced Plaque Psoriasis: Physicochemical Characterization, Rheological Studies, and In vivo Efficacy. Curr Drug Deliv 2025; 22:80-91. [PMID: 38956909 DOI: 10.2174/0115672018246645231019131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 07/04/2024]
Abstract
BACKGROUND The therapeutic effect of NS oil in mild to moderate psoriasis is limited owing to low play load of thymoquinone (<15 %w/w), irritation, dripping, low viscosity and thus, less contact time on the lesions. AIMS This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity. OBJECTIVE The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity. METHODS The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model. RESULTS A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08 mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1 nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil). CONCLUSION It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.
Collapse
Affiliation(s)
- Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Swati Pundir
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Charul Rathore
- Department of Pharma Sciences, Chandigarh University, Mohali, Punjab 140413, India
| | - Uma Ranjan Lal
- Ayurvet Limited, Katha, Baddi, Himachal Pradesh 173205, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, 302017, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
3
|
Huang XM, Guo YX, Pang QL, Yan XY, Yan H, Li JY, Tang GL, Jiang HX, Zhang HL. Combination of DMDD with Nanoparticles Effective Against Diabetic Kidney Disease in vitro. Int J Nanomedicine 2024; 19:12439-12460. [PMID: 39611006 PMCID: PMC11602433 DOI: 10.2147/ijn.s475840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Purpose 2-Dodecyl-6-methoxy-2,5-diene-1,4-cyclohexanedione (DMDD), isolated from Averrhoa carambola L. root, has demonstrated the potential to reduce blood sugar levels. However, DMDD has poor solubility and bioavailability. This study aimed to formulate DMDD-loaded nanoparticles (DMDD-NPs) using chitosan crosslinked with sodium tripolyphosphate through the ionic crosslinking method and to investigate their effect on diabetic kidney disease (DKD) treatment by inhibiting the development of the epithelial-mesenchymal transition (EMT). Methods DMDD-NPs were prepared by ionic crosslinking with sodium tripolyphosphate, optimizing six factors that affect nanoparticle characteristics, including particle size and zeta potential. Encapsulation efficiency (EE) and drug loading rate (DL) were optimized using a Box-Behnken design. The structure and characteristics of DMDD-NPs, including size, EE, DL, and release rates, were analyzed. Cytotoxicity was assessed using the Cell Counting Kit-8 (CCK-8) assay, while the migration capacity of HK-2 cells was evaluated through scratch-wound assays. The expression of EMT-related markers (E-cadherin, Vimentin, and TGF-β1) was assessed by qRT-PCR. Results The optimized formulation for DMDD-NPs was CS:TPP:DMDD = 10:3:3 (w), at pH 3.5, with 1.0 mg/mL of CS and stirring at 500 rpm for 30 min. In these conditions, the nanoparticles had a particle size of 320.37 ± 2.93 nm, an EE of 85.09 ± 1.43%, and a DL of 15.88 ± 0.51%. The DMDD-NPs exhibited a spherical shape, no leakage and minimal adhesion. The optimal freeze-drying protectant was a combination of 0.025% mannitol and 0.025% lactose. The drug release followed the Higuchi model. DMDD-NPs improved HK-2 cell proliferation at lower concentrations (<24 μg/mL) and showed greater cell migration inhibition than DMDD. DMDD-NPs promoted E-cadherin expression and inhibited vimentin and TGF-β1 expression, suggesting their potential role in preventing EMT for DKD treatment.
Collapse
Affiliation(s)
- Xiao-Man Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yan-Xiang Guo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qiu-Ling Pang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiao-Yi Yan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hui Yan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jing-Yi Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Gan-Ling Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hui-Xian Jiang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hong-Liang Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
4
|
Roy D, Balasubramanian S, Kunte PP, Natarajan J, Sola P, Rymbai E, R PKM. Roflumilast-loaded nanostructured lipid carriers attenuate oxidative stress and neuroinflammation in Parkinson's disease model. J Drug Target 2024:1-16. [PMID: 39316825 DOI: 10.1080/1061186x.2024.2408724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with limited symptomatic treatment options. Targeting phosphodiesterase 4 (PDE4) has shown a promising result in several preclinical studies. In our study, we aim to repurpose US FDA-approved PDE4 inhibitor for PD. Through in-silico study, we identified roflumilast (ROF) as the potential candidate targeting PDE4B2. In Drosophila PD expressing the A30P mutant α-synuclein model, ROF exhibited anti-PD effects as indicated by negative geotaxis and antioxidant activities. Given the low brain distribution of ROF (<50%) at clinical doses, incorporation into nanostructured lipid carriers (NLCs) was carried out to enhanced blood-brain barrier permeability. In vitro release studies indicated sustained ROF release from NLCs (≈75%) over 24 h. Single-dose oral toxicity studies reported no mortality or toxicity signs. ROF-loaded NLCs significantly alleviated behavioural deficits, increased antioxidant parameters (p < 0.05), and reduced TNF-α and IL-6 levels (p < 0.5) in the striatum compared to pure ROF. ROF-loaded NLCs demonstrated potential anti-PD effects with high efficacy than pure ROF. Our study suggests that nanostructured lipid carriers (NLCs) can be a promising drug delivery system to overcome limitations associated with poor brain bioavailability of lipophilic drugs like ROF for PD treatment. Further investigation related to brain occupancy and underlying mechanisms of our formulation is warranted to confirm and strengthen our current findings.
Collapse
Affiliation(s)
- Dhritiman Roy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Shivaramakrishnan Balasubramanian
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Prajwal P Kunte
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Piyong Sola
- Department of Pharmacology, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praharsh Kumar M R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
5
|
Sarhan FA, Soliman ME, Hamza MY, El-Gogary RI. Revolutionizing treatment for topical fungal infections: evaluating penetration-enhancer-containing vesicles as a fluconazole delivery system: Ex-vivo and in-vivo dermal testing. Pharm Dev Technol 2024; 29:814-823. [PMID: 39161985 DOI: 10.1080/10837450.2024.2394573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Fungal infections pose a significant challenge in numerous developing nations and worldwide, necessitating urgent solutions. Oral administration of antifungal medications often leads to severe adverse reactions. Hence, employing topical delivery systems is preferred to ensure efficient dermal delivery of antifungal agents while minimizing side effects. Furthermore, the incorporation of penetration enhancers into nanocarriers loaded with antifungal agents has demonstrated enhanced efficacy in combating mycotic infections. Consequently, ultra-deformable penetration enhancer-containing vesicles (PEVs) were developed to explore this promising approach. In this study, Labrasol® and Transcutol® were used as penetration enhancers in formulating ultra-deformable PEVs containing the antifungal agent Fluconazole (FCZ). The PEVs underwent comprehensive characterization, including measurements of particle size (PS), charge, and entrapment efficiency (EE%). The results revealed that the size of tested PEVs ranged from 100 to 762 nm. All particles exhibited a negative charge, with a minimum zeta potential (ZP) of -38.26 mV, and an intermediate entrapment efficiency (EE%) that reached approximately 40%w/w. Ex-vivo studies demonstrated the ability of PEVs to deliver FCZ to the dermis while minimizing transdermal delivery. The selected formula was tested in-vivo using candidiasis-induced rat model and showed a superiority in its antifungal effect against Candida Albicans compared to the drug control. Stability studies were executed for the selected formula, and revealed good stability shown by the insignificant change in the PS, ZP& EE% over a six-month period.
Collapse
Affiliation(s)
- Fatma A Sarhan
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
- Department of Pharmaceutics (Physical Properties), Egyptian Drug Authority (EDA) Formerly Known as National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Departement of Pharmaceutics, Egypt-Japan University of Science and Technology (EJUST), Alexandria, Egypt
| | - Manal Yassin Hamza
- Department of Pharmaceutics (Physical Properties), Egyptian Drug Authority (EDA) Formerly Known as National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Rawat PS, Ravi PR, Khan MS, Mahajan RR, Szeleszczuk Ł. Nebivolol Polymeric Nanoparticles-Loaded In Situ Gel for Effective Treatment of Glaucoma: Optimization, Physicochemical Characterization, and Pharmacokinetic and Pharmacodynamic Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1347. [PMID: 39195385 DOI: 10.3390/nano14161347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Nebivolol hydrochloride (NEB), a 3rd-generation beta-blocker, was recently explored in managing open-angle glaucoma due to its mechanism of action involving nitric oxide release for the vasodilation. To overcome the issue of low ocular bioavailability and the systemic side effects associated with conventional ocular formulation (aqueous suspension), we designed and optimized polycaprolactone polymeric nanoparticles (NEB-PNPs) by applying design of experiments (DoE). The particle size and drug loading of the optimized NEB-PNPs were 270.9 ± 6.3 nm and 28.8 ± 2.4%, respectively. The optimized NEB-PNPs were suspended in a dual-sensitive in situ gel prepared using a mixture of P407 + P188 (as a thermo-sensitive polymer) and κCRG (as an ion-sensitive polymer), reported previously by our group. The NEB-PNPs-loaded in situ gel (NEB-PNPs-ISG) formulation was characterized for its rheological behavior, physical and chemical stability, in vitro drug release, and in vivo efficacy. The NEB-PNPs-loaded in situ gel, in ocular pharmacokinetic studies, achieved higher aqueous humor exposure (AUC0-t = 329.2 ng × h/mL) and for longer duration (mean residence time = 9.7 h) than compared to the aqueous suspension of plain NEB (AUC0-t = 189 ng × h/mL and mean residence time = 6.1 h) reported from our previous work. The pharmacokinetic performance of NEB-PNPs-loaded in situ gel translated into a pharmacodynamic response with 5-fold increase in the overall percent reduction in intraocular pressure by the formulation compared to the aqueous suspension of plain NEB reported from our previous work. Further, the mean response time of NEB-PNPs-loaded in situ gel (12.4 ± 0.6 h) was three times higher than aqueous suspension of plain NEB (4.06 ± 0.3 h).
Collapse
Affiliation(s)
- Pradeep Singh Rawat
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
| | - Punna Rao Ravi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
| | - Mohammed Shareef Khan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
| | - Radhika Rajiv Mahajan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Shehata TM, Aldhubiab B, Elsewedy HS. Virgin Coconut Oil-based Nanostructured Lipid Carrier Improves the Hypolipidemic Effect of Rosuvastatin. Int J Nanomedicine 2024; 19:7945-7961. [PMID: 39130688 PMCID: PMC11313597 DOI: 10.2147/ijn.s463750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Background Monitoring noncommunicable diseases is regarded as a critical concern that has to be managed in order to avoid a wide variety of complications such as increasing blood lipid levels known as dyslipidemia. Statin drugs, mostly, Rosuvastatin (RSV) was investigated for its effectiveness in treating dyslipidemia. However, reaching the most efficient treatment is essential and improving the effect of RSV is crucial. Therefore, a combination therapy was a good approach for achieving significant benefit. Although RSV is hydrophobic, which would affect its absorption and bioavailability following oral administration, overcoming this obstacle was important. Purpose To that end, the purpose of the present investigation was to incorporate RSV into certain lipid-based nanocarriers, namely, nanostructured lipid carrier (NLC) prepared with virgin coconut oil (CCO). Methods The optimized RSV-NLC formula was selected, characterized and examined for its in vitro, kinetic, and stability profiles. Eventually, the formula was investigated for its in vivo hypolipidemic action. Results The optimized NLC formulation showed a suitable particle size (279.3±5.03 nm) with PDI 0.237 and displayed good entrapment efficiency (75.6±1.9%). Regarding in vitro release, it was efficiently prolonged for 24 h providing 93.7±1.47%. The optimized formula was established to be stable after 3 months storage at two different conditions; 4°C and 25°C. Importantly, including CCO in the development of RSV-NLC could impressively enhance lowering total cholesterol level in obese rat models, which endorse the potential synergistic action between RSV and CCO. Conclusion The study could elucidate the impact of developing NLC using CCO for improving RSV anti-hyperlipidemic activity.
Collapse
Affiliation(s)
- Tamer M Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
| | - Heba S Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 11597, Saudi Arabia
| |
Collapse
|
8
|
Far BF, Safaei M, Pourmolaei A, Adibamini S, Shirdel S, Shirdel S, Emadi R, Kaushik AK. Exploring Curcumin-Loaded Lipid-Based Nanomedicine as Efficient Targeted Therapy for Alzheimer's Diseases. ACS APPLIED BIO MATERIALS 2024; 7:3535-3555. [PMID: 38768054 DOI: 10.1021/acsabm.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Alzheimer's disease (AD) is a neurological condition currently with 47 million people suffering from it globally. AD might have many reasons such as genetic issues, environmental factors, and Aβ accumulation, which is the biomarker of the disease. Since the primary reason is unknown, there is no targeted treatment at the moment, but ongoing research aims to slow its progression by managing amyloid-beta peptide production rather than symptomatic improvement. Since phytochemicals have been demonstrated to possess antioxidant, anti-inflammatory, and neuroprotective properties, they may target multiple pathological factors and can reduce the risk of the disease. Curcumin, as a phytochemical found in turmeric known for its antioxidant, free radical scavenging properties, and as an antiamyloid in treating AD, has come under investigation. Although its low bioavailability limits its efficacy, a prominent drug delivery system (DDS) is desired to overcome it. Hence, the potency of lipid-based nanoparticles encapsulating curcumin (LNPs-CUR) is considered in this study as a promising DDS. In vivo studies in animal models indicate LNPs-CUR effectively slow amyloid plaque formation, leading to cognitive enhancement and reduced toxicity compared to free CUR. However, a deeper understanding of CUR's pharmacokinetics and safety profile is crucial before LNPs-CUR can be considered as a medicine. Future investigations may explore the combination of NPs with other therapeutic agents to increase their efficacy in AD cases. This review provides the current position of CUR in the AD therapy paradigm, the DDS suggestions for CUR, and the previous research from the point of analytical view focused on the advantages and challenges.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, 99628 Famagusta, Turkey
| | - Ali Pourmolaei
- Babol Noshirvani University of Technology, Shariati Avenue, Babol 4714871167, Mazandaran, Iran
| | - Shaghyegh Adibamini
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shiva Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Shabnam Shirdel
- Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz 5166616471, Iran
| | - Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophysics (IBB), University of Tehran, Tehran 1417935840, Iran
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
- School of Technology, Woxsen University, Telangana 502345, India
| |
Collapse
|
9
|
Cimino C, Bonaccorso A, Tomasello B, Alberghina GA, Musumeci T, Puglia C, Pignatello R, Marrazzo A, Carbone C. W/O/W Microemulsions for Nasal Delivery of Hydrophilic Compounds: A Preliminary Study. J Pharm Sci 2024; 113:1636-1644. [PMID: 38281664 DOI: 10.1016/j.xphs.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
The administration of hydrophilic therapeutics has always been a great challenge because of their low bioavailability after administration. For this purpose, W/O/W microemulsion resulted to be a potential successful strategy for the delivery of hydrophilic compounds, interesting for the nasal mucosal therapy. Herein, an optimized biphasic W/O microemulsion was designed, through a preliminary screening, and it was inverted in a triphasic W/O/W microemulsion, intended for the nasal administration. In order to enhance the mucosal retention, surface modification of the biphasic W/O microemulsion was performed adding didodecyldimethylammonium bromide, and then converting the system into a cationic triphasic W/O/W microemulsion. The developed samples were characterized in terms of droplet size, polydispersity, zeta potential, pH and osmolality. The physical long-term stability was analyzed storing samples at accelerated conditions (40 ± 2 °C and 75 ± 5 % RH) for 6 months in a constant climate chamber, following ICH guidelines Q1A (R2). In order to verify the potential retention on the nasal mucosa, the two triphasic systems were analyzed in terms of mucoadhesive properties, measuring the in vitro interaction with mucin over time. Furthermore, fluorescein sodium salt was selected as a model hydrophilic drug to be encapsulated into the inner core of the two triphasic W/O/W microemulsions, and its release was analyzed compared to the free probe solution. The cytocompatibility of the two platforms was assessed on two cell lines, human fibroblasts HFF1 and Calu-3 cell lines, chosen as pre-clinical models for nasal and bronchial/tracheal airway epithelium.
Collapse
Affiliation(s)
- Cinzia Cimino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Giovanni Anfuso Alberghina
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Carmelo Puglia
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Agostino Marrazzo
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; Medicinal Chemistry Laboratory, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy; NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy.
| |
Collapse
|
10
|
Yadav K, Vijayalakshmi R, Kumar Sahu K, Sure P, Chahal K, Yadav R, Sucheta, Dubey A, Jha M, Pradhan M. Exosome-Based Macromolecular neurotherapeutic drug delivery approaches in overcoming the Blood-Brain barrier for treating brain disorders. Eur J Pharm Biopharm 2024; 199:114298. [PMID: 38642716 DOI: 10.1016/j.ejpb.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Delivering drugs to the brain is a complex challenge in medical research, particularly for disorders like Alzheimer's and Parkinson's. The blood-brain barrier restricts the entry of many therapeutic molecules, hindering their effectiveness. Nanoparticles, a potential solution, face issues like toxicity and limited approvals. A new avenue explores the use of small extracellular vesicles (sEVs), i.e., exosomes, as natural carriers for drug delivery. sEVs, tiny structures below 150 nm, show promise due to their minimal immune response and ability to precisely deliver drugs. This review focuses on the potential of sEVs-based drug delivery systems for treating neurological disorders, brain cancers, and other brain-related issues. Notably, bioengineered sEVs-carrying therapeutic compounds exhibit promise in early studies. The unique features of sEVs, such as their small size and natural properties, position them as candidates to overcome challenges in drug delivery to the brain. Ongoing clinical trials and research into sEVs behavior within the body further highlight their potential for revolutionizing drug delivery and addressing complex brain conditions.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP, 533296, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - Kavita Chahal
- Department of Botany, Government Model Science College Jabalpur, Madhya Pradesh, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru-575018, Karnataka, India
| | - Megha Jha
- Department of Life Science, Mansarovar Global University, Sehore, M.P., India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur, Chhattisgarh, 493661, India.
| |
Collapse
|
11
|
Koli R, Mannur VS, Shetti PP. Robust high-performance thin-layer chromatography (HPTLC) method for stability assessment and simultaneous quantification of epigallocatechin-3-gallate and rosmarinic acid in lipid-based nanoparticles and biological matrices. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38623624 DOI: 10.1002/pca.3360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Skin cancer poses a significant health risk globally, necessitating effective and safe therapeutic interventions. Epigallocatechin-3-gallate (EGCG) from green tea and rosmarinic acid (RA) from herbs like rosemary offer promising anticancer properties. Combining these compounds may enhance their effectiveness, prompting the need for a reliable analytical method to quantify them. OBJECTIVE Herein, we present the development and validation of a high-performance thin-layer chromatography (HPTLC) method for concurrent quantification of EGCG and RA in lipid-based nanoparticles and biological samples. METHODOLOGY The method underwent optimisation through design of experiments (DoE), resulting in the establishment of robust chromatographic conditions. The separation process utilised aluminium HPTLC plates coated with silica gel 60 F254 as the stationary phase, with the mobile phase comprising ethyl acetate, toluene, formic acid, and methanol in a ratio of 4:4:1:1 v/v. RESULTS The retention factor (Rf) values obtained were 0.38 for EGCG and 0.61 for RA. The method demonstrated linearity over a range of 100-500 ng/band for both compounds with excellent correlation coefficients. Limits of detection and quantification were determined, indicating high sensitivity. Precision evaluations revealed relative standard deviation below 2%, ensuring method reproducibility. Recovery assays in lipid-based nanoparticles, plasma, and urine samples demonstrated excellent recoveries (96.2%-102.1%). Forced degradation studies revealed minimal degradation under various stress conditions, with photolytic degradation showing the least impact. CONCLUSION The developed HPTLC method offers a rapid, sensitive, and reliable approach for quantifying EGCG and RA, laying the groundwork for their further investigation as anticancer agents alone and in combination therapies.
Collapse
Affiliation(s)
- Rahul Koli
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Vinod S Mannur
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Priya P Shetti
- Dr Prabhakar Kore, Basic Science Research Centre, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| |
Collapse
|
12
|
Najm A, Niculescu AG, Grumezescu AM, Beuran M. Emerging Therapeutic Strategies in Sarcopenia: An Updated Review on Pathogenesis and Treatment Advances. Int J Mol Sci 2024; 25:4300. [PMID: 38673885 PMCID: PMC11050002 DOI: 10.3390/ijms25084300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia is a prevalent degenerative skeletal muscle condition in the elderly population, posing a tremendous burden on diseased individuals and healthcare systems worldwide. Conventionally, sarcopenia is currently managed through nutritional interventions, physical therapy, and lifestyle modification, with no pharmaceutical agents being approved for specific use in this disease. As the pathogenesis of sarcopenia is still poorly understood and there is no treatment recognized as universally effective, recent research efforts have been directed at better comprehending this illness and diversifying treatment strategies. In this respect, this paper overviews the new advances in sarcopenia treatment in correlation with its underlying mechanisms. Specifically, this review creates an updated framework for sarcopenia, describing its etiology, pathogenesis, risk factors, and conventional treatments, further discussing emerging therapeutic approaches like new drug formulations, drug delivery systems, stem cell therapies, and tissue-engineered scaffolds in more detail.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| |
Collapse
|
13
|
Sonawane D, Pokharkar V. Quercetin-Loaded Nanostructured Lipid Carrier In Situ Gel for Brain Targeting Through Intranasal Route: Formulation, In Vivo Pharmacokinetic and Pharmacodynamic Studies. AAPS PharmSciTech 2024; 25:30. [PMID: 38316672 DOI: 10.1208/s12249-024-02736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Quercetin (QT) shows potential for protecting against neurodegenerative diseases like Alzheimer's. However, its limited bioavailability and instability in physiological pH hinder its clinical use. The purpose of this work is to construct QT-filled nanostructured lipid carriers (QT-NLC) intranasal in situ gel to enhance pharmacokinetic and pharmacodynamic performance. NLCs were developed using a melt emulsification-high-pressure homogenization and were optimized using design expert software with the Box-Behnken design. NLCs were then incorporated into an in situ gel based on Lutrol F127 and further characterized. The pharmacodynamics of the formulation was evaluated in neurodegeneration induced by trimethyl tin (TMT) Wistar rats. The optimized QT in situ gel had spherical shape, entrapment efficiency of 96.1 ± 4.40%, and in vitro drug release of 83.74 ± 1.40%. The mean particle size was 123.3 ± 5.46 nm. After intranasal administration, in vivo single-dose pharmacokinetic studies demonstrated a significant therapeutic concentration of drug in CNS, having Cmax 183.41 ± 11.76 ng/mL and Tmax of 2 h. The more brain targeting efficiency of NLCs was proved by the developed QT in situ gel, which had a higher drug targeting efficiency (DTE) of 117.47% and drug targeting potential (DTP) of 88.9%. As compared to the neurodegeneration control group, the QT in situ gel-treated group had significantly decreased escape latency and pathlength. Biochemical analysis and histological investigations demonstrated that QT in situ gel exhibited superior anti-Alzheimer's potential compared to standard drug, donepezil. The promising results of the developed and optimized intranasal QT in situ gel suggest its potential and can be used in Alzheimer's disease management.
Collapse
Affiliation(s)
- Devika Sonawane
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Paud Road, Erandwane, Pune, 411038, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Bharati Vidyapeeth (Deemed to be University), Poona College of Pharmacy, Paud Road, Erandwane, Pune, 411038, India.
| |
Collapse
|
14
|
Ali HSM, Namazi N, Elbadawy HM, El-Sayed AAA, Ahmed SA, Bafail R, Almikhlafi MA, Alahmadi YM. Repaglinide-Solid Lipid Nanoparticles in Chitosan Patches for Transdermal Application: Box-Behnken Design, Characterization, and In Vivo Evaluation. Int J Nanomedicine 2024; 19:209-230. [PMID: 38223883 PMCID: PMC10788056 DOI: 10.2147/ijn.s438564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Background Repaglinide (REP) is an antidiabetic drug with limited oral bioavailability attributable to its low solubility and considerable first-pass hepatic breakdown. This study aimed to develop a biodegradable chitosan-based system loaded with REP-solid lipid nanoparticles (REP-SLNs) for controlled release and bioavailability enhancement via transdermal delivery. Methods REP-SLNs were fabricated by ultrasonic hot-melt emulsification. A Box-Behnken design (BBD) was employed to explore and optimize the impacts of processing variables (lipid content, surfactant concentration, and sonication amplitude) on particle size (PS), and entrapment efficiency (EE). The optimized REP-SLN formulation was then incorporated within a chitosan solution to develop a transdermal delivery system (REP-SLN-TDDS) and evaluated for physicochemical properties, drug release, and ex vivo permeation profiles. Pharmacokinetic and pharmacodynamic characteristics were assessed using experimental rats. Results The optimized REP-SLNs had a PS of 249±9.8 nm and EE of 78%±2.3%. The developed REP-SLN-TDDS demonstrated acceptable characteristics without significant aggregation of REP-SLNs throughout the casting and drying processes. The REP-SLN-TDDS exhibited a biphasic release pattern, where around 36% of the drug load was released during the first 2 h, then the drug release was sustained at around 80% at 24 h. The computed flux across rat skin for the REP-SLN-TDDS was 2.481±0.22 μg/cm2/h in comparison to 0.696±0.07 μg/cm2/h for the unprocessed REP, with an enhancement ratio of 3.56. The REP-SLN-TDDS was capable of sustaining greater REP plasma levels over a 24 h period (p<0.05). The REP-SLN-TDDS also reduced blood glucose levels compared to unprocessed REP and commercial tablets (p<0.05) in experimental rats. Conclusion Our REP-SLN-TDDS can be considered an efficient therapeutic option for REP administration.
Collapse
Affiliation(s)
- Hany S M Ali
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawwarah, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Nader Namazi
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Hossein M Elbadawy
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Abdelaziz A A El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig, Al-Sharqiya, Egypt
| | - Sameh A Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Rawan Bafail
- Department of Pharmaceutics and Pharmaceutical Industries, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Yaser M Alahmadi
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Al-Madinah Al-Munawarah, 30001Saudi Arabia
| |
Collapse
|
15
|
Gunawan M, Boonkanokwong V. Current applications of solid lipid nanoparticles and nanostructured lipid carriers as vehicles in oral delivery systems for antioxidant nutraceuticals: A review. Colloids Surf B Biointerfaces 2024; 233:113608. [PMID: 37925866 DOI: 10.1016/j.colsurfb.2023.113608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Antioxidant nutraceuticals can be found in several dietary sources and have been utilized for various medical benefits including health promotion, disease prevention, and support for treatment of acute and/or chronic diseases. Nonetheless, there are some limitations in delivering antioxidants via oral administration such as low solubility and permeability, pH and enzyme degradation, and instability of the compounds along the gastrointestinal tract leading to low bioavailability. In order to tackle these challenges, the utilization of lipid nanoparticles has numerous advantages to the escalating delivery system of antioxidants in nutraceuticals across the gastrointestinal tract barrier. Nowadays, several types of lipid nanoparticles can be used in antioxidant nutraceutical delivery systems through the oral route, namely solid lipid nanoparticles and nanostructured lipid carriers. This review article aims to provide notable information on the importance and applications of lipid nanoparticles in antioxidant delivery systems from nutraceuticals by an oral route. The mechanism in enhancing antioxidant compound transport across the gastrointestinal tract can occur by elevating loading capacity, improving chemical and physical stability, and increasing its bioavailability. To date, lipid nanoparticle vehicles have been developed to improve the delivery of antioxidant compounds to enhance bioavailability via oral routes. Lipid nanoparticles have remarkable benefits in delivering antioxidant nutraceuticals via oral administration. Hence, scale-up and commercialization of antioxidant nutraceutical-loaded lipid nanoparticles have been a potential technology in recent years. Subsequently, several vegetable and natural oils with antioxidant activity can also be utilized for nanoparticle formulation lipid components to increase nutraceuticals' antioxidant properties and bioavailability.
Collapse
Affiliation(s)
- Maxius Gunawan
- Graduate Program of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
16
|
Ma T, Zhang J, Yang L, Zhang S, Long X, Zeng Q, Li Z, Ren X, Yang F. Reusable and Practical Biocomposite Based on Sphingopyxis sp. YF1 and Polyacrylonitrile-Based Carbon Fiber for the Efficient Bioremediation of Microcystin-LR-Contaminated Water. Toxins (Basel) 2023; 16:20. [PMID: 38251236 PMCID: PMC10819031 DOI: 10.3390/toxins16010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Microbial degradation is a cost-effective and environmentally friendly method for removing microcystin-LR (MC-LR). However, the application of free bacteria has limitations due to low operational stability and difficulties in recovery. In a previous study, our group successfully isolated a highly efficient MC-LR-degrading bacterium, Sphingopyxis sp. YF1, from Taihu. To enhance its practical potential in addressing MC-LR-contaminated water pollution, a novel biological material named polyacrylonitrile-based carbon fiber @Sphingopyxis sp. YF1 (PAN-CF@YF1) was synthesized. The immobilization conditions of strain Sphingopyxis sp. YF1 on PAN-CF surfaces were optimized using Box-Behnken design and response surface methodology (RSM), which turned out to be an optimal pH of 7.6 for the culture medium, a ratio of 0.038 g of supporting materials per 100 mL of culture media, and an incubation time of 53.4 h. The resultant PAN-CF@YF1 showed a great degradation effect both for low and high concentrations of MC-LR and exhibited satisfactory cyclic stability (85.75% after six cycles). Moreover, the application of PAN-CF@YF1 in the bioreactors demonstrated effective and sustainable MC-LR removal, with a removal efficiency of 78.83% after three consecutive treatments. Therefore, PAN-CF@YF1 with high degradation activity, environmental compatibility, straightforward preparation, and recyclability shows significant application potential for the bioremediation of MC-LR-contaminated water bodies.
Collapse
Affiliation(s)
- Tian Ma
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Jiajia Zhang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| | - Lili Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Shengyu Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Qingyi Zeng
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, China
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; (T.M.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China
| |
Collapse
|
17
|
Reena K, Mittal S, Faizan M, Jahan I, Rahman Y, Khan R, Singh L, Alhalmi A, Noman OM, Alahdab A. Enhancement of Curcumin's Anti-Psoriatic Efficacy via Formulation into Tea Tree Oil-Based Emulgel. Gels 2023; 9:973. [PMID: 38131959 PMCID: PMC10743130 DOI: 10.3390/gels9120973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by the hyperproliferation and aberrant differentiation of epidermal keratinocytes. It is a debilitating condition that can cause significant physical and emotional distress. Natural anti-psoriatic agents have been investigated as alternatives to conventional allopathic medications, as they have notable limitations and drawbacks. Curcumin and tea tree oil are cost-efficient and effective anti-inflammatory medicines with less adverse effects compared to synthetic psoriasis medications. Our research endeavors to harness the therapeutic potential of these natural compounds by developing an herbal anti-psoriatic topical drug delivery system. This novel method uses curcumin and tea tree oil to create a bi-phasic emulgel drug delivery system. Formulations F1 (gel) and F2 (emulgel) have high drug content percentages of 84.2% and 96.7%, respectively. The emulgel showed better spreadability for cutaneous applications, with a viscosity of 92,200 ± 943 cp compared to the gel's 56,200 ± 1725 cp. The emulgel released 94.48% of the drugs, compared to 87.58% for the gel. These formulations conform to the zero-order and Higuchi models, and their stability over a three-month period is crucial. In vivo, the emulgel healed psoriasis symptoms faster than the usual gel. The gathered results confirmed the emulgel's potential as a drug delivery method, emphasizing the complementary benefits of tea tree oil and curcumin as an effective new therapy for psoriasis.
Collapse
Affiliation(s)
- Km Reena
- Department of Pharmacy, Invertis University, Bareilly 243123, India;
| | - Saurabh Mittal
- Center of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Mohammad Faizan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Iram Jahan
- Department of Physiology, Hamdard Institute of Medical Science and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Yasir Rahman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Y.R.); (R.K.); (A.A.)
| | - Rahmuddin Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Y.R.); (R.K.); (A.A.)
| | - Lalit Singh
- Faculty of Pharmacy, Future Institute of Medical Sciences, Bareilly 243202, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (Y.R.); (R.K.); (A.A.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
18
|
Deepak P, Kumar P, Pandey P, Arya DK, Jaiswal S, Kumar A, Sonkar AB, Ali D, Alarifi S, Ramar M, Rajinikanth PS. Pentapeptide cRGDfK-Surface Engineered Nanostructured Lipid Carriers as an Efficient Tool for Targeted Delivery of Tyrosine Kinase Inhibitor for Battling Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7021-7046. [PMID: 38046236 PMCID: PMC10693281 DOI: 10.2147/ijn.s438307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Background Antitumor research aims to efficiently target hepatocarcinoma cells (HCC) for drug delivery. Nanostructured lipid carriers (NLCs) are promising for active tumour targeting. Cell-penetrating peptides are feasible ligands for targeted cancer treatment. Methods In this study, we optimized gefitinib-loaded NLCs (GF-NLC) for HCC treatment. The NLCs contained cholesterol, oleic acid, Pluronic F-68, and Phospholipon 90G. The NLC surface was functionalized to enhance targeting with the cRGDfK-pentapeptide, which binds to the αvβ3 integrin receptor overexpressed on hepatocarcinoma cells. Results GF-NLC formulation was thoroughly characterized for various parameters using differential scanning calorimetry and X-ray diffraction analysis. In-vitro and in-vivo studies on the HepG2 cell line showed cRGDfK@GF-NLC's superiority over GF-NLC and free gefitinib. cRGDfK@GF-NLC exhibited significantly higher cytotoxicity, growth inhibition, and cellular internalization. Biodistribution studies demonstrated enhanced tumour site accumulation without organ toxicity. The findings highlight cRGDfK@GF-NLC as a highly efficient carrier for targeted drug delivery, surpassing non-functionalized NLCs. These functionalized NLCs offer promising prospects for improving hepatocarcinoma therapy outcomes by specifically targeting HCC cells. Conclusion Based on these findings, cRGDfK@GF-NLC holds immense potential as a highly efficient carrier for targeted drug delivery of anticancer agents, surpassing the capabilities of non-functionalized NLCs. This research opens up new avenues for effective treatment strategies in hepatocarcinoma.
Collapse
Affiliation(s)
- Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
- S.D College of Pharmacy and Vocational Studies, Muzaffarnagar, Uttar Pradesh, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Shweta Jaiswal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Connecticut, Storrs, CT, 02903, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Garg R, Garg A. Tacrolimus loaded nanostructured lipid carriers using Moringa oleifera seed oil: design, optimization and in-vitro evaluations. J Microencapsul 2023; 40:502-516. [PMID: 37366651 DOI: 10.1080/02652048.2023.2231075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
The proposed research aims to develop Tacrolimus-loaded nanostructured lipid carriers (TAC-loaded NLCs) to overcome poor aqueous solubility and dissolution rate to enhance its oral absorption. A central composite design was used to optimise the amount of Poloxamer 188 and D-α-Tocopherol-polyethylene-glycol-succinate (TPGS). The optimised TAC-loaded NLCs contain stearic acid (250 mg), Moringa oleifera (MO) seed oil (50 mg), TAC (Tacrolimus: 10 mg), TPGS (60 mg), and Poloxamer 188 (1% w/v) with a mean diameter of 393.3 ± 29.68 nm, a zeta potential of -18.3 ± 6.19 mV, high entrapment efficiency (92.12 ± 1.14% w/w), and desirability (0.989). TAC-loaded NLCs showed ∼12 times higher drug dissolution efficiency, while in-vitro anti-inflammatory studies showed ∼1.8 times lower IC50 (half-maximal inhibitory concentration) than TAC suspension. The lyophilised TAC-loaded NLCs were found to be stable after 3 months. Thus, the present study concludes the successful encapsulation of TAC in NLCs made of stearic acid and MO seed oil.
Collapse
Affiliation(s)
- Rajat Garg
- Institute of Pharmaceutical Research, GLA University, NH-2 Mathura Delhi Road, P.O-Chaumuhan, Mathura, India
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, NH-2 Mathura Delhi Road, P.O-Chaumuhan, Mathura, India
| |
Collapse
|
20
|
AlMulhim FM, Nair AB, Aldhubiab B, Shah H, Shah J, Mewada V, Sreeharsha N, Jacob S. Design, Development, Evaluation, and In Vivo Performance of Buccal Films Embedded with Paliperidone-Loaded Nanostructured Lipid Carriers. Pharmaceutics 2023; 15:2530. [PMID: 38004510 PMCID: PMC10674218 DOI: 10.3390/pharmaceutics15112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic effectiveness of paliperidone in the treatment of schizophrenia has been limited by its poor oral bioavailability; hence, an alternative route could be appropriate. This study investigates the feasibility of developing a buccal film impregnated with paliperidone-loaded nanostructured lipid carriers (NLCs) and assesses the potential to enhance its bioavailability. Box-Behnken-based design optimization of NLCs was performed by examining the particles' physical characteristics. The polymeric film was used to load optimized NLCs, which were then assessed for their pharmaceutical properties, permeability, and pharmacokinetics. The optimization outcomes indicated that selected formulation variables had a considerable (p < 0.05) impact on responses such as particle size, entrapment efficiency, and % drug release. Desired characteristics such as a negative charge, higher entrapment efficiency, and nanoparticles with ideal size distribution were shown by optimized NLC dispersions. The developed film demonstrated excellent physico-mechanical properties, appropriate texture, good drug excipient compatibility (chemically stable formulation), and amorphous drug nature. A sustained Weibull model drug release (p < 0.0005) and superior flux (~5-fold higher, p < 0.005) were seen in NLC-loaded film compared to plain-drug-loaded film. The pharmacokinetics profile in rabbits supports the goal of buccal therapy as evidenced by significantly higher AUC0-12 (p < 0.0001) and greater relative bioavailability (236%) than the control. These results support the conclusion that paliperidone-loaded NLC buccal film has the potential to be an alternate therapy for its effective administration in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Fahad Mohammed AlMulhim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
- Department of Pharmacy Services, Johns Hopkins Aramco Health Care (JHAH), Dharan 34464, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
| | - Hiral Shah
- Department of Pharmaceutics, Parul College of Pharmacy and Research, Parul University, Ahmedabad 380058, India;
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (J.S.); (V.M.)
| | - Vivek Mewada
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India; (J.S.); (V.M.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (B.A.); (N.S.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| |
Collapse
|
21
|
Khute S, Jangde RK. Optimization of Nasal Liposome Formulation of Venlafaxine Hydrochloride using a Box-Behnken Experimental Design. CURRENT THERAPEUTIC RESEARCH 2023; 99:100714. [PMID: 37727460 PMCID: PMC10506098 DOI: 10.1016/j.curtheres.2023.100714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023]
Abstract
Background Intranasal administration is among the most effective alternatives to deliver drugs directly to the brain and prevent first-pass metabolism. Venlafaxine-loaded liposomes are biocompatible carriers that enhance transport qualities over the nasal mucosa. Objective This research aimed to develop, formulate, characterize, and observe the prepared formulation. Methods The formulation was developed using the thin-film hydration technique. The response surface plot interrelationship between three independent variables are lipid, cholesterol and polymer and four dependent variables such as particle size, percentage entrapment efficiency, and percentage drug release were ascertained using the Box-Behnken design. Results The drug-release chitosan-coated liposomes were reported to have a particle size distribution, entanglement efficiency, and 84%, respectively, of 191 ± 34.71 nm, 94 ± 2.71% and 94 ± 2.71%. According to in vitro investigations, liposomes as a delivery system for the nasal route provided a more sustained drug release than the oral dosing form. Conclusions The intranasal administration of venlafaxine liposomal vesicles effectively enhanced the absolute bioavailability, retention time, and brain delivery of venlafaxine.
Collapse
Affiliation(s)
- Sulekha Khute
- University Institute of Pharmacy, Pt Ravishankar Shukla University, Chhattisgarh, India
| | - Rajendra K. Jangde
- University Institute of Pharmacy, Pt Ravishankar Shukla University, Chhattisgarh, India
| |
Collapse
|
22
|
Kumar P, Mangla B, Javed S, Ahsan W, Aggarwal G. Amelioration of the therapeutic potential of gefitinib against breast cancer using nanostructured lipid carriers. Nanomedicine (Lond) 2023; 18:1139-1160. [PMID: 37665053 DOI: 10.2217/nnm-2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Aim: This study aimed to improve the delivery and therapeutic potential of gefitinib (GTB) against breast cancer by preparing GTB-loaded, nanostructured lipid carriers (GTB-NLCs). Materials & methods: Box-Behnken design was used for optimization and GTB was loaded into NLCs using ultrasonication. The GTB-NLCs were characterized using in vitro, ex vivo and in vivo studies. The anticancer efficacy of GTB-NLCs was evaluated using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity and flow cytometry on MCF-7 breast cancer cell lines. Results: Optimized GTB-NLCs were successfully characterized and demonstrated improved internalization and enhanced cytotoxicity compared with plain GTB. Gut permeation studies showed enhanced intestinal permeability, and pharmacokinetic analysis revealed 2.6-fold improvement in GTB oral bioavailability. Conclusion: GTB-NLCs effectively enhanced the therapeutic potential of GTB against breast cancer.
Collapse
Affiliation(s)
- Pankaj Kumar
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| | - Bharti Mangla
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| | - Geeta Aggarwal
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences & Research University, New Delhi, 110017, India
| |
Collapse
|
23
|
Mascarenhas M, Chaudhari P, Lewis SA. Natamycin Ocular Delivery: Challenges and Advancements in Ocular Therapeutics. Adv Ther 2023; 40:3332-3359. [PMID: 37289410 PMCID: PMC10329963 DOI: 10.1007/s12325-023-02541-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Fungal keratitis, an ocular fungal infection, is one of the leading causes of monocular blindness. Natamycin has long been considered the mainstay drug used for treating fungal keratitis and is the only US Food and Drug Administration (USFDA)-approved drug, commercially available as a topical 5% w/v suspension. Furthermore, ocular fungal infection treatment takes a few weeks to months to recover, and the available marketed antifungal suspensions are associated with poor residence time, limited bioavailability (< 5%) and high dosing frequency as well as minor irritation and discomfort. Despite these challenges, natamycin is still the preferred drug choice for treating fungal keratitis, as it has fewer side effects and less ocular toxicity and is more effective against Fusarium species than other antifungal agents. Several novel therapeutic approaches for the topical delivery of natamycin have been reported to overcome the challenges posed by the conventional dosage forms and to improve ocular bioavailability for the efficient management of fungal keratitis. Current progress in the delivery systems uses approaches aimed at improving the corneal residence time, bioavailability and antifungal potency, thereby reducing the dose and dosing frequency of natamycin. In this review, we discuss the various strategies explored to overcome the challenges present in ocular drug delivery of natamycin and improve its bioavailability for ocular therapeutics.
Collapse
Affiliation(s)
- Mabel Mascarenhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, 576104, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, 576104, India.
| |
Collapse
|
24
|
Mohanty D, Alsaidan OA, Zafar A, Dodle T, Gupta JK, Yasir M, Mohanty A, Khalid M. Development of Atomoxetine-Loaded NLC In Situ Gel for Nose-to-Brain Delivery: Optimization, In Vitro, and Preclinical Evaluation. Pharmaceutics 2023; 15:1985. [PMID: 37514171 PMCID: PMC10386213 DOI: 10.3390/pharmaceutics15071985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The present study investigates the brain-targeted efficiency of atomoxetine (AXT)-loaded nanostructured lipid carrier (NLC)-laden thermosensitive in situ gel after intranasal administration. AXT-NLC was prepared by the melt emulsification ultrasonication method and optimized using the Box-Behnken design (BBD). The optimized formulation (AXT-NLC) exhibited particle size PDI, zeta potential, and entrapment efficiency (EE) of 108 nm, 0.271, -42.3 mV, and 84.12%, respectively. The morphology of AXT-NLC was found to be spherical, as confirmed by SEM analysis. DSC results displayed that the AXT was encapsulated within the NLC matrix. Further, optimized NLC (AXT-NLC13) was incorporated into a thermosensitive in situ gel using poloxamer 407 and carbopol gelling agent and evaluated for different parameters. The optimized in situ gel (AXT-NLC13G4) formulation showed excellent viscosity (2532 ± 18 Cps) at 37 °C and formed the gel at 28-34 °C. AXT-NLC13-G4 showed a sustained release of AXT (92.89 ± 3.98% in 12 h) compared to pure AXT (95.47 ± 2.76% in 4 h). The permeation flux through goat nasal mucosa of AXT from pure AXT and AXT-NLC13-G4 was 504.37 µg/cm2·h and 232.41 µg/cm2·h, respectively. AXT-NLC13-G4 intranasally displayed significantly higher absolute bioavailability of AXT (1.59-fold higher) than intravenous administration. AXT-NLC13-G4 intranasally showed 51.91% higher BTP than pure AXT (28.64%) when administered via the same route (intranasally). AXT-NLC13-G4 showed significantly higher BTE (207.92%) than pure AXT (140.14%) when administered intranasally, confirming that a high amount of the AXT reached the brain. With the disrupted performance induced by L-methionine, the AXT-NLC13-G4 showed significantly (p < 0.05) better activity than pure AXT as well as donepezil (standard). The finding concluded that NLC in situ gel is a novel carrier of AXT for improvement of brain delivery by the intranasal route and requires further investigation for more justification.
Collapse
Affiliation(s)
- Dibyalochan Mohanty
- Department of Pharmaceutics (Centre for Nanomedicine), School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Trishala Dodle
- Department of Pharmaceutics (Centre for Nanomedicine), School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University Mathura, Chaumuhan 281406, Uttar Pradesh, India
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella P.O. Box 396, Ethiopia
| | - Anshuman Mohanty
- Product Development, Innovation and Science, Amway Global Services India Pvt. Ltd., Gurugram 122001, Haryana, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
25
|
Yadav K, Sahu KK, Sucheta, Gnanakani SPE, Sure P, Vijayalakshmi R, Sundar VD, Sharma V, Antil R, Jha M, Minz S, Bagchi A, Pradhan M. Biomedical applications of nanomaterials in the advancement of nucleic acid therapy: Mechanistic challenges, delivery strategies, and therapeutic applications. Int J Biol Macromol 2023; 241:124582. [PMID: 37116843 DOI: 10.1016/j.ijbiomac.2023.124582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
In the past few decades, substantial advancement has been made in nucleic acid (NA)-based therapies. Promising treatments include mRNA, siRNA, miRNA, and anti-sense DNA for treating various clinical disorders by modifying the expression of DNA or RNA. However, their effectiveness is limited due to their concentrated negative charge, instability, large size, and host barriers, which make widespread application difficult. The effective delivery of these medicines requires safe vectors that are efficient & selective while having non-pathogenic qualities; thus, nanomaterials have become an attractive option with promising possibilities despite some potential setbacks. Nanomaterials possess ideal characteristics, allowing them to be tuned into functional bio-entity capable of targeted delivery. In this review, current breakthroughs in the non-viral strategy of delivering NAs are discussed with the goal of overcoming challenges that would otherwise be experienced by therapeutics. It offers insight into a wide variety of existing NA-based therapeutic modalities and techniques. In addition to this, it provides a rationale for the use of non-viral vectors and a variety of nanomaterials to accomplish efficient gene therapy. Further, it discusses the potential for biomedical application of nanomaterials-based gene therapy in various conditions, such as cancer therapy, tissue engineering, neurological disorders, and infections.
Collapse
Affiliation(s)
- Krishna Yadav
- Raipur Institute of Pharmaceutical Education and Research, Sarona, Raipur, Chhattisgarh 492010, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Gurugram, Haryana 122103, India
| | | | - Pavani Sure
- Department of Pharmaceutics, Vignan Institute of Pharmaceutical Sciences, Hyderabad, Telangana, India
| | - R Vijayalakshmi
- Department of Pharmaceutical Analysis, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - V D Sundar
- Department of Pharmaceutical Technology, GIET School of Pharmacy, Chaitanya Knowledge City, Rajahmundry, AP 533296, India
| | - Versha Sharma
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Ruchita Antil
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, England, United Kingdom of Great Britain and Northern Ireland
| | - Megha Jha
- Department of Biotechnology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P. 470003, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, M.P., 484887, India
| | - Anindya Bagchi
- Tumor Initiation & Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road La Jolla, CA 92037, USA
| | | |
Collapse
|
26
|
Kesharwani D, Das Paul S, Paliwal R, Satapathy T. Development, QbD based optimization and in vitro characterization of Diacerein loaded nanostructured lipid carriers for topical applications. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
27
|
Kumbhar PS, Manjappa AS, Shah RR, Nadaf SJ, Disouza JI. Nanostructured Lipid Carrier-Based Gel for Repurposing Simvastatin in Localized Treatment of Breast Cancer: Formulation Design, Development, and In Vitro and In Vivo Characterization. AAPS PharmSciTech 2023; 24:106. [PMID: 37085596 DOI: 10.1208/s12249-023-02565-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Simvastatin (SMV) is noticed as a repurposed candidate to be effective against breast cancer (BC). However, poor solubility, dose-limiting toxicities, and side effects are critical hurdles in its use against BC. The above drawbacks necessitate the site-specific (localized) delivery of SMV via suitable nanocarriers. Therefore, the present study intended to develop SMV nanostructured lipid carrier (NLC)-based gel using carbopol-934 as a gelling agent to achieve local delivery and improve patient compliance while combating BC. The SMV NLCs were fabricated by melt-emulsification ultrasonication technique using stearic acid as solid lipid, olive oil (OO) as liquid lipid, tween 20 as a surfactant, and PEG-200 as a co-surfactant, and optimized by Box-Behnken design. The optimized SMV-loaded NLCs displayed % entrapment efficiency of 91.66 ± 5.2% and particle size of 182 ± 11.9 nm. The pH of NLC-based gels prepared using a 2.0% w/v of carbopol-934 was found in the range of 5.3-5.6 while the viscosity was in the range of 5.1-6.6 Pa.S. Besides, NLC-based gels exhibited higher and controlled SMV release (71-76%) at pH 6.8 and (78-84%) at pH 5.5 after 48 h than SMV conventional gel (37%) at both pH 6.8 and 5.5 after 48 h. The ex vivo permeation of SMV from NLC-based gel was 3.8 to 4.5 times more than conventional gel. Notably, SMV-loaded NLCs displayed ameliorated cytotoxicity than plain SMV against MCF-7 and MDA-MB-231 BC cells. No substantial difference was noticed in the cytotoxicity of NLC-based gels and pure SMV against both cell lines. The SMV NLC-based gel exhibited the absence of skin irritation in vivo in the mice following topical application. In addition, the histopathological study revealed no alteration in the mice skin anatomy. Furthermore, the SMV-loaded NLCs and NLC-based gels were stable for 6 months at refrigerator conditions (4°C ± 2°C). Thus, the present research confirms that NLC-based gel can be a safe, efficacious, and novel alternative to treat BC.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113
| | - Arehalli S Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113
| | - Rohit R Shah
- Appasaheb Birnale College of Pharmacy, Sangli, Maharashtra, India, 416416
| | - Sameer J Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - John I Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113.
| |
Collapse
|
28
|
Kesharwani D, Das Paul S, Paliwal R, Satapathy T. Exploring potential of diacerin nanogel for topical application in arthritis: Formulation development, QbD based optimization and pre-clinical evaluation. Colloids Surf B Biointerfaces 2023; 223:113160. [PMID: 36736175 DOI: 10.1016/j.colsurfb.2023.113160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Diacerein (DCN) is a chondroprotective agent which shows inadequate oral bioavailability along with gastrointestinal side effects. This study is intended to develop a topical novel DCN delivery system. DCN nanogel was prepared by emulsion solvent diffusion technique. The formulation was optimized by response surface methodology by taking two independent variables, concentration of carbopol 940 and eudragit RSPO and three dependent variables, particle size, % entrapment efficiency (EE) and % drug release at 24 h. The optimized formulation had adequat% EE, % drug release at 24 h and particle size. The particle size for optimized nanogel was 190.3 nm with % EE of 83.51% whereas % drug release at 24 h was found 90.13%. The optimized DCN nanogel was analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (DTIR) and transmission electron microscopy (TEM) studies. The drug release kinetic study has shown that the gel followed Higuchi's model and the diffusion was anomalous in nature. The nanogel was characterized for physical examination, viscosity, homogeneity and stability parameters and the results obtained were found upto the mark. The ex-vivo permeation study data was in correlation with results of in-vitro study. In-vivo anti-arthritic study proved the efficacy of developed formulation for arthritis in Freund's Adjuvant Arthritic model. This research work has proved the significant potential of innovated product for arthritis by topical route, as it overcomes the drawbacks of oral route, highly efficient, sustained and targeted the release of drug without any accumulation and toxicity.
Collapse
Affiliation(s)
| | - Swarnali Das Paul
- Shri Shankaracharya College of Pharmaceutical Sciences, Shri Shankaracharya Professional University, Bhilai, Chhattisgarh, India.
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Trilochan Satapathy
- University College of Pharmacy, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, India
| |
Collapse
|
29
|
Albasri OWA, Kumar PV, Rajagopal MS. Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin. Molecules 2023; 28:1833. [PMID: 36838817 PMCID: PMC9965590 DOI: 10.3390/molecules28041833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/17/2023] Open
Abstract
The oral delivery system is very important and plays a significant role in increasing the solubility of drugs, which eventually will increase their absorption by the digestive system and enhance the drug bioactivity. This study was conducted to synthesize a novel curcumin nano lipid carrier (NLC) and use it as a drug carrier with the help of computational molecular docking to investigate its solubility in different solid and liquid lipids to choose the optimum lipids candidate for the NLCs formulation and avoid the ordinary methods that consume more time, materials, cost, and efforts during laboratory experiments. The antiviral activity of the formed curcumin-NLC against SARS-CoV-2 (COVID-19) was assessed through a molecular docking study of curcumin's affinity towards the host cell receptors. The novel curcumin drug carrier was synthesized as NLC using a hot and high-pressure homogenization method. Twenty different compositions of the drug carrier (curcumin nano lipid) were synthesized and characterized using different physicochemical techniques such as UV-Vis, FTIR, DSC, XRD, particle size, the zeta potential, and AFM. The in vitro and ex vivo studies were also conducted to test the solubility and the permeability of the 20 curcumin-NLC formulations. The NLC as a drug carrier shows an enormous enhancement in the solubility and permeability of the drug.
Collapse
Affiliation(s)
| | - Palanirajan Vijayaraj Kumar
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutical Technology, UCSI University, Jalan Menara Gading, Taman Connaught, Cheras, Kuala Lumpur 56000, Malaysia
| | | |
Collapse
|
30
|
Metkar SP, Fernandes G, Nikam AN, Soman S, Birangal S, Seetharam RN, Joshi MB, Mutalik S. Mannosylated-Chitosan-Coated Andrographolide Nanoliposomes for the Treatment of Hepatitis: In Vitro and In Vivo Evaluations. MEMBRANES 2023; 13:193. [PMID: 36837696 PMCID: PMC9965523 DOI: 10.3390/membranes13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
A key diterpene lactone of Andrographis paniculata, i.e., andrographolide (AG), exhibits a variety of physiological properties, including hepatoprotection. The limited solubility, short half-life, and poor bioavailability limits the pharmacotherapeutic potential of AG. Therefore, in this study we aimed to formulate and optimize AG-loaded nanoliposomes (AGL) using the Design of Experiment (DOE) approach and further modify the surface of the liposomes with mannosylated chitosan to enhance its oral bioavailability. Physical, morphological, and solid-state characterization was performed to confirm the formation of AGL and Mannosylated chitosan-coated AGL (MCS-AGL). Molecular docking studies were conducted to understand the ligand (MCS) protein (1EGG) type of interaction. Further, in vitro release, ex vivo drug permeation, and in vivo pharmacokinetics studies were conducted. The morphological studies confirmed that AGL was spherical and a layer of MCS coating was observed on their surface, forming the MCS-AGL. Further increase in the particle size and change in the zeta potential of MCS-AGL confirms the coating on the surface of AGL (375.3 nm, 29.80 mV). The in vitro drug release data reflected a sustained drug release profile from MCS-AGL in the phosphate buffer (pH 7.4) with 89.9 ± 2.13% drug release in 8 h. Ex vivo permeation studies showed higher permeation of AG from MCS-AGL (1.78-fold) compared to plain AG and AGL (1.37-fold), indicating improved permeability profiles of MCS-AGL. In vivo pharmacokinetic studies inferred that MCS-AGL had a 1.56-fold enhancement in AUC values compared to plain AG, confirming that MCS-AGL improved the bioavailability of AG. Additionally, the 2.25-fold enhancement in the MRT proves that MCS coating also enhances the in vivo stability and retention of AG (stealth effect). MCS as a polymer therefore has a considerable potential for improving the intestinal permeability and bioavailability of poorly soluble and permeable drugs or phytoconstituents when coated over nanocarriers.
Collapse
Affiliation(s)
- Sayali Pravin Metkar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gasper Fernandes
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Raviraja N Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manjunath Bandu Joshi
- Department of Aging Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
31
|
Yadav H, Mahalvar A, Pradhan M, Yadav K, Kumar Sahu K, Yadav R. Exploring the potential of phytochemicals and nanomaterial: a boon to antimicrobial treatment. MEDICINE IN DRUG DISCOVERY 2023. [DOI: 10.1016/j.medidd.2023.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
32
|
Shete MB, Deshpande AS, Shende PK. Nanostructured lipid carrier-loaded metformin hydrochloride: Design, optimization, characterization, assessment of cytotoxicity and ROS evaluation. Chem Phys Lipids 2023; 250:105256. [PMID: 36372117 DOI: 10.1016/j.chemphyslip.2022.105256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Metformin hydrochloride (MET) is commonly used in diabetes treatment. Recently, it has gained interest for its anticancer potential against a wide range of cancers. Owing to its hydrophilic nature, the delivery and clinical actions of MET are limited. Therefore, the present work aims to develop MET-encapsulated NLCs using the hot-melt emulsification and probe-sonication method. The optimization was accomplished by 33 BB design wherein lipid ratio, surfactant concentration, and sonication time were independent variables while the PS (nm), PDI, and EE (%) were dependent variables. The PS, PDI, % EE and ZP of optimized GMSMET-NLCs were found to be 114.9 ± 1.32 nm, 0.268 ± 0.04 %, 60.10 ± 2.23 %, and ZP - 15.76 mV, respectively. The morphological features, DSC and PXRD, and FTIR analyses suggested the confirmation of formation of the NLCs. Besides, optimized GMSMET-NLCs showed up to 88 % MET release in 24 h. Moreover, GMSMET-NLCs showed significant cell cytotoxicity against KB oral cancer cells compared with MET solution as shown by the reduction of IC50 values. Additionally, GMSMET-NLCs displayed significantly increased intracellular ROS levels suggesting the GMSMET-NLCs induced cell death in KB cells. GMSMET-NLCs can therefore be explored to deliver MET through different routes of administration for the effective treatment of oral cancer.
Collapse
Affiliation(s)
- Meghanath B Shete
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India; Department of Pharmaceutical Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist., Dhule 425405, Maharashtra, India
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Pravin K Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile-Parle (W), Mumbai, Maharashtra, India.
| |
Collapse
|
33
|
Fabrication and optimization of BSA-PEG-loaded phenethyl isothiocyanate (PEITC) nanoparticles using Box-Behnken design for potential application in subcutaneous infection condition. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Musielak E, Feliczak-Guzik A, Jaroniec M, Nowak I. Modification and Functionalization of Zeolites for Curcumin Uptake. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186316. [PMID: 36143628 PMCID: PMC9504848 DOI: 10.3390/ma15186316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/12/2023]
Abstract
This work shows that hierarchical zeolites are promising systems for the delivery of biologically relevant hydrophobic substances, such as curcumin. The validity of using piperine as a promoter of curcumin adsorption was also evaluated. The use of pure curcumin is not medically applicable due to its low bioavailability and poor water solubility. To improve the undesirable properties of curcumin, special carriers are used to overcome these shortcomings. Hierarchical zeolites possessing secondary mesoporosity are used as pharmaceutical carrier systems for encapsulating active substances with low water solubility. This porosity facilitates access of larger reagent molecules to the active sites of the material, preserving desirable adsorption properties, acidity, and crystallinity of zeolites. In this work, methods are proposed to synthesize hierarchical zeolites based on a commercial FAU-type zeolite. Studies on the application and adsorption kinetics of curcumin using commercial FAU-type zeolite and hierarchical zeolites based on commercial FAU-type zeolite are also included.
Collapse
Affiliation(s)
- Ewelina Musielak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
35
|
Alhalmi A, Amin S, Khan Z, Beg S, Al kamaly O, Saleh A, Kohli K. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies. Pharmaceutics 2022; 14:1771. [PMID: 36145519 PMCID: PMC9500671 DOI: 10.3390/pharmaceutics14091771] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/19/2022] Open
Abstract
This work aimed to develop dual drug-loaded nanostructured lipid carriers of raloxifene and naringin (RLX/NRG NLCs) for breast cancer. RLX/NRG NLCs were prepared using Compritol 888 ATO and oleic acid using a hot homogenization-sonication method and optimized using central composite design (CCD). The optimized RLX/NRG NLCs were characterized and evaluated using multiple technological means. The optimized RLX/NRG NLCs exhibited a particle size of 137.12 nm, polydispersity index (PDI) of 0.266, zeta potential (ZP) of 25.9 mV, and entrapment efficiency (EE) of 91.05% (raloxifene) and 85.07% (naringin), respectively. In vitro release (81 ± 2.2% from RLX/NRG NLCs and 31 ± 1.9% from the RLX/NRG suspension for RLX and 93 ± 1.5% from RLX/NRG NLCs and 38 ± 2.01% from the RLX/NRG suspension for NRG within 24 h). Concurrently, an ex vivo permeation study exhibited nearly 2.3 and 2.1-fold improvement in the permeability profiles of RLX and NRG from RLX/NRG NLCs vis-à-vis the RLX/NRG suspension. The depth of permeation was proved with CLSM images which revealed significant permeation of the drug from the RLX/NRG NLCs formulation, 3.5-fold across the intestine, as compared with the RLX/NRG suspension. An in vitro DPPH antioxidant study displayed a better antioxidant potential of RLX/NRG in comparison to RLX and NRG alone due to the synergistic antioxidant effect of RLX and NRG. An acute toxicity study in Wistar rats showed the safety profile of the prepared nanoformulations and their excipients. Our findings shed new light on how poorly soluble and poorly permeable medicines can be codelivered using NLCs in an oral nanoformulation to improve their medicinal performance.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saima Amin
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sarwar Beg
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Flyde Road, Preston PR1 2HE, UK
| | - Omkulthom Al kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
- Lloyd Institute of Management and Technology (Pharm.), Plot No 11, Knowledge Park-II, Greater Noida 201308, India
| |
Collapse
|
36
|
Formulation and evaluation of nasal insert for nose-to-brain drug delivery of rivastigmine tartrate. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Hypolipidemic Activity of Olive Oil-Based Nanostructured Lipid Carrier Containing Atorvastatin. NANOMATERIALS 2022; 12:nano12132160. [PMID: 35807995 PMCID: PMC9267979 DOI: 10.3390/nano12132160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Currently, hyperlipidemia is a growing health issue that is considered a risk factor for obesity. Controlling body weight and modifying life style in most of cases are not adequate and the condition requires medical treatment. Statin drugs (mainly Atorvastatin (ATO)), have been used broadly and for long time as medications for handling higher levels of lipid, especially bad cholesterol, which accordingly controls the prevalence of obesity. Still, the obstacle that stands in front of any formulation is the poor solubility of the drug. Low solubility of ATO came up with poor absorption as well as poor bioavailability. This paved the way for the present study, which aimed to exploit nanotechnology and develop certain nanolipid carriers that could accommodate hydrophobic drugs, such as ATO. Nanostructured lipid carrier (NLC) containing ATO was fabricated using olive oil. Olive oil is natural plant oil possessing confirmed hypolipidemic activity that would help in improving the efficacy of the formulation. Via applying the Quality by Design (QbD) approach, one NLC formula was selected to be optimized based on appropriate size and higher entrapment. Optimized ATO-NLC was scrutinized for zeta potential, in vitro study and kinetic profile. Moreover, stability testing and in vivo hypolipidemic behavior was conducted. The optimized NLC formulation seemed to show particle size (254.23 nm) with neutral zeta potential (−1.77 mV) and entrapment efficiency (69.56%). The formulation could be prolonged for 12 h and provided higher % of release (97.17%). Stability testing confirmed the role of modifying the surface of the formulation with PEG-DSPE in providing a highly stable formulation that could withstand three months storage in two altered conditions. Ultimately, optimized ATO-NLC could successfully lower total cholesterol level in rats induced with obesity and fed a high-fat diet. Remarkably, ATO-NLC prepared with olive oil, in addition to shielding its surface, would provide a stable formulation that holds up the synergistic action between olive oil and ATO.
Collapse
|
38
|
|
39
|
Rehman S, Nabi B, Javed A, Khan T, Iqubal A, Ansari MJ, Baboota S, Ali J. Unraveling enhanced brain delivery of paliperidone-loaded lipid nanoconstructs: pharmacokinetic, behavioral, biochemical, and histological aspects. Drug Deliv 2022; 29:1409-1422. [PMID: 35532148 PMCID: PMC9103378 DOI: 10.1080/10717544.2022.2069880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antipsychotics are accompanied by extrapyramidal side effects that deter treatment adherence and patient compliance. Paliperidone (PPD), an atypical (second-generation) antipsychotic recommended for managing schizophrenia presents biopharmaceutical challenges and pharmacological constraints which dissuade it from crossing the brain barrier. The present research aimed to assess paliperidone-loaded lipid nanoconstruct (PPD-LNC) for an improved antipsychotic activity for managing schizophrenia. High % cell viability in Neuro-2a cells (70–98%) exhibited the safety of PPD-LNC. The pharmacokinetic data showed a 3.46-fold improvement in the relative bioavailability in the brain for PPD-LNC compared to a drug suspension. The pharmacodynamic evaluation demonstrated a significant (p < .05) reduction in cataleptic behavior, attenuated escape latency, and prolonged stay in the open arm with PPD-LNC, thus showing its effectiveness in reducing extrapyramidal symptoms. The histopathological images further validated the safety of the formulation. Reduction in NF-κB levels as identified by immunohistochemical analysis exhibited the anti-inflammatory effect of PPD-LNC. The formulation demonstrated significant (p < .01) improvement in the activity of oxidative stress parameters and attenuation of neuroinflammatory markers. Based on the study findings, it was observed that formulating LNC of PPD would surmount the pharmacological constraints, improve the in vivo performance, and diminish the associated side effects.
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Amaan Javed
- University College of Medical Sciences, University of Delhi, Dilshad Garden, New Delhi, India
| | - Tahira Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, New Delhi, India
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
40
|
Thermoresponsive in situ gel of curcumin loaded solid lipid nanoparticle: Design, optimization and in vitro characterization. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Buchke S, Sharma M, Bora A, Relekar M, Bhanu P, Kumar J. Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems: Therapeutics for Mitochondrial Disorders. Life (Basel) 2022; 12:657. [PMID: 35629325 PMCID: PMC9144057 DOI: 10.3390/life12050657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Apart from ATP generation, mitochondria are involved in a wide range of functions, making them one of the most prominent organelles of the human cell. Mitochondrial dysfunction is involved in the pathophysiology of several diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, and metabolic disorders. This makes it a target for a variety of therapeutics for the diagnosis and treatment of these diseases. The use of nanoparticles to target mitochondria has significant importance in modern times because they provide promising ways to deliver drug payloads to the mitochondria by overcoming challenges, such as low solubility and poor bioavailability, and also resolve the issues of the poor biodistribution of drugs and pharmacokinetics with increased specificity. This review assesses nanoparticle-based drug-delivery systems, such as liposomes, DQAsome, MITO-Porters, micelles, polymeric and metal nanocarriers, as well as quantum dots, as mitochondria-targeted strategies and discusses them as a treatment for mitochondrial disorders.
Collapse
Affiliation(s)
- Sakshi Buchke
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Muskan Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Anusuiya Bora
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore Campus, Tiruvalam Road, Katpadi, Vellore 632014, India;
| | - Maitrali Relekar
- KEM Hospital Research Centre, KEM Hospital, Rasta Peth, Pune 411011, India;
| | - Piyush Bhanu
- Xome Life Sciences, Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Jitendra Kumar
- Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India
| |
Collapse
|
42
|
Singulani JL, Scorzoni L, da Silva PB, Nazaré AC, Polaquini CR, Baveloni FG, Chorilli M, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJ. Antifungal activity and toxicity of an octyl gallate-loaded nanostructured lipid system on cells and nonmammalian animals. Future Microbiol 2022; 17:281-291. [PMID: 35152707 DOI: 10.2217/fmb-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Octyl gallate (OG) loaded into a nanostructured lipid system (NLS) was tested for antifungal activity and in vitro and in vivo toxicity. Methods & Results: The features of NLS-OG were analyzed by dynamic light scattering and showed adequate size (132.1 nm) and homogeneity (polydispersity index = 0.200). OG was active against Paraccoccidioides spp., and NLS-OG did not affect antifungal activity. NLS-OG demonstrated reduced toxicity to lung cells and zebrafish embryos compared with OG, whereas NLS was toxic to hepatic cells. OG and NLS-OG did not show toxicity in a Galleria mellonella model at 20 mg/kg. All toxic concentrations were superior to MIC (antifungal activity). Conclusion: These results indicate good anti-Paracoccidioides activity and low toxicity of NLS-OG.
Collapse
Affiliation(s)
- Junya L Singulani
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Programa de Pós-Graduação em Enfermagem, Guarulhos University, Guarulhos, São Paulo, 07023-070, Brazil
| | - Patricia B da Silva
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Ana C Nazaré
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Carlos R Polaquini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Franciele G Baveloni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Luis O Regasini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Ana M Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Maria Js Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
43
|
Annu, Sartaj A, Qamar Z, Md S, Alhakamy NA, Baboota S, Ali J. An Insight to Brain Targeting Utilizing Polymeric Nanoparticles: Effective Treatment Modalities for Neurological Disorders and Brain Tumor. Front Bioeng Biotechnol 2022; 10:788128. [PMID: 35186901 PMCID: PMC8851324 DOI: 10.3389/fbioe.2022.788128] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
The delivery of therapeutic molecules to the brain remains an unsolved problem to the researchers due to the existence of the blood-brain barrier (BBB), which halts the entry of unwanted substances to the brain. Central nervous system (CNS) disorders, mainly Parkinson's disease, Alzheimer's disease, schizophrenia, brain tumors, and stroke, are highly prevalent globally and are a growing concern for researchers due to restricting the delivery of pharmaceutical drugs to the brain. So effective treatment modalities are essential to combat the growing epidemic of CNS diseases. Recently, the growing attention in the field of nanotechnology has gained the faith of researchers for the delivery of therapeutics to the brain by targeting them to the specific target site. Polymeric nanoparticles (PNPs) emerge out to be an instrumental approach in drug targeting to the brain by overcoming the physiological barrier, biomedical barrier, and BBB. Preclinical discovery has shown the tremendous potential and versatility of PNPs in encapsulating several drugs and their targeting to the deepest regions of the brain, thus improving therapeutic intervention of CNS disorders. The current review will summarize advances in the development of PNPs for targeting therapeutics to the brain and the functional and molecular effects obtained in the preclinical model of most common CNS diseases. The advancement of PNPs in clinical practice and their prospect in brain targeting will also be discussed briefly.
Collapse
Affiliation(s)
- Annu
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Zufika Qamar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
44
|
Shahab MS, Rizwanullah M, Sarim Imam S. Formulation, optimization and evaluation of vitamin E TPGS emulsified dorzolamide solid lipid nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|