1
|
Guan T, Lu Z, Tai R, Guo S, Zhang Z, Deng S, Ye J, Chi K, Zhang B, Chen H, Deng Z, Ke Y, Huang A, Chen P, Wang C, Ou C. Silicified curcumin microspheres Combats cardiovascular diseases via Nrf2/HO-1 pathway. Bioact Mater 2025; 49:378-398. [PMID: 40144796 PMCID: PMC11937612 DOI: 10.1016/j.bioactmat.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Diabetes and chemotherapy frequently give rise to severe cardiovascular complications, including chemotherapy-induced cardiotoxicity and diabetes-associated vascular remodeling. Nevertheless, the precise epidemiological features of these cardiovascular ailments remain incompletely elucidated, resulting in a dearth of effective therapeutic strategies in clinical settings. To tackle this intricate challenge, we have delved extensively into database resources, conducted comprehensive analyses of pertinent epidemiological data, and designed silicified curcumin (Si/Cur) microspheres as a novel therapeutic approach for cardiovascular diseases. By harnessing the alkaline microenvironment generated by silicon (Si), Si/Cur markedly elevates the bioavailability of curcumin (Cur). Further investigations have elucidated that Si/Cur exerts its therapeutic actions primarily via the Nrf2/HO-1 signaling pathway, effectively suppressing vascular remodeling and mitigating myocardial injury, thus disrupting the vicious cycle of persistent cardiovascular damage. In conclusion, this study integrates clinical cohort research to dissect epidemiological characteristics, directs the design and application of biomaterials, and paves the way for a novel and efficacious therapeutic avenue for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Tianwang Guan
- Guangdong Engineering Research Center of Boron Neutron Therapy and Application in Malignant Tumors, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Dongguan Engineering Research Center for Innovative Boron Drugs and Novel Radioimmune Drugs, Cancer Center, The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong, 523059, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
| | - Zhenxing Lu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Rundong Tai
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shuai Guo
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Zhaowenbin Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shaohui Deng
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Jujian Ye
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Kaiyi Chi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510182, China
| | - Binghua Zhang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, China
| | - Huiwan Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhilin Deng
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Yushen Ke
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Andong Huang
- Department of Clinical Medicine, Clinical Medical School, Guangzhou Medical University, Guangzhou, 510180, China
| | - Peier Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Caiwen Ou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510280, China
- The Tenth Affiliated Hospital (Dongguan People's Hospital), Southern Medical University, Dongguan, 523059, China
| |
Collapse
|
2
|
Thakur MR, Tupe RS. l-Arginine: A multifaceted regulator of diabetic cardiomyopathy. Biochem Biophys Res Commun 2025; 761:151720. [PMID: 40186920 DOI: 10.1016/j.bbrc.2025.151720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
In diabetes mellitus, dysregulated glucose and lipid metabolism lead to diabetic cardiomyopathy (DCM) by imparting pathological myocardial remodeling and cellular injury. Accelerated glycation, oxidative stress, and activated inflammatory pathways culminate in cardiac fibrosis and hypertrophy in DCM. The regulatory effects of l-Arginine (L-Arg) have been elucidated in the pathological changes of DCM, including myocardial fibrosis, hypertrophy, and apoptosis, by inhibiting glycation and oxidative stress-induced inflammation. Disturbed L-Arg metabolism and decreased intracellular L-Arg pool are correlated with the progression of DCM; therefore, L-Arg supplementation has been prescribed for various cardiovascular dysfunctions. This review expands the therapeutic potential of L-Arg supplementation in DCM by elucidating its molecular mechanism of action and exploring potential clinical outcomes.
Collapse
Affiliation(s)
- Muskan R Thakur
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
3
|
Farahat YA, El-Sayed NM, Hazem RM, Mehanna ET, Radwan A. Sinapic Acid Ameliorates Cadmium-Induced Hepatotoxicity: Modulation of Oxidative Stress, Inflammation, and Apoptosis. Biomedicines 2025; 13:1065. [PMID: 40426893 PMCID: PMC12109072 DOI: 10.3390/biomedicines13051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Cadmium (Cd) is a harmful metal commonly used in industry. Numerous clinical diseases, including osteomalacia, testicular damage, renal and hepatic failure, and pulmonary edema, are associated with Cd exposure. The current study evaluated the protective effect of Sinapic acid (SA) against Cd-induced hepatotoxicity by investigating different mechanistic pathways interfering with Cd-related liver injury. Methods: Forty rats were randomly assigned to four groups as follows; group 1 served as negative control and received saline, group 2 received saline for 14 days and CdCl2 (3.5 mg/kg IP) as a single dose on day 14, groups 3 and 4 were treated with SA (20, 40 mg/kg PO), respectively, for 14 days and injected with CdCl2 (3.5 mg/kg IP) on day 14. Serum was collected to evaluate liver function. Liver samples were collected for histopathological examination and the assessment of markers related to oxidative stress, inflammation, and apoptosis. Results: Acute Cd administration elevated liver enzymes and induced pathological changes in liver specimens, with the concurrent release of inflammatory markers and reduced antioxidant capabilities. Pretreatment with SA improved liver function and Cd-induced histopathological changes and elevated the activities of antioxidant enzymes. SA ameliorated inflammation, as evidenced by decreased expression of NF-κB, TNF-α, TLR-4, and COX-2, iNOS, and IL-1β levels along with suppression of mTOR, JNK, ERK, BAX, and Bcl-2. Conclusions: The present data suggest that SA represents a promising protective agent against Cd-induced hepatic injury by attenuating oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Yomna A. Farahat
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (Y.A.F.); (R.M.H.); (A.R.)
| | - Norhan M. El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (Y.A.F.); (R.M.H.); (A.R.)
| | - Reem M. Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (Y.A.F.); (R.M.H.); (A.R.)
| | - Eman T. Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Asmaa Radwan
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (Y.A.F.); (R.M.H.); (A.R.)
| |
Collapse
|
4
|
Tungalag T, Kang HS, Yang DK. Sinapic Acid Ameliorates Doxorubicin-Induced Cardiotoxicity in H9c2 Cardiomyoblasts by Inhibiting Oxidative Stress Through Activation of the Nrf2 Signaling Pathway. Antioxidants (Basel) 2025; 14:337. [PMID: 40227457 PMCID: PMC11939272 DOI: 10.3390/antiox14030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The use of doxorubicin (Dox) is restricted because of its cardiotoxicity, which poses a significant mortality risk for cancer patients, despite being a highly effective antibiotic for treating various types of cancer. Therefore, identifying substances or developing preventive strategies against Dox-induced cardiotoxicity is crucial. This study was conducted to determine whether sinapic acid (SA), a phenolic compound with a range of pharmacological effects, could protect against Dox-induced cardiotoxicity in H9c2 cardiomyoblasts. To investigate the preventive effect of SA, H9c2 cardiomyoblasts treated with Dox were pretreated with SA at various concentrations. SA effectively rescued the cells from Dox-induced cardiotoxicity. Additionally, SA significantly reduced oxidative stress by inhibiting mitochondrial dysfunction and endoplasmic reticulum stress. SA also suppressed the expression of MAPK proteins. As for the underlying mechanism of SA's protective effect against Dox-induced cardiotoxicity, SA activated nuclear factor erythroid-2-related factor (Nrf2) by facilitating its movement from the cytosol to the nucleus and increasing the expression of its target antioxidative genes. In summary, this study demonstrated that SA protects H9c2 cardiomyoblasts from Dox-induced cardiotoxicity by inhibiting oxidative stress by the activation of Nrf2-related signaling pathway. Our findings enhance the development of therapeutic strategies to mitigate cardiac toxicity caused by Dox, highlighting the potential antioxidant effect of SA in Dox-treated H9c2 cardiomyoblasts.
Collapse
Affiliation(s)
- Tsendsuren Tungalag
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea;
| | - Hyung-Sub Kang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea;
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea;
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| |
Collapse
|
5
|
Zhang M, Sun X, Zhao F, Chen Z, Liu M, Wang P, Lu P, Wang X. Tinglu Yixin granule inhibited fibroblast-myofibroblast transdifferentiation to ameliorate myocardial fibrosis in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118980. [PMID: 39454704 DOI: 10.1016/j.jep.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis is one of the pathological characteristics of advanced diabetic cardiomyopathy (DCM) and serves as the strong evidence of poor prognosis. Among them, the transdifferentiation of cardiac fibroblasts (CFs) may play a crucial role in the development of myocardial fibrosis in DCM. Tinglu Yixin granule (TLYXG) has been clinically used for many years and can significantly improve cardiac function of patients with DCM. However, the effect of TLYXG on myocardial fibrosis in DCM remains unknown, and the underlying mechanisms of its efficacy have yet to be fully understood. AIM OF THE STUDY This study aimed to investigate the impact and underlying mechanism of TLYXG on myocardial fibrosis in diabetes mice. MATERIALS AND METHODS The bioactive compounds in TLYXG were identified using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The potential mechanism of TLYXG in treating DCM was predicted using network pharmacology combined with molecular docking and protein-protein docking. The mice model of type 2 diabetes were established by intraperitoneal injection of streptozotocin (STZ) and the high-fat diet (HFD). Indicators of pancreatic islet function, lipids, oxidative stress, and inflammatory factors were tested using kits. Cardiac function was assessed in diabetic mice using echocardiography. Histologic staining was performed to evaluate myocardial hypertrophy and fibrosis. Mechanistically, the hypothesis was tested through rescue experiments. The expression levels of transient receptor potential channel 6 (TRPC6), transforming growth factor-β1 (TGF-β1), collagen I (COL-I) and alpha-smooth muscle actin (α-SMA), along with the mRNA and phosphorylation levels of SMAD family member 3 (Smad3) and protein 38 mitogen-activated protein kinase (p38 MAPK), were assessed using quantitative RT-qPCR, Western blot, immunohistochemistry, and immunofluorescence. Neonatal lactating mice were used to extract primary CFs for vitro experiments. Scratch and transwell assays were conducted to assess CFs migration and invasion abilities. Western blot and immunofluorescence were used to evaluate the expression levels of CFs transdifferentiation markers COL-I and α-SMA. RESULTS A total of 168 active ingredients were detected in TLYXG based on UPLC-MS and databases. Network pharmacology indicated that TLYXG could improve DCM through inflammatory mediator regulation of TRP channels, TGF-beta signaling pathway, and MAPK signaling pathway. ELISA results showed that TLYXG could ameliorate metabolic levels, inflammation, and oxidative stress in diabetic mice. Echocardiography suggested that TLYXG improved cardiac systolic and diastolic dysfunction in diabetic mice. Histological analysis revealed that TLYXG alleviated myocardial fibrosis in diabetes mice. Additionally, molecular docking analysis indicated strong binding activity between the main active ingredients of TLYXG and TRPC6 of the TRP family. At the molecular level, TLYXG reduced the mRNA and protein expression levels of TRPC6 and TGF-β1 and inhibited the mRNA and phosphorylation levels of Smad3 and p38 MAPK. Furthermore, TLYXG inhibited CFs migration and invasion, and reduced the expression levels of the CFs transdifferentiation markers COL-I and α-SMA. CONCLUSION TLYXG inhibited the proliferation, migration, invasion and transdifferentiation of CFs by suppressing TGF-β1/Smad3/p38 MAPK signaling through down-regulation of TRPC6, thereby ameliorating myocardial fibrosis in diabetes mice.
Collapse
Affiliation(s)
- Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Sun
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213004, China
| | - Fusen Zhao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengqun Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
6
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
7
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
8
|
Liza, Hussain G, Malik A, Akhtar S, Anwar H. Artemisia vulgaris Extract as a Novel Therapeutic Approach for Reversing Diabetic Cardiomyopathy in a Rat Model. Pharmaceuticals (Basel) 2024; 17:1046. [PMID: 39204151 PMCID: PMC11358959 DOI: 10.3390/ph17081046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
Diabetic cardiomyopathy, a severe diabetic complication, impairs heart function, leading to heart failure. Treatment that effectively addresses this condition without causing side effects is urgently needed. Current anti-hyperglycemic therapies are expensive, has side effects and do not effectively prevent cardiac remodeling. Therefore, it is important to explore natural products that may have the potential to reverse cardiac remodeling. That is why the aim of the current study was to determine the left ventricular remodeling potential of the methanolic extract of Artemisia vulgaris in a diabetic cardiomyopathy rat model. Following the initial comprehensive phytochemical evaluation of plant phenolic and flavonoid content, which showed strong anti-hyperglycemic and antioxidant activities, an extract of Artemisia vulgaris was administered in an in vivo experiment. Diabetic cardiomyopathy was induced in Wistar albino rats according to previously described protocols in the literature, and the effect of treatment was checked by serum and histopathological analysis after 45 days. Artemisia vulgaris treatment significantly (p ≤ 0.05) reduced fasting blood glucose (108.5 ± 1.75 mg/dL), glycated hemoglobin (4.03 ± 0.12 %), serum glucose (116.66 ± 3.28 mg/dL), insulin (15.66 ± 0.66 ng/mL), total oxidant status (54.66 ± 3.22 µmol H2O2Equiv.L-1), Malondialdehyde (0.20 ± 0.01 mmol/L), total cholesterol (91.16 ± 3.35 mg/dL), triglycerides (130.66 ± 3.15 mg/dL), low-density lipids (36.57 ± 1.02 mg/dL), sodium (140 ± 3.21 mmol/L), calcium (10.44 ± 0.24 mmol/L), creatine kinase MB (1227.5 ± 17.89 IU/L), lactate dehydrogenase (1300 ± 34.64 IU/L), C-reactive protein (30 ± 0.57 pg/mL), tumor necrosis factor-α (58.66 ± 1.76 pg/mL), atrial natriuretic peptide (2.53 ± 0.04 pg/mL), B-type natriuretic peptide (10.66 ± 0.44 pg/mL), aspartate aminotransferase (86.5 ± 4.99 U/L), Alanine Transaminase (55.33 ± 2.90 U/L), urea (25.33 ± 1.15 mg/dL) and creatinine (0.64 ± 0.02 mg/dL) but significantly increased (p ≤ 0.05) total antioxidant capacity (1.73 ± 0.07 mmol Trolox Equil./L), high-density lipids (40 ± 1.59 mg/dL) and potassium (3.82 ± 0.04 mmol/L) levels. ECG and histopathology confirmed the significant improvement in remodeling and the reversal of structural changes in the heart and pancreas. In conclusion, Artemisia vulgaris possesses significant left ventricular remodeling potential in course of diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
- Liza
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| | - Ghulam Hussain
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Suhail Akhtar
- Department of Biochemistry, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA;
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan; (L.); (G.H.)
| |
Collapse
|
9
|
Bakrim S, Aboulaghras S, Aanniz T, Benali T, El Omari N, El-Shazly M, Lee LH, Mustafa SK, Sahib N, Rebezov M, Ali Shariati M, Lorenzo JM, Bouyahya A. Effects of Mediterranean diets and nutrigenomics on cardiovascular health. Crit Rev Food Sci Nutr 2024; 64:7589-7608. [PMID: 36908235 DOI: 10.1080/10408398.2023.2187622] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University, Rabat, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nargis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda, Morocco
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry, Semey Branch of the Institute, Almaty, Republic of Kazakhstan
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
10
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
11
|
Tang YJ, Zhang Z, Yan T, Chen K, Xu GF, Xiong SQ, Wu DQ, Chen J, Jose PA, Zeng CY, Fu JJ. Irisin attenuates type 1 diabetic cardiomyopathy by anti-ferroptosis via SIRT1-mediated deacetylation of p53. Cardiovasc Diabetol 2024; 23:116. [PMID: 38566123 PMCID: PMC10985893 DOI: 10.1186/s12933-024-02183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.
Collapse
Affiliation(s)
- Yuan-Juan Tang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhen Zhang
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Tong Yan
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China
| | - Guo-Fan Xu
- Department of Cardiology and Endocrinolgy, Pangang Group Chengdu Hospital, Chengdu, 610066, China
| | - Shi-Qiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Dai-Qian Wu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Chen
- Department of Cardiovascular Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, 20037, USA
| | - Chun-Yu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, China.
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, 400042, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, 400042, China.
- Cardiovascular Research Center of Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400042, China.
| | - Jin-Juan Fu
- Department of Cardiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
12
|
Shahid M, Alaofi AL, Ahmad Ansari M, Fayaz Ahmad S, Alsuwayeh S, Taha E, Raish M. Utilizing sinapic acid as an inhibitory antiviral agent against MERS-CoV PLpro. Saudi Pharm J 2024; 32:101986. [PMID: 38487020 PMCID: PMC10937238 DOI: 10.1016/j.jsps.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Concerns about the social and economic collapse, high mortality rates, and stress on the healthcare system are developing due to the coronavirus onslaught in the form of various species and their variants. In the recent past, infections brought on by coronaviruses severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) as well as middle east respiratory syndrome coronavirus (MERS-CoV) have been reported. There is a severe lack of medications to treat various coronavirus types including MERS-CoV which is hazard to public health due to its ability for pandemic spread by human-to-human transmission. Here, we utilized sinapic acid (SA) against papain-like protease (PLpro), a crucial enzyme involved in MERS-CoV replication, because phytomedicine derived from nature has less well-known negative effects. The thermal shift assay (TSA) was used in the current study to determine whether the drug interact with the recombinant MERS-CoV PLpro. Also, inhibition assay was conducted as the hydrolysis of fluorogenic peptide from the Z-RLRGG-AMC-peptide bond in the presence of SA to determine the level of inhibition of the MERS-CoV PLpro. To study the structural binding efficiency Autodock Vina was used to dock SA to the MERS-CoV PLpro and results were analyzed using PyMOL and Maestro Schrödinger programs. Our results show a convincing interaction between SA and the MERS protease, as SA reduced MERS-CoV PLpro in a dose-dependent way IC50 values of 68.58 μM (of SA). The TSA showed SA raised temperature of melting to 54.61 °C near IC50 and at approximately 2X IC50 concentration (111.5 μM) the Tm for SA + MERS-CoV PLpro was 59.72 °C. SA was docked to MERS-CoV PLpro to identify the binding site. SA bound to the blocking loop (BL2) region of MERS-CoV PLpro interacts with F268, E272, V275, and P249 residues of MERS-CoV PLpro. The effectiveness of protease inhibitors against MERS-CoV has been established and SA is already known for broad range biological activity including antiviral properties; it can be a suitable candidate for anti-MERS-CoV treatment.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq Ahmad Ansari
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sheikh Fayaz Ahmad
- Department of Phamacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Saleh Alsuwayeh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Bartkowiak-Wieczorek J, Mądry E. Natural Products and Health. Nutrients 2024; 16:415. [PMID: 38337699 PMCID: PMC10856951 DOI: 10.3390/nu16030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
A natural product is an organic compound from a living organism that can be isolated from natural sources or synthesized [...].
Collapse
Affiliation(s)
- Joanna Bartkowiak-Wieczorek
- Physiology Department, Poznan University of Medical Sciences, 6, Święcickiego Street, 60-781 Poznan, Poland;
| | | |
Collapse
|
14
|
Li WY, Liu JY, Wang ZX, Wang KY, Huang CX, He W, Song JL. Sinapic Acid Attenuates Chronic DSS-Induced Intestinal Fibrosis in C57BL/6J Mice by Modulating NLRP3 Inflammasome Activation and the Autophagy Pathway. ACS OMEGA 2024; 9:1230-1241. [PMID: 38222654 PMCID: PMC10785090 DOI: 10.1021/acsomega.3c07474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Ulcerative colitis (UC) is a chronic gastrointestinal disease that results from repeated inflammation and serious complications. Sinapic acid (SA) is a hydroxycinnamic acid present in a variety of plants that has antioxidant, anti-inflammatory, anticancer, and other protective effects. This study investigated the antifibrotic effect of SA on chronic colitis induced by dextran sulfate sodium salt (DSS) in mice. We observed that SA could significantly reduce clinical symptoms (such as improved body weight loss, increased colon length, and decreased disease activity index score) and pathological changes in mice with chronic colitis. SA supplementation has been demonstrated to repair intestinal mucosal barrier function and maintain epithelial homeostasis by inhibiting activation of the NLRP3 inflammasome and decreasing the expression of IL-6, TNF-α, IL-17A, IL-18, and IL-1β. Furthermore, SA could induce the expression of antioxidant enzymes (Cat, Sod1, Sod2, Mgst1) by activating the Nrf2/keap1 pathway, thus improving antioxidant capacity. Additionally, SA could increase the protein expression of downstream LC3-II/LC3-I and Beclin1 and induce autophagy by regulating the AMPK-Akt/mTOR signaling pathway, thereby reducing the production of intestinal fibrosis-associated proteins Collagen-I and α-SMA. These findings suggest that SA can enhance intestinal antioxidant enzymes, reduce oxidative stress, expedite intestinal epithelial repair, and promote autophagy, thereby ameliorating DSS-induced colitis and intestinal fibrosis.
Collapse
Affiliation(s)
- Wan-Ying Li
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
- Department
of Clinical Nutrition, Liuzhou People’s
Hospital, Liuzhou 545006, Guangxi, China
| | - Jun-Yang Liu
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Zi-Xian Wang
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Ke-Ying Wang
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Chun-Xiang Huang
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Wen He
- Guangxi
Key Laboratory of Environmental Exposureomics and Entire Lifecycle
Health, Guilin Medical University, Guilin 541100, Guangxi, China
| | - Jia-Le Song
- Department
of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541100, Guangxi, China
- Guangxi
Key Laboratory of Environmental Exposureomics and Entire Lifecycle
Health, Guilin Medical University, Guilin 541100, Guangxi, China
- Department
of Clinical Nutrition and Obstetrics, The
Second Affiliated Hospital of Guilin Medical University, Guilin 541199, Guangxi, China
| |
Collapse
|
15
|
ALTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. Esculeoside A Decreases Diabetic Cardiomyopathy in Streptozotocin-Treated Rats by Attenuating Oxidative Stress, Inflammation, Fibrosis, and Apoptosis: Impressive Role of Nrf2. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1830. [PMID: 37893548 PMCID: PMC10608477 DOI: 10.3390/medicina59101830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: This experiment evaluated the preventative influence of the tomato-derived Esculeoside A (ESA) on diabetic cardiomyopathy in type 1 diabetes mellitus (T1DM) in rats induced by streptozotocin (STZ). It also examined whether the activation of Nrf2 signaling affords this protection. Materials and Methods: Adult male Wistar control nondiabetic rats and rats with T1DM (STZ-T1DM) were given either carboxymethylcellulose as a vehicle or ESA (100 mg/kg) (eight rats/group) orally daily for 12 weeks. A group of STZ-T1DM rats was also treated with 100 mg/kg ESA and co-treated i.p. with 2 mg/kg (twice/week), brusatol, and Nrf2 inhibitors for 12 weeks. Results and Conclusions: Treatment with ESA prevented the gain in heart weight and cardiomyocyte hypertrophy and improved the left ventricular (LV) systolic and diastolic function (LV) in the STZ-T1DM rat group. Likewise, it reduced their serum levels of triglycerides, cholesterol, and low-density lipoproteins (LDL-c), as well as their LV mRNA, cytoplasmic total, and nuclear total levels of NF-κB. ESA also reduced the total levels of malondialdehyde, tumor necrosis factor-α, interleukine-6 (IL-6), Bax, cytochrome-c, and caspase-3 in the LV of the STZ-T1DM rats. In parallel, ESA enhanced the nuclear and cytoplasmic levels of Nrf2 and the levels of superoxide dismutase, glutathione, and heme oxygenase-1, but decreased the mRNA and cytoplasmic levels of keap-1 in the LVs of the STZ-T1DM rats. Interestingly, ESA did not affect the fasting insulin and glucose levels of the diabetic rats. All of these beneficially protective effects of ESA were not seen in the ESA-treated rats that received brusatol. In conclusion, ESA represses diabetic cardiomyopathy in STZ-diabetic hearts by activating the Nrf2/antioxidant/NF-κB axis.
Collapse
Affiliation(s)
- Jozaa Z. ALTamimi
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Nora A. AlFaris
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| | - Reham I. Alagal
- Department of Health Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Dalal H. Aljabryn
- Department of Physical Sports Sciences, College of Education, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (J.Z.A.); (D.H.A.)
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (G.M.A.); (M.A.Y.)
| |
Collapse
|
16
|
Alanazi AS, Alanazi MM, Elekhnawy E, Attallah NGM, Negm WA, El-Kadem AH. Plausible Protective Role of Encephalartos villosus Extract in Acetic-Acid-Induced Ulcerative Colitis in Rats. Pharmaceuticals (Basel) 2023; 16:1431. [PMID: 37895902 PMCID: PMC10609761 DOI: 10.3390/ph16101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory ailment of the intestine associated with the upregulation of oxidative stress and pro-inflammatory cytokines. Here, we aimed to assess the consequences of Encephalartos villosus (EV) Lem extract on acetic acid (AA)-induced UC. Rats were randomly classified into five groups, as follows: control, AA, AA + mesalazine, AA + EV (50 mg/kg), and AA + EV (100 mg/kg) groups. EV (50 mg/kg and 100 mg/kg) and mesalzine (100 mg/kg) were administered orally for 14 days before the induction of UC. On the last day of the experiment, colitis was provoked via the intra-rectal delivery of 3% AA. Then, after 24 h, the rats were sacrificed and their colon tissues were isolated and inspected. Interestingly, EV pretreatment substantially (p < 0.05) reduced the elevated colon weight/length ratio and ulcer area and normalized the histological changes and immunohistochemical features. In addition, EV efficiently reduced the levels of myeloperoxidase (MPO) and increased the activity of glutathione peroxidase (GS-PX) and catalase (CAT). EV (100 mg/kg) resulted in a downregulation of toll-like receptor 4 (TLR-4) and upregulation of heme oxygenase 1 (HO-1) and occludin expression levels. Concerning the anti-inflammatory mechanisms, EV reduced the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and nuclear transcription factor kappa B (NF-ĸB) and inhibited cyclooxygenase-2 (COX-2) expression levels. It also decreased caspase-3 levels. Our results indicate that the oral intake of EV improves AA-induced colitis in rats through its antioxidative effects and the modulation of pro-inflammatory cytokines, as well as the restoration of mucosal integrity. Consequently, EV may be an efficient therapeutic candidate for UC.
Collapse
Affiliation(s)
- Ashwag S. Alanazi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | | | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
17
|
Şimşek H, Küçükler S, Gür C, Akaras N, Kandemir FM. Protective effects of sinapic acid against lead acetate-induced nephrotoxicity: a multi-biomarker approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101208-101222. [PMID: 37648919 DOI: 10.1007/s11356-023-29410-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Lead acetate (PbAc) is one of the top five most dangerous toxic heavy metals, particularly leading to kidney damage and posing serious health risks in both humans and animals. Sinapic acid (SNP) is a naturally occurring flavonoid found in fruits and vegetables that stands out with its antioxidant, anti-inflammatory, and anticancer properties. This is the first study to investigate the effects of SNP on oxidative stress, inflammation, apoptosis, autophagy and endoplasmic reticulum (ER) stress in PbAc-induced nephrotoxicity in rats by biochemical, molecular and histological methods. 35 Spraque dawley rats were randomly divided into five groups of 7 rats each: control, PbAc, SNP (10mg/kg), PbAc + SNP 5, PbAC + SNP 10. PbAc at a dose of 30 mg/kg body weight was administered via oral gavage alone or in combination with SNP (5 and 10 mg/kg body weight) via oral gavage for seven days. While PbAc impaired renal function by increasing serum urea and creatinine levels, SNP decreased these levels and contributed to the improvement in renal function. The administration of SNP reduced oxidative stress by increasing PbAc-induced decreased antioxidant enzyme (SOD, CAT, and GPx) activities and GSH levels, decreasing MDA levels, a marker of increased lipid peroxidation. SNP administration reduced NF-κB, TNF-α, IL-1β, NLRP3, and RAGE mRNA transcription levels, NF-κB, and TNF-α protein levels that are among the PbAc-induced increased inflammation parameters. Decreases in antiapoptotic Bcl-2 and increases in apoptotic Bax, APAF-1, and Caspase-3 due to PbAc exposure, SNP reversed the situation. SNP reduced ER stress caused by PbAc by increasing PERK, IRE1, ATF-6, CHOP, and GRP-78 levels and made it tend to regress. SNP reduced autophagy damage by decreasing the Beclin-1 protein level increased by PbAc. The findings of the present study suggested that SNP attenuates PbAc-induced nephrotoxicity.
Collapse
Affiliation(s)
- Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye.
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Cihan Gür
- Department of Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Türkiye
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| | - Fatih Mehmet Kandemir
- Deparment of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Türkiye
| |
Collapse
|
18
|
Umar U, Ahmed S, Iftikhar A, Iftikhar M, Majeed W, Liaqat A, Shahzad S, Abbas M, Mehmood T, Anwar F. Phenolics Extracted from Jasminum sambac Mitigates Diabetic Cardiomyopathy by Modulating Oxidative Stress, Apoptotic Mediators and the Nfr-2/HO-1 Pathway in Alloxan-Induced Diabetic Rats. Molecules 2023; 28:5453. [PMID: 37513325 PMCID: PMC10383516 DOI: 10.3390/molecules28145453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.
Collapse
Affiliation(s)
- Urooj Umar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sibtain Ahmed
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Maryam Iftikhar
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Wafa Majeed
- Department of Pharmacy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Atika Liaqat
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Sana Shahzad
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Faisalabad, Faisalabad 38000, Pakistan
| | - Mateen Abbas
- Quality Operations Laboratory, Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tahir Mehmood
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore 53700, Pakistan
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
19
|
Li Y, He Q, He CY, Cai C, Chen Z, Duan JZ. Activating transcription factor 4 drives the progression of diabetic cardiac fibrosis. ESC Heart Fail 2023. [PMID: 37290760 PMCID: PMC10375070 DOI: 10.1002/ehf2.14404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DC) is one of serious complications of diabetic patients. This study investigated the biological function of activating transcription factor 4 (ATF4) in DC. METHODS AND RESULTS Streptozotocin-treated mice and high glucose (HG)-exposed HL-1 cells were used as the in vivo and in vitro models of DC. Myocardial infarction (MI) was induced by left coronary artery ligation in mice. Cardiac functional parameters were detected by echocardiography. Target molecule expression was determined by real time quantitative PCR and western blotting. Cardiac fibrosis was observed by haematoxylin and eosin and Masson's staining. Cardiac apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling. Activities of superoxide dismutase, glutathione peroxidase, and levels of malonic dialdehyde and reactive oxygen species were used to assess oxidative stress damage. Molecular mechanisms were evaluated by chromatin immunoprecipitation, dual luciferase assay, and co-immunoprecipitation. ATF4 was up-regulated in the DC and MI mice (P < 0.01). Down-regulation of ATF4 improved cardiac function as evidenced by changes in cardiac functional parameters (P < 0.01), inhibited myocardial collagen I (P < 0.001) and collagen III (P < 0.001) expression, apoptosis (P < 0.001), and oxidative stress (P < 0.001) in diabetic mice. Collagen I (P < 0.01) and collagen III (P < 0.01) expression was increased in MI mice, which was reversed by ATF4 silencing (P < 0.05). ATF4 depletion enhanced viability (P < 0.01), repressed apoptosis (P < 0.001), oxidative damage (P < 0.001), and collagen I (P < 0.001), and collagen III (P < 0.001) expression of HG-stimulated HL-1 cells. ATF4 transcriptionally activated Smad ubiquitin regulatory factor 2 (Smurf2, P < 0.001) to promote ubiquitination and degradation of homeodomain interacting protein kinase-2 (P < 0.001) and subsequently caused inactivation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway (P < 0.001). The inhibitory effects of ATF4 silencing on HG-induced apoptosis (P < 0.01), oxidative injury (P < 0.01), collagen I (P < 0.001), and collagen III (P < 0.001) expression were reversed by Smurf2 overexpression. CONCLUSIONS ATF4 facilitates diabetic cardiac fibrosis and oxidative stress by promoting Smurf2-mediated ubiquitination and degradation of homeodomain interacting protein kinase-2 and then inactivation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway, suggesting ATF4 as a treatment target for DC.
Collapse
Affiliation(s)
- Yu Li
- Department of Cardiology, Shiyan Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Qian He
- Department of Cardiology, Shiyan Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Chao-Yong He
- Department of Cardiology, Shiyan Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Chao Cai
- Department of Cardiology, Shiyan Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Zhen Chen
- Department of Cardiology, Shiyan Taihe Hospital (Hubei University of Medicine), Shiyan, China
| | - Jing-Zhu Duan
- Department of Respiratory, Shiyan Taihe Hospital (Hubei University of Medicine), Shiyan, China
| |
Collapse
|
20
|
AlTamimi JZ, AlFaris NA, Alshammari GM, Alagal RI, Aljabryn DH, Yahya MA. The Protective Effect of 11-Keto-β-Boswellic Acid against Diabetic Cardiomyopathy in Rats Entails Activation of AMPK. Nutrients 2023; 15:nu15071660. [PMID: 37049501 PMCID: PMC10097356 DOI: 10.3390/nu15071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
This study examined the protective effect of 11-keto-β-boswellic acid (AKBA) against streptozotocin (STZ)-induced diabetic cardiomyopathy (DC) in rats and examined the possible mechanisms of action. Male rats were divided into 5 groups (n = 8/each): (1) control, AKBA (10 mg/kg, orally), STZ (65 mg/kg, i.p.), STZ + AKBA (10 mg/kg, orally), and STZ + AKBA + compound C (CC/an AMPK inhibitor, 0.2 mg/kg, i.p.). AKBA improved the structure and the systolic and diastolic functions of the left ventricles (LVs) of STZ rats. It also attenuated the increase in plasma glucose, plasma insulin, and serum and hepatic levels of triglycerides (TGs), cholesterol (CHOL), and free fatty acids (FFAs) in these diabetic rats. AKBA stimulated the ventricular activities of phosphofructokinase (PFK), pyruvate dehydrogenase (PDH), and acetyl CoA carboxylase (ACC); increased levels of malonyl CoA; and reduced levels of carnitine palmitoyltransferase I (CPT1), indicating improvement in glucose and FA oxidation. It also reduced levels of malondialdehyde (MDA); increased mitochondria efficiency and ATP production; stimulated mRNA, total, and nuclear levels of Nrf2; increased levels of glutathione (GSH), heme oxygenase (HO-1), superoxide dismutase (SOD), and catalase (CAT); but reduced the expression and nuclear translocation of NF-κB and levels of tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These effects were concomitant with increased activities of AMPK in the LVs of the control and STZ-diabetic rats. Treatment with CC abolished all these protective effects of AKBA. In conclusion, AKBA protects against DC in rats, mainly by activating the AMPK-dependent control of insulin release, cardiac metabolism, and antioxidant and anti-inflammatory effects.
Collapse
|
21
|
Yildirim C, Cangi S, Orkmez M, Yilmaz SG, Bozdayı MA, Yamaner H, Cevik S. Sinapic Acid Attenuated Cisplatin-Induced Cardiotoxicity by Inhibiting Oxidative Stress and İnflammation with GPX4-Mediated NF-kB Modulation. Cardiovasc Toxicol 2023; 23:10-22. [PMID: 36520368 DOI: 10.1007/s12012-022-09773-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The use of cisplatin is severely limited by the risk of developing cardiovascular complications. Sinapic acid may reduce cisplatin's side effects. The anti oxidant, anti-inflammatory, and peroxynitrite-scavenging properties of sinapic acid could provide protection against the cardiotoxicity caused by cisplatin. To induce toxicity in rats, cisplatin was administered for a period of 5 weeks. Animal electrocardiograms were obtained after cisplatin toxicity had taken effect. Blood samples and heart tissues were then harvested from the anesthetized animals. The ELISA technique was used to evaluate the level of proinflammatory cytokines and oxidative and nitrosative stress indicators in the heart tissue and serum. A real-time PCR was used to analyze GPX4 and NF-κB expression in the heart tissue. Hematoxylin-eosin and Masson's trichrome were also utilized. Electrocardiograms data showed an increase in QRS and QT intervals. Biochemically, cisplatin increased oxidative, nitrosative, and proinflammatory cytokine levels. Animals exposed to cisplatin had histopathological findings in the heart tissue, according to the results of histological assessment. Sinapic acid reduced TNF-alpha, interleukin-6, malondialdehyde, and ischemia-modified albumin. Sinapic acid also reduced oxidative and nitrosative stress. Furthermore, Sinapic acid restored lengthy QT and QRS. Cisplatin-treated rats had higher NF-κB activation than controls. This effect was successfully inhibited by sinapic acid. Histopathologically, tissues treated with sinapic acid were less damaged than tissues treated with cisplatin. In conclusion, our results suggest that sinapic acid exhibited a protective effect against the cardiotoxicity induced by cisplatin. These effects may be caused by the overexpression of GPX4 and the downregulation of NF-KB, as well as antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Caner Yildirim
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Sibel Cangi
- Department of Pathology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Mustafa Orkmez
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Senay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Mehmet Akif Bozdayı
- Department of Medical Biochemistry, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Hatice Yamaner
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| | - Sena Cevik
- Department of Physiology, Faculty of Medicine, Gaziantep University, 27310, Gaziantep, Turkey
| |
Collapse
|
22
|
Ternary Inclusion Complex of Sinapic Acid with Hydroxypropyl-β-cyclodextrin and Hydrophilic Polymer Prepared by Microwave Technology. Processes (Basel) 2022. [DOI: 10.3390/pr10122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sinapic acid (SA) is a poorly water-soluble substance which could result in poor bioavailability. The aim of this study was to determine the “hydroxypropyl β-cyclodextrin (HPβCD)” solubilization of SA in the presence of the auxiliary substance hydroxypropyl methylcellulose (HPMC) and to evaluate the ternary inclusion complex prepared by microwave technology. Phase-solubility profiles showed that HPβCD exhibited the greatest solubilizing effect on SA in the presence of HPMC. The enhanced rate of SA dissolution was exhibited by a ternary complex. Outcomes of analyses such as “DSC, FTIR, NMR, and SEM” confirmed the embedding of SA into the cavity of the HPβCD and the formation of a ternary inclusion complex. The outcomes of antioxidant activity (ABTS and nitric oxide scavenging activity) demonstrated that SA ternary inclusion complex (TIC) presented strong antioxidant activity, which might be a result of the enhanced solubility of SA in the TIC prepared by microwave technology. Hence, SA-TIC formulation could be a better dosage form which may protect the body from free radical damage and oxidative stress. Microwave technology greatly boosted the interaction of SA with HPβCD and HPMC, and such findings are expected to contribute to raising the solubility of SA, thereby improving the bioavailability of SA.
Collapse
|
23
|
Mousavi M, Abedimanesh N, Mohammadnejad K, Sharini E, Nikkhah M, Eskandari MR, Motlagh B, Mohammadnejad J, Khodabandehloo H, Fathi M, Talebi M. Betanin alleviates oxidative stress through the Nrf2 signaling pathway in the liver of STZ-induced diabetic rats. Mol Biol Rep 2022; 49:9345-9354. [DOI: 10.1007/s11033-022-07781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
|
24
|
Ameliorative potentials of the ethanolic extract from Lycium chinense leaf extract against diabetic cardiomyopathy. Insight into oxido-inflammatory and apoptosis modulation. Biomed Pharmacother 2022; 154:113583. [PMID: 35994819 DOI: 10.1016/j.biopha.2022.113583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence of cardiovascular complications in diabetes has become one of the major cause of diabetes related morbidity/mortality. The onset and progression of diabetic cardiomyopathy (DCM) has been majorly linked to lipid alterations, oxidative stress, inflammation and apoptosis. This present study investigated the cardioprotective role of Lycium chinense leaf extract (LCME) in fructose/streptozotocin induced diabetic rats. Diabetic animals were orally gavaged with LCME (100 and 400 mg/kg) for five weeks. The results indicated that diabetic rats showed increased blood glucose concentration, serum cardiac function markers (troponin T, creatine kinase-MB, aspartate aminotransferase and lactate dehydrogenase) and lipid profile (triglycerides and cholesterol). In addition, the cardiac tissues of diabetic rats showed increased levels of nuclear factor-κB (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL 1β), interleukin 6 (IL-6), caspase-3 and malondialdehyde as well as significantly reduced activities of catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase. LCME significantly ameliorated hyperglycemia and markedly decreased serum concentrations of troponin T, creatine kinase-MB, aspartate aminotransferase and lactate dehydrogenase, triglycerides and cholesterol. Furthermore, LCME notably suppressed cardiac oxido-inflammatory mediators and boosted cardiac antioxidant defense. Histopathologically, LCME restored cardiac structural alterations and also suppressed the immunohistochemical expression of collagen IV, smooth muscle alpha-actin (α-SMA) and p53, while Bcl2 expression was significantly increased. In conclusion, our result indicated that LCME protected against diabetic cardiomyopathy suppressing oxidative stress, inflammation, apoptosis and fibrosis.
Collapse
|
25
|
Yang M, Xiong J, Zou Q, Wang X, Hu K, Zhao Q. Sinapic Acid Attenuated Cardiac Remodeling After Myocardial Infarction by Promoting Macrophage M2 Polarization Through the PPARγ Pathway. Front Cardiovasc Med 2022; 9:915903. [PMID: 35898278 PMCID: PMC9309384 DOI: 10.3389/fcvm.2022.915903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Macrophage polarization is an important regulatory mechanism of ventricular remodeling. Studies have shown that sinapic acid (SA) exerts an anti-inflammatory effect. However, the effect of SA on macrophages is still unclear. Objectives The purpose of the study was to investigate the role of SA in macrophage polarization and ventricular remodeling after myocardial infarction (MI). Methods An MI model was established by ligating the left coronary artery. The rats with MI were treated with SA for 1 or 4 weeks after MI. The effect of SA on bone marrow-derived macrophages (BMDMs) was also observed in vitro. Results Cardiac systolic dysfunction was significantly improved after SA treatment. SA reduced MCP-1 and CCR2 expression and macrophage infiltration. SA decreased the levels of the inflammatory factors TNF-α, IL-1α, IL-1β, and iNOS and increased the levels of the M2 macrophage markers CD206, Arg-1, IL-10, Ym-1, Fizz-1, and TGF-β at 1 week after MI. SA significantly increased CD68+/CD206+ macrophage infiltration. Myocardial interstitial fibrosis and MMP-2 and MMP-9 levels were decreased, and the sympathetic nerve marker TH and nerve sprouting marker GAP43 were suppressed after SA treatment at 4 weeks after MI. The PPARγ level was notably upregulated after SA treatment. In vitro, SA also increased the expression of PPARγ mRNA in BMDMs and IL-4-treated BMDMs in a concentration-dependent manner. SA enhanced Arg1 and IL-10 expression in BMDMs, and the PPARγ antagonist GW9662 attenuated M2 macrophage marker expression. Conclusions Our results demonstrated that SA attenuated structural and neural remodeling by promoting macrophage M2 polarization via PPARγ activation after MI.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Xiong
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiang Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingyan Zhao
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- Ke Hu
| |
Collapse
|
26
|
Shahid M, Raish M, Ahmad A, Bin Jardan YA, Ansari MA, Ahad A, Alkharfy KM, Alaofi AL, Al-Jenoobi FI. Sinapic Acid Ameliorates Acetic Acid-Induced Ulcerative Colitis in Rats by Suppressing Inflammation, Oxidative Stress, and Apoptosis. Molecules 2022; 27:4139. [PMID: 35807383 PMCID: PMC9268465 DOI: 10.3390/molecules27134139] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a long-term condition which results in inflammation and ulcers of the colon and rectum. The key indications of active disease are abdominal pain and diarrhea mixed with blood. Aims: We explore the underlying colon protective mechanism of sinapic acid (SA) against acetic acid (AA) induced ulcerative colitis in rats. The implications of inflammation, oxidative stress, and apoptosis are studied. Methodology: Twenty-four rats were distributed into four categories, normal control (NC), ulcerative colitis (UC), ulcerative Colitis with SA 40 mg/kg (SA 40 mg/kg + AA), and ulcerative colitis with prednisolone (PRDL 10 mg/kg + AA), and were pretreated orally with saline, saline and SA (40 mg/kg/day) or PRDL (10 mg/kg/day) respectively, for 7 days. UC was prompted by trans-rectal administration of 4% AA on the 5th day, colon tissues were surgically removed for gross morphology and histological inspection, oxidative stress, and inflammatory markers and immunoblot analysis of Bax, caspase-3, and Bcl-2. Results: Macroscopic and histological inspection demonstrated that both SA 40 mg/kg and PRDL (10 mg/kg/day) significantly ameliorates colonic injuries. In addition, both pretreatments significantly ameliorates AA-induced UC, oxidative stress, as indicated by suppressed malondialdehyde (MDA), nitric oxide (NO) levels and restoring antioxidant/oxidant balance as indicated by catalase and glutathione levels, suppressed inflammation via inhibiting cytokines TNF-α, IL-6, inflammatory markers MPO, PGE2, COX-2 and NF-κB and inhibiting the protein expression of Bax and caspase-3 apoptotic protein and increasing the anti-apoptotic protein, Bcl-2 thereby inhibiting apoptosis. Conclusion: Sinapic acid significantly ameliorates AA induced UC in rats by suppressing inflammation, oxidative stress, and apoptosis in colonic tissues which exhibits its potential for the management of UC.
Collapse
Affiliation(s)
- Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Khalid M. Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (K.M.A.)
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (Y.A.B.J.); (A.A.); (A.L.A.); (F.I.A.-J.)
| |
Collapse
|
27
|
The Beneficial Effects of Chinese Herbal Monomers on Ameliorating Diabetic Cardiomyopathy via Nrf2 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3959390. [PMID: 35656019 PMCID: PMC9155920 DOI: 10.1155/2022/3959390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 12/05/2022]
Abstract
Diabetic cardiomyopathy (DCM) is the main factor responsible for poor prognosis and survival in patients with diabetes. The highly complex pathogenesis of DCM involves multiple signaling pathways, including nuclear factor-κB (NF-κB) signaling pathway, adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, phosphatidylinositol 3-kinase-protein kinase B (Akt) signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-β (TGF-β) signaling pathway. Nuclear factor erythroid-2-related factor 2 (Nrf2) seems essential to the amelioration of the progression of DCM, not only through counterbalancing oxidative stress, but also through interacting with other signaling pathways to combat inflammation, the disorder in energy homeostasis and insulin signaling, and fibrosis. It has been evidenced that Chinese herbal monomers could attenuate DCM through the crosstalk of Nrf2 with other signaling pathways. This article has summarized the pathogenesis of DCM (especially in oxidative stress), the beneficial effects of ameliorating DCM via the Nrf2 signaling pathway and its crosstalk, and examples of Chinese herbal monomers. It will facilitate pharmacological research and development to promote the utilization of traditional Chinese medicine in DCM.
Collapse
|
28
|
El-Hagrassi AM, Osman AF, El-Naggar ME, Mowaad NA, Khalil S, Hamed MA. Phytochemical constituents and protective efficacy of Schefflera arboricola L. leaves extract against thioacetamide-induced hepatic encephalopathy in rats. Biomarkers 2022; 27:375-394. [PMID: 35234557 DOI: 10.1080/1354750x.2022.2048892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome resulting from liver failure. Objective: To evaluate the protective effect of Schefflera arboricola L. leaves methanol extract against thioacetamide (TAA) induced HE in rats. Materials and methods: GC/MS, LC-ESI-MS and the total phenolic and flavonoid contents were determined. The methanol extract was orally administrated (100 and 200 mg/kg) for 21 days. TAA (200 mg/kg) was given intraperitoneally on day 19 and continued for three days. The evaluation was done by measuring alanine aminotransferases (ALT), alkaline phosphatase (ALP), ammonia, reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) alpha tumor necrotic factor (TNFα), toll like receptor (TLR4), interleukin 1 beta (IL-1β), interlukin 6 (IL-6), cyclooxygenase 2(COX2), B cell lymphoma (BCL2), alpha smooth muscle actin (α-SMA) and cluster of differentiation 163 (CD163). The histological features of liver and brain were conducted. Results: Forty five compounds were identified from the n-hexane fraction, while twenty nine phenolic compounds were determined from the methanol extract. Pretreatment with the plant extract returned most of the measurements under investigation to nearly normal. Conclusion: Due to its richness with bioactive compounds, Schefflera arboricola L. leaves extract succeeded to exert anti-fibrotic, anti-inflammatory and antioxidants properties in TAA-induced HE in rats with more efficacy to its high protective dose.
Collapse
Affiliation(s)
- Ali M El-Hagrassi
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza, Egypt
| | - Abeer F Osman
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| | - Mostafa E El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Noha A Mowaad
- Department of Narcotics, Ergogenic Acids and Poisons, National Research Centre, Dokki, Giza, Egypt
| | - Sahar Khalil
- Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
29
|
Wang P, Wen C, Olatunji OJ. Anti-Inflammatory and Antinociceptive Effects of Boesenbergia rotunda Polyphenol Extract in Diabetic Peripheral Neuropathic Rats. J Pain Res 2022; 15:779-788. [PMID: 35356266 PMCID: PMC8959722 DOI: 10.2147/jpr.s359766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
Affiliation(s)
- Peng Wang
- Department of Pharmacy, Wuhu Second People's Hospital, Wuhu City, 241001, Anhui, People’s Republic of China
| | - Chaoling Wen
- Anhui Traditional Chinese Medicine College, Wuhu City, 241001, Anhui, People’s Republic of China
| | - Opeyemi Joshua Olatunji
- Traditional Thai Medical Research and Innovation Center, Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
- Correspondence: Opeyemi Joshua Olatunji, Traditional Thai Medical Research and Innovation Center, Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand, Email
| |
Collapse
|
30
|
Lee BH, Choi HS, Hong J. Roles of anti- and pro-oxidant potential of cinnamic acid and phenylpropanoid derivatives in modulating growth of cultured cells. Food Sci Biotechnol 2022; 31:463-473. [PMID: 35464248 PMCID: PMC8994811 DOI: 10.1007/s10068-022-01042-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/04/2022] Open
Abstract
Cinnamic acid (CiA) and phenylpropanoid derivatives are widely distributed in plant foods. In this study, anti- and pro-oxidant properties of the derivatives and their roles in modulating cell growth were investigated. Ferulic acid, sinapinic acid, caffeic acid (CaA), and 3,4-dihydroxyhydrocinnamic acid (DHC) showed strong radical scavenging activities. They, except DHC, also performed considerable inhibitory effects on lipid peroxidation and reduced levels of intracellular reactive oxygen species (ROS). CaA and DHC, however, produced substantial amount of H2O2 with oxidative degradation in culture conditions. CaA and DHC (> 400 μM) showed potent cytotoxic effects which were abolished by superoxide dismutase/catalase; they significantly enhanced cell growth ROS-dependently at low levels (~ 100 μM). CiA derivatives without bearing hydroxyl group did not show any appreciable antioxidant activities. The results indicate that CiA derivatives with ortho-dihydroxyl group had strong anti- and pro-oxidant properties, which also play an important role in modulating cell growth. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01042-x.
Collapse
Affiliation(s)
- Bo-Hyun Lee
- grid.412487.c0000 0004 0533 3082Division of Applied Food System, College of Natural Science, Seoul Women’s University, 621 Hwarangno, Nowon-gu, Seoul, 01797 Korea ,grid.430387.b0000 0004 1936 8796Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ 07103 USA
| | - Hyeon-Son Choi
- grid.263136.30000 0004 0533 2389Department of Food Nutrition, Sangmyung University, Seoul, 03016 Korea
| | - Jungil Hong
- grid.412487.c0000 0004 0533 3082Division of Applied Food System, College of Natural Science, Seoul Women’s University, 621 Hwarangno, Nowon-gu, Seoul, 01797 Korea
| |
Collapse
|
31
|
Ahad A. Meet the Editorial Board Member. Curr Drug Deliv 2022. [DOI: 10.2174/156720181902220120123044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics King Saud University Riyadh, Saudi Arabia
| |
Collapse
|