1
|
Guo X, Wang P, Wei H, Yan J, Zhang D, Qian Y, Guo B. Interleukin(IL)-37 attenuates isoproterenol (ISO)-induced cardiac hypertrophy by suppressing JAK2/STAT3-signaling associated inflammation and oxidative stress. Int Immunopharmacol 2024; 142:113134. [PMID: 39293311 DOI: 10.1016/j.intimp.2024.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Inflammation and oxidative stress have drawn more and more interest in the realm of cardiovascular disease. In many different disorders, IL-37 acts as an anti-inflammatory and suppressor of inflammation. This study aimed to investigate whether IL-37 could alleviate cardiac hypertrophy by reducing inflammation and oxidative stress. METHODS In vivo, a cardiac hypertrophy model was induced by 14 d of daily isoproterenol (ISO, 30 mg/kg/d) injection, followed by weeks of treatment with recombinant human IL-37 (1000 ng/animal), administered three times weekly. Assessments concentrated on markers of inflammation and oxidative stress, apoptosis, myocardial disease, and cardiac shape and function. In vitro, neonatal rat cardiomyocytes (NRCMs) were subjected to ISO (10 µM) to establish a cardiomyocytes hypertrophy model. Subsequent IL-37 treatment (100 ng/ml) was applied to determine its cardioprotective efficacy and to elucidate further the underlying mechanisms involved. RESULTS Significant cardioprotective benefits of IL-37 were seen (in vitro as well as in vivo), primarily through the reduction of oxidative stress, inflammation, apoptosis, and heart hypertrophy markers. Furthermore, IL-37 treatment was associated with a decrease in JAK2 and STAT3 phosphorylation. It is interesting to note that WP1066, a JAK2/STAT3 inhibitor, exhibited antioxidant and anti-inflammatory properties comparable to IL-37, as well as synergistic effects when mixed with the latter. CONCLUSION ISO-induced cardiac hypertrophy is lessened by IL-37 through the reduction of oxidative stress and inflammation. Additionally, the effects of IL-37 are closely related to inactivation of the JAK2/STAT3 signaling pathway. It is anticipated that IL-37 will one day be used to treat cardiovascular illnesses such as heart hypertrophy.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China
| | - Pengfei Wang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China
| | - Huiqing Wei
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China
| | - Jie Yan
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China
| | - Donglei Zhang
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China
| | - Yuxing Qian
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China
| | - Bingyan Guo
- Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China; Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| |
Collapse
|
2
|
Xie C, Wang T, Liu A, Huang B, Zeng W, Li Z, Peng S, Wu S. Sirt4 Overexpression Modulates the JAK2/STAT3 and PI3K/AKT/mTOR Axes to Alleviate Sepsis-Induced Acute Lung Injury. Cell Biochem Biophys 2024:10.1007/s12013-024-01588-z. [PMID: 39400781 DOI: 10.1007/s12013-024-01588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is a severe organ dysfunction characterized by lung inflammation and apoptosis. The mechanisms underlying sepsis-induced ALI remain poorly understood. Here, we determined the effects of sirtuin 4 (SIRT4) on sepsis-induced ALI. METHODS Lipopolysaccharide (LPS)-induced injury cell and cecal ligation and puncture (CLP) animal models were established. Overexpression vectors and lentiviral transfections were used to upregulate SIRT4 expression. Lung cell apoptosis, inflammation, and the levels of associated factors were evaluated. Changes in the PI3K/AKT/mTOR and JAK2/STAT3 pathways were measured, and their potential involvement was examined using LY294002 (PI3K inhibitor), 740 Y-P (PI3K agonist), AG490 (JAK2 inhibitor), and coumermycin A1 (JAK2 agonist). RESULTS Lower SIRT4 expression was observed in LPS-exposed A549 cells and CLP rats. In LPS-induced A549 cells, Sirt4 overexpression enhanced cell viability, resisted apoptosis, restored the expression of apoptosis-associated proteins (HMB1, cleaved CASP3, BAX, and BCL), and reduced the secretion of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α). In CLP rats, Sirt4 overexpression prolonged survival time, alleviated lung histopathological damage, reduced pulmonary edema, mitigated lung infection, decreased lung apoptosis, and lowered serum levels of inflammatory cytokines. Furthermore, Sirt4 overexpression blocked JAK2/STAT3/AKT/mTOR phosphorylation. 740 Y-P and coumermycin A1 reversed the protective effects of Sirt4 overexpression in LPS-treated A549 cells, resulting in decreased cell viability and increased apoptosis. LY294002 and AG490 enhanced the protective effects of Sirt4 overexpression in LPS-treated A549 cells. CONCLUSION SIRT4 alleviates sepsis-induced ALI by inhibiting JAK2/STAT3/PI3K/AKT/mTOR signaling. Upregulating SIRT4 expression may serve as an innovative therapeutic approach for lung injury management in sepsis.
Collapse
Affiliation(s)
- Cancan Xie
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Ting Wang
- Department of Rehabilitation Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Anmin Liu
- Department of Emergency, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Bing Huang
- Department of Respiratory Medicine, Zhuzhou Central Hospital, Central South University, Zhuzhou, Hunan, China
| | - Weizhong Zeng
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Zhengrong Li
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Suna Peng
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Shuanghua Wu
- Department of Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
3
|
Abdallah HH, Abd El-Fattah EE, Salah NA, El-Khawaga OY. Rosuvastatin ameliorates chemically induced acute lung injury in rats by targeting ferroptosis, heat shock protein B1, and inflammation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03352-9. [PMID: 39190209 DOI: 10.1007/s00210-024-03352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Acute lung injury (ALI) is a life-threatening condition characterized by respiratory failure. Rosuvastatin (RSV) is an antihypercholesterolemic agent with antioxidant properties. The current study aimed to investigate RSV novel therapeutic impact on ALI with emphasis on oxidative stress, inflammation, and heat shock protein B1 (HSPB1). Male albino rats (N = 30) were divided into five groups. Normal control (NC) group: rats received normal saline 2 mL/kg P.O daily. Lipopolysaccharides (LPS) group: rats received LPS (3 mg/kg intraperitoneally once). RSV group: rats received RSV (2 mg/kg P.O daily). LPS + RSV group: rats received RSV as in group 3 and on the 7th day rats received LPS as group 2. LPS + Dexamethasone (DX): rats received DX (2 mg/kg P.O, daily for one week) and on the 7th day rats received LPS as group 2. At the end of experiment (one week), lung tissue was used to determine HSPB1, high mobility group box 1 (HMGB1) using ELISA. IL-6, nuclear factor-2 (Nrf2), haem Oxygenase-1 (HO-1) protein levels were assessed using immunohistochemistry. GSH, catalase, MDA, NO, albumin and urea are assessed by colorimetry. The results revealed that RSV treatment resolved histopathological changes in lung tissue induced by LPS. Compared to LPS group, LPS + RSV group showed significant decrease in urea, NO, MDA, HMGB1, IL-6 and HO-1 level compared to LPS-treated rats. Conversely, RSV treatment significantly increased HSPB1, Nrf2, albumin, GSH, and CAT levels compared to LPS rats. RSV is effective for amelioration of ALI and thus can be used as adjuvant therapy for ALI.
Collapse
Affiliation(s)
- Hana H Abdallah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Neven A Salah
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Omali Y El-Khawaga
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Ji L, Lou S, Fang Y, Wang X, Zhu W, Liang G, Lee K, Luo W, Zhuang Z. Patchouli Alcohol Protects the Heart against Diabetes-Related Cardiomyopathy through the JAK2/STAT3 Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:631. [PMID: 38794201 PMCID: PMC11124524 DOI: 10.3390/ph17050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a common pathological state brought about by diabetes mellitus (DM). Patchouli alcohol (PatA) is known for its diverse advantageous effects, notably its anti-inflammatory properties and protective role against metabolic disorders. Despite this, the influence of PatA on DCM remains relatively unexplored. To explore the effect of PatA on diabetes-induced cardiac injury and dysfunction in mice, streptozotocin (STZ) was used to mimic type 1 diabetes in mice. Serological markers and echocardiography show that PatA treatment protects the heart against cardiomyopathy by controlling myocardial fibrosis but not by reducing hyperglycemia in diabetic mice. Discovery Studio 2017 software was used to perform reverse target screening of PatA, and we found that JAK2 may be a potential target of PatA. RNA-seq analysis of heart tissues revealed that PatA activity in the myocardium was primarily associated with the inflammatory fibrosis through the Janus tyrosine kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. In vitro, we also found that PatA alleviates high glucose (HG) + palmitic acid (PA)-induced fibrotic and inflammatory responses via inhibiting the JAK2/STAT3 signaling pathway in H9C2 cells. Our findings illustrate that PatA mitigates the effects of HG + PA- or STZ-induced cardiomyopathy by acting on the JAK2/STAT3 signaling pathway. These insights indicate that PatA could potentially serve as a therapeutic agent for DCM treatment.
Collapse
Affiliation(s)
- Lijun Ji
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Shuaijie Lou
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Yi Fang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Xu Wang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Weiwei Zhu
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| | - Guang Liang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Kwangyoul Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Wu Luo
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 311399, China
| | - Zaishou Zhuang
- The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325000, China; (L.J.); (S.L.); (Y.F.); (X.W.); (W.Z.); (G.L.)
| |
Collapse
|
5
|
Guo H, Wang Z, Yin K, Ma R, Zhang Y, Yin F, Li H, Yin D. Sciellin promotes the development and progression of thyroid cancer through the JAK2/STAT3 signaling pathway. Mol Carcinog 2024; 63:701-713. [PMID: 38411346 DOI: 10.1002/mc.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
Thyroid cancer (TC) is one of the most common endocrine tumors worldwide. Sciellin (SCEL) is involved in various disease processes, including burn wound healing and neutrophil extracellular traps (NETs); it is highly expressed in TC. However, its biological impact on TC and related mechanisms remain unclear. This study aimed to investigate the effect of SCEL on the function of human TC cell lines B-CPAP and OCUT-2C (cancer cell lines with BRAF V600E mutations). Analyses of data sets and clinical samples revealed enhanced expression of SCEL in TC than in adjacent normal tissue. SCEL knockout suppresses proliferation and cell cycle progression in TC cells, and these results were reversed by the upregulated SCEL expression in TC. SCEL knockout inhibited tumor development in xenograft mouse models. Western blot (WB) demonstrated that the expression of p-JAK2 and p-STAT3 was reduced in SCEL-knockdown TC. These results suggest that SCEL plays a key role in TC progression through the JAK2-STAT3 pathway. Therefore, SCEL can be considered a potential diagnostic biomarker and therapeutic target for TC.
Collapse
Affiliation(s)
- Haohao Guo
- Department of Thyroid Surgery, Zhengzhou, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
| | - Ziyang Wang
- Department of Thyroid Surgery, Zhengzhou, Henan, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Runsheng Ma
- Department of Thyroid Surgery, Zhengzhou, Henan, China
| | - Yifei Zhang
- Department of Thyroid Surgery, Zhengzhou, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
| | - Fanxiang Yin
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongqiang Li
- Department of Thyroid Surgery, Zhengzhou, Henan, China
| | - Detao Yin
- Department of Thyroid Surgery, Zhengzhou, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Liu C, Wan N, Wei L, Rong W, Zhu W, Xie M, Zhang Y, Liu Z, Jing Q, Lyu A. Therapeutic potential and protective role of GRK6 overexpression in pulmonary arterial hypertension. Vascul Pharmacol 2023; 153:107233. [PMID: 37742818 DOI: 10.1016/j.vph.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Abnormal proliferation of pulmonary arterial smooth muscle cells (PASMCs) is a key mechanism in the development of pulmonary arterial hypertension (PAH). Signal transducer and activator of transcription 3 (STAT3) signalling plays a critical role in modulating PASMC proliferation, and G-protein-coupled receptor kinase 6 (GRK6) regulates the STAT3 pathway. However, the mechanism underlying the relationship between GRK6 and PAH remains unclear. In this study, we aimed to investigate the role of GRK6 in PAH and determine its potential as a therapeutic target. We utilised hypoxia- and SU5416-induced PAH mouse models and a monocrotaline-induced PAH rat model to analyse the involvement of GRK6. We conducted gain- and loss-of-function experiments using mouse PASMCs. Modulation of GRK6 expression was achieved via a lentiviral vector in vitro and an adeno-associated virus serotype 1 encoding GRK6 in vivo. GRK6 was significantly downregulated in the lung tissues of PAH mice and rats, predominantly in PASMCs. Knockout of GRK6 exacerbated PAH, while both therapeutic and prophylactic overexpression of GRK6 alleviated PAH, as evidenced by a reduction in right ventricular systolic pressure, right ventricular wall to left ventricular wall plus ventricular septum ratio, pulmonary vascular media thickness, and pulmonary vascular muscularisation. Mechanistically, GRK6 overexpression attenuated hypoxia-induced PASMC proliferation and STAT3 phosphorylation. Conversely, knockdown of GRK6 promoted hypoxia-induced proliferation, which was mitigated by a STAT3 inhibitor. Our findings highlight the potential protective and beneficial roles of GRK6 in PAH; we propose a lung-targeted GRK6 gene therapy utilizing adeno-associated virus serotype 1 as a potential treatment approach for patients with PAH.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Naifu Wan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Lijiang Wei
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wuwei Rong
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Wentong Zhu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China
| | - Meifeng Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yanling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhihua Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, Innovation Centre for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China.
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijiner Rd, Shanghai 200025, China.
| |
Collapse
|
8
|
Gao S, Qiu Y, Meng Y, Jia Y, Lang X, Zhao H, Sun H, Zhang J, Ding L. Blockage of PHLPP1 protects against myocardial ischemia/reperfusion injury in diabetic mice via activation of STAT3 signaling. J Bioenerg Biomembr 2023; 55:325-339. [PMID: 37584737 DOI: 10.1007/s10863-023-09977-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023]
Abstract
Diabetes can exacerbate myocardial ischemia/reperfusion (IR) injury. However, the sensitivity to IR injury and the underlying mechanisms in diabetic hearts remain unclear. Inhibition of PH domain leucine-rich repeating protein phosphatase (PHLPP1) could reduce myocardial IR injury, our previous study demonstrated that the expression of PHLPP1 was upregulated in diabetic myocardial IR model. Thus, this study aimed to investigate the mechanism of PHLPP1 in diabetic myocardial IR injury. Nondiabetic and diabetic C57BL/6 mice underwent 45 min of coronary artery occlusion followed by 2 h of reperfusion. Male C57BL/6 mice were injected with streptozotocin for five consecutive days to establish a diabetes model. H9c2 cells were exposed to normal or high glucose and subjected to 4 h of hypoxia followed by 4 h of reoxygenation. Diabetes or hyperglycemia increased postischemic infarct size, cellular injury, release of creatine kinase-MB, apoptosis, and oxidative stress, while exacerbating mitochondrial dysfunction. This was accompanied by enhanced expression of PHLPP1 and decreased levels of p-STAT3 and p-Akt. These effects were counteracted by PHLPP1 knockdown. Moreover, PHLPP1 knockdown resulted in an increase in mitochondrial translocation of p-STAT3 Ser727 and nuclear translocation of p-STAT3 Tyr705 and p-STAT3 Ser727. However, the effect of PHLPP1 knockdown in reducing posthypoxic cellular damage was nullified by either Stattic or LY294002. Additionally, a co-immunoprecipitation assay indicated a direct interaction between PHLPP1 and p-STAT3 Ser727, but not p-STAT3 Tyr705. The abnormal expression of PHLPP1 plays a significant role in exacerbating myocardial IR injury in diabetic mice. Knockdown of PHLPP1 to activate the STAT3 signaling pathway may represent a novel strategy for alleviating myocardial IR injury in diabetes.
Collapse
Affiliation(s)
- Sumin Gao
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yun Qiu
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuming Meng
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yajuan Jia
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xuemei Lang
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hongmei Zhao
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hong Sun
- Department of Emergency Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jinsong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Lianshu Ding
- Department of Neurosurgery, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huai'an, China.
| |
Collapse
|
9
|
Zhang H, Guo Q, Feng G, Shen X, Feng X, Guo Y, Wang S, Zhong X. Lnc-PXMP4-2-4 alleviates myocardial cell damage by activating the JAK2/STAT3 signaling pathway. Heliyon 2023; 9:e18649. [PMID: 37560637 PMCID: PMC10407674 DOI: 10.1016/j.heliyon.2023.e18649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the protective effect of long non-coding lnc-PXMP4-2-4 on myocardial cell damage caused by acute myocardial infarction (AMI). METHODS Peripheral blood mononuclear cells (PBMC) were collected from 24 patients with AMI on the day of admission, the first day after percutaneous coronary intervention (PCI) and the third day after surgery, and 24 patients with clinical control group. Real-time quantitative PCR(QRT-PCR) was used to detect the expression of related genes. Then in human cardiomyocytes (AC16), Cell Counting Kit-8 (CCK-8) was used to determine cell viability, lactate dehydrogenase release assay (LDH) was used to determine the release of lactate dehydrogenase, PCR was used to detect the expression of genes, cell death was detected by flow cytometry, and the expression of related proteins was measured by Western blot. The effect of lnc-PXMP4-2-4 was further studied by silencing and overexpressing lnc-PXMP4-2-4. RESULTS Compared with clinical control group, the expression of lnc-PXMP4-2-4 in PBMC of AMI patients was significantly higher than it. Compared with pre-operation, the expression of lnc-PXMP4-2-4 was significantly up-regulated on day 1 after PCI, and recovered to pre-operation level on day 3 after surgery. In AC16 cells, lnc-PXMP4-2-4 inhibited the proliferation of AC16, promoted the release of LDH and increased cell death, aggravated the cardiomyocyte injury caused by H2O2, and inhibited the expression of JAK2 and STAT3 mRNA and protein. The up-regulation of lnc-PXMP-4-2-4 had the opposite effect. In addition, the inhibition of the signal pathway by JAK2/STAT3 pathway inhibitor AG490 partially weakened the enhanced viability of AC16 cells, decreased LDH release and apoptosis induced by lnc-PXMP4-2-4 overexpression, increased Bcl-2 expression and down-regulated Bax expression. CONCLUSION Therefore, we conclude that lnc-PXMP4-2-4 protects cardiomyocytes from injury by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Qinlin Guo
- Department of Endocrine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Guiju Feng
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xinxin Feng
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, People's Republic of China
| | - Yi Guo
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Shouyan Wang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| |
Collapse
|
10
|
Xing N, Qin J, Ren D, Du Q, Li Y, Mi J, Zhang F, Ai L, Zhang S, Zhang Y, Wang S. Integrating UPLC-Q-Exactive Orbitrap/MS, network pharmacology and experimental validation to reveal the potential mechanism of Tibetan medicine Rhodiola granules in improving myocardial ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116572. [PMID: 37201662 DOI: 10.1016/j.jep.2023.116572] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/24/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Rhodiola granules (RG) is a traditional Tibetan medicine prescription that can be used to improve the symptoms of ischemia and hypoxia in cardiovascular and cerebrovascular diseases. However, there is no report on its use to improve myocardial ischemia/reperfusion (I/R) injury, and its potential active ingredients and mechanism against myocardial ischemia/reperfusion (I/R) injury remain unclear. AIM OF THE STUDY This study aimed to reveal the potential bioactive components and underlying pharmacological mechanisms of RG in improving myocardial I/R injury through a comprehensive strategy. MATERIALS AND METHODS UPLC-Q-Exactive Orbitrap/MS technology was used to analyze the chemical components of RG, the potential bioactive components and targets were tracked and predicted by the SwissADME and SwissTargetPrediction databases, and the core targets were predicted through the PPI network, as well the functions and pathways were determined by GO and KEGG analysis. In addition, the molecular docking and ligation of the anterior descending coronary artery-induced rat I/R models were experimentally validated. RESULTS A total of 37 ingredients were detected from RG, including nine flavones, ten flavonoid glycosides, one glycoside, eight organic acids, four amides, two nucleosides, one amino acid, and two other components. Among them, 15 chemical components, such as salidroside, morin, diosmetin, and gallic acid were identified as key active compounds. Ten core targets, including AKT1, VEGF, PTGS2, and STAT3, were discovered through the analysis of the PPI network constructed from 124 common potential targets. These possible targets were involved in the regulation of oxidative stress and HIF-1/VEGF/PI3K-Akt signaling pathways. Furthermore, molecular docking confirmed that the potential bioactive compounds in RG have good potential binding abilities to AKT1, VEGFA, PTGS2, STAT3, and HIF-1α proteins. Then, the animal experiments showed that RG could significantly improve the cardiac function of I/R rats, reduce the size of myocardial infarction, improve the myocardial structure, and reduce the degree of myocardial fibrosis, inflammatory cell infiltration, and myocardial cell apoptosis rate in I/R rats. In addition, we also found that RG could decrease the concentration of AGE, Ox-LDL, MDA, MPO, XOD, SDH, Ca2+, and ROS, and increase the concentration of Trx, TrxR1, SOD, T-AOC, NO, ATP, Na+k+-ATPase, Ca2+-ATPase, and CCO. Moreover, RG could significantly down-regulate the expressions of Bax, Cleaved-caspase3, HIF-1α, and PTGS2, as well up-regulate the expressions of Bcl-2, VEGFA, p-AKT1, and p-STAT3. CONCLUSION In summary, we revealed for the first time the potential active ingredients and mechanisms of RG for myocardial I/R injury therapy through a comprehensive research strategy. RG may synergistically improve myocardial I/R injury through anti-inflammatory, regulating energy metabolism, and oxidative stress, improving I/R-induced myocardial apoptosis, which may be related to the HIF-1/VEGF/PI3K-Akt signaling pathway. Our study provides new insights into the clinical application of RG and also provides a reference for the development and mechanism research of other Tibetan medicine compound preparations.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongsheng Ren
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuying Li
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Jiao Mi
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Fengming Zhang
- Tibet Rhodiola Pharmaceutical Holding Co. Ltd, Lasa, China
| | - Li Ai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanyin Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Research Institute of Integrated TCM & Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
11
|
Guo X, Liu R, Jia M, Wang Q, Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 2023:10.1007/s11064-023-03923-x. [PMID: 37017889 DOI: 10.1007/s11064-023-03923-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood-brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood-brain barrier, leading to blood-brain barrier dysfunction and vasogenic edema. Importantly, blood-brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood-brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood-brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood-brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood-brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood-brain barrier dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Xi Guo
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China.
| |
Collapse
|
12
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Wu J, Luo J, Cai H, Li C, Lei Z, Lu Y, Ni L, Cao J, Cheng B, Hu X. Expression Pattern and Molecular Mechanism of Oxidative Stress-Related Genes in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:jcdd10020079. [PMID: 36826575 PMCID: PMC9961140 DOI: 10.3390/jcdd10020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
(1) Background: The molecular mechanism of oxidative stress-related genes (OSRGs) in myocardial ischemia-reperfusion injury (MIRI) has not been fully elucidated. (2) Methods: Differential expression analysis, enrichment analysis, and PPI analysis were performed on the MIRI-related datasets GSE160516 and GSE61592 to find key pathways and hub genes. OSRGs were obtained from the Molecular Signatures Database (MSigDB). The expression pattern and time changes of them were studied on the basis of their raw expression data. Corresponding online databases were used to predict miRNAs, transcription factors (TFs), and therapeutic drugs targeting common differentially expressed OSRGs. These identified OSRGs were further verified in the external dataset GSE4105 and H9C2 cell hypoxia-reoxygenation (HR) model. (3) Results: A total of 134 DEGs of MIRI were identified which were enriched in the pathways of "immune response", "inflammatory response", "neutrophil chemotaxis", "phagosome", and "platelet activation". Six hub genes and 12 common differentially expressed OSRGs were identified. A total of 168 miRNAs, 41 TFs, and 21 therapeutic drugs were predicted targeting these OSRGs. Lastly, the expression trends of Aif1, Apoe, Arg1, Col1a1, Gpx7, and Hmox1 were confirmed in the external dataset and HR model. (4) Conclusions: Aif1, Apoe, Arg1, Col1a1, Gpx7, and Hmox1 may be involved in the oxidative stress mechanism of MIRI, and the intervention of these genes may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Jingyi Luo
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Zhe Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Yi Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (B.C.); (X.H.)
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
- Correspondence: (B.C.); (X.H.)
| |
Collapse
|