1
|
Wang L, Li J, Wang B, Yin X, Wei J, Qiu H. Progress in modeling avian hyperuricemia and gout (Review). Biomed Rep 2025; 22:1. [PMID: 39483331 PMCID: PMC11522952 DOI: 10.3892/br.2024.1879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/21/2024] [Indexed: 11/03/2024] Open
Abstract
Human organ tissue is vulnerable to hyperuricemia (HUA), which negatively impacts quality of life, particularly when it progresses to gout. Chicken uric acid formation and metabolism are similar to human uric acid metabolism; therefore, theoretically, the genesis and progression of human HUA and gout may be similar to those of poultry models. The present review explored HUA and gout and the progress of poultry-induced HUA and gout models. The present study reviewed procedures of modelling chicken gout and HUA and the detection indices and current concerns regarding these models. Notably, In the production of poultry hyperuricemia model, the combined method of water and food induction has a higher success rate and stability. Compared with mice induced HUA and gout models, poultry induced HUA and gout models had less kidney damage, and the models were stable and long-lasting.
Collapse
Affiliation(s)
- Linlin Wang
- Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jialin Li
- Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, Heilongjiang 154007, P.R. China
| | - Bo Wang
- Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Xianglin Yin
- Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jinfeng Wei
- Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hongbin Qiu
- Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
- Heilongjiang Provincial Key Laboratory of Gout Research, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
2
|
Deng Y, Li S, Shi YR, Hu DB, Luo JF, Zhao PJ, Yuan WJ, Wang YH. Variation in the contents of four flavonoid glycosides in edible Dendrobium officinale leaves during different harvesting periods and optimization of the extraction process. Food Chem X 2024; 24:101933. [PMID: 39525058 PMCID: PMC11550212 DOI: 10.1016/j.fochx.2024.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Despite being recognized as a specialty food in four Chinese provinces with established safety standards, Dendrobium officinale Kimura et Migo (Orchidaceae) leaf physicochemical indices overlook vital flavonoid glycoside components. Given the inconsistency in flavonoid quality under current standards, we devised a quantitative analysis targeting vicenin 2, vicenin 3, rutin, and isoviolanthin. Our analysis revealed significant seasonal variations, with harvests yielding the highest total content of these four flavonoid glycosides in February (1.6378 mg/g) and July (2.0642 mg/g). This finding provides a scientific basis for optimal collection timing, enhancing quality control and utilization. Furthermore, we optimized the extraction conditions (59.63 °C, 22.44 min, 1:37.91 g/mL solid-to-liquid ratio, 43.24 % ethanol) to maximize the flavonoid glycoside content. This study lays a foundation for refining D. officinale leaf quality standards and advancing related product development in China.
Collapse
Affiliation(s)
- Yangwenqing Deng
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, People's Republic of China
| | - Si Li
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yu-Ru Shi
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Dong-Bao Hu
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, People's Republic of China
| | - Ji-Feng Luo
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Pei-Ji Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Wen-Juan Yuan
- College of Science, Yunnan Agricultural University, Kunming 650224, People's Republic of China
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, and State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun 666303, People's Republic of China
| |
Collapse
|
3
|
Wang C, Wang M, Yang Y, Chen C, Rahman SU, Yang Z, Ding H, Huang W, Wang X. Rutin Attenuates the Oxidative Damage Induced by Zearalenone in Piglet Endometrial Stromal Cells via the p53 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28138-28147. [PMID: 39642313 DOI: 10.1021/acs.jafc.4c09143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Zearalenone (ZEA) induces oxidative damage in porcine endometrial stromal cells (ESCs), which is a critical factor affecting the growth and reproduction of female pigs. We hypothesize that rutin, a flavonoid antioxidant, can alleviate ZEA-induced cellular damage through the p53 signaling pathway. In this experiment, porcine ESCs were used as a research model. After transfection with siRNA to silence the p53 gene, rutin and ZEA were added to the cocultured porcine ESCs. Rutin notably reduced the ZEA-induced apoptosis rate, ROS, MDA, and 4-HNE levels via the p53 pathway; lowered the expression of LC3, Beclin-1, p62, Bax, and CHOP; and significantly improved cell viability, GSH-Px, T-SOD enzyme activity, and Bcl-2 expression. It also inhibited both apoptosis and autophagy. These findings suggested a novel antioxidant mechanism by which rutin mitigated the toxic effects of ZEA, highlighting the role of the p53 gene knockdown in this process.
Collapse
Affiliation(s)
- Chenlong Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Mengya Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Yueru Yang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Chuangjiang Chen
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Sajid Ur Rahman
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Zhiping Yang
- Huangyuan County Animal Husbandry and Veterinary Station, Xining City, Qinghai Province 812100, China
| | - Hongyan Ding
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wanyue Huang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
| | - Xichun Wang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei 230061, China
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-safety, Hefei 230036, China
| |
Collapse
|
4
|
Huo G, Lin Y, Liu L, He Y, Qu Y, Liu Y, Zhu R, Wang B, Gong Q, Han Z, Yin H. Decoding ferroptosis: transforming orthopedic disease management. Front Pharmacol 2024; 15:1509172. [PMID: 39712490 PMCID: PMC11659002 DOI: 10.3389/fphar.2024.1509172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body. Researchers currently know that osteosarcoma, osteoporosis, and other orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star proteins. The effective relief of osteoarthritis symptoms from deterioration has been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the same time, it should be reminded that the mechanisms involved in ferroptosis that regulate orthopedic diseases are not currently understood. In this manuscript, we present the discovery process of ferroptosis, the mechanisms involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic diseases. We expect that this manuscript can provide a new perspective on clinical diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guanlin Huo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Yi Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Bo Wang
- Department of Orthopaedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Qing Gong
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhongyu Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongbing Yin
- Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Wu J, Lv T, Liu Y, Liu Y, Han Y, Liu X, Peng X, Tang F, Cai J. The role of quercetin in NLRP3-associated inflammation. Inflammopharmacology 2024; 32:3585-3610. [PMID: 39306817 DOI: 10.1007/s10787-024-01566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/30/2024] [Indexed: 11/10/2024]
Abstract
Quercetin is a natural flavonoid that is widely found in fruits and vegetables. As an important flavonoid, it exhibits a wide range of biological activities, including antioxidant, anti-inflammatory, antiviral, immunomodulatory, and analgesic activities. Quercetin exerts powerful antioxidant activity by regulating glutathione, enzyme activity, and the production of reactive oxygen species (ROS). Quercetin exerts powerful anti-inflammatory effects by acting on the Nod-like receptor protein 3 (NLRP3) inflammasome. In diabetes, quercetin has been shown to improve insulin sensitivity and reduce high blood sugar level, while, in neurological diseases, it potentially prevents neuronal degeneration and cognitive decline by regulating neuroinflammation. In addition, in liver diseases, quercetin may improve liver inflammation and fibrosis by regulating the NLRP3 activity. In addition, quercetin may improve inflammation in other diseases based on the NLRP3 inflammasome. With this background, in this review, we have discussed the progress in the study on the mechanism of quercetin toward improving inflammation via NLRP3 inflammasome in the past decade. In addition, from the perspective of quercetin glycoside derivatives, the anti-inflammatory mechanism of hyperoside, rutin, and isoquercetin based on NLRP3 inflammasome has been discussed. Moreover, we have discussed the pharmacokinetics of quercetin and its nanoformulation application, with the aim to provide new ideas for further research on the anti-inflammatory effect of quercetin and its glycoside derivatives based on NLRP3 inflammasome, as well as in drug development and application.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Tongtong Lv
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yu Liu
- Department of Oncology, Gong'an County People's Hospital, Jingzhou, 434000, China
| | - Yifan Liu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, 434023, China
| | - Yukun Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Department of Medical Imaging, School of Medicine, and Positron Emission Computed Tomography (PET) Center of the First Affiliated Hospital, Yangtze University, Jingzhou, 434023, China
| | - Xin Liu
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore, 138602, Singapore.
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, 434023, China.
| |
Collapse
|
6
|
Liu Y, Zheng K, Wang H, Liu H, Zheng K, Zhang J, Han L, Tu S, Wang Y. Natural Bioactive Compounds: Emerging Therapies for Hyperuricemia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1863-1885. [PMID: 39558557 DOI: 10.1142/s0192415x24500733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Hyperuricemia is a crucial feature of metabolic syndrome, characterized by elevated uric acid that causes urate crystal deposits in joints, kidneys, and subcutaneous tissues, resulting in gout and hyperuricemic nephropathy. The primary causes of uric acid metabolism disorder include overproduction and reduced excretion. The majority of uric acid in human body is derived from the breakdown of purine nucleotides. Overproduction of uric acid can result from increased concentration or activity of xanthine oxidase, the key enzyme responsible for uric acid synthesis. Alterations in the activity of proteins responsible for uric acid reabsorption and excretion can also affect serum uric acid. Many bioactive compounds derived from natural plants have been shown to inhibit xanthine oxidase activity to reduce uric acid production, modulate the activity of transport proteins to promote uric acid excretion, or alleviate oxidative stress and inflammation through various signaling pathways. These properties have garnered significant attention from researchers. In this paper, we first introduce the pathophysiological mechanisms of hyperuricemia, then summarize bioactive compounds with urate-lowering effects, and discuss their potential applications in treating hyperuricemia and its complications.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
- Application Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Hong Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Kunyang Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Junjun Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University Zhengzhou, Henan 450001, P. R. China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. China
| | - Yaoxian Wang
- Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
7
|
Lu C, Guo Y, Luo Z, Hu X, Xiong H, Xiang Y, Shu Y, Jian G. Research hotspots and trends related to pain in gouty arthritis from 2014 to 2024: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e40525. [PMID: 39560537 PMCID: PMC11576037 DOI: 10.1097/md.0000000000040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Gouty arthritis is a metabolic condition caused by disordered purine metabolism and elevated uric acid levels. This study adopts a bibliometric approach to analyze current research on pain in gouty arthritis and forecast future research trends. METHODS Retrieve relevant research on gouty arthritis pain in the Web of Science core collection database, screen literature, and use visualization software such as CiteSpace, Vosviewers, and R package "Bibliometrix" for analysis. RESULTS The total number of documents included was 1133, with 909 articles and 224 reviews. Between 2014 and 2024, there was an overall upward trend in the number of publications about pain in gouty arthritis, with the United States of America and China ranking first and second, respectively, in terms of publication volume. The UNIVERSITY OF ALABAMA BIRMINGHAM had the most publications, and Professor DALBETH N played a key role in this field. According to the keyword analysis, disease management and treatment, particularly methods for enhancing patients' quality of life and reducing symptoms, are research hotspots. For a deeper understanding, attention is also being paid to the epidemiology and pathological mechanisms of the disease. Emerging keywords such as "gut microbiota" and "urate-lowering therapies" indicate growing interest in the interrelationship between gut microbiota and gout, and the development of new treatment methods. CONCLUSION This bibliometric study reveals that research on gouty arthritis pain is actively developing. Current hot topics reflect investigations into the deeper pathological mechanisms of gouty arthritis and the development of new treatment methods, including urate-lowering therapies. There is also increasing attention on the role of gut microbiota in the disease. Despite limitations such as the preliminary nature of research methods and insufficient interdisciplinary collaboration, future research directions aim to improve the rigor of research design, strengthen international cooperation, promote unified treatment guidelines, and optimize the diagnosis and treatment of gouty arthritis with new technologies like artificial intelligence, precision medicine, and nanomedicine. This will drive the field towards a deeper scientific understanding, more effective treatment methods, and more comprehensive disease management, ultimately improving patients' prognosis and quality of life.
Collapse
Affiliation(s)
- Chengyin Lu
- The Second Clinic College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yuxing Guo
- Department of Orthopedics, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Zhiqiang Luo
- The Second Clinic College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaomei Hu
- The Second Clinic College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hui Xiong
- The Second Clinic College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
- Department of Orthopedics, The First Hospital of Hunan University Chinese Medicine, Changsha, China
| | - Yang Xiang
- Department of Orthopedics, Hunan Provincial People's Hospital (The First Hospital of Hunan Normal University), Changsha, China
| | - Yang Shu
- Department of Orthopedics, The First Hospital of Hunan University Chinese Medicine, Changsha, China
| | - Gonghui Jian
- College of Integrative Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
8
|
Frenț OD, Stefan L, Morgovan CM, Duteanu N, Dejeu IL, Marian E, Vicaș L, Manole F. A Systematic Review: Quercetin-Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. Int J Mol Sci 2024; 25:12091. [PMID: 39596162 PMCID: PMC11594109 DOI: 10.3390/ijms252212091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
The main goal of this systematic review on the flavonol class secondary metabolite quercetin is to evaluate and summarize the existing research on quercetin's potential health benefits, therapeutic properties, and effectiveness in disease prevention and treatment. In addition to evaluating quercetin's potential for drug development with fewer side effects and lower toxicity, this type of review attempts to collect scientific evidence addressing quercetin's roles as an antioxidant, anti-inflammatory, antibacterial, and anticancer agent. In the first part, we analyze various flavonoid compounds, focusing on their chemical structure, classification, and natural sources. We highlight their most recent biological activities as reported in the literature. Among these compounds, we pay special attention to quercetin, detailing its chemical structure, physicochemical properties, and process of biosynthesis in plants. We also present natural sources of quercetin and emphasize its health benefits, such as its antioxidant and anti-inflammatory effects. Additionally, we discuss methods to enhance its bioavailability, analyzing the latest and most effective delivery systems based on quercetin.
Collapse
Affiliation(s)
- Olimpia-Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Liana Stefan
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Claudia Mona Morgovan
- Department of Chemistry, Faculty of Informatics and Sciences, University of Oradea, No 1 University Street, 410087 Oradea, Romania
| | - Narcis Duteanu
- Faculty of Chemical Engineering, Biotechnologies, and Environmental Protection, Politehnica University of Timisoara, No. 2 Victoriei Square, 300006 Timişoara, Romania
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timisoara, Romania
| | - Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Laura Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, No. 29 Nicolae Jiga Street, 410028 Oradea, Romania; (O.-D.F.); (E.M.); (L.V.)
| | - Felicia Manole
- Department of Surgical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
9
|
Yang M, Xu Y, Yu Q, Li M, Yang L, Yang Y. Spectroscopic Relationship between XOD and TAOZHI Total Polyphenols Based on Chemometrics and Molecular Docking Techniques. Molecules 2024; 29:4288. [PMID: 39339283 PMCID: PMC11433701 DOI: 10.3390/molecules29184288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Xanthine oxidase (XOD) is a key enzyme that promotes the oxidation of xanthine/hypoxanthine to form uric acid, and the accumulation of uric acid leads to hyperuricaemia. The prevalence of gout caused by hyperuricaemia is increasing year by year. TAOZHI (TZ) can be used for the treatment of rheumatic arthralgia due to qi stagnation and blood stasis and contains a large number of polyphenolic components. The aim of this study was to investigate the relationship between chromatograms and XOD inhibition of 21 batches of TZ total polyphenol extract samples. Chemometric methods such as grey correlation analysis, bivariate correlation analysis, and partial least squares regression were used to identify the active ingredient groups in the total polyphenol extracts of TZ, which were validated using molecular docking techniques. The total polyphenol content contained in the 21 batches did not differ significantly, and all batches showed inhibitory effects on XOD. Spectroeffect correlation analysis showed that the inhibitory effect of TZ on XOD activity was the result of the synergistic effect of multiple components, and the active component groups screened to inhibit XOD were F2 (4-O-Caffeoylquinic acid), F4, and F10 (naringenin). The molecular docking results showed that the binding energies of all nine dockings were lower than -7.5 kcal/mol, and the binding modes included hydrogen bonding, hydrophobic forces, salt bridges, and π-staking, and the small molecules might exert their pharmacological effects by binding to XOD through the residue sites of the amino acids, such as threonine, arginine, and leucine. This study provides some theoretical basis for the development and utilisation of TZ total polyphenols.
Collapse
Affiliation(s)
- Mingyu Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yitang Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qihua Yu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Mengyu Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Liyong Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ye Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Key Laboratory for Raw Material of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
10
|
Mahmoud UT, El-Reda GA, Ali FAZ, Mahmoud MAM, Abd-Allah SMS, El-Hossary FM, Khalil NSA. Plasma activated water effects on behavior, performance, carcass quality, biochemical changes, and histopathological alterations in quail. BMC Vet Res 2024; 20:391. [PMID: 39232745 PMCID: PMC11373218 DOI: 10.1186/s12917-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Plasma-activated water (PAW) is an innovative promising technology which could be applied to improve poultry health. The current study investigated the effects of drinking water supply with PAW on quail behaviour, performance, biochemical parameters, carcass quality, intestinal microbial populations, and internal organs histopathology. A total of 54 twenty-one-day-old Japanese quail chicks were randomly allotted to three treatments provided with PAW at doses 0, 1 ml (PAW-1), and 2 ml (PAW-2) per one litter drinking water. Each treatment contained 6 replicates (3 birds/ cage; one male and two females). RESULTS The results clarified that there were no significant (P > 0.05) changes in behaviour, and performance. For the biochemical indicators, the PAW-1 group showed significantly higher serum H2O2, total protein and globulin levels compared with the other groups (P = 0.015, < 0.001, and 0.019; respectively). PAW groups had significantly lower serum creatinine and urea levels than the control (P = 0.003). For the carcass quality, the internal organs relative weight between different treatments was not changed. In contrast, there was a significant increase in the meat colour, taste, and overall acceptance scores in PAW groups compared with the control one (P = 0.013, 0.001, and < 0.001; respectively). For the intestinal microbial population, lactobacilli count was significantly higher in PAW-2 compared with the control group (P = 0.014), while there were no changes in the total bacterial count between different treatment groups. Moreover, mild histological changes were recorded in the intestine, liver, and spleen of PAW groups especially PAW-2 compared with the control one. CONCLUSIONS PAW offered benefits, such as reducing creatine and urea levels, improving meat characteristics, and increasing lactobacilli count, all of which are crucial for sustainable quail farming. Therefore, further research is needed.
Collapse
Affiliation(s)
- Usama T Mahmoud
- Department of Animal, poultry and aquatic life behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Ghada Abd El-Reda
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Physics Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt
| | - Manal A M Mahmoud
- Department of Animal Hygiene and Environmental Pollution, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Sherief M S Abd-Allah
- Department of Food Hygiene, Safety and Technology (Meat Hygiene, Safety and Technology), Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - F M El-Hossary
- Physics Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assiut, Egypt
| |
Collapse
|
11
|
Du L, Zong Y, Li H, Wang Q, Xie L, Yang B, Pang Y, Zhang C, Zhong Z, Gao J. Hyperuricemia and its related diseases: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:212. [PMID: 39191722 DOI: 10.1038/s41392-024-01916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Hyperuricemia, characterized by elevated levels of serum uric acid (SUA), is linked to a spectrum of commodities such as gout, cardiovascular diseases, renal disorders, metabolic syndrome, and diabetes, etc. Significantly impairing the quality of life for those affected, the prevalence of hyperuricemia is an upward trend globally, especially in most developed countries. UA possesses a multifaceted role, such as antioxidant, pro-oxidative, pro-inflammatory, nitric oxide modulating, anti-aging, and immune effects, which are significant in both physiological and pathological contexts. The equilibrium of circulating urate levels hinges on the interplay between production and excretion, a delicate balance orchestrated by urate transporter functions across various epithelial tissues and cell types. While existing research has identified hyperuricemia involvement in numerous biological processes and signaling pathways, the precise mechanisms connecting elevated UA levels to disease etiology remain to be fully elucidated. In addition, the influence of genetic susceptibilities and environmental determinants on hyperuricemia calls for a detailed and nuanced examination. This review compiles data from global epidemiological studies and clinical practices, exploring the physiological processes and the genetic foundations of urate transporters in depth. Furthermore, we uncover the complex mechanisms by which the UA induced inflammation influences metabolic processes in individuals with hyperuricemia and the association with its relative disease, offering a foundation for innovative therapeutic approaches and advanced pharmacological strategies.
Collapse
Grants
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
- 82002339, 81820108020 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Haorui Li
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Qiyue Wang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Lei Xie
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Bo Yang
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
| | - Junjie Gao
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
- Institute of Sports Medicine, Shantou University Medical College, Shantou, 515041, China.
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
12
|
Zhang S, Li D, Fan M, Yuan J, Xie C, Yuan H, Xie H, Gao H. Mechanism of Reactive Oxygen Species-Guided Immune Responses in Gouty Arthritis and Potential Therapeutic Targets. Biomolecules 2024; 14:978. [PMID: 39199366 PMCID: PMC11353092 DOI: 10.3390/biom14080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by monosodium urate (MSU) crystals deposited in the joint tissues causing severe pain. The disease can recur frequently and tends to form tophus in the joints. Current therapeutic drugs for the acute phase of GA have many side effects and limitations, are unable to prevent recurrent GA attacks and tophus formation, and overall efficacy is unsatisfactory. Therefore, we need to advance research on the microscopic mechanism of GA and seek safer and more effective drugs through relevant targets to block the GA disease process. Current research shows that the pathogenesis of GA is closely related to NLRP3 inflammation, oxidative stress, MAPK, NET, autophagy, and Ferroptosis. However, after synthesizing and sorting out the above mechanisms, it is found that the presence of ROS is throughout almost the entire spectrum of micro-mechanisms of the gout disease process, which combines multiple immune responses to form a large network diagram of complex and tight connections involved in the GA disease process. Current studies have shown that inflammation, oxidative stress, cell necrosis, and pathological signs of GA in GA joint tissues can be effectively suppressed by modulating ROS network-related targets. In this article, on the one hand, we investigated the generative mechanism of ROS network generation and its association with GA. On the other hand, we explored the potential of related targets for the treatment of gout and the prevention of tophus formation, which can provide effective reference ideas for the development of highly effective drugs for the treatment of GA.
Collapse
Affiliation(s)
- Sai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Daocheng Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Mingyuan Fan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Jiushu Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Haipo Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; (S.Z.)
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| |
Collapse
|
13
|
Wang L, Zhu Q, Hu M, Zhou X, Guan T, Wu N, Zhu C, Wang H, Wang G, Li J. Toxic mechanisms of nanoplastics exposure at environmental concentrations on juvenile red swamp crayfish (Procambarus clarkii): From multiple perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124125. [PMID: 38740244 DOI: 10.1016/j.envpol.2024.124125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Nanoplastics pollution has emerged as a global issue due to its widespread potential toxicity. This study delved in to toxic effects of nanoplastics on juvenile P. clarkii and molecular mechanisms from perspectives of growth, biochemical, histopathological analysis and transcriptome level for the first time. The findings of this study indicated that nanoplastics of different concentrations have varying influence mechanisms on juvenile P. clarkii. Nanoplastics have inhibitory effects on growth of juvenile P. clarkii, can induce oxidative stress. The biochemical analysis and transcriptome results indicated that 10 mg/L nanoplastics can activate the antioxidant defense system and non-specific immune system in juvenile P. clarkii, and affect energy metabolism and oxidative phosphorylation. While 20 mg/L and 40 mg/L have a destructive influence on the immune function in juvenile P. clarkii, leading to lipid peroxidation and oxidative damage, and induce apoptosis, can affect ion transport and osmotic pressure regulation. The findings of this study can offer foundational data for delving further into impacts of nanoplastics on crustaceans and toxicity mechanism.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Qianqian Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Meng Hu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Xinyi Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Tianyu Guan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Nan Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China
| | - Chuankun Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Hui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| | - Guiling Wang
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China
| | - Jiale Li
- Jiangsu Engineering Center for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huai'an, 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, Jiangsu, 223300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
14
|
Zheng L, Bai Y, Wan Y, Liu F, Xie Y, He J, Guo P. Ameliorative action of "daitongxiao" against hyperuricemia includes the "uric acid transporter group". Front Pharmacol 2024; 15:1300131. [PMID: 38983915 PMCID: PMC11232504 DOI: 10.3389/fphar.2024.1300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
This study aimed to investigate the potential mechanisms involved in the therapeutic effects of daitongxiao (DTX) on hyperuricemia (HUA). DTX was administered to two animal models of HUA via gavage feeding: HUA quail model (a uricotelic animal with urate oxidase deficiency), treated continuously for 35 days post-HUA induction, and HUA rats (an animal with active urate oxidase), treated continuously for 28 days post-HUA induction. HUA was induced in quail by administering a solution of sterile dry yeast powder via gavage feeding, while in rats, it was induced by intragastric gavage feeding of a solution of adenine and ethambutol hydrochloride. DTX improved overall health; increased bodyweight; reduced renal index, serum urate levels, serum xanthine oxidase activity, blood urea nitrogen, and creatinine; and enhanced urinary and fecal uric acid (UA) excretion in these two animal models. The results of hematoxylin and eosin and hexamine silver staining of kidney sections revealed that DTX significantly mitigated HUA-induced renal structural damage and inflammatory response. The results of quantitative real-time polymerase chain reaction, Western blotting, and immunofluorescence analyses revealed that DTX downregulated the renal expression levels of glucose transporter 9 (GLUT9) and upregulated the renal expression levels of organic anion transporters (OAT1 and OAT3) in both HUA models. Thus, the findings of this study suggest that DTX suppresses the progression of HUA by modulating the expression of the UA transporter group members.
Collapse
Affiliation(s)
- Lijie Zheng
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yuanmei Bai
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yan Wan
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Feifan Liu
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yuhuan Xie
- College of Basic Medical Sciences, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Jinglin He
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Peixin Guo
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
15
|
Chang J, Wang Y, Kong X, Dong B, Yue T. Golgi apparatus-targeting fluorescent probe for the imaging of superoxide anion (O 2•-) in living cells during ferroptosis. Anal Chim Acta 2024; 1298:342410. [PMID: 38462334 DOI: 10.1016/j.aca.2024.342410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Ferroptosis is an emerging iron-dependent oxidative cell death type, and recently has been demonstrated to show close relation with Golgi apparatus (GA). Exploring the fluctuation of superoxide anion (O2•-) level in GA during ferroptosis is of great significance to profoundly study the biological functions of GA in ferroptosis. Here, we present a GA-targeting probe (N-GA) to monitor cellular O2•- during ferroptosis. N-GA employed a triflate group and a tetradecanoic amide unit as the recognition site for O2•- and GA-targeting unit, respectively. After the response of N-GA to O2•-, the triflate unit of N-GA converted into hydroxyl group with strong electron-donating ability, generating bright green fluorescence under UV light. N-GA exhibited excellent sensitivity and selectivity towards O2•-. Fluorescence imaging results showed that N-GA could be applied as a GA-targeting probe to monitor cellular O2•-. The stimulation of cells with PMA and rotenone could result in the massive generation of endogenous O2•- in GA. Erastin-induced ferroptosis can markedly induce the increase of O2•- level in GA. Similar to Fer-1 and DFO, dihydrolipoic acid (DHLA) and rutin were demonstrated to inhibit the enormous production of O2•- in GA of the living cells during ferroptosis.
Collapse
Affiliation(s)
- Jia Chang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Yan Wang
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, People's Republic of China
| | - Xiuqi Kong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Baoli Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Tao Yue
- Shandong Chemical Technology Academy, Qingdao University of Science and Technology (Jinan), Jinan, Shandong, 250014, People's Republic of China.
| |
Collapse
|
16
|
Mfotie Njoya E, Tabakam GT, Chukwuma CI, Mashele SS, Makhafola TJ. Phytoconstituents of Androstachys johnsonii Prain Prevent Reactive Oxygen Species Production and Regulate the Expression of Inflammatory Mediators in LPS-Stimulated RAW 264.7 Macrophages. Antioxidants (Basel) 2024; 13:401. [PMID: 38671849 PMCID: PMC11047428 DOI: 10.3390/antiox13040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
According to a survey, the medicinal use of Androstachys johnsonii Prain is kept secret by traditional healers. Considering that inflammation and oxidative stress are major risk factors for the progression of various chronic diseases and disorders, we resolved to investigate the antioxidant and anti-inflammatory potentials of A. johnsonii using in vitro and cell-based assays. The antioxidant activity of A. johnsonii hydroethanolic leaf extract (AJHLE) was evaluated using the ABTS, DPPH, and FRAP assays. Its cytotoxic effect was assessed on RAW 264.7 macrophages using an MTT assay. Then, its anti-inflammatory effect was evaluated by measuring the NO production and 15-LOX inhibitory activities. Moreover, its preventive effect on ROS production and its regulatory effect on the expression of pro-inflammatory mediators such as IL-1β, IL-10, TNF-α, and COX-2 were determined using established methods. AJHLE strongly inhibited radicals such as ABTS•+, DPPH•, and Fe3+-TPTZ with IC50 values of 9.07 µg/mL, 8.53 µg/mL, and 79.09 µg/mL, respectively. Additionally, AJHLE induced a significant (p < 0.05) cytotoxic effect at 100 µg/mL, and when tested at non-cytotoxic concentrations, it inhibited NO and ROS production in LPS-stimulated RAW 264.7 macrophages in a concentration-dependent manner. Furthermore, AJHLE showed that its anti-inflammatory action occurs via the inhibition of 15-LOX activity, the downregulation of COX-2, TNF-α, and IL-1β expression, and the upregulation of IL-10 expression. Finally, chemical investigation showed that AJHLE contains significant amounts of procyanidin, epicatechin, rutin, and syringic acid which support its antioxidant and anti-inflammatory activities. These findings suggest that A. johnsonii is a potential source of therapeutic agents against oxidative stress and inflammatory-related diseases.
Collapse
Affiliation(s)
- Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| | | | | | | | - Tshepiso J. Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (G.T.T.); (C.I.C.); (S.S.M.)
| |
Collapse
|
17
|
Wang S, Lin F, Zhang C, Gao D, Qi Z, Wu S, Wang W, Li X, Pan L, Xu Y, Tan B, Yang A. Xuanbai Chengqi Decoction alleviates acute lung injury by inhibiting NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117227. [PMID: 37751794 DOI: 10.1016/j.jep.2023.117227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a prevalent critical respiratory disorder caused mostly by infection and other factors. However, effective drug therapies are currently lacking. Xuanbai Chengqi Decoction (XCD), a traditional Chinese medicine (TCM) prescription, is commonly employed to treat lung diseases. It has been recommended by Chinese health authorities as one of the TCM prescriptions for COVID-19. Nonetheless, its underlying mechanism for the treatment of ALI has not been fully understood. AIM OF THE STUDY The study aims to investigate the therapeutic effect of XCD on lipopolysaccharide (LPS) -induced ALI in mice and explore its anti-inflammatory mechanism involving pyroptosis. MATERIALS AND METHODS Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was employed to identify the active compounds of XCD, and quantitative analysis of the main compounds was conducted. Male C57BL/6J mice were given different doses of XCD (4.5 and 9.0 g/kg/day) or dexamethasone (5 mg/kg/day) by oral gavage for 5 consecutive days. Subsequently, ALI was induced by injecting LPS (20 mg/kg) intraperitoneally 2 h after the last administration, and serum and lung tissues were collected 8 h later. J774A.1 cells were pretreated with different doses of XCD (100, 200, 400 μg/ml) for 12 h, then incubated with LPS (1 μg/ml) for 4 h and ATP (1 mM) for 2 h to induce pyroptosis. Supernatant and cells were collected. Moreover, J774A.1 cells were transfected with an NLRP3 overexpression plasmid for 24 h, followed by subsequent experiments with XCD (400 μg/ml). Lung histopathological changes were evaluated using hematoxylin and eosin (HE) staining. To assess the efficacy of XCD on ALI/ARDS, the levels of inflammatory factors, chemokines, and proteins associated with NLRP3 inflammasome signaling pathway were evaluated. RESULTS XCD was found to ameliorate lung inflammation injury in ALI mice, and reduce the protein expression of TNF-α, IL-1β, and IL-6 in both mouse serum and J774A.1 cell supernatant. Meanwhile, XCD significantly decreased the mRNA levels of IL-1β, pro-IL-1β, CXCL1, CXCL10, TNF-α, NLRP3, NF-κB P65, and the protein expression of NLRP3, Cleaved-Caspase1, and GSDMD-N in the lung and J774A.1 cells. These effects were consistent with the NLRP3 inhibitor MCC950. Furthermore, overexpression of NLRP3 reversed the anti-inflammatory effect of XCD. CONCLUSION The therapeutic mechanism of XCD in ALI treatment may involve alleviating inflammatory responses in lung tissues by inhibiting the activation of the NLRP3 inflammasome-mediated pyroptosis in macrophages.
Collapse
Affiliation(s)
- Shun Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Feifei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chengxi Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Dan Gao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Zhuocao Qi
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Suwan Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Wantao Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Xiaoqian Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 210203, China.
| | - Yanwu Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bo Tan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Aidong Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| |
Collapse
|
18
|
Qin DE, Liang W, Yu Y, Whelan EC, Yuan X, Wang ZL, Wu XW, Cao ZR, Hua SY, Yin L, Shi L, Liang T. Modified Simiaowan prevents and treats gouty arthritis via the Nrf2/NLRP3 inflammasome signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116906. [PMID: 37442492 DOI: 10.1016/j.jep.2023.116906] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Simiaowan (MSM) is a six-herb formula that has been shown to be effective in gouty arthritis (GA) has been proven, but its regulatory mechanism has not been fully elucidated. AIM OF THE STUDY To investigate the therapeutic effects and mechanism of MSM on gouty arthritis. MATERIALS AND METHODS Mouse J774A.1 macrophages were induced with Lipopolysaccharide (LPS) and then stimulated with Adenosine 5'-triphosphate (ATP) or Nigericin (Nig.) in presence or absence of MSM. Expression of key indicators of pro-inflammatory cytokines and the NLRP3 inflammasome signaling pathway were investigated by western blot, ELISA and qRT-PCR. Fluorescence staining and flow cytometry were performed to detect intracellular reactive oxygen species (ROS) production. Another study, the anti-inflammatory and antioxidant activities of MSM were evaluated in rats with monosodium urate (MSU) -induced gouty arthritis using ELISA, hematoxylin-eosin staining (HE) staining, immunohistochemistry, and oxidative stress kits to measure relevant inflammatory markers and oxidative stress-related biomarkers. RESULTS ELISA and qRT-PCR results demonstrated that MSM effectively reduced the secretion and the mRNA expression levels of pro-inflammatory cytokines. Western blot results indicated that MSM can suppress the expression of NLRP3, an inflamasomes-related protein. In addition, MSM regulated the transition from M1 to M2 macrophages and upregulated the protein expression of Nrf2 and HO-1. The flow cytometry results and the fluorescence staining result were consistent with hypothesis that a large amount of ROS could be effectively cleared by MSM. However, the anti-inflammatory effect of MSM was attenuated after the use of ML385. In vivo experiments demonstrated that joint swelling was significantly attenuated and knee neutrophil infiltration was alleviated in rats given MSM. SOD and GSH-px levels were elevated significantly, while COX-2 and MDA levels decreased. The immunohistochemical results suggested that MSM could effectively inhibit the activation of the NLRP3 inflammasome and the regulation of macrophage polarization in rat synovial tissue, and remarkably enhance the expression of Nrf2 and HO-1. CONCLUSION MSM has potent anti-inflammatory and antioxidant effects on MSU-induced gouty arthritis. MSM alleviates GA through Nrf2/HO-1/ROS/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Dong-Er Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Liang
- Department of Traditional Chinese Medicine, Air Force Hospital, Eastern Theater of the Chinese People's Liberation Army, Nanjing, 210002, Jiangsu, China.
| | - Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Eoin Christopher Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6303, USA.
| | - Xin Yuan
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing, 210001, China.
| | - Zhang-Lian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiao-Wei Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zi-Rui Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Sheng-Yi Hua
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Lian Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tao Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Zhuang S, Yun H, Zhou X, Li Y, Li S, Liu C, Zhang Y. Screening, isolation, and activity evaluation of potential xanthine oxidase inhibitors in Poria Cum Radix Pini and mechanism of action in the treatment of gout disease. J Sep Sci 2024; 47:e2300505. [PMID: 38135883 DOI: 10.1002/jssc.202300505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/24/2023]
Abstract
Poria Cum Radix Pini is a rare medicinal fungus that contains several potential therapeutic ingredients. On this basis, a particle swarm mathematical model was used to optimize the extraction process of total triterpenes from P. Cum Radix Pini, and xanthine oxidase inhibitors were screened using affinity ultrafiltration mass spectrometry. Meanwhile, the accuracy of the ultrafiltration assay was verified by molecular docking experiments and molecular dynamics analysis, and the mechanism of action of the active compounds for the treatment of gout was analyzed by enzymatic reaction kinetics and network pharmacology. A high-speed countercurrent chromatography method combined with the consecutive injection and the economical two-phase solvent system preparation using functional activity coefficient of universal quasichemical model (UNIFAC) mathematical model was developed for increasing the yield of target compound. In addition, dehydropachymic acid and pachymic acid were used as competitive inhibitors, and 3-O-acetyl-16alpha-hydroxydehydrotrametenolic acid and dehydrotrametenolic acid were used as mixed inhibitors. Then, activity-oriented separation and purification were performed by high-speed countercurrent chromatography combined with semi-preparative high-performance liquid chromatography and the purity of the four compounds isolated was higher than 90%. It will help to provide more opportunities to discover and develop new potential therapeutic remedies from health care food resources.
Collapse
Affiliation(s)
- Siyuan Zhuang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Haocheng Yun
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Xu Zhou
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Yanjie Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, P. R. China
| |
Collapse
|
20
|
Zhang Y, Song J, Lai Y, Li A, Zhang Y, Zhou H, Zhao W, Zong Z, Wu R, Li H. Association between the dietary inflammatory index and gout in the National Health and Nutrition Examination Survey 2007-2018. Heliyon 2023; 9:e22930. [PMID: 38058438 PMCID: PMC10696178 DOI: 10.1016/j.heliyon.2023.e22930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
Objective The aim of our study was to investigate whether the Dietary Inflammatory Index (DII) correlated with gout in American adults. Method The study used data from the 2007-2018 National Health and Nutrition Examination Survey, with 27,710 adults participating. Initially, multivariable analysis was performed, with controls for covariates, to assess the link of DII and gout. Then, restricted cubic splines (RCS) were applied to model the nonlinear relationship of DII and gout. Furthermore, propensity score matching (PSM) as a further study of potential relationships was established. Eventually, subgroup analysis was performed. Result Participants within the highest DII quartile would be more susceptible to increased risk of gout in the univariate regression model (Q4 vs. Q1, OR = 1.31, CI: 1.05-1.63). Additionally, a positive correlation was detected between gout risk and DII after adjusting on drinking, smoking, gender, race, age, and BMI. Based on RCS analysis, we observed that the risk of gout raised sharply as DII values increased, then flattened, and increased sharply again when the DII was greater than approximately 2.5. After performing the PSM, it was observed that DII correlated in a positive way to the presence of gout on a fully adjusted multivariable model. Subgroup analysis revealed that the link of DII and gout showed no statistical significance in females, blacks, Mexicans, nor in the population that smoked. Conclusion Greater degrees of pro-inflammation correlate with a higher risk of gout and might be a predisposing factor for gout. Hence, tactics fostering an anti-inflammatory diet for preventing and improving gout in adults should be regarded.
Collapse
Affiliation(s)
- Yujun Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
- Nanchang University, 330006, Nanchang, China
| | - Jingjing Song
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
- Nanchang University, 330006, Nanchang, China
| | - Yizhong Lai
- Nanchang University, 330006, Nanchang, China
| | - Ao Li
- Queen Mary School, Nanchang University, 330006, Nanchang, China
| | - Yiwei Zhang
- Queen Mary School, Nanchang University, 330006, Nanchang, China
| | - Haonan Zhou
- Queen Mary School, Nanchang University, 330006, Nanchang, China
| | - Wentao Zhao
- The 3rd Clinical Department of China Medical University, 10159, Shenyang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| |
Collapse
|
21
|
Zhou Y, Shi S, Meng S, Zhao H, Wu X, Li M, Li Y. Potential clinical value of serum interleukin-41 levels in patients with acute gout. Int Immunopharmacol 2023; 122:110621. [PMID: 37437433 DOI: 10.1016/j.intimp.2023.110621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Gout is a common metabolic rheumatic disease, and there have been no reports on the serum levels of interleukin (IL)-41 in gout patients. The purpose of this study was to therefore determine the expression of IL-41 in the serum of gout patients. METHODS Eighty-one participants were enrolled in this study, including 34 patients with acute gout, 27 gout patients in remission, and 20 healthy controls (HCs). Baseline data were obtained through interviews and laboratory parameters were acquired via blood sample testing. We measured serum IL-41 concentrations with an enzyme-linked immunosorbent assay, and executed Spearman's correlation analysis to investigate the correlation between IL-41 and other parameters, and the diagnostic value for IL-41 was demonstrated using a receiver operating characteristic curve. Multivariate analysis was conducted by adopting logistic regression. RESULTS Serum IL-41 concentrations in acute-gout patients were higher than those in HCs and there was no significant difference in serum IL-41 levels between remission gout patients and HCs. In addition, IL-41 was positively correlated with white blood cell count, erythrocyte sedimentation rate, and C-reactive protein and serum amyloid A concentrations, while it was negatively correlated with triglyceride levels. IL-41 showed good diagnostic value for gout, and the combination of IL-41 and uric acid produced a superior diagnostic value. We also noted that IL-41 was an independent risk factor for acute gout. CONCLUSIONS This study revealed that serum IL-41 was elevated in patients with acute gout, and suggests that IL-41 may constitute a novel diagnostic marker for acute gout.
Collapse
Affiliation(s)
- Yinxin Zhou
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shanjun Shi
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Sicen Meng
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Hui Zhao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China; Department of Clinical Laboratory, Ningbo No. 6 Hospital Affiliated to Ningbo University, Ningbo 315040, China
| | - Xiudi Wu
- Department of Rheumatology, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Mingcai Li
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China.
| | - Yan Li
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
22
|
Li Y, Du X, Li W, Jiang Q, Ye Y, Yang Y, Liu X, Zhao Y, Che X. Two genes related to apoptosis in the hepatopancreas of juvenile prawn, Macrobrachium nipponense: Molecular characterization and transcriptional response to nanoplastic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162863. [PMID: 36931509 DOI: 10.1016/j.scitotenv.2023.162863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
Nanoplastics have been widely found in the global water environment, causing plastic pollution and affecting human beings and numerous organisms. Studies involving freshwater crustacean exposure to nanoplastics, however, are limited. In this study, juvenile prawns (Macrobrachium nipponense) were exposed to 75 nm polystyrene nanoplastics at different concentrations (0, 5, 10, 20, or 40 mg/L) for a 28-d chronic exposure experiment. To study the effects of exposure to nanoplastics on hepatopancreas cell apoptosis, C-Jun N-terminal kinase (JNK) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) genes were selected, and hepatotoxic enzyme activities and Toll pathway- and apoptosis-related gene expression were determined. For the first time, full-length Mn-JNK and Mn-PIK3CA cDNAs were cloned from M. nipponense. Homologous comparisons showed that JNK and PIK3CA had conserved functional sequences. The apoptosis rate in the high-concentration nanoplastic group (40 mg/L) was significantly higher than in the low-concentration nanoplastic (5 mg/L) and control groups (0 mg/L). The alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamyl transpeptidase (GGT) and xanthine oxidase (XOD) enzyme activities in the hepatopancreas increased with exposure to higher concentrations of nanoplastics. In addition, the levels of apoptosis- and Toll pathway-related gene expression and JNK and PIK3CA gene expression were initially increased, then decreased with exposure to higher concentrations of nanoplastics. This study showed that polystyrene nanoplastics activate toll-related pathways leading to apoptosis and hepatopancreas damage, which provides theoretical support for future aquatic toxicological research.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Wen Li
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Ying Yang
- School of Life Science, East China Normal University, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| |
Collapse
|
23
|
Sławińska N, Kluska M, Moniuszko-Szajwaj B, Stochmal A, Woźniak K, Olas B. New Aspect of Composition and Biological Properties of Glechoma hederacea L. Herb: Detailed Phytochemical Analysis and Evaluation of Antioxidant, Anticoagulant Activity and Toxicity in Selected Human Cells and Plasma In Vitro. Nutrients 2023; 15:nu15071671. [PMID: 37049509 PMCID: PMC10096585 DOI: 10.3390/nu15071671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
It is known that phenolic compounds can alleviate the negative impact of oxidative stress and modulate hemostasis. However, the effect of extracts and phenolics from Glechoma hederacea L. on the biomarkers of these processes is not well documented. The aim of our study was to investigate the in vitro protective effects of one extract and three fractions (20, 60, and 85% fraction) from G. hederacea L. on oxidative stress and hemostasis. Phytochemical analysis showed that aerial parts of G. hederacea L. are rich in both phenolic acids (such as rosmarinic acid, neochlorogenic acid, and chlorogenic acid) and flavonoids (mainly rutin and glycoside derivatives of apigenin, quercetin, and luteolin). We observed that the 85% fraction (at three concentrations: 5, 10, and 50 μg/mL) inhibited protein carbonylation. Moreover, the extract and 85% fraction (at the concentration of 50 μg/mL) could reduce lipid peroxidation. All fractions and the extract were very effective at decreasing H2O2-induced DNA damage in PBM cells. The 85% fraction had the strongest protective potential against DNA oxidative damage. We also observed that the extract and fractions decreased PBM cell viability to a maximum of 65% after 24 h incubation. Our results indicate that the 85% fraction showed the strongest antioxidant potential. The main component of the 85% fraction was apigenin (26.17 ± 1.44 mg/g), which is most likely responsible for its strong antioxidant properties.
Collapse
Affiliation(s)
- Natalia Sławińska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Magdalena Kluska
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland
| | - Katarzyna Woźniak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland
- Correspondence:
| |
Collapse
|