1
|
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke. Neural Regen Res 2025; 20:1944-1956. [PMID: 39254550 DOI: 10.4103/nrr.nrr-d-24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| | | |
Collapse
|
2
|
Alicia SV, Rivera-Moctezuma FG, Marrero Valentín JL, Pérez D, Tosado-Rodríguez EL, Roche Lima A, Ferchmin PA, Sabeva N. Neuroprotection by 4R-cembranoid against Gulf War Illness-related Chemicals is mediated by ERK, PI3K, and CaMKII pathways. Neuropharmacology 2025; 264:110199. [PMID: 39447735 DOI: 10.1016/j.neuropharm.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Gulf War Illness (GWI) has been consistently linked to exposure to pyridostigmine (PB), N,N-Diethyl-meta-toluamide (DEET), permethrin (PER), and traces of sarin. In this study, diisopropylfluorophosphate (DFP, sarin surrogate) and the GWI-related chemicals were found to reduce the number of functionally active neurons in rat hippocampal slices. These findings confirm a link between GWI neurotoxicants and N-Methyl-D-Aspartate (NMDA)-mediated excitotoxicity, which was successfully reversed by Edelfosine (a phospholipase Cβ (PLCβ3) inhibitor) and Flupirtine (a Kv7 channel agonist). To test whether 4R-cembranoid (4R), a nicotinic α7 acetylcholinesterase receptor (α7AChR) modulator known for its neuroprotective properties, can restore hippocampal neurons from glutamate-induced neurotoxicity, we exposed rat hippocampal slices with DFP for 10 min followed by 60 min treatment with 4R. We investigated the 4R mechanisms of neuroprotection after preincubation with LY294002, PD98059, and KN-62. The inhibition of the phosphatidylinositol 3-kinase (PI3K), mitogen-activated protein kinase (MEK1/2), and calcium/calmodulin-dependent protein kinase (CaMKII) abrogated the protective effect of 4R against DFP-induced neurotoxicity. In separate experiments, after incubation with DFP, followed by 4R for 1 h, cellular extracts were prepared for Western blotting of phospho-Akt, phospho-GSK3β, phosphorylated extracellular signal-regulated kinase (ERK)1/2, CaMKII and cAMP response element-binding protein (CREB). Our results show that DFP induces neuronal dysfunction by dephosphorylation, while 4R restores the phosphorylation of Akt, GSK3, ERK1/2, CREB, and CaMKII. Moreover, our proteomics analysis supported the notion that 4R activates additional signaling pathways related to enhancing neuronal signaling, synaptic plasticity, and apoptotic inhibition to promote cell survival against DFP, offering biomarkers for developing treatment against GWI.
Collapse
Affiliation(s)
- Sorangely Vázquez Alicia
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA; University of Puerto Rico, School of Medicine, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Félix G Rivera-Moctezuma
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA; Polytechnic University of Puerto Rico, San Juan, Hato Rey, PR, 00918, USA
| | | | - Dinely Pérez
- Department of Biochemistry, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Eduardo L Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Abiel Roche Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, 00935, USA
| | - Pedro A Ferchmin
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA
| | - Nadezhda Sabeva
- Department of Neuroscience, Universidad Central del Caribe, Bayamón, PR, 00956, USA.
| |
Collapse
|
3
|
Chuang CF, Phan TN, Fan CH, Vo Le TT, Yeh CK. Advancements in ultrasound-mediated drug delivery for central nervous system disorders. Expert Opin Drug Deliv 2024:1-16. [PMID: 39625732 DOI: 10.1080/17425247.2024.2438188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Central nervous system (CNS) disorders present major therapeutic challenges due to the presence of the blood - brain barrier (BBB) and disease heterogeneity. The BBB impedes most therapeutic agents, which restricts conventional treatments. Focused ultrasound (FUS) -assisted delivery offers a novel solution by temporarily disrupting the BBB and thereby enhancing drug delivery to the CNS. AREAS COVERED This review outlines the fundamental principles of FUS-assisted drug delivery technology, with an emphasis on its role in enhancing the spatial precision of therapeutic interventions and its molecular effects on the cellular composition of the BBB. Recent promising clinical studies are surveyed, and a comparative analysis of current US-assisted delivery system is provided. Additionally, the latest advancements and challenges of this technology are discussed. EXPERT OPINION FUS-mediated drug delivery shows promise, but the clinical translation of research findings is challenging. Key issues include safety, dosage optimization, and balancing efficacy with the risk of tissue damage. Continued research is crucial to address these challenges and bridge the gap between preclinical and clinical applications, and could transform treatments of CNS disorders.
Collapse
Affiliation(s)
- Chi-Fen Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Thanh-Thuy Vo Le
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Havasi Mehr M, Momenabadi S, Vakili A, Pakdel A, Vafaei AA, Vakili A. Neuroprotective effects of Daphnetin on hippocampal neurons and blood-brain barrier integrity in a mouse model of cerebral ischemia. Brain Res Bull 2024; 218:111103. [PMID: 39447767 DOI: 10.1016/j.brainresbull.2024.111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The purpose of this research was to assess the impact of different doses of Daphnetin (DAP, a natural compound derived from coumarin) on hippocampus neuronal injury, neurobehavioral function, blood-brain barrier (BBB) integrity, expression of claudin-5, brain-derived neurotrophic factor (BDNF), superoxide dismutase (SOD), and inflammatory markers in a mouse model of cerebral ischemia. Cerebral ischemia was induced in mice through 30 minutes of bilateral common carotid occlusion (BCCAO), followed by 48 hours of reperfusion. The viability of hippocampal neurons was assessed using Cresyl violet staining and BBB function was determined by measuring Evans blue (E.B) dye leakage. Spatial memory was tested using the Radial Arm Water Maze (RAWM) task. Claudin-5 and BDNF were measured by immunofluorescence, while SOD, interleukin-1 beta (IL-1β), and nuclear factor-κB (NF-κB) expression were determined through western blotting. Administering DAP significantly increased neuron survival in the hippocampus CA1, CA3, and dentate gyrus (DG) regions and improved spatial memory dose-dependently (P<0.0001). Treatment with DAP (40 mg/kg IP) significantly reduced E.B leakage and brain water content (P<0.001). Furthermore, it increased the claudin-5, BDNF, and SOD levels and diminished NF-κB and IL-1β expression (P<0.0001). The research found that DAP protected neurons in the CA1, CA3, and DG areas of the hippocampus, enhanced behavioral functions, and preserved BBB integrity in a cerebral ischemia model. This positive impact is achieved by increasing the expression of claudin-5, BDNF, and SOD and diminishing neuroinflammation. Further research is required to clarify the mechanisms and possible clinical uses.
Collapse
Affiliation(s)
- Maysam Havasi Mehr
- Research Center of Physiology, Semnan University of Medical Sciences, Iran.
| | - Shahein Momenabadi
- Research Center of Physiology, Semnan University of Medical Sciences, Iran.
| | - Ali Vakili
- Department of Physiology, Semnan University of Medical Sciences, Iran.
| | - Abbas Pakdel
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Iran.
| | - Abedin Vakili
- Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
6
|
Kakkar P, Almusined M, Kakkar T, Munyombwe T, Makawa L, Kain K, Hassan A, Saha S. Circulating Blood-Brain Barrier Proteins for Differentiating Ischaemic Stroke Patients from Stroke Mimics. Biomolecules 2024; 14:1344. [PMID: 39595521 PMCID: PMC11592266 DOI: 10.3390/biom14111344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Stroke is one of the leading causes of death and disability worldwide. The diagnosis of stroke remains largely clinical, yet widely used stroke scoring systems and brain imaging do not satisfactorily allow the distinction of ischaemic stroke (IS) patients from stroke mimics (SMs). Blood biomarkers are promising tools that could facilitate clinical triage. METHODS This study recruited 66 patients with IS and 24 SMs. The levels of Glial fibrillary acidic protein (GFAP), Neuron-specific enolase (NSE), Neurofilament light chain (NfL) and blood-brain barrier (BBB) proteins [Occludin (OCLN), Zonula occludens 1 (ZO-1), Claudin-5] in blood serum were measured by enzyme-linked immunosorbent assay technique. Biomarker levels in IS patients and SMs were compared using the Mann-Whitney U test. Multivariable logistic regression analysis was used to evaluate the diagnostic performance of biomarkers in combination with the National Institutes of Health Stroke Scale (NIHSS) score. RESULTS More significant differences in circulating GFAP, NfL, OCLN, ZO-1, and Claudin-5 but not NSE were found in IS patients compared to SMs. A combination of circulating ZO-1, Claudin-5, and OCLN with NIHSS score gives the highest diagnostic accuracy, sensitivity, and specificity. CONCLUSIONS A prediction model with circulating BBB proteins in combination with NIHSS score differentiates between IS patients and SMs.
Collapse
Affiliation(s)
- Pragati Kakkar
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.K.); (M.A.); (T.M.)
| | - Meaad Almusined
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.K.); (M.A.); (T.M.)
| | - Tarun Kakkar
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;
| | - Theresa Munyombwe
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.K.); (M.A.); (T.M.)
- Leeds Institute for Data Analytics, University of Leeds, Leeds LS2 9JT, UK
| | - Linetty Makawa
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (L.M.); (A.H.)
| | - Kirti Kain
- NHS England-North-East and Yorkshire, Professional Standards, Leeds LS2 7UE, UK;
| | - Ahamad Hassan
- Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK; (L.M.); (A.H.)
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.K.); (M.A.); (T.M.)
| |
Collapse
|
7
|
Zhang G, Liang Z, Wang Y, Zhang Z, Hoi PM. Tetramethylpyrazine Analogue T-006 Protects Neuronal and Endothelial Cells Against Oxidative Stress via PI3K/AKT/mTOR and Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1272. [PMID: 39456524 PMCID: PMC11505549 DOI: 10.3390/antiox13101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND T-006, a novel neuroprotective derivative of tetramethylpyrazine (TMP), exhibits multifunctional neuroprotective properties. T-006 has been shown to improve neurological and behavioral functions in animal models of ischemic stroke and neurodegenerative diseases. The present study aims to further elucidate the mechanisms underlying the protective effects of T-006 against oxidative injuries induced by glutamate or hypoxia. METHODS Mouse hippocampal HT22 cells were used to evaluate the neuroprotective effects of T-006 against glutamate-induced injuries, while mouse brain endothelial bEnd.3 cells were used to evaluate the cerebrovascular protective effects of T-006 against oxygen-glucose deprivation followed by reperfusion (OGD/R)-induced injuries. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to measure cell viability and oxidative stress. Western blot and immunofluorescence analyses of protein expression were used to study cell signaling pathways. RESULTS T-006 exhibited significant protective effects in both oxidative injury models. In HT22 cells, T-006 reduced cell death and enhanced antioxidant capacity by upregulating mTOR and nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling. Similarly, in bEnd.3 cells, T-006 reduced oxidative injuries and preserved tight junction integrity through Nrf2/HO-1 upregulation. These effects were inhibited by LY294002, a Phosphoinositide 3-kinase (PI3K) inhibitor. CONCLUSIONS T-006 may exert its neuroprotective and cerebrovascular protective effects via the regulation of PI3K/AKT-mediated pathways, which facilitate downstream mTOR and Nrf2 signaling, leading to improved cell survival and antioxidant defenses.
Collapse
Affiliation(s)
- Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
8
|
Yang X, Chang Q, Wang Y, Dong S, Qu K. Bezafibrate protects blood-brain barrier (BBB) integrity against traumatic brain injury mediated by AMPK. Neuropeptides 2024; 107:102450. [PMID: 39002285 DOI: 10.1016/j.npep.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Bezafibrate (BEZ) has displayed a wide range of neuroprotective effects in different types of neurological diseases. However, its pharmacological function in traumatic brain injury (TBI) is still unknown. In the current study, a TBI model was constructed in mice to examine the potential beneficial roles of BEZ. After TBI, mice were daily dieted with BEZ or vehicle solution. The motor function, learning and memory, brain edema, vascular inflammatory factors, the integrity of the blood-brain barrier (BBB), and the expression of the tight junction zona occludens 1 (ZO-1) were assessed. The findings demonstrate that after TBI, BEZ treatment significantly promoted the recovery of motor function and cognitive function deficits. Moreover, BEZ attenuated brain edema by reducing the levels of brain water content. We also found that administration of BEZ alleviated cerebral vascular pro-inflammation by suppressing the expression of ICAM-1, VCAM-1, and E-selectin. Notably, BEZ improved the impaired BBB integrity in TBI mice by restoring the expression of the tight junction (TJ) protein ZO-1. Further in vitro experiments show that treatment with BEZ prevented the aggravation of endothelial permeability and restored the reduction of trans-epithelial electrical resistance (TEER) as well as the expression of ZO-1 in TBI-exposed brain bEnd.3 cells. Mechanistically, we prove that the protective effects of BEZ are mediated by AMPK. Based on these findings, we conclude that BEZ improves TBI-induced BBB injury and it might be considered for the treatment or management of TBI.
Collapse
Affiliation(s)
- Xiubao Yang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Qingyong Chang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Yan Wang
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Shicang Dong
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China
| | - Kai Qu
- Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, Dalian City, Liaoning Province 116001, China.
| |
Collapse
|
9
|
You DJ, Gorman BM, Goshi N, Hum NR, Sebastian A, Kim YH, Enright HA, Buchholz BA. Eucalyptus Wood Smoke Extract Elicits a Dose-Dependent Effect in Brain Endothelial Cells. Int J Mol Sci 2024; 25:10288. [PMID: 39408618 PMCID: PMC11476751 DOI: 10.3390/ijms251910288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
The frequency, duration, and size of wildfires have been increasing, and the inhalation of wildfire smoke particles poses a significant risk to human health. Epidemiological studies have shown that wildfire smoke exposure is positively associated with cognitive and neurological dysfunctions. However, there is a significant gap in knowledge on how wildfire smoke exposure can affect the blood-brain barrier and cause molecular and cellular changes in the brain. Our study aims to determine the acute effect of smoldering eucalyptus wood smoke extract (WSE) on brain endothelial cells for potential neurotoxicity in vitro. Primary human brain microvascular endothelial cells (HBMEC) and immortalized human brain endothelial cell line (hCMEC/D3) were treated with different doses of WSE for 24 h. WSE treatment resulted in a dose-dependent increase in IL-8 in both HBMEC and hCMEC/D3. RNA-seq analyses showed a dose-dependent upregulation of genes involved in aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways and a decrease in tight junction markers in both HBMEC and hCMEC/D3. When comparing untreated controls, RNA-seq analyses showed that HBMEC have a higher expression of tight junction markers compared to hCMEC/D3. In summary, our study found that 24 h WSE treatment increases IL-8 production dose-dependently and decreases tight junction markers in both HBMEC and hCMEC/D3 that may be mediated through the AhR and NRF2 pathways, and HBMEC could be a better in vitro model for studying the effect of wood smoke extract or particles on brain endothelial cells.
Collapse
Affiliation(s)
- Dorothy J. You
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bria M. Gorman
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Noah Goshi
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Nicholas R. Hum
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Aimy Sebastian
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Yong Ho Kim
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
| | - Heather A. Enright
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (D.J.Y.)
| | - Bruce A. Buchholz
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
10
|
Yuan L, Wang Y, Li N, Yang X, Sun X, Tian H, Zhang Y. Mechanism of Action and Therapeutic Implications of Nrf2/HO-1 in Inflammatory Bowel Disease. Antioxidants (Basel) 2024; 13:1012. [PMID: 39199256 PMCID: PMC11351392 DOI: 10.3390/antiox13081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) is a key factor in the generation of various pathophysiological conditions. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) is a major transcriptional regulator of antioxidant reactions. Heme oxygenase-1 (HO-1), a gene regulated by Nrf2, is one of the most critical cytoprotective molecules. In recent years, Nrf2/HO-1 has received widespread attention as a major regulatory pathway for intracellular defense against oxidative stress. It is considered as a potential target for the treatment of inflammatory bowel disease (IBD). This review highlights the mechanism of action and therapeutic significance of Nrf2/HO-1 in IBD and IBD complications (intestinal fibrosis and colorectal cancer (CRC)), as well as the potential of phytochemicals targeting Nrf2/HO-1 in the treatment of IBD. The results suggest that the therapeutic effects of Nrf2/HO-1 on IBD mainly involve the following aspects: (1) Controlling of oxidative stress to reduce intestinal inflammation and injury; (2) Regulation of intestinal flora to repair the intestinal mucosal barrier; and (3) Prevention of ferroptosis in intestinal epithelial cells. However, due to the complex role of Nrf2/HO-1, a more nuanced understanding of the exact mechanisms involved in Nrf2/HO-1 is the way forward for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Lingling Yuan
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yingyi Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Na Li
- Department of Infection, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Xuli Yang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Xuhui Sun
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Huai’e Tian
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| | - Yi Zhang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; (L.Y.); (Y.W.); (X.Y.); (X.S.); (H.T.)
| |
Collapse
|
11
|
Yang H, Ibrahim MM, Zhang S, Sun Y, Chang J, Qi H, Yang S. Targeting post-stroke neuroinflammation with Salvianolic acid A: molecular mechanisms and preclinical evidence. Front Immunol 2024; 15:1433590. [PMID: 39139557 PMCID: PMC11319147 DOI: 10.3389/fimmu.2024.1433590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Salvianolic acid A (SalA), a bioactive compound extracted from Salvia miltiorrhiza, has garnered considerable interest for its potential in ameliorating the post-stroke neuroinflammation. This review delineates the possible molecular underpinnings of anti-inflammatory and neuroprotective roles of SalA, offering a comprehensive analysis of its therapeutic efficacy in preclinical studies of ischemic stroke. We explore the intricate interplay between post-stroke neuroinflammation and the modulatory effects of SalA on pro-inflammatory cytokines, inflammatory signaling pathways, the peripheral immune cell infiltration through blood-brain barrier disruption, and endothelial cell function. The pharmacokinetic profiles of SalA in the context of stroke, characterized by enhanced cerebral penetration post-ischemia, makes it particularly suitable as a therapeutic agent. Preliminary clinical findings have demonstrated that salvianolic acids (SA) has a positive impact on cerebral perfusion and neurological deficits in stroke patients, warranting further investigation. This review emphasizes SalA as a potential anti-inflammatory agent for the advancement of innovative therapeutic approaches in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hongchun Yang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Muhammad Mustapha Ibrahim
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyu Zhang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Sun
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Qi
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Liu Y, Li X, Cao C, Ding H, Shi X, Zhang J, Li H. Critical role of Slc22a8 in maintaining blood-brain barrier integrity after experimental cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2024:271678X241264401. [PMID: 39068534 PMCID: PMC11572098 DOI: 10.1177/0271678x241264401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Blood-brain barrier (BBB) damage significantly affects the prognosis of ischemic stroke patients. This project employed multi-omics analysis to identify key factors regulating BBB disruption during cerebral ischemia-reperfusion. An integrated analysis of three transcriptome sequencing datasets from mouse middle cerebral artery occlusion/reperfusion (MCAO/R) models identified eight downregulated genes in endothelial cells. Additionally, transcriptome analysis of BBB (cortex) and non-BBB (lung) endothelium of E13.5 mice revealed 2,102 upregulated genes potentially associated with BBB integrity. The eight downregulated genes were intersected with the 2,102 BBB-related genes and mapped using single-cell RNA sequencing data, revealing that solute carrier family 22 member 8 (Slc22a8) is specifically expressed in endothelial cells and pericytes and significantly decreases after MCAO/R. This finding was validated in the mouse MCAO/R model at both protein and mRNA levels in this study. External overexpression of Slc22a8 using a lentivirus carrying Tie2 improved Slc22a8 and tight junction protein levels and reduced BBB leakage after MCAO/R, accompanied by Wnt/β-catenin signaling activation. In conclusion, this study suggested that MCAO/R-induced downregulation of Slc22a8 expression may be a crucial mechanism underlying BBB disruption. Interventions that promote Slc22a8 expression or enhance its function hold promise for improving the prognosis of patients with cerebral ischemia.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xuan Shi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Qu X, Yang R, Tan C, Chen H, Wang X. Astrocytes-Secreted WNT5B Disrupts the Blood-Brain Barrier Via ROR1/JNK/c-JUN Cascade During Meningitic Escherichia Coli Infection. Mol Neurobiol 2024:10.1007/s12035-024-04303-4. [PMID: 38896157 DOI: 10.1007/s12035-024-04303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
The blood-brain barrier (BBB) is a complex structure that separates the central nervous system (CNS) from the peripheral blood circulation. Effective communication between different cell types within the BBB is crucial for its proper functioning and maintenance of homeostasis. In this study, we demonstrate that meningitic Escherichia coli (E. coli)-induced WNT5B plays a role in facilitating intercellular communication between astrocytes and brain microvascular endothelial cells (BMECs). We discovered that astrocytes-derived WNT5B activates the non-canonical WNT signaling pathway JNK/c-JUN in BMECs through its receptor ROR1, leading to inhibition of ZO-1 expression and impairment of the tight junction integrity in BMECs. Notably, our findings reveal that c-JUN, a transcription factor, directly regulates ZO-1 expression. By employing a dual luciferase reporting system and chromatin immunoprecipitation techniques, we identified specific binding sites of c-JUN on the ZO-1 promoter region. Overall, our study highlights the involvement of WNT5B in mediating intercellular communication between astrocytes and BMECs, provides insights into the role of WNT5B in meningitic E. coli-induced disruption of BBB integrity, and suggests potential therapeutic targeting of WNT5B as a strategy to address BBB dysfunction.
Collapse
Affiliation(s)
- Xinyi Qu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Engineering Research Center of Animal Biopharmaceuticals, The Ministry of Education of the People's Republic of China (MOE), Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
14
|
Li S, Ma T, An Y, Zhang Y, Yang X, Gao A, Wang H. The Impact of Different Dietary Ratios of Soluble Carbohydrate-to-Neutral Detergent Fiber on Rumen Barrier Function and Inflammation in Dumont Lambs. Animals (Basel) 2024; 14:1666. [PMID: 38891713 PMCID: PMC11171165 DOI: 10.3390/ani14111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Appropriate soluble carbohydrate (SCHO)-to-NDF ratios in the diet are essential for rumen health. The effects of different SCHO-to-NDF ratios (1.0, 1.5, and 2.0) on rumen barrier function and inflammation in Dumont lambs (n = 18, 6 replicates per treatment) was investigated. The SCHO:NDF ratio was altered by replacing the forage (Leynus chinensis) with corn grain. With an increase in the proportion of SCHO, the final body weight (FBW), average daily gain (ADG), soluble carbohydrate intake (SCHOI), and LPS level increased; and the neutral detergent fiber intake (NDFI), ruminal papillae height, papillae area, and pH decreased (p < 0.05, plin < 0.05). The medium CHO:NDF group had increased claudin-1 mRNA (p < 0.05, plin = 0.005, pquad = 0.003) and protein (p < 0.05, pquad < 0.001) levels; the high CHO:NDF group had increased occludin mRNA and protein (p < 0.05, plin = 0.001) levels. The level of the anti-inflammatory cytokine IL-10 was significantly greater in the medium CHO:NDF group than in the high CHO:NDF group (p < 0.05, pquad < 0.001). With an increase in the ratio of SCHO, the mRNA level and concentration of the proinflammatory cytokines IL-1β, IL-6, and TNF-α linearly increased (p < 0.05, plin < 0.05), and those in the high CHO:NDF group were significantly greater than those in the low CHO:NDF group. The levels of phosphorylated p65 (plin = 0.003), IκB-α (plin < 0.001), and JNK (plin = 0.001) increased linearly, and those in the high CHO:NDF group were significantly greater than those in the other two groups (p < 0.05). Therefore, when the SCHO-to-NDF ratio was increased to 1.5, the rumen epithelium was not affected, but when the ratio was increased to 2.0, NF-κB and MAPK were activated in the rumen epithelium, leading to impaired barrier function and inflammation. The suitable NFC:NDF ratio for the short-term fattening of Dumont lambs was found to be 1.50.
Collapse
Affiliation(s)
- Shufang Li
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.)
| | - Tian Ma
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.)
| | - Yawen An
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.)
| | - Yu Zhang
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.)
| | - Xiaodong Yang
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.)
| | - Aiwu Gao
- Food Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hairong Wang
- Animal Nutrition and Feed Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.)
| |
Collapse
|
15
|
Seoane N, Picos A, Moraña-Fernández S, Schmidt M, Dolga A, Campos-Toimil M, Viña D. Effects of Sodium Nitroprusside on Lipopolysaccharide-Induced Inflammation and Disruption of Blood-Brain Barrier. Cells 2024; 13:843. [PMID: 38786065 PMCID: PMC11119468 DOI: 10.3390/cells13100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
In various neurodegenerative conditions, inflammation plays a significant role in disrupting the blood-brain barrier (BBB), contributing to disease progression. Nitric oxide (NO) emerges as a central regulator of vascular function, with a dual role in inflammation, acting as both a pro- and anti-inflammatory molecule. This study investigates the effects of the NO donor sodium nitroprusside (SNP) in protecting the BBB from lipopolysaccharide (LPS)-induced inflammation, using bEnd.3 endothelial cells as a model system. Additionally, Raw 264.7 macrophages were employed to assess the effects of LPS and SNP on their adhesion to a bEnd.3 cell monolayer. Our results show that LPS treatment induces oxidative stress, activates the JAK2/STAT3 pathway, and increases pro-inflammatory markers. SNP administration effectively mitigates ROS production and IL-6 expression, suggesting a potential anti-inflammatory role. However, SNP did not significantly alter the adhesion of Raw 264.7 cells to bEnd.3 cells induced by LPS, probably because it did not have any effect on ICAM-1 expression, although it reduced VCAM expression. Moreover, SNP did not prevent BBB disruption. This research provides new insights into the role of NO in BBB disruption induced by inflammation.
Collapse
Affiliation(s)
- Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Sandra Moraña-Fernández
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (M.S.); (A.D.)
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (M.S.); (A.D.)
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Liu J, Yang F, Hu J, Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci Ther 2024; 30:e14715. [PMID: 38708806 PMCID: PMC11071172 DOI: 10.1111/cns.14715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Gliomas are the most common primary tumors of the central nervous system, with glioblastoma multiforme (GBM) having the highest incidence, and their therapeutic efficacy depends primarily on the extent of surgical resection and the efficacy of postoperative chemotherapy. The role of the intracranial blood-brain barrier and the occurrence of the drug-resistant gene O6-methylguanine-DNA methyltransferase have greatly limited the efficacy of chemotherapeutic agents in patients with GBM and made it difficult to achieve the expected clinical response. In recent years, the rapid development of nanotechnology has brought new hope for the treatment of tumors. Nanoparticles (NPs) have shown great potential in tumor therapy due to their unique properties such as light, heat, electromagnetic effects, and passive targeting. Furthermore, NPs can effectively load chemotherapeutic drugs, significantly reduce the side effects of chemotherapeutic drugs, and improve chemotherapeutic efficacy, showing great potential in the chemotherapy of glioma. In this article, we reviewed the mechanisms of glioma drug resistance, the physicochemical properties of NPs, and recent advances in NPs in glioma chemotherapy resistance. We aimed to provide new perspectives on the clinical treatment of glioma.
Collapse
Affiliation(s)
- Jiyuan Liu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Fan Yang
- Department of Cardiologythe Fourth Affiliated Hospital of China Medical UniversityShenyangChina
| | - Jinqu Hu
- Department of Neurosurgerythe First Hospital of China Medical UniversityShenyangChina
| | - Xiuchun Zhang
- Department of Neurologythe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
17
|
Ma XX, Xie HY, Hou PP, Wang XJ, Zhou W, Wang ZH. Nuclear Factor Erythroid 2-Related Factor 2 is Essential for Low-Normobaric Oxygen Treatment-Mediated Blood-Brain Barrier Protection Following Ischemic Stroke. Mol Neurobiol 2024; 61:2938-2948. [PMID: 37950788 DOI: 10.1007/s12035-023-03767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) injury increases blood-brain barrier (BBB) permeability, leading to hemorrhagic transformation and brain edema. Normobaric oxygen (NBO) is a routine clinical treatment strategy for this condition. However, its neuroprotective effects remain controversial. This study investigated the effect of different NBO concentrations on I/R injury and explores the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the underlying mechanism. A mouse middle cerebral artery occlusion (MCAO) model, and an oxygen and glucose deprivation (OGD) model featuring mouse brain microvascular endothelial cells (ECs) called bEnd.3, were used to investigate the effect of NBO on I/R injury. A reactive oxygen species (ROS) inducer and Nrf2-knockdown by RNA were used to explore whether the Nrf2 pathway mediates the effect of NBO on cerebrovascular ECs. In the early stage of MCAO, 40% O2 NBO exposure significantly improved blood perfusion in the ischemic area and effectively relieved BBB permeability, cerebral edema, cerebral injury, and neurological function after MCAO. In the OGD model, 40% O2 NBO exposure significantly reduced apoptosis, inhibited ROS generation, reduced ER stress, upregulated the expression of tight junction proteins, and stabilized the permeability of ECs. Blocking the Nrf2 pathway nullified the protective effect of 40% O2 NBO on ECs after OGD. Finally, our study confirmed that low concentrations of NBO have a neuroprotective effect on I/R by activating the Nrf2 pathway in ECs.
Collapse
Affiliation(s)
- Xiao-Xiao Ma
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Yi Xie
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin-Pin Hou
- Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Jing Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen-Hong Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Gu X, Dong M, Xia S, Li H, Bao X, Cao X, Xu Y. γ-Glutamylcysteine ameliorates blood-brain barrier permeability and neutrophil extracellular traps formation after ischemic stroke by modulating Wnt/β-catenin signalling in mice. Eur J Pharmacol 2024; 969:176409. [PMID: 38365105 DOI: 10.1016/j.ejphar.2024.176409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
During the inflammatory response after stroke, the blood-brain barrier (BBB) is significantly disrupted, compromising its integrity. This disruption allows many peripheral neutrophils to infiltrate the injury site in the brain and release neutrophil extracellular traps (NETs), which further increase BBB permeability. In this study, we aimed to investigate the protective effects of γ-Glutamylcysteine (γ-GC), an immediate precursor of GSH, against BBB breakdown and NET formation after ischemic stroke. Our data indicated that γ-GC treatment effectively attenuated BBB damage, decreased neutrophil infiltration, and suppressed the release of NETs, ultimately leading to the amelioration of ischemic injury. Transcriptomic data and subsequent validation studies revealed that mechanistically, γ-GC exerts its effect by activating the Wnt/β-catenin pathway after ischemic stroke. This research suggests that γ-GC may hold promise as a therapeutic agent for alleviating brain injury following an ischemic stroke.
Collapse
Affiliation(s)
- Xinya Gu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Mengqi Dong
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Huiqin Li
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Jiangsu Provincial Key Discipline of Neurology, Nanjing, China; Nanjing Neurology Medical Center, Nanjing, China.
| |
Collapse
|
19
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
20
|
Duan Y, Deng Y, Tang F, Li J. Lifibrate attenuates blood-brain barrier damage following ischemic stroke via the MLCK/p-MLC/ZO-1 axis. Aging (Albany NY) 2024; 16:6135-6146. [PMID: 38546384 PMCID: PMC11042934 DOI: 10.18632/aging.205692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 04/23/2024]
Abstract
Dysfunction of tight junction proteins-associated damage to the blood-brain barrier (BBB) plays an important role in the pathogenesis of ischemic stroke. Lifibrate, an inhibitor of cholinephosphotransferase (CPT), has been used as an agent for serum lipid lowering. However, the protective effects of Lifibrate in ischemic stroke and the underlying mechanism have not been clearly elucidated. Here, we employed an in vivo mice model of MCAO and an OGD/R model in vitro. In the mice models, neurological deficit scores and infarct volume were assessed. Evans Blue solution was used to detect the BBB permeability. The TEER was examined to determine brain endothelial monolayer permeability. Here, we found that Lifibrate improved neurological dysfunction in stroke. Additionally, increased BBB permeability during stroke was significantly ameliorated by Lifibrate. Correspondingly, the reduced expression of the tight junction protein ZO-1 was restored by Lifibrate at both the mRNA and protein levels. Using an in vitro model, we found that Lifibrate ameliorated OGD/R-induced injury in human bEnd.3 brain microvascular endothelial cells by increasing cell viability but reducing the release of LDH. Importantly, Lifibrate suppressed the increase in endothelial monolayer permeability and the reduction in TEER induced by OGD/R via the rescue of ZO-1 expression. Mechanistically, Lifibrate blocked activation of the MLCK/ p-MLC signaling pathway in OGD/R-stimulated bEnd.3 cells. In contrast, overexpression of MLCK abolished the protective effects of Lifibrate in endothelial monolayer permeability, TEER, as well as the expression of ZO-1. Our results provide a basis for further investigation into the neuroprotective mechanism of Lifibrate during stroke.
Collapse
Affiliation(s)
- Yu Duan
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Feng Tang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Jian Li
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| |
Collapse
|