1
|
Wong ML, Arcos-Burgos M, Liu S, Licinio AW, Yu C, Chin EWM, Yao WD, Lu XY, Bornstein SR, Licinio J. Rare Functional Variants Associated with Antidepressant Remission in Mexican-Americans: Short title: Antidepressant remission and pharmacogenetics in Mexican-Americans. J Affect Disord 2021; 279:491-500. [PMID: 33128939 PMCID: PMC7953425 DOI: 10.1016/j.jad.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Rare genetic functional variants can contribute to 30-40% of functional variability in genes relevant to drug action. Therefore, we investigated the role of rare functional variants in antidepressant response. METHOD Mexican-American individuals meeting the Diagnostic and Statistical Manual-IV criteria for major depressive disorder (MDD) participated in a prospective randomized, double-blind study with desipramine or fluoxetine. The rare variant analysis was performed using whole-exome genotyping data. Network and pathway analyses were carried out with the list of significant genes. RESULTS The Kernel-Based Adaptive Cluster method identified functional rare variants in 35 genes significantly associated with treatment remission (False discovery rate, FDR <0.01). Pathway analysis of these genes supports the involvement of the following gene ontology processes: olfactory/sensory transduction, regulation of response to cytokine stimulus, and meiotic cell cycleprocess. LIMITATIONS Our study did not have a placebo arm. We were not able to use antidepressant blood level as a covariate. Our study is based on a small sample size of only 65 Mexican-American individuals. Further studies using larger cohorts are warranted. CONCLUSION Our data identified several rare functional variants in antidepressant drug response in MDD patients. These have the potential to serve as genetic markers for predicting drug response. TRIAL REGISTRATION ClinicalTrials.gov NCT00265291.
Collapse
Affiliation(s)
- Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sha Liu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Alice W Licinio
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Chenglong Yu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Eunice W M Chin
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Hospital, Dresden University of Technology, Dresden, Germany
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| |
Collapse
|
2
|
Mutlu O, Kurtas O, Kleteckova L, Pinterova N, Holubová K, Horacek J, Hoschl C, Uygun I, Rodriguez DB, Kacer D, Muhametaj F, Vales K. Effects of adipokinetic hormone/red pigment-concentrating hormone family of peptides in olfactory bulbectomy model and posttraumatic stress disorder model of rats. Peptides 2020; 134:170408. [PMID: 32950565 DOI: 10.1016/j.peptides.2020.170408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 11/25/2022]
Abstract
One of the major neuropeptide groups in insects is adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides. AKH had improving effects on depression and anxiety in animal models and it may be a new treatment choice in these disorders. Aim of this study was to investigate effects of Anax imperator AKH (Ani-AKH), Libellula auripennis AKH (Lia-AKH) and Phormia-Terra hypertrehalosemic hormone (Pht-HrTH) on animal behavior in olfactory bulbectomy (OBX) model and in posttraumatic stress disorder (PTSD) model of Wistar-albino rats. Lia-AKH and Pht-HrTH significantly increased time spent in escape platform's quadrant compared to sham control while Lia-AKH significantly increased time spent in escape platform's quadrant compared to OBX controls in probe trial of Morris water maze (MWM). Ani-AKH, Lia-AKH and Pht-HrTH significantly decreased immobility time compared to OBX controls in forced swimming test (FST). Pht-HrTH significantly increased %open arm time compared to OBX controls in elevated plus maze (EPM) test. Ani-AKH significantly increased %open arm entry compared to sham control while Ani-AKH and Pht-HrTH significantly increased %open arm entry compared to OBX controls in EPM. In PTSD study Ani-AKH and Lia-AKH significantly decreased immobility time compared to traumatized controls in FST. In acoustic startle reflex test, Ani-AKH, Lia-AKH and Pht-HrTH significantly decreased average startle amplitude compared to non-traumatized controls in PTSD study. Metabolomic studies showed that AKH may affect glutamatergic and dopaminergic system and neurochemistry. In conclusion, AKH peptides had wide ranging effects on behavior and improved performance in OBX and PTSD models in rats.
Collapse
Affiliation(s)
- Oguz Mutlu
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Kocaeli University Medical Faculty, Pharmacology Department, 41001, Kocaeli, Turkey.
| | - Omer Kurtas
- Kocaeli University Medical Faculty, Forensic Medicine Department, 41001, Kocaeli, Turkey.
| | - Lenka Kleteckova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Nikola Pinterova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Kristina Holubová
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Jiří Horacek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Cyril Hoschl
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Ibrahim Uygun
- Kocaeli University Medical Faculty, Pharmacology Department, 41001, Kocaeli, Turkey.
| | | | - David Kacer
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Franko Muhametaj
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic.
| |
Collapse
|
3
|
Coutens B, Rekik K, Harster A, Etienne P, Noirot V, Frances B, Moulédous L, Guiard BP. A Citrus Based Sensory Functional Food Ingredient Induces Antidepressant-like Effects: Possible Involvement of an Interplay between the Olfactory and the Serotonergic Systems. Neuroscience 2020; 451:149-163. [PMID: 33039523 DOI: 10.1016/j.neuroscience.2020.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/28/2022]
Abstract
In the present study, we examined the neurobehavioral effects of a sensory functional food ingredient mainly based on Citrus sinensis extracts (D11399) using a battery of tests recapitulating various endophenotypes of depression such as anxiety in the open field (OF), the elevated plus-maze (EPM), and the novelty suppressed feeding (NSF), self-care in the splash test (ST), despair in the forced swimming task (FST) but also anhedonia in the sucrose preference test (SPT) in mice. A one-week oral administration of D11399 promoted anxiolytic- and antidepressant-like responses in naïve mice subjected to the NSF and FST. In a marked contrast, the administration of D11399 by oral gavage or the inhibition of olfaction by methimazole prevented such beneficial effects. We further investigated the neurobehavioral properties of a ten-week oral administration of D11399 in the corticosterone (CORT) mouse model of depression. Interestingly, D11399 also elicited anxiolytic- and antidepressant-like effects in various paradigms. To characterize the putative underpinning neurobiological mechanisms in CORT mice, we investigated whether cellular and molecular processes commonly associated with antidepressant responses such as monoaminergic neurotransmission and neuronal maturation in the hippocampus were impacted. Although D11399 did not modify the hippocampal extracellular levels of monoamines (i.e. serotonin and norepinephrine), it reversed the ability of CORT to decrease serotonin neurons firing rate in the dorsal raphe and neuronal maturation in the hippocampus. These findings suggest that the anxiolytic- and antidepressant-like effects of this sensory functional food ingredient are closely related with olfaction and likely a concomitant change in the activity of the central serotonergic system. Further experiments are warranted to precise the neuronal circuits linking sensorial and emotional modalities and identify innovative therapeutic strategies aimed to relieve depressive endophenotypes.
Collapse
Affiliation(s)
- B Coutens
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - K Rekik
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - A Harster
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | | | | | - B Frances
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - L Moulédous
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - B P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France; Faculté de Pharmacie, Université Paris Sud, Université Paris-Saclay, 92290 Chatenay-Malabry, France.
| |
Collapse
|
4
|
Aswar M, Bhalekar M, Trimukhe A, Aswar U. Self-microemulsifying drug delivery system (SMEDDS) of curcumin attenuates depression in olfactory bulbectomized rats. Heliyon 2020; 6:e04482. [PMID: 32817886 PMCID: PMC7424201 DOI: 10.1016/j.heliyon.2020.e04482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 10/16/2019] [Accepted: 07/14/2020] [Indexed: 01/03/2023] Open
Abstract
Background Current therapies for depression remain limited and plagued by various side effects. Problems associated with curcumin administration include poor aqueous solubility and bioavailability issues. Hence to overcome these, curcumin self micro emulsifying drug delivery system (SMEDDS) which will result in a nanosize emulsion droplets when administered in vivo were formulated in the present study. Methods Depression was induced by bilateral olfactory bulbectomy and the animals were randomized into 8 groups as normal, control [(vehicle 10 ml/kg, p.o., (per oral)], pure curcumin (10, 20, 40 mg/kg, p.o.), and curcumin SMEDDS (10, 20, 40 mg/kg, p.o). After 14 days of respective treatment, behavioral parameters such as open field test (OFT), ambulation counts and passive avoidance response (PAR) were evaluated. At the end of experiments, blood was withdrawn from r.o.p (retro orbital plexus) for serum cortisol estimation. Results In OFT, increased central area frequency, peripheral area frequency, central area duration and decreased rearing and grooming were recorded with an increased ambulation counts. In PAR, significant reduction in number of trials and step down from platform was observed in the animals treated with test drug. Serum cortisol level was also found to be decreased in the test groups. Conclusion Behavioral and biochemical estimations in the present study revealed the improved brain permeability and further increase in biological activity of curcumin SMEDDS.
Collapse
Affiliation(s)
- Manoj Aswar
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra, India
| | - Mangesh Bhalekar
- Department of Pharmaceutics, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Akshata Trimukhe
- Department of Pharmacology, Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra, India
| | - Urmila Aswar
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
5
|
Ozcan H, Aydın N, Aydın MD, Oral E, Gündoğdu C, Şipal S, Halıcı Z. Olfactory bulbectomy and raphe nucleus relationship: a new vision for well-known depression model. Nord J Psychiatry 2020; 74:194-200. [PMID: 31724476 DOI: 10.1080/08039488.2019.1689294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background/aim: The olfactory bulbectomy (OBX) technic is a well-known animal model for depression. According to serotonin hypothesis of depression, one of the possible explanations to this mechanism is the destroying effect of OBX on raphe nuclei which especially include serotonergic neurons. In this study, we aimed to explore histopathological findings in raphe nuclei in OBX rats.Materials and methods: Forty-eight rats (8 control group, 10 sham group, and 30 as the study group) were used. No procedure was applied to the control group. Only frontal burr holes were performed at the level of olfactory bulbs (OBs) on the sham group. Mechanical OBX by compression was applied to 20 rats and the OBs of 10 rats were cauterized. Their OBs, olfactory cortices, raphe nuclei were extracted, tissue specimens were taken than examined by using histopathological methods including hematoxylin and eosin, S-100, and TUNEL staining. Physical dissector method was used to evaluate the number of living and apoptotic neurons in the raphe nuclei.Results: Prominent neuronal loss and morphological changes in the dorsal raphe nuclei were detected in study groups.Conclusion: Raphe nuclei degeneration, related alterations in neurotransmitter system activities and functional brain connectivity might be related to neurobiology of depression.
Collapse
Affiliation(s)
- Halil Ozcan
- Department of Psychiatry, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Nazan Aydın
- Department of Psychiatry, Bakirkoy Prof. Dr. Mazhar Osman Mental Health and Neurological Diseases Education and Research Hospital, Istanbul, Turkey
| | - Mehmet Dumlu Aydın
- Department of Neurosurgery, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Elif Oral
- Department of Psychiatry, Medical Faculty, İzmir Katip Çelebi University, İzmir, Turkey
| | - Cemal Gündoğdu
- Department of Pathology, Ataturk University, Erzurum, Turkey
| | - Sare Şipal
- Department of Pathology, Medical Faculty, Giresun University, Giresun, Turkey
| | - Zekai Halıcı
- Department of Pharmacology, Medical Faculty, University of Ataturk, Erzurum, Turkey
| |
Collapse
|
6
|
Baptista-de-Souza D, Tavares LRR, Furuya-da-Cunha EM, Carneiro de Oliveira PE, Canto-de-Souza L, Nunes-de-Souza RL, Canto-de-Souza A. Chronic Fluoxetine Impairs the Effects of 5-HT 1A and 5-HT 2C Receptors Activation in the PAG and Amygdala on Antinociception Induced by Aversive Situation in Mice. Front Pharmacol 2020; 11:260. [PMID: 32218734 PMCID: PMC7078365 DOI: 10.3389/fphar.2020.00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
Growing evidence suggests an important role of fluoxetine with serotonin 5-HT1A and 5-HT2C receptors in the modulation of emotion and nociception in brain areas such as the amygdala and periaqueductal gray (PAG). Acute fluoxetine impairs 5-HT2C (but not 5-HT1A) receptor activation in the amygdaloid complex. Given that fluoxetine produces its clinical therapeutic effects only when given chronically, this study investigated the effects of chronic treatment with fluoxetine on the effects produced by 5-HT1A or 5-HT2C receptors activation in the amygdala or PAG on fear-induced antinociception. We recorded the effects of chronic fluoxetine on serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) levels as well as serotonin turnover; 5-HT1A and 5-HT2C receptor protein levels in the amygdala and PAG. Also, we evaluated the effects of chronic fluoxetine combined with intra-amygdala or intra-PAG injection of MK-212 (a 5-HT2C agonist; 0.63 nmol) or 8-OH-DPAT (a 5-HT1A agonist; 10 nmol) on the antinociceptive response in mice confined in the open arm of the elevated plus-maze (EPM). Nociception was assessed with the writhing test induced by intraperitoneal injection of 0.6% acetic acid. Results showed that fluoxetine (20 mg/kg, s.c.) enhanced the open-arm induced antinociception (OAA) and reduced the number of writhes in mice confined in the enclosed arm, featuring an analgesic effect. In addition, fluoxetine increased the expression of 5-HT2C receptors and 5-HT levels whereas reduced its turnover in the amygdala. While fluoxetine did not change 5-HT and 5-HIAA levels, and its turnover in the PAG, it up-regulated 5HT1A and 5-HT2C receptors in this midbrain area. Chronic fluoxetine (5.0 mg/Kg, an intrinsically inactive dose on nociception) antagonized the enhancement of OAA produced by intra-amygdala or intra-PAG injection of MK-212. Fluoxetine also impaired the attenuation of OAA induced by intra-amygdala injection of 8-OH-DPAT and totally prevented OAA in mice that received intra-PAG 8-OH-DPAT. These results suggest that (i) 5-HT may facilitate nociception and intensify OAA, acting at amygdala 5-HT1A and 5-HT2C receptors, respectively, and (ii) fluoxetine modulates the OAA through activation of 5-HT2C receptors within the PAG. These findings indicate that chronic fluoxetine impairs the effects of 5-HT1A and 5-HT2C receptors activation in the amygdala and PAG on fear-induced antinociception in mice.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil
| | - Lígia Renata Rodrigues Tavares
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Elke Mayumi Furuya-da-Cunha
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Paulo Eduardo Carneiro de Oliveira
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil
| | - Lucas Canto-de-Souza
- Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, Araraquara, Brazil
| | - Azair Canto-de-Souza
- Department of Psychology, Federal University of São Carlos-UFSCar, São Carlos, Brazil.,Joint Graduate Program in Physiological Sciences, UFSCar/UNESP, São Carlos, Brazil.,Institute of Neuroscience and Behavior, Ribeirão Preto, Brazil.,Graduate Program in Psychology UFSCar, São Carlos, Brazil
| |
Collapse
|
7
|
Garro-Martínez E, Vidal R, Adell A, Díaz Á, Castro E, Amigó J, Gutiérrez-Lanza R, Florensa-Zanuy E, Gómez-Acero L, Taketo MM, Pazos Á, Pilar-Cuéllar F. β-Catenin Role in the Vulnerability/Resilience to Stress-Related Disorders Is Associated to Changes in the Serotonergic System. Mol Neurobiol 2019; 57:1704-1715. [DOI: 10.1007/s12035-019-01841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/22/2019] [Indexed: 01/02/2023]
|
8
|
Zhang Y, Sun L, Liu E, Wang A, Yan J. The olfactory stimulation slows down the substance clearance in the extracellular space of the hippocampus in rat brain. Biochem Biophys Res Commun 2019; 515:429-435. [PMID: 31155295 DOI: 10.1016/j.bbrc.2019.05.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/26/2019] [Indexed: 12/25/2022]
Abstract
Accelerating the clearance of toxin in the brain extracellular space (ECS) has grown a promising strategy for treating some central nervous system diseases. As oldest sensory system, we know little about the influence of olfaction on the brain, but preclinical studies such as treatment of neurological diseases through it are in the ascendant. This makes it important to clarify the effects of olfaction on brain ECS and interstitial fluid (ISF) drainage. In this study, the effect of olfactory stimulation (eugenol, EUG) on ISF flow in hippocampus and its association with aquaporin 4 (Aqp4) had been investigated. The results show that eugenol can significantly increase the activity of hippocampal neurons, but reduce the clearance and diffusion rates of Gd-DTPA and A-594 in hippocampus. Similarly, eugenol inhalation slows down the rate of Gd-DTPA in CSF entering the hippocampus and its clearance. And knockout of Aqp4 gene aggravated these processes. In vitro results showed that after Aqp4 gene silencing, astrocytes grew slowly, with significantly decreased cells number, less nuclei, atrophied bodies and shorter processes. These results concluded that olfactory stimulation can change the ECS structure of the hippocampus, slow down the ISF drainage, and improve the function of neurons, while Aqp4 plays important roles.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Linlin Sun
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - E Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Aibo Wang
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing, 100191, China
| | - Junhao Yan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Beijing Key Lab of Magnetic Resonance Imaging Technology, Beijing, 100191, China.
| |
Collapse
|
9
|
Rajkumar R, Dawe GS. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression. J Chem Neuroanat 2018; 91:63-100. [DOI: 10.1016/j.jchemneu.2018.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
|
10
|
Bobkova NV, Novikov VV, Medvinskaya NI, Aleksandrova IY, Nesterova IV, Fesenko EE. Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer's disease. Electromagn Biol Med 2018; 37:127-137. [PMID: 29771571 DOI: 10.1080/15368378.2018.1471700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Subchronic effect of a weak combined magnetic field (MF), produced by superimposing a constant component, 42 µT and an alternating MF of 0.08 µT, which was the sum of two frequencies of 4.38 and 4.88 Hz, was studied in olfactory bulbectomized (OBE) and transgenic Tg (APPswe, PSEN1) mice, which were used as animal models of sporadic and heritable Alzheimer's disease (AD) accordingly. Spatial memory was tested in a Morris water maze on the following day after completion of training trials with the hidden platform removed. The amyloid-β (Aβ) level was determined in extracts of the cortex and hippocampus of mice using a specific DOT analysis while the number and dimensions of amyloid plaques were detected after their staining with thioflavin S in transgenic animals. Exposure to the MFs (4 h/day for 10 days) induced the decrease of Aβ level in brain of OBE mice and reduced the number of Aβ plaques in the cortex and hippocampus of Tg animals. However, memory improvement was revealed in Tg mice only, but not in the OBE animals. Here, we suggest that in order to prevent the Aβ accumulation, MFs could be used at early stage of neuronal degeneration in case of AD and other diseases with amyloid protein deposition in other tissues.
Collapse
Affiliation(s)
- Natalia V Bobkova
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Vadim V Novikov
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Natalia I Medvinskaya
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Irina Y Aleksandrova
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Inna V Nesterova
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Eugenii E Fesenko
- a Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| |
Collapse
|
11
|
Smaga I, Jastrzębska J, Zaniewska M, Bystrowska B, Gawliński D, Faron-Górecka A, Broniowska Ż, Miszkiel J, Filip M. Changes in the Brain Endocannabinoid System in Rat Models of Depression. Neurotox Res 2017; 31:421-435. [PMID: 28247204 PMCID: PMC5360820 DOI: 10.1007/s12640-017-9708-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).
Collapse
Affiliation(s)
- Irena Smaga
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Joanna Jastrzębska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Magdalena Zaniewska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Beata Bystrowska
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
| | - Dawid Gawliński
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Agata Faron-Górecka
- Laboratory of Biochemical Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Żaneta Broniowska
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland
| | - Joanna Miszkiel
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Małgorzata Filip
- Department of Toxicology, Faculty of Pharmacy, College of Medicum, Jagiellonian University, Medyczna 9, PL 30-688, Kraków, Poland.
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland.
| |
Collapse
|
12
|
Shin MS, Park SS, Lee JM, Kim TW, Kim YP. Treadmill exercise improves depression-like symptoms by enhancing serotonergic function through upregulation of 5-HT 1A expression in the olfactory bulbectomized rats. J Exerc Rehabil 2017; 13:36-42. [PMID: 28349031 PMCID: PMC5331997 DOI: 10.12965/jer.1734918.459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 11/24/2022] Open
Abstract
The olfactory bulbectomy (OBX) is a well-known method inducing animal model of depression. Depression is associated with dysfunction of serotonin (5-hydroxytryptamine, 5-HT) system. In the present study, antidepressive effect of treadmill exercise was investigated using olfactory bulbectomized rats. After bilateral bulbectomy, the rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 28 days. Increased immobility time and decreased fast time in the forced swim test were observed in the olfactory bulbectomized rats. Sucrose preference in the sucrose preference test was decreased and activity in the open field test was also increased in the olfactory bulbectomized rats. Treadmill exercise decreased immobility time and activity and increased fast time and sucrose preference in the olfactory bulbectomized rats. Expressions of 5-HT and tryptophan hydroxylase (TPH) in the dorsal raphe of rats were suppressed by OBX and treadmill exercise increased the expressions of 5-HT and TPH in the olfactory bulbectomized rats. Serotonin receptor type 1A (5-HT1A) expression in the dorsal raphe was reduced by OBX and treadmill exercise increased 5-HT1A expression in the olfactory bulbectomized rats. In the present study, treadmill exercise ameliorated OBX-induced depressive symptoms. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.
Collapse
Affiliation(s)
- Mal-Soon Shin
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Sang-Seo Park
- School of Global Sport Studies, Korea University, Sejong, Korea
| | - Jae-Min Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Young-Pyo Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
13
|
Brand G, Schaal B. [Olfaction in depressive disorders: Issues and perspectives]. Encephale 2016; 43:176-182. [PMID: 27623124 DOI: 10.1016/j.encep.2016.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/10/2016] [Accepted: 04/05/2016] [Indexed: 11/15/2022]
Abstract
Research on sensorial interactions with psychiatric diseases and particularly with the depressive syndrome has mainly focused on visual or auditory processes and much less on olfaction. The depressive illness is one of the most frequent psychiatric diagnoses in the community, with approximately one in five women and one in eight men experiencing a major depressive episode during their lifetime. Although genetic, epigenetic, neuroanatomical, neurochemical, neuroendocrinological and neuroimmunological changes can be detected during depression, the etiology of depression remains partly unclear. The current explanatory models are based on two main factors, i.e. pharmacological dysfunctions and stress effects. In this way and because of strong connections between olfactory pathways and cerebral areas implied in mood regulation and emotions (i.e. the limbic system and prefrontal areas), the interactions between olfaction and depression could constitute a relevant way of research at three different levels. First, olfactory dysfunction observed in depression could serve the diagnosis and contribute to a better understanding of mechanisms implied in thymic pathologies. Published papers show a decrease of olfactory sensitivity in major depression which does not occur in bipolar or saisonal depression. Second, it has been shown that olfactory deficits could induce depressive symptoms. In this context, an animal model (olfactory bulbectomized rat) reinforces the hypothesis of the important role of olfaction in depression based on neuroanatomical and neurochemical observations. Third, several publications have demonstrated that odors can positively impact the depressive mood. Thus, a remediation by odors in depression appears to be a promising way. From several decades, the olfaction/depression interactions have been covered by a broad literature. Thus, the present review will not propose an exhaustive examination but aims to point out the most recently published papers and highlight their contributions to the understanding of olfactory processes implied in depression.
Collapse
Affiliation(s)
- G Brand
- Département neurosciences, université de Bourgogne-Franche-Comté, place Leclerc, 25000 Besançon, France; Centre des sciences du goût et de l'alimentation, CNRS, laboratoire d'éthologie développementale et de psychologie cognitive, université de Bourgogne-Franche-Comté (UMR 6265), 9E, boulevard Jeanne-d'Arc, 21000 Dijon, France.
| | - B Schaal
- Centre des sciences du goût et de l'alimentation, CNRS, laboratoire d'éthologie développementale et de psychologie cognitive, université de Bourgogne-Franche-Comté (UMR 6265), 9E, boulevard Jeanne-d'Arc, 21000 Dijon, France.
| |
Collapse
|
14
|
Holubova K, Kleteckova L, Skurlova M, Ricny J, Stuchlik A, Vales K. Rapamycin blocks the antidepressant effect of ketamine in task-dependent manner. Psychopharmacology (Berl) 2016; 233:2077-2097. [PMID: 27004790 DOI: 10.1007/s00213-016-4256-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/21/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of our study was to test whether ketamine produces an antidepressant effect in animal model of olfactory bulbectomy and assess the role of mammalian target of rapamycin (mTOR) pathway in ketamine's antidepressant effect. METHODS Bulbectomized (OBX) rats and sham controls were assigned to four subgroups according to the treatment they received (ketamine, saline, ketamine + rapamycin, and saline + rapamycin). The animals were subjected to open field (OF), elevated plus maze (EPM), passive avoidance (PA), Morris water maze (MWM), and Carousel maze (CM) tests. Blood samples were collected before and after drug administration for analysis of phosphorylated mTOR level. After behavioral testing, brains were removed for evaluation of brain-derived neurotrophic factor (BDNF) in prefrontal cortex (PFC) and hippocampus. RESULTS Ketamine normalized hyperactivity of OBX animals in EPM and increased the time spent in open arms. Rapamycin pretreatment resulted in elimination of ketamine effect in EPM test. In CM test, ketamine + rapamycin administration led to cognitive impairment not observed in saline-, ketamine-, or saline + rapamycin-treated OBX rats. Prefrontal BDNF content was significantly decreased, and level of mTOR was significantly elevated in OBX groups. CONCLUSIONS OBX animals significantly differed from sham controls in most of the tests used. Treatment had more profound effect on OBX phenotype than controls. Pretreatment with rapamycin eliminated the anxiolytic and antidepressant effects of ketamine in task-dependent manner. The results indicate that ketamine + rapamycin application resulted in impaired stress responses manifested by cognitive deficits in active place avoidance (CM) test. Intensity of stressor (mild vs. severe) used in the behavioral tests had opposite effect on controls and on OBX animals.
Collapse
Affiliation(s)
- Kristina Holubova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Lenka Kleteckova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Martina Skurlova
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic.,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Jan Ricny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic
| | - Ales Stuchlik
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic
| | - Karel Vales
- The Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Videnska 1083, 14220, Prague, Czech Republic. .,National Institute of Mental Health, Topolova 748, 250 67 Klecany, Prague East, Czech Republic.
| |
Collapse
|
15
|
Jiménez-Sánchez L, Linge R, Campa L, Valdizán EM, Pazos Á, Díaz Á, Adell A. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex. Neuropharmacology 2016; 108:91-102. [PMID: 27108934 DOI: 10.1016/j.neuropharm.2016.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/14/2023]
Abstract
Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.
Collapse
Affiliation(s)
- Laura Jiménez-Sánchez
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Raquel Linge
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Leticia Campa
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Elsa M Valdizán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Ángel Pazos
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Álvaro Díaz
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain
| | - Albert Adell
- Departamento de Neuroquímica y Neurofarmacología, Instituto de Investigaciones Biomédicas de Barcelona (CSIC, IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), 39011 Santander, Spain.
| |
Collapse
|
16
|
Effect of soothing-liver and nourishing-heart acupuncture on early selective serotonin reuptake inhibitor treatment onset for depressive disorder and related indicators of neuroimmunology: a randomized controlled clinical trial. J TRADIT CHIN MED 2015; 35:507-13. [PMID: 26591679 DOI: 10.1016/s0254-6272(15)30132-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To observe the effect of soothing-liver and nourishing-heart acupuncture on selective serotonin reuptake inhibitor (SSRIs) treatment effect onset in patients with depressive disorder and related indicators of neuroimmunology. METHODS Overall, 126 patients with depressive disorder were randomly divided into a medicine and acupuncture-medicine group using a random number table. Patients were treated for 6 consecutive weeks. The two groups were evaluated by the Montgomery-Asberg Depression Rating Scale (MADRS) and Side Effects Rating Scale (SERS) to assess the effect of the soothing-liver and nourishing-heart acupuncture method on early onset of SSRI treatment effect. Changes in serum 5-hydroxytryptamine (5-HT) and inflammatory cytokines before and after treatment were recorded and compared between the medicine group and the acupuncture-medicine group. RESULTS The acupuncture-medicine group had significantly lower MADRS scores at weeks 1, 2, 4, and 6 after treatment compared with the medicine group (P < 0.01). The acupuncture group had significantly lower SERS scores at weeks 1, 2, 4, and 6 after treatment compared with the medicine group (P < 0.01). At 6 weeks after treatment, serum 5-HT in the acupuncture-medicine group was significantly higher compared with the medicine group (P < 0.01). Interleukin-6 (IL-6) in the acupuncture-medicine group was significantly lower than that in the medicine group (P < 0.01), whereas there was no significant difference in IL-1β between the groups (P > 0.05). Anti-inflammatory cytokines IL-4 and IL-10 were significantly higher in the acupuncture-medicine group compared with the medicine group (P < 0.01, P < 0.05, respectively). CONCLUSION The soothing-liver and nourishing-heart acupuncture method can effectively accelerate the onset of SSRI effects when treating depressive disorder and can significantly reduce the adverse reactions of SSRIs. Moreover, acupuncture can enhance serum 5-HT and regulate the balance of pro-inflammatory cytokines and anti-inflammatory cytokines.
Collapse
|
17
|
Li J, Luo Y, Zhang R, Shi H, Zhu W, Shi J. Neuropeptide Trefoil Factor 3 Reverses Depressive-Like Behaviors by Activation of BDNF-ERK-CREB Signaling in Olfactory Bulbectomized Rats. Int J Mol Sci 2015; 16:28386-400. [PMID: 26633367 PMCID: PMC4691052 DOI: 10.3390/ijms161226105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/18/2022] Open
Abstract
The trefoil factors (TFFs) are a family of three polypeptides, among which TFF1 and TFF3 are widely distributed in the central nervous system. Our previous study indicated that TFF3 was a potential rapid-onset antidepressant as it reversed the depressive-like behaviors induced by acute or chronic mild stress. In order to further identify the antidepressant-like effect of TFF3, we applied an olfactory bulbectomy (OB), a classic animal model of depression, in the present study. To elucidate the mechanism underlying the antidepressant-like activity of TFF3, we tested the role of brain-derived neurotrophic factor (BDNF)-extracellular signal-related kinase (ERK)-cyclic adenosine monophosphate response element binding protein (CREB) signaling in the hippocampus in the process. Chronic systemic administration of TFF3 (0.1 mg/kg, i.p.) for seven days not only produced a significant antidepressant-like efficacy in the OB paradigm, but also restored the expression of BDNF, pERK, and pCREB in the hippocampal CA3. Inhibition of BDNF or extracellular signal-related kinase (ERK) signaling in CA3 blocked the antidepressant-like activity of TFF3 in OB rats. Our findings further confirmed the therapeutic effect of TFF3 against depression and suggested that the normalization of the BDNF-ERK-CREB pathway was involved in the behavioral response of TFF3 for the treatment of depression.
Collapse
Affiliation(s)
- Jiali Li
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Yixiao Luo
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Ruoxi Zhang
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Haishui Shi
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
| | - Weili Zhu
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing 100191, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Beijing Key Laboratory on Drug Dependence Research, Beijing 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Beijing 100191, China.
- Key Laboratory for Neuroscience of the Ministry of Education and Ministry of Public Healthy, Beijing 100191, China.
| |
Collapse
|
18
|
Babinska Z, Ruda-Kucerova J, Amchova P, Merhautova J, Dusek L, Sulcova A. Olfactory bulbectomy increases reinstatement of methamphetamine seeking after a forced abstinence in rats. Behav Brain Res 2015; 297:20-7. [PMID: 26431766 DOI: 10.1016/j.bbr.2015.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/25/2015] [Indexed: 01/23/2023]
Abstract
Drug addiction is commonly associated with depression and comorbid patients also suffer from higher cravings and increased relapse rate. To address this issue preclinically we combined the olfactory bulbectomy (OBX) model of depression and intravenous methamphetamine self-administration procedure in rats to assess differences in relapse-like behavior. Male Sprague-Dawley rats were divided randomly into two groups; in one group the bilateral olfactory bulbectomy (OBX) was performed while the other group was sham operated. After recovery, intracardiac catheter was implanted. Intravenous self-administration procedure was conducted in operant boxes using nose-poke operandi (Coulbourn Instruments, Inc., USA) under fixed ratio 1 schedule of reinforcement. Methamphetamine was available at dose 0.08 mg/kg/infusion. After stable methamphetamine intake was maintained, a period of forced abstinence was initiated and rats were kept in their home-cages for 14 days. Finally, one reinstatement session was conducted in operant boxes with no drug delivery. In the reinstatement session the mean of 138.4 active nose-pokes was performed by the OBX group, while the sham group displayed 41 responses, i.e. 140 % and 48 % of basal nose-poking during maintenance phase in OBX and sham operated group respectively. OBX group also showed significantly more passive nose-pokes indicating hyperactive behavioral traits in bulbectomized rats. However, the % of active operandum preference was equal in both groups. Olfactory bulbectomy model significantly increased reinstatement of methamphetamine seeking behavior. This paradigm can be used to evaluate potential drugs that are able to suppress the drug-seeking behavior.
Collapse
Affiliation(s)
- Zuzana Babinska
- Experimental and Applied Neuropsychopharmacology Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Experimental and Applied Neuropsychopharmacology Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Amchova
- Experimental and Applied Neuropsychopharmacology Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Merhautova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ladislav Dusek
- Masaryk University, Institute of Biostatistics and Analyses of Faculty of Medicine, Kamenice 3, 625 00 Brno, Czech Republic
| | - Alexandra Sulcova
- Experimental and Applied Neuropsychopharmacology Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
19
|
Ruda-Kucerova J, Amchova P, Havlickova T, Jerabek P, Babinska Z, Kacer P, Syslova K, Sulcova A, Sustkova-Fiserova M. Reward related neurotransmitter changes in a model of depression: An in vivo microdialysis study. World J Biol Psychiatry 2015; 16:521-35. [PMID: 26444572 DOI: 10.3109/15622975.2015.1077991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The self-medication hypothesis assumes that symptoms related to potential monoaminergic deficits in depression may be relieved by drug abuse. The aim of this study was to elucidate the neurotransmitter changes in a rat model of depression by measuring their levels in the nucleus accumbens shell, which is typically involved in the drug of abuse acquisition mechanism. METHODS Depression was modelled by the olfactory bulbectomy (OBX) in Wistar male rats. In vivo microdialysis was performed, starting from the baseline and following after a single methamphetamine injection and behaviour was monitored. The determination of neurotransmitters and their metabolites was performed by high-performance liquid chromatography combined with mass spectrometry. RESULTS OBX animals had lower basal levels of dopamine and serotonin and their metabolites. However, γ-aminobutyric acid (GABA) and glutamate levels were increased. The methamphetamine injection induced stronger dopamine and serotonin release in the OBX rats and lower release of glutamate in comparison with sham-operated rats; GABA levels did not differ significantly. CONCLUSIONS This study provides an evidence of mesolimbic neurotransmitter changes in the rat model of depression which may elucidate mechanisms underlying intravenous self-administration studies in which OBX rats were demonstrated to have higher drug intake in comparison to intact controls.
Collapse
Affiliation(s)
- Jana Ruda-Kucerova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petra Amchova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Tereza Havlickova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Pavel Jerabek
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| | - Zuzana Babinska
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic .,b Department of Pharmacology , Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Petr Kacer
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Kamila Syslova
- d Laboratory of Medicinal Diagnostics, Department of Organic Technology ICT , Prague , Czech Republic
| | - Alexandra Sulcova
- a Experimental and Applied Neuropsychopharmacology Research Group , CEITEC - Central European Institute of Technology, Masaryk University , Brno , Czech Republic
| | - Magdalena Sustkova-Fiserova
- c Department of Pharmacology , Third Faculty of Medicine, Charles University , Prague , Czech Republic , and
| |
Collapse
|
20
|
Behavior and the cholinergic parameters in olfactory bulbectomized female rodents: Difference between rats and mice. Behav Brain Res 2015; 297:5-14. [PMID: 26431763 DOI: 10.1016/j.bbr.2015.09.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022]
Abstract
Olfactory bulbectomy (OBX) in rodents induces a wide spectrum of functional disturbances, including behavioral, neurochemical, and neuromorphological alterations. We have examined the effects of OBX on behavior and the parameters of the cholinergic system in female rats and mice. In rats, OBX resulted in the appearance of some depressive-like behavioral marks, such as the decreased sucrose consumption, hyperactivity, impaired short-term memory and anxiety-like behavioral features, such as shortened presence in the center of the open field arena or open arms of the elevated plus-maze and an enhancement of avoidance behavior. These behavioral abnormalities could be associated with disturbances in hippocampal function, this suggestion being supported by the presence of cellular changes in this brain structure. No effect of OBX on the number of cholinergic neurons in the medial septum-diagonal band as well as on the acetylcholine content and acetylcholinesterase activity in the septum, hippocampus, and neocortex could be detected. In contrast, in mice, OBX impaired spontaneous alternation behavior and decreased the number of cholinergic neurons in the medial septum-diagonal band. These data demonstrate that rats and mice differently respond to OBX, in particular, OBX does not significantly affect the cholinergic system in rats.
Collapse
|
21
|
Alterations of reward mechanisms in bulbectomised rats. Behav Brain Res 2015; 286:271-7. [DOI: 10.1016/j.bbr.2015.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/02/2015] [Accepted: 03/06/2015] [Indexed: 01/17/2023]
|
22
|
Abstract
The wide spectrum of disruptions that characterizes major depressive disorder (MDD) and bipolar disorder (BD) highlights the difficulties researchers are posed with as they try to mimic these disorders in the laboratory. Nonetheless, numerous attempts have been made to create rodent models of mood disorders or at least models of the symptoms of MDD and BD. Present antidepressants are all descendants of the serendipitous findings in the 1950s that the monoamine oxidase inhibitor iproniazid and the tricyclic antidepressant imipramine were effective antidepressants. Thus, the need for improved animal models to provide insights into the neuropathology underlying the disease is critical. Such information is in turn crucial for identifying new antidepressants and mood stabilisers. Currently, there is a shift away from traditional animal models to more focused research dealing with an endophenotype-style approach, genetic models, and incorporation of new findings from human neuroimaging and genetic studies. Such approaches are opening up more tractable avenues for understanding the neurobiological and genetic bases of these disorders. Further, such models promise to yield better translational animal models and hence more fruitful therapeutic targets. This overview focuses on such animal models and tests and how they can be used to assess MDD and BD in rodents.
Collapse
|
23
|
The olfactory bulbectomy model in mice and rat: One story or two tails? Eur J Pharmacol 2015; 753:105-13. [DOI: 10.1016/j.ejphar.2014.10.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/17/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022]
|
24
|
El Mansari M, Manta S, Oosterhof C, El Iskandrani KS, Chenu F, Shim S, Blier P. Restoration of serotonin neuronal firing following long-term administration of bupropion but not paroxetine in olfactory bulbectomized rats. Int J Neuropsychopharmacol 2015; 18:pyu050. [PMID: 25522394 PMCID: PMC4360219 DOI: 10.1093/ijnp/pyu050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Olfactory bulbectomized rats generally manifest many of the neurochemical, physiological, and behavioral features of major depressive disorder in humans. Another interesting feature of this model is that it responds to chronic but not acute antidepressant treatments, including selective serotonin reuptake inhibitors. The purpose of the present study was first to characterize the firing activity of dorsal raphe serotonin neurons in olfactory bulbectomized rats and then examine the effects of 2 antidepressants, bupropion and paroxetine. METHODS Olfactory bulbectomy was performed by aspirating olfactory bulbs in anesthetized rats. Vehicle and drugs were delivered for 2 and 14 days via subcutaneously implanted minipumps. In vivo electrophysiological recordings were carried out in male anesthetized Sprague-Dawley rats. RESULTS Following ablation of olfactory bulbs, the firing rate of serotonin neurons was decreased by 36%, leaving those of norepinephrine and dopamine neurons unchanged. In olfactory bulbectomized rats, bupropion (30 mg/kg/d) restored the firing rate of serotonin neurons to the control level following 2- and 14-day administration and also induced an increase in the tonic activation of serotonin(1A) receptors; paroxetine (10 mg/kg/d) did not result in a return to normal of the attenuated firing of serotonin neurons in olfactory bulbectomized rats. In the hippocampus, although at a higher dose of WAY 100635 than that required in bupropion-treated animals, paroxetine administration also resulted in an increase in the tonic activation of serotonin(1A) receptors. CONCLUSIONS The present results indicate that unlike paroxetine, bupropion administration normalized serotonin neuronal activity and increased tonic activation of the serotonin(1A) receptors in hippocampus.
Collapse
Affiliation(s)
- Mostafa El Mansari
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Stella Manta
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Chris Oosterhof
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | | | - Franck Chenu
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Stacey Shim
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| | - Pierre Blier
- University of Ottawa Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
25
|
Olivier B. Serotonin: a never-ending story. Eur J Pharmacol 2014; 753:2-18. [PMID: 25446560 DOI: 10.1016/j.ejphar.2014.10.031] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/12/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
The neurotransmitter serotonin is an evolutionary ancient molecule that has remarkable modulatory effects in almost all central nervous system integrative functions, such as mood, anxiety, stress, aggression, feeding, cognition and sexual behavior. After giving a short outline of the serotonergic system (anatomy, receptors, transporter) the author's contributions over the last 40 years in the role of serotonin in depression, aggression, anxiety, stress and sexual behavior is outlined. Each area delineates the work performed on animal model development, drug discovery and development. Most of the research work described has started from an industrial perspective, aimed at developing animals models for psychiatric diseases and leading to putative new innovative psychotropic drugs, like in the cases of the SSRI fluvoxamine, the serenic eltoprazine and the anxiolytic flesinoxan. Later this research work mainly focused on developing translational animal models for psychiatric diseases and implicating them in the search for mechanisms involved in normal and diseased brains and finding new concepts for appropriate drugs.
Collapse
Affiliation(s)
- Berend Olivier
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences & Brain Center Rudolf Magnus, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands; Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| |
Collapse
|
26
|
Opal MD, Klenotich SC, Morais M, Bessa J, Winkle J, Doukas D, Kay LJ, Sousa N, Dulawa SM. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry 2014; 19:1106-14. [PMID: 24166413 DOI: 10.1038/mp.2013.144] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 09/18/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
Current antidepressants must be administered for several weeks to produce therapeutic effects. We show that selective serotonin 2C (5-HT2C) antagonists exert antidepressant actions with a faster-onset (5 days) than that of current antidepressants (14 days) in mice. Subchronic (5 days) treatment with 5-HT2C antagonists induced antidepressant behavioral effects in the chronic forced swim test (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy paradigm. This treatment regimen also induced classical markers of antidepressant action: activation of cAMP response element-binding protein (CREB) and induction of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC). None of these effects were induced by subchronic treatment with citalopram, a prototypical selective serotonin reuptake inhibitor (SSRI). Local infusion of 5-HT2C antagonists into the ventral tegmental area was sufficient to induce BDNF in the mPFC, and dopamine D1 receptor antagonist treatment blocked the antidepressant behavioral effects of 5-HT2C antagonists. 5-HT2C antagonists also activated mammalian target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the mPFC, effects recently linked to rapid antidepressant action. Furthermore, 5-HT2C antagonists reversed CMS-induced atrophy of mPFC pyramidal neurons. Subchronic SSRI treatment, which does not induce antidepressant behavioral effects, also activated mTOR and eEF2 and reversed CMS-induced neuronal atrophy, indicating that these effects are not sufficient for antidepressant onset. Our findings reveal that 5-HT2C antagonists are putative fast-onset antidepressants, which act through enhancement of mesocortical dopaminergic signaling.
Collapse
Affiliation(s)
- M D Opal
- 1] Committee on Neurobiology, University of Chicago, Chicago, IL, USA [2] Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - S C Klenotich
- 1] Committee on Neurobiology, University of Chicago, Chicago, IL, USA [2] Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - M Morais
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Bessa
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Winkle
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - D Doukas
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| | - L J Kay
- 1] Committee on Neurobiology, University of Chicago, Chicago, IL, USA [2] Institute for Mind and Body, University of Chicago, Chicago, IL, USA [3] Department of Psychology, University of Chicago, Chicago, IL, USA
| | - N Sousa
- 1] Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal [2] ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S M Dulawa
- 1] Committee on Neurobiology, University of Chicago, Chicago, IL, USA [2] Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Buchborn T, Schröder H, Höllt V, Grecksch G. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling. J Psychopharmacol 2014; 28:545-52. [PMID: 24785760 DOI: 10.1177/0269881114531666] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling.
Collapse
Affiliation(s)
- Tobias Buchborn
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Helmut Schröder
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Volker Höllt
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Gisela Grecksch
- Institute of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
28
|
Hillard CJ, Liu QS. Endocannabinoid signaling in the etiology and treatment of major depressive illness. Curr Pharm Des 2014; 20:3795-811. [PMID: 24180398 PMCID: PMC4002665 DOI: 10.2174/13816128113196660735] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/28/2022]
Abstract
The purpose of this review is to examine human and preclinical data that are relevant to the following hypotheses. The first hypothesis is that deficient CB1R-mediated signaling results in symptoms that mimic those seen in depression. The second hypothesis is that activation of CB1R-mediated signaling results in behavioral, endocrine and other effects that are similar to those produced by currently used antidepressants. The third hypothesis is that conventional antidepressant therapies act through enhanced CB1R mediated signaling. Together the available data indicate that activators of CB1R signaling, particularly inhibitors of fatty acid amide hydrolase, should be considered for clinical trials for the treatment of depression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Brain/drug effects
- Brain/enzymology
- Brain/metabolism
- Brain/pathology
- Cannabis
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Humans
- Magnetic Resonance Imaging
- Neurogenesis/drug effects
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | - Qing-song Liu
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226.
| |
Collapse
|
29
|
Choi YJ, Kim JY, Jin WP, Kim YT, Jahng JW, Lee JH. Disruption of oral sensory relay to brain increased anxiety- and depression-like behaviours in rats. Arch Oral Biol 2013; 58:1652-8. [PMID: 24112731 DOI: 10.1016/j.archoralbio.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/26/2013] [Accepted: 08/12/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Sensory information plays an important role to determine psycho-emotional behaviours of individuals. Lingual nerve can be damaged by dental surgery or trauma, such as physical irritation, radiation, chemotherapy, or viral infection. This study was conducted to examine the psycho-emotional effects of lingual nerve damage in which oral sensory relay to the brain is disrupted. DESIGN Male Sprague-Dawley rats were tested for anxiety and depression-related behaviours after bilateral transections of the lingual and chorda tympani nerves (Nx) or sham operation. Tissue contents of serotonin and its metabolite in the hippocampus, hypothalamus, and nucleus accumbens were analyzed by high-performance liquid chromatography. RESULTS Sucrose preference was reduced in Nx rats compared with sham rats, suggesting the development of anhedonia, decreased pleasure seeking behaviour, by the lingual nerves transection. Ambulatory activity was decreased, anxiety-related behaviours during the activity test increased, time spent in the open arms during elevated plus maze test decreased, and immobility duration during forced swim test increased in Nx rats compared with sham rats. Serotonin level in the hippocampus of Nx rats was decreased significantly compared with sham rats. CONCLUSIONS Results suggest that aberration of oral sensory relay to brain may lead to the development of depression- and anxiety-related disorders, and decreased serotonergic neurotransmission in the hippocampus may play a role in its underlying mechanism.
Collapse
Affiliation(s)
- Young-Jun Choi
- Program in Craniofacial Structure and Functional Biology, Department of Dental Science, Graduate School, Seoul National University, Seoul, Republic of Korea; Department of Oral and Maxillofacial Surgery, Dental Center, School of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Oral E, Aydin MD, Aydin N, Ozcan H, Hacimuftuoglu A, Sipal S, Demirci E. How olfaction disorders can cause depression? The role of habenular degeneration. Neuroscience 2013; 240:63-9. [PMID: 23485804 DOI: 10.1016/j.neuroscience.2013.02.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2013] [Accepted: 02/15/2013] [Indexed: 10/27/2022]
Abstract
The removal of bilateral olfactory bulbs (OBs) can result in serious behavioral, neurochemical, neuroendocrine, and neuroimmune alterations in depressed patients. However, there is little information on how olfactory bulbectomy (OBX) leads to depression. Habenular nuclei and their connections are important in the regulation of psychomotor and psychosocial behaviors through afferent impulses of the olfactory system. Therefore, we investigated whether OB lesions lead to habenular degeneration. We used a sample of 50 rats (25 female and 25 male) for this study. Of these rats, five male and five female rats were taken as the control group. The remaining 40 rats (20 male and 20 female rats) constituted the study group, and frontal burr holes were performed at the OB level on these rats. OB cauterization was applied to 10 male and 10 female rats (n=10, 10; study group 1), mechanical OBX was applied to five male and five female rats (n=5, 5; study group 2), and no procedure was performed on the remaining 10 rats (n=5, 5). The psychomotor movements; pregnancy rates; and sexual, feeding, maternal, social, and grooming behaviors for both study groups were observed daily for 3 months. Their OBs, olfactory cortices, and habenular complexes were examined using stereological methods. All of the animals in the study groups, especially in the cauterization group, demonstrated anorexia, nutritional disorders, weight loss, psychomotor retardation, sexual aversion, decreased grooming behavior, and reduced social interaction similar to depression symptoms. As compared to the control group, the pregnancy rates, number of offspring per mother rat, and birth weights in the study groups were lower, whereas the number of stillbirths was higher. Gross anatomical examinations revealed that the OBs of all of the animals in the study groups were atrophied. Histopathological examinations detected prominent neuronal loss due to apoptosis in the habenular structures in the study groups. We detected a relationship between a decreased healthy neuronal density of the habenula and depressive symptomatology in rats with OBX. We suggest that olfaction disorders might cause neuropsychiatric disorders by affecting neuronal degeneration in habenular nuclei.
Collapse
Affiliation(s)
- E Oral
- Department of Psychiatry, Medical Faculty, University of Atatürk, Erzurum, Turkey
| | | | | | | | | | | | | |
Collapse
|
31
|
Borre Y, Lemstra S, Westphal KG, Morgan ME, Olivier B, Oosting RS. Celecoxib delays cognitive decline in an animal model of neurodegeneration. Behav Brain Res 2012; 234:285-91. [DOI: 10.1016/j.bbr.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/06/2012] [Accepted: 07/06/2012] [Indexed: 11/28/2022]
|
32
|
Jindal A, Mahesh R, Gautam B, Bhatt S, Pandey D. Antidepressant-like effect of etazolate, a cyclic nucleotide phosphodiesterase 4 inhibitor—an approach using rodent behavioral antidepressant tests battery. Eur J Pharmacol 2012; 689:125-31. [DOI: 10.1016/j.ejphar.2012.05.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/03/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
|
33
|
Carlini VP, Machado DG, Buteler F, Ghersi M, Ponzio MF, Martini AC, Schiöth HB, de Cuneo MF, Rodrigues ALS, de Barioglio SR. Acute ghrelin administration reverses depressive-like behavior induced by bilateral olfactory bulbectomy in mice. Peptides 2012; 35:160-5. [PMID: 22525660 DOI: 10.1016/j.peptides.2012.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/26/2012] [Accepted: 03/26/2012] [Indexed: 11/27/2022]
Abstract
This study aims to examine the antidepressant-like action of Ghrelin (Ghr), a hormone synthesized predominantly by gastrointestinal endocrine cells and released during periods of negative energy balance, in two behavioral models: tail suspension test (TST), a predictive model of antidepressant activity, and the olfactory bulbectomy (OB), an established animal model of depression. The reduction in the immobility time in the TST was the parameter used to assess antidepressant-like effect of Ghr. The depressive-like behavior in olfactory bulbectomized mice was inferred through the increase in the immobility time in the TST and the hyperlocomotor activity in the open-field test. Ghr produced antidepressant-like effect in TST (0.3 nmol/μl, i.c.v.), and reversed OB-induced depressive-like behavior. In conclusion, these results provide clear evidence that an acute administration of ghrelin produce antidepressant-like effect in the TST and OB.
Collapse
Affiliation(s)
- Valeria Paola Carlini
- Cátedra de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Serotonin-2C receptors in the basolateral nucleus of the amygdala mediate the anxiogenic effect of acute imipramine and fluoxetine administration. Int J Neuropsychopharmacol 2012; 15:389-400. [PMID: 21733232 DOI: 10.1017/s1461145711000873] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A growing body of evidence indicates that facilitation of serotonin-2C receptor (5-HT2CR)-mediated neurotransmission in the basolateral nucleus of the amygdala (BLA) is involved in anxiety generation. We investigated here whether BLA 5-HT2CRs exert a differential role in the regulation of defensive behaviours related to generalized anxiety (inhibitory avoidance) and panic (escape) disorders. We also evaluated whether activation of BLA 5-HT2CRs accounts for the anxiogenic effect caused by acute systemic administration of the antidepressants imipramine and fluoxetine. Male Wistar rats were tested in the elevated T-maze after intra-BLA injection of the endogenous agonist 5-HT, the 5-HT2CR agonist MK-212 or the 5-HT2CR antagonist SB-242084. This test allows the measurement of inhibitory avoidance acquisition and escape expression. We also investigated whether intra-BLA administration of SB-242084 interferes with the acute anxiogenic effect caused by imipramine and fluoxetine in the Vogel conflict test, and imipramine in the elevated T-maze. While intra-BLA administration of 5-HT and MK-212 facilitated inhibitory avoidance acquisition, suggesting an anxiogenic effect, SB-242084 had the opposite effect. None of these drugs affected escape performance. Intra-BLA injection of a sub-effective dose of SB-242084 fully blocked the anxiogenic effect caused either by the local microinjection of 5-HT or the systemic administration of imipramine and fluoxetine. Our findings indicate that 5-HT2CRs in BLA are selectively involved in the regulation of defensive behaviours associated with generalized anxiety, but not panic. The results also provide the first direct evidence that activation of BLA 5-HT2CRs accounts for the short-term aversive effect of antidepressants.
Collapse
|
35
|
Drug withdrawal-induced depression: Serotonergic and plasticity changes in animal models. Neurosci Biobehav Rev 2012; 36:696-726. [DOI: 10.1016/j.neubiorev.2011.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/06/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
|
36
|
Neurokinin-1 receptor deletion modulates behavioural and neurochemical alterations in an animal model of depression. Behav Brain Res 2011; 228:91-8. [PMID: 22155476 DOI: 10.1016/j.bbr.2011.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/26/2011] [Indexed: 12/28/2022]
Abstract
The substance P/NK1 receptor system plays an important role in the regulation of stress and emotional responding and as such had been implicated in the pathophysiology of anxiety and depression. The present study investigated whether alterations in the substance P/NK1 receptor system in brain areas which regulate emotional responding accompany the depressive behavioural phenotype observed in the olfactory bulbectomised (OB) mouse. The effect of NK1 receptor deletion on behavioural responding and monoamine levels in discrete brain regions of the OB model, were also examined. Substance P levels in the frontal cortex and NK1 receptor expression in the amygdala and hippocampus were enhanced following olfactory bulbectomy. Although NK1 receptor knockout (NK1-/-) mice did not exhibit altered behavioural responding in the open field test, noradrenaline levels were enhanced in the frontal cortex, amygdala and hippocampus, as were serotonin levels in the frontal cortex. Locomotor activity and exploratory behaviour were enhanced in wild type OB mice, indicative of a depressive-like phenotype, an effect attenuated in NK1-/- mice. Bulbectomy induced a decrease in noradrenaline and 5-HIAA in the frontal cortex and an increase in serotonin in the amygdala, effects attenuated in OB NK1-/- mice. The present studies indicate that alterations in substance P/NK1 receptor system underlie, at least in part, the behavioural and monoaminergic changes in this animal model of depression.
Collapse
|
37
|
Nagayasu K, Yatani Y, Kitaichi M, Kitagawa Y, Shirakawa H, Nakagawa T, Kaneko S. Utility of organotypic raphe slice cultures to investigate the effects of sustained exposure to selective 5-HT reuptake inhibitors on 5-HT release. Br J Pharmacol 2011; 161:1527-41. [PMID: 20698856 DOI: 10.1111/j.1476-5381.2010.00978.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Selective 5-hydroxytryptamine (5-HT, serotonin) reuptake inhibitors (SSRIs) are widely used antidepressants and their therapeutic effect requires several weeks of drug administration. The delayed onset of SSRI efficacy is due to the slow neuroadaptive changes of the 5-hydroxytryptaminergic (5-HTergic) system. In this study, we examined the acute and chronic effects of SSRIs on the 5-HTergic system using rat raphe slice cultures. EXPERIMENTAL APPROACH For organotypic raphe slice cultures, mesencephalic coronal sections containing dorsal and median raphe nuclei were prepared from neonatal Wistar rats and cultured for 14-16 days. KEY RESULTS Acute treatment with citalopram, paroxetine or fluoxetine (0.1-10 µM) in the slice cultures slightly increased extracellular 5-HT levels, while sustained exposure for 4 days augmented the elevation of 5-HT level in a time-dependent manner. Sustained exposure to citalopram had no effect on tissue contents of 5-HT and its metabolite, expression of tryptophan hydroxylase or the membrane expression of 5-HT transporters. The augmented 5-HT release was attenuated by Ca(2+) -free incubation medium or treatment with tetrodotoxin. Experiments with 5-HT(1A/B) receptor agonists and antagonists revealed that desensitization of 5-HT(1) autoreceptors was not involved in the augmentation of 5-HT release. Finally, co-treatment with an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate, but not an N-methyl-d-aspartate, receptor antagonist, suppressed this augmentation. CONCLUSION AND IMPLICATIONS These results suggest that sustained exposure to SSRIs induces the augmentation of exocytotic 5-HT release, which is caused, at least in part, by the activation of AMPA/kainate receptors in the raphe slice cultures.
Collapse
Affiliation(s)
- Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
van der Plasse G, Feenstra MGP. WITHDRAWN: Is acute tryptophan depletion a valid method to assess central serotonergic function? Neurosci Biobehav Rev 2011:S0149-7634(11)00053-4. [PMID: 21435352 DOI: 10.1016/j.neubiorev.2011.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/16/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Geoffrey van der Plasse
- Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, PO Box 85500, 3508 GAUtrecht,The Netherlands
| | | |
Collapse
|
39
|
King BM, Primeaux SD, Zadeh ML, de Gruiter JE, Plant JD, Ferguson AV, Bray GA. Olfactory bulbectomy impairs the feeding response to 2-deoxy-D-glucose in rats. Brain Res 2011; 1367:207-12. [PMID: 20969838 PMCID: PMC4239690 DOI: 10.1016/j.brainres.2010.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/06/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
An early study reported that, unlike sham-operated rats, rats made anosmic by olfactory bulbectomy (OBX) failed to compensate for the dilution of their diet with nonnutritive bulk by increasing their food intake. In the present study, the effects of a glucoprivic challenge, intraperitoneal-administered 350 mg/kg 2-deoxy-D-glucose (2-DG), on food intake were measured in OBX and sham-operated female rats. Sham-operated rats significantly increased their food intake, but in two separate experiments OBX rats displayed no increase in food intake during the first 2 h following administration. Blood glucose levels were nearly identical in both groups. Body weights and daily food intakes of OBX rats did not differ from the sham-operated controls throughout the studies. Bulbectomized rats also displayed a normal drinking response after an intraperitoneal injection of 1M hypertonic saline. Hypothalamic nuclei and the neural pathways mediating taste have been implicated in the feeding response to 2-DG. The present results suggest that olfactory input and olfactory neural pathways also mediate, at least in part, the feeding response to a glucoprivic challenge induced by intraperitoneal injection of 2-DG.
Collapse
Affiliation(s)
- Bruce M King
- Department of Psychology, Clemson University, Clemson, SC 29634, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Burke N, Hayes E, Calpin P, Kerr D, Moriarty O, Finn D, Roche M. Enhanced nociceptive responding in two rat models of depression is associated with alterations in monoamine levels in discrete brain regions. Neuroscience 2010; 171:1300-13. [DOI: 10.1016/j.neuroscience.2010.10.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 12/29/2022]
|
41
|
Prins J, Westphal KGC, Korte-Bouws GAH, Quinton MS, Schreiber R, Olivier B, Korte SM. The potential and limitations of DOV 216,303 as a triple reuptake inhibitor for the treatment of major depression: a microdialysis study in olfactory bulbectomized rats. Pharmacol Biochem Behav 2010; 97:444-52. [PMID: 20934452 DOI: 10.1016/j.pbb.2010.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/29/2010] [Accepted: 10/03/2010] [Indexed: 01/11/2023]
Abstract
DOV 216,303 belongs to a new class of antidepressants, the triple reuptake inhibitors (TRIs), that blocks serotonin, norepinephrine and dopamine transporters and thereby increases extracellular brain monoamine concentrations. The aim of the present study was to measure extracellular monoamine concentrations both in the prefrontal cortex (PFC) and dorsal hippocampus (DH) after chronic administration of DOV 216,303 in the OBX animal model of depression and to compare the effects with acute drug treatment. OBX animals showed lower dopamine levels in PFC upon acute administration of DOV 216,303 than sham animals for up to five weeks after surgery. No such changes were observed in the DH. Unexpectedly, a DOV 216,303 challenge in chronic DOV 216,303 treated sham animals resulted in a blunted dopamine response in the PFC compared to the same challenge in vehicle treated animals. This blunted response probably reflects pharmacokinetic adaptations and/or pharmacodynamic changes, since brain and plasma concentrations of DOV 216,303 were significantly lower after chronic administration compared to acute administration. Surprisingly, and in contrast what we have reported earlier, chronic DOV 216,303 treatment was unable to normalize the hyperactivity of the OBX animals. Interestingly, by measuring the drug plasma and brain levels, it was demonstrated that at the time of behavioral testing (24 h after last drug treatment) DOV 216,303 was not present anymore in either plasma or brain. This seems to indicate that this putative antidepressant drug has no lasting antidepressant-like behavioral effects in the absence of the drug in the brain.
Collapse
Affiliation(s)
- J Prins
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Rudolf Magnus Institute of Neuroscience (RMI), Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lockridge A, Su J, Yuan LL. Abnormal 5-HT modulation of stress behaviors in the Kv4.2 knockout mouse. Neuroscience 2010; 170:1086-97. [PMID: 20801198 DOI: 10.1016/j.neuroscience.2010.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 08/17/2010] [Accepted: 08/21/2010] [Indexed: 10/19/2022]
Abstract
The Kv4.2 gene codes for an essential subunit of voltage-gated A-type potassium channels that are involved in dendritic signal integration and synaptic plasticity. Detailed cellular characterization in CA1 pyramidal neurons of the hippocampus has shown that knocking out the Kv4.2 gene increases neuronal excitability and promotes long-term potentiation. However, the overall behavioral consequences of these modifications have not been fully explored. Given the growing connection between neuronal plasticity and affect processing in the hippocampus and other Kv4.2 expressing regions, we proposed to investigate whether the absence of this gene would alter the stress response of mice to the forced swimming and tail suspension tests (TSTs) for depression-like behavior. Kv4.2 knockout (KO) mice, generated in the 129SvEv background, demonstrated elevated immobility and a loss of swimming, as well as antidepressant resistance to the selective 5-HT reuptake inhibitor fluoxetine (FLX). Characterization of a relatively new head movement behavior category, responsive to serotonergic treatment in wildtype (WT) mice, supported conclusions of abnormal 5-HT modulation. Electrophysiology recordings in the prefrontal cortex showed a blunting of postsynaptic response to direct 5-HT application following a single period of swim stress only in the animals without the Kv4.2 subunit. Based on our findings, we hypothesize that Kv4.2 KO mice may have an exaggerated 5-HT response to stress leading to a premature desensitization of postsynaptic receptors and a loss of continued behavior modulation. These results may shed some light on the involvement of A-type potassium channels in the effective action of selective serotonin reuptake inhibitor (SSRI) antidepressants.
Collapse
Affiliation(s)
- A Lockridge
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
43
|
Prins J, Denys DA, Westphal KG, Korte-Bouws GA, Quinton MS, Schreiber R, Groenink L, Olivier B, Korte SM. The putative antidepressant DOV 216,303, a triple reuptake inhibitor, increases monoamine release in the prefrontal cortex of olfactory bulbectomized rats. Eur J Pharmacol 2010; 633:55-61. [PMID: 20153745 DOI: 10.1016/j.ejphar.2010.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/12/2010] [Accepted: 02/02/2010] [Indexed: 11/18/2022]
Abstract
The first line of antidepressant treatment nowadays are selective serotonin reuptake inhibitors. Although they are relatively safe to use, selective serotonin reuptake inhibitors (SSRIs) can induce severe side effects. New promising antidepressants may be the triple monoamine reuptake inhibitors, which not only enhance serotonin and norepinephrine neurotransmission, but also increase brain dopamine levels. Recently it has been shown that one of the triple reuptake inhibitors, DOV 216,303 has antidepressant-like effects in the olfactory bulbectomy (OBX) model of depression, but the alterations in monoaminergic neurotransmission in these animals are still unknown. In the present study we investigated not only the effect of acute, but also chronic treatment of DOV 216,303 in OBX rats on monoamine and metabolite levels. The main results are decreased baseline dopamine levels in the prefrontal cortex one day after OBX, while 38days after OBX no difference could be observed in monoamine levels after vehicle treatment. Treatment with DOV 216,303 leads to increased extracellular levels of serotonin and norepinephrine neurotransmission, but also increased dopamine levels in OBX animals as well as their controls. This increase could be observed after one single administration, but also after chronic treatment. However, a DOV 216,303 challenge in chronically treated animals resulted in lower monoamine concentrations than the same challenge in untreated animals. More research is needed to investigate this seemingly hyporesponsivity to chronic DOV 216,303 treatment.
Collapse
Affiliation(s)
- Jolanda Prins
- Utrecht Institute for Pharmaceutical Sciences (UIPS) and Rudolf Magnus Institute of Neuroscience (RMI), Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Acute challenge with d-fenfluramine decreases regional cerebral glucose utilization in Sham, but not in OBX, rats: An autoradiographic study. Brain Res 2010; 1310:162-71. [DOI: 10.1016/j.brainres.2009.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/31/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022]
|
45
|
Tryptophan Depletion and Serotonin Release — A Critical Reappraisal. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70082-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
46
|
Bijlsma EY, Oosting RS, Olivier B, Groenink L. Disrupted startle modulation in animal models for affective disorders. Behav Brain Res 2009; 208:383-90. [PMID: 20006647 DOI: 10.1016/j.bbr.2009.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Affective startle modulation is used to study emotional reactivity in humans, and blunted affective startle modulation has been reported in depressed patients. To determine whether blunted affective startle modulation is also a common feature in animal models for affective disorders, light-enhanced startle was studied in three models: inescapable foot shock (IFS), repeated restraint stress (RRS) and olfactory bulbectomy (OBX). In addition, prepulse inhibition was studied in these models. Light-enhanced startle was blunted following IFS and OBX and RRS decreased overall startle responding. Prepulse inhibition, however, was unaffected. These findings indicate that induction models for affective disorders may be associated with long term effects on affective startle modulation. The lack of changes in sensory motor gating suggests that these changes can be ascribed to alterations in emotional reactivity. In conclusion, our results indicate that the blunted affective startle modulation seen in animal models for affective disorders may be used to examine the mechanisms underlying altered emotional reactivity.
Collapse
Affiliation(s)
- E Y Bijlsma
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Belcheva I, Ivanova M, Tashev R, Belcheva S. Differential involvement of hippocampal vasoactive intestinal peptide in nociception of rats with a model of depression. Peptides 2009; 30:1497-501. [PMID: 19467283 DOI: 10.1016/j.peptides.2009.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022]
Abstract
The effects of VIP microinjected unilaterally (left or right) into the hippocampal CA1 area at a dose of 10 and 100 ng or bilaterally (10 ng), on nociception of male Wistar rats with a model of depression (bilateral olfactory bulbectomy-OBX) were studied. Nociception was examined applying mechanical pressure on the left hind paw of the rat (analgesy-meter test). It was found that in OBX rats the pain threshold is increased. VIP showed differential effects depending on the side and dose of administration. The pain threshold after left-side microinjections of VIP into the hippocampal CA1 area of OBX rats was significantly higher than that after injections into right-side. There are no significant differences between right-side VIP-treated and OBX rats. Bilateral microinjections of VIP also exerted antinociceptive effect. These findings suggest that the hippocampal lateralized antinociceptive effect of VIP in OBX rats depends on the hemisphere of injection and suggest that VIP-ergic neurons in the hippocampal CA1 area may play differential role in nociception of rats with a model of depression.
Collapse
Affiliation(s)
- Iren Belcheva
- Department of Behavioral Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 23, Acad. G. Bonchev St., 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
48
|
Rajkumar R, Pandey DK, Mahesh R, Radha R. 1-(m-Chlorophenyl)piperazine induces depressogenic-like behaviour in rodents by stimulating the neuronal 5-HT2A receptors: Proposal of a modified rodent antidepressant assay. Eur J Pharmacol 2009; 608:32-41. [DOI: 10.1016/j.ejphar.2009.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/30/2022]
|
49
|
Han F, Nakano T, Yamamoto Y, Shioda N, Lu YM, Fukunaga K. Improvement of depressive behaviors by nefiracetam is associated with activation of CaM kinases in olfactory bulbectomized mice. Brain Res 2009; 1265:205-14. [PMID: 19233146 DOI: 10.1016/j.brainres.2009.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 12/27/2022]
Abstract
Olfactory bulbectomized (OBX) mice exhibit depressive-like behaviors as assessed by the tail suspension test (TST) and the forced swim test (FST). Interestingly, chronic intraperitoneal administration (1 mg/kg/day) of nefiracetam (DM-9384), a prototype cognitive enhancer, significantly improved depressive-like behaviors as well as spatial reference memory assessed by Y-maze task. As previously reported (Moriguchi, S., Han, F., Nakagawasai, O., Tadano, T., Fukunaga, K., 2006. Decreased calcium/calmoculin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. J. Neurochem. 97, 22-29), decreased activities of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) in the hippocampal CA1 region and amygdala were observed in OBX mice. Nefiracetam treatment (1 mg/kg/day) significantly elevated CaMKII but not ERK activities in the amygdala, prefrontal cortex and hippocampal CA1 regions. In addition, we found an elevation of cAMP response element-binding protein (CREB) phosphorylation in the amygdala and prefrontal cortex but not in the hippocampal CA1 region. Increased CREB phosphorylation was associated with activation of CaMKI and CaMKIV as well as CaMKII in these regions. Taken together, in addition to CaMKII, CaMKI and CaMKIV activation mediated by nefiracetam treatment might mediate CREB phosphorylation following chronic nefiracetam treatment, thereby eliciting an anti-depressive and cognition-enhancing effect on OBX mice.
Collapse
Affiliation(s)
- Feng Han
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Rodríguez-Gaztelumendi A, Rojo ML, Pazos A, Díaz A. Altered CB receptor-signaling in prefrontal cortex from an animal model of depression is reversed by chronic fluoxetine. J Neurochem 2009; 108:1423-33. [PMID: 19183263 DOI: 10.1111/j.1471-4159.2009.05898.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bilateral olfactory bulbectomy in the rat (OBX) induces behavioral, neurochemical, and structural abnormalities similar to those observed in human depression that are normalized after chronic, but not acute, treatment with antidepressants. In our study, OBX animals exhibited significant increases in both CB(1) receptor density ([(3)H]CP55490 binding) and functionality (stimulation of [(35)S]GTPgammaS binding by the cannabinoid (CB) agonist WIN 55212-2) at the prefrontal cortex (PFC). After chronic treatment with fluoxetine (10 mg/kg/day, 14 days, s.c.), OBX-induced hyperactivity in the open-field test was fully abolished. Interestingly, chronic fluoxetine fully reversed the enhanced CB(1)-receptor signaling in PFC observed following OBX. The CB agonist Delta(9)-tetrahydrocannabinol (5 mg/kg, i.p., 1 day) did not produce any behavioral effect in sham-operated animals but returned locomotor activity to control values in OBX rats. As both acute administration of Delta(9)-tetrahydrocannabinol and chronic fluoxetine elicited a similar behavioral effect in the OBX rat, it is not unlikely that the regionally selective enhancement of CB(1) receptor-signaling in the PFC could be related with the altered OBX behavior. Our findings reinforce the utility of this animal model to further investigating the implication of the endocannabinoid system in the modulation of emotional processes and its potential role in the adaptive responses to chronic antidepressants.
Collapse
Affiliation(s)
- Antonio Rodríguez-Gaztelumendi
- Departamento de Fisiología y Farmacología, Universidad de Cantabria. Instituto de Biomedicina y Biotecnología de Cantabria (CSIC-UC-IDICAN), Santander, Instituto de Salud Carlos III, Spain
| | | | | | | |
Collapse
|