1
|
Cromwell HC. Translating striatal activity from brain slice to whole animal neurophysiology: A guide for neuroscience research integrating diverse levels of analysis. J Neurosci Res 2019; 97:1528-1545. [PMID: 31257656 DOI: 10.1002/jnr.24480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/09/2023]
Abstract
An important goal of this review is highlighting research in neuroscience as examples of multilevel functional and anatomical analyses addressing basic science issues and applying results to the understanding of diverse disorders. The research of Dr. Michael Levine, a leader in neuroscience, exemplifies this approach by uncovering fundamental properties of basal ganglia function and translating these findings to clinical applications. The review focuses on neurophysiological research connecting results from in vitro and in vivo recordings. A second goal is to utilize these research connections to produce novel, accurate descriptions for corticostriatal processing involved in varied, complex functions. Medium spiny neurons in striatum act as integrators combining input with baseline activity creating motivational "events." Basic research on corticostriatal synapses is described and links developed to issues with clinical relevance such as inhibitory gating, self-injurious behavior, and relative reward valuation. Work is highlighted on dopamine-glutamate interactions. Individual medium spiny neurons express both D1 and D2 receptors and encode information in a bivalent manner depending upon the mix of receptors involved. Current work on neurophysiology of reward processing has taken advantage of these basic approaches at the cellular and molecular levels. Future directions in studying physiology of reward processing and action sequencing could profit by incorporating the divergent ways dopamine modulates incoming neurochemical signals. Primary investigators leading research teams should mirror Mike Levine's efforts in "climbing the mountain" of scientific inquiry by performing analyses at different levels of inquiry, integrating the findings, and building comprehensive answers to problems unsolvable without this bold approach.
Collapse
Affiliation(s)
- Howard Casey Cromwell
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio
| |
Collapse
|
2
|
Striatal Activity and Reward Relativity: Neural Signals Encoding Dynamic Outcome Valuation. eNeuro 2016; 3:eN-NWR-0022-16. [PMID: 27822506 PMCID: PMC5089537 DOI: 10.1523/eneuro.0022-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/21/2022] Open
Abstract
The striatum is a key brain region involved in reward processing. Striatal activity has been linked to encoding reward magnitude and integrating diverse reward outcome information. Recent work has supported the involvement of striatum in the valuation of outcomes. The present work extends this idea by examining striatal activity during dynamic shifts in value that include different levels and directions of magnitude disparity. A novel task was used to produce diverse relative reward effects on a chain of instrumental action. Rats (Rattus norvegicus) were trained to respond to cues associated with specific outcomes varying by food pellet magnitude. Animals were exposed to single-outcome sessions followed by mixed-outcome sessions, and neural activity was compared among identical outcome trials from the different behavioral contexts. Results recording striatal activity show that neural responses to different task elements reflect incentive contrast as well as other relative effects that involve generalization between outcomes or possible influences of outcome variety. The activity that was most prevalent was linked to food consumption and post-food consumption periods. Relative encoding was sensitive to magnitude disparity. A within-session analysis showed strong contrast effects that were dependent upon the outcome received in the immediately preceding trial. Significantly higher numbers of responses were found in ventral striatum linked to relative outcome effects. Our results support the idea that relative value can incorporate diverse relationships, including comparisons from specific individual outcomes to general behavioral contexts. The striatum contains these diverse relative processes, possibly enabling both a higher information yield concerning value shifts and a greater behavioral flexibility.
Collapse
|
3
|
Salicylate-induced auditory perceptual disorders and plastic changes in nonclassical auditory centers in rats. Neural Plast 2014; 2014:658741. [PMID: 24891959 PMCID: PMC4033555 DOI: 10.1155/2014/658741] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/26/2014] [Accepted: 04/02/2014] [Indexed: 12/05/2022] Open
Abstract
Previous studies have shown that sodium salicylate (SS) activates not only central auditory structures, but also nonauditory regions associated with emotion and memory. To identify electrophysiological changes in the nonauditory regions, we recorded sound-evoked local field potentials and multiunit discharges from the striatum, amygdala, hippocampus, and cingulate cortex after SS-treatment. The SS-treatment produced behavioral evidence of tinnitus and hyperacusis. Physiologically, the treatment significantly enhanced sound-evoked neural activity in the striatum, amygdala, and hippocampus, but not in the cingulate. The enhanced sound evoked response could be linked to the hyperacusis-like behavior. Further analysis showed that the enhancement of sound-evoked activity occurred predominantly at the midfrequencies, likely reflecting shifts of neurons towards the midfrequency range after SS-treatment as observed in our previous studies in the auditory cortex and amygdala. The increased number of midfrequency neurons would lead to a relative higher number of total spontaneous discharges in the midfrequency region, even though the mean discharge rate of each neuron may not increase. The tonotopical overactivity in the midfrequency region in quiet may potentially lead to tonal sensation of midfrequency (the tinnitus). The neural changes in the amygdala and hippocampus may also contribute to the negative effect that patients associate with their tinnitus.
Collapse
|
4
|
Webber ES, Mankin DE, McGraw JJ, Beckwith TJ, Cromwell HC. Ultrasonic vocalizations, predictability and sensorimotor gating in the rat. Behav Brain Res 2013; 253:32-41. [PMID: 23850353 DOI: 10.1016/j.bbr.2013.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
Prepulse inhibition (PPI) is a measure of sensorimotor gating in diverse groups of animals including humans. Emotional states can influence PPI in humans both in typical subjects and in individuals with mental illness. Little is known about emotional regulation during PPI in rodents. We used ultrasonic vocalization recording to monitor emotional states in rats during PPI testing. We altered the predictability of the PPI trials to examine any alterations in gating and emotional regulation. We also examined PPI in animals selectively bred for high or low levels of 50kHz USV emission. Rats emitted high levels of 22kHz calls consistently throughout the PPI session. USVs were sensitive to prepulses during the PPI session similar to startle. USV rate was sensitive to predictability among the different levels tested and across repeated experiences. Startle and inhibition of startle were not affected by predictability in a similar manner. No significant differences for PPI or startle were found related to the different levels of predictability; however, there was a reduction in USV signals and an enhancement of PPI after repeated exposure. Animals selectively bred to emit high levels of USVs emitted significantly higher levels of USVs during the PPI session and a reduced ASR compared to the low and random selective lines. Overall, the results support the idea that PPI tests in rodents induce high levels of negative affect and that manipulating emotional styles of the animals alters the negative impact of the gating session as well as the intensity of the startle response.
Collapse
Affiliation(s)
- Emily S Webber
- Department of Psychology & the J.P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University, Bowling Green, OH 43402, USA
| | | | | | | | | |
Collapse
|
5
|
Boutros NN, Gjini K, Eickhoff SB, Urbach H, Pflieger ME. Mapping repetition suppression of the P50 evoked response to the human cerebral cortex. Clin Neurophysiol 2012; 124:675-85. [PMID: 23131383 DOI: 10.1016/j.clinph.2012.10.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/28/2012] [Accepted: 10/08/2012] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The cerebral network subserving repetition suppression (RS) of the P50 auditory evoked response as observed using paired-identical-stimulus (S1-S2) paradigms is not well-described. METHODS We analyzed S1-S2 data from electrodes placed on the cortices of 64 epilepsy patients. We identified regions with maximal amplitude responses to S1 (i.e., stimulus registration), regions with maximal suppression of responses to S2 relative to S1 (i.e., RS), and regions with no or minimal RS 30-80 ms post stimulation. RESULTS Several temporal, parietal and cingulate area regions were shown to have significant initial registration activity (i.e., strong P50 response to S1). Moreover, prefrontal, cingulate, and parietal lobe regions not previously proposed to be part of the P50 habituation neural circuitry were found to exhibit significant RS. CONCLUSIONS The data suggest that the neural network underlying the initial phases of the RS process may include regions not previously thought to be involved like the parietal and cingulate cortexes. In addition, a significant role for the frontal lobe in mediating this function is supported. SIGNIFICANCE A number of regions of interest are identified through invasive recording that will allow further probing of the RS function using less invasive technology.
Collapse
Affiliation(s)
- Nash N Boutros
- Wayne State University, School of Medicine, Department of Psychiatry and Behavioral Neurosciences, Detroit, MI, USA.
| | | | | | | | | |
Collapse
|
6
|
Tupal S, Faingold CL. The amygdala to periaqueductal gray pathway: plastic changes induced by audiogenic kindling and reversal by gabapentin. Brain Res 2012; 1475:71-9. [PMID: 22841539 DOI: 10.1016/j.brainres.2012.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
Repeated, periodic induction of AGS (AGS kindling) in GEPR-9s increases seizure duration and induces an additional generalized clonus phase [post-tonic clonus (PTC)], which involves expansion of the localized brainstem AGS network to the amygdala. The pathway between central amygdala (CeA) and ventrolateral periaqueductal gray (vlPAG) is implicated in several disorders, including pain and anxiety. This pathway is also implicated in the network of audiogenic seizures (AGS) in genetically epilepsy-prone rats (GEPR-9s). We examined AGS kindling-induced changes in vlPAG extracellular action potentials evoked by electrical stimuli in CeA in awake, behaving GEPR-9s, using chronically-implanted stimulation electrodes in CeA and microwire recording electrodes in vlPAG. The effect of gabapentin, an anticonvulsant drug that is also effective in pain and anxiety disorders, on the CeA to vlPAG pathway in AGS-kindled GEPR-9s was also evaluated. Electrical stimulation in CeA evoked consistent, short latency and intensity-dependent vlPAG neuronal firing increases. However, in AGS-kindled GEPR-9s these responses showed a precipitous firing increase with increasing stimulus intensity, as compared to non-kindled GEPR-9s. Gabapentin (50mg/kg, i.p.) significantly reduced vlPAG neuronal responses to CeA stimulation to pre-AGS-kindled levels and reversibly blocked PTC in AGS-kindled GEPR-9s. These data suggest that the amygdala to vlPAG pathway may be critical in mediating the emergence of PTC during AGS kindling. The ability of gabapentin to suppress this pathway may be important for its anticonvulsant effects in AGS-kindled GEPR-9s, and this effect may contribute to gabapentin's effectiveness in anxiety and pain in which the amygdala to PAG pathway is also implicated.
Collapse
Affiliation(s)
- S Tupal
- Dept. Pharmacology, Southern Illinois University School of Medicine, PO Box 19629, Springfield, IL 62794-9629, USA
| | | |
Collapse
|
7
|
Boutros NN, Peters R. Internal gating and somatization disorders: proposing a yet un-described neural system. Med Hypotheses 2011; 78:174-8. [PMID: 22088921 DOI: 10.1016/j.mehy.2011.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022]
Abstract
Medically unexplained symptoms (MUS) are a major medical burden and our current understanding of the pathophysiological process leading to their development remains minimal. While research has strongly linked chronic stress to the development of MUS the exact mechanisms and the reason for the many variations in the resultant symptomatology remain unclear. In this paper we advance the hypothesis that an internal (visceral) sensory gating system must exist akin to the much better studied external sensory gating system. The hypothesis is based on the observations that under normal conditions sensations of internal organs do not reach consciousness (i.e., filtered or gated out on a subconscious or preattentive level). As visceral sensations are usually perceived only when there is a pathological process affecting the organ, then failure of this internal gating system leading to the sensations arriving to consciousness must be interpreted by the brain to indicate pathology in this organ. If the hypothesis proves to be true and such a system does exist, the implications are many and significant including developing methods for assessing the system and possibly correcting it.
Collapse
Affiliation(s)
- Nash N Boutros
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, College of Nursing, Detroit, MI 48207, United States.
| | | |
Collapse
|
8
|
Boutros NN, Gjini K, Urbach H, Pflieger ME. Mapping repetition suppression of the N100 evoked response to the human cerebral cortex. Biol Psychiatry 2011; 69:883-9. [PMID: 21276965 PMCID: PMC3079011 DOI: 10.1016/j.biopsych.2010.12.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/10/2010] [Accepted: 12/11/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND Repetition suppression (RS) phenomena, such as those observed using paired-identical-stimulus (S1-S2) paradigms, likely reflect adaptive functions such as habituation and, more specifically, sensory gating. METHODS To better characterize the neural networks underlying RS, we analyzed auditory S1-S2 data from electrodes placed on the cortices of 64 epilepsy patients who were being evaluated for surgical therapy. We identified regions with maximal amplitude responses to S1 (i.e., stimulus registration regions), regions with maximal suppression of responses to S2 relative to S1 (i.e., RS), and regions with no or minimal RS. RESULTS Auditory perceptual regions, such as the superior temporal gyri, were shown to have significant initial registration activity (i.e., strong response to S1). Several prefrontal, cingulate, and parietal lobe regions were found to exhibit stronger RS than those recorded from the auditory perceptual areas. CONCLUSIONS The data strongly suggest that the neural network underlying repetition suppression may include regions not previously thought to be involved, such as the parietal and cingulate cortexes. In addition, the data also support the notion that the initial response to stimuli and the ability to suppress the stimuli if repeated are two separate, but likely related, functions.
Collapse
Affiliation(s)
- Nash N Boutros
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan 48207, USA.
| | | | | | | |
Collapse
|
9
|
Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term 'cognition' and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci Biobehav Rev 2011; 35:2026-35. [PMID: 21345347 DOI: 10.1016/j.neubiorev.2011.02.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 02/13/2011] [Accepted: 02/14/2011] [Indexed: 01/08/2023]
Abstract
Words such as cognition, motivation and emotion powerfully guide theory development and the overall aims and goals of behavioral neuroscience research. Once such concepts are accepted generally as natural aspects of the brain, their influence can be pervasive and long lasting. Importantly, the choice of conceptual terms used to describe and study mental/neural functions can also constrain research by forcing the results into seemingly useful 'conceptual' categories that have no discrete reality in the brain. Since the popularly named 'cognitive revolution' in psychological science came to fruition in the early 1970s, the term cognitive or cognition has been perhaps the most widely used conceptual term in behavioral neuroscience. These terms, similar to other conceptual terms, have potential value if utilized appropriately. We argue that recently the term cognition has been both overused and misused. This has led to problems in developing a usable shared definition for the term and to promotion of possible misdirections in research within behavioral neuroscience. In addition, we argue that cognitive-guided research influenced primarily by top-down (cortical toward subcortical) perspectives without concurrent non-cognitive modes of bottom-up developmental thinking, could hinder progress in the search for new treatments and medications for psychiatric illnesses and neurobehavioral disorders. Overall, linkages of animal research insights to human psychology may be better served by bottom-up (subcortical to cortical) affective and motivational 'state-control' perspectives, simply because the lower networks of the brain are foundational for the construction of higher 'information-processing' aspects of mind. Moving forward, rapidly expanding new techniques and creative methods in neuroscience along with more accurate brain concepts, may help guide the development of new therapeutics and hopefully more accurate ways to describe and explain brain-behavior relationships.
Collapse
|
10
|
Millar A, Smith D, Choueiry J, Fisher D, Albert P, Knott V. The moderating role of the dopamine transporter 1 gene on P50 sensory gating and its modulation by nicotine. Neuroscience 2011; 180:148-56. [PMID: 21315807 DOI: 10.1016/j.neuroscience.2011.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/24/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Although schizophrenia has been considered primarily a disease of dopaminergic neurotransmission, the role of dopamine in auditory sensory gating deficits in this disorder and their amelioration by smoking/nicotine is unclear. Hypothesizing that individual differences in striatal dopamine levels may moderate auditory gating and its modulation by nicotine, this preliminary study used the mid-latency (P50) auditory event-related potential (ERP) to examine the single dose (6 mg) effects of nicotine (vs. placebo) gum on sensory gating in 24 healthy nonsmokers varying in the genetic expression of the dopamine transporter (DAT). Consistent with an inverted-U relationship between dopamine level and the drug effects, individuals carrying the 9R (lower gene expression) allele, which is related to greater striatal dopamine levels, tended to evidence increased baseline gating compared to 10R (higher gene expression) allele carriers and showed a reduction in gating with acute nicotine. The present results may help to understand the link between excessive smoking and sensory gating deficits in schizophrenia and to explain the potential functional implications of genetic disposition on nicotinic treatment in schizophrenia.
Collapse
Affiliation(s)
- A Millar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1S5B6, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Rudnick ND, Strasser AA, Phillips JM, Jepson C, Patterson F, Frey JM, Turetsky BI, Lerman C, Siegel SJ. Mouse model predicts effects of smoking and varenicline on event-related potentials in humans. Nicotine Tob Res 2010; 12:589-97. [PMID: 20395358 DOI: 10.1093/ntr/ntq049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Nicotine alters auditory event-related potentials (ERPs) in rodents and humans and is an effective treatment for smoking cessation. Less is known about the effects of the partial nicotine agonist varenicline on ERPs. METHODS We measured the effects of varenicline and nicotine on the mouse P20 and varenicline and smoking on the human P50 in a paired-click task. Eighteen mice were tested following nicotine, varenicline, and their combination. One hundred and fourteen current smokers enrolled in a placebo-controlled within-subject crossover study to test the effects of varenicline during smoking and abstinence. Thirty-two subjects participated in the ERP study, with half receiving placebo first and half varenicline first (VP). RESULTS Nicotine and varenicline enhanced mouse P20 amplitude, while nicotine improved P20 habituation by selectively increasing the first-click response. Similar to mice, abstinence reduced P50 habituation relative to smoking by reducing the first-click response. There was no effect of varenicline on P50 amplitude during abstinence across subjects. However, there was a significant effect of medication order on P50 amplitude during abstinence. Subjects in the PV group displayed reduced P50 during abstinence, which was blocked by varenicline. However, subjects in the VP group did not display abstinence-induced P50 reduction. CONCLUSIONS Data suggest that smoking improves sensory processing. Varenicline mimics amplitude changes associated with nicotine and smoking but fails to alter habituation. The effect of medication order suggests a possible carryover effect from the previous arm. This study supports the predictive validity of ERPs in mice as a marker of drug effects in human studies.
Collapse
Affiliation(s)
- Noam D Rudnick
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The interactive effects of ketamine and nicotine on human cerebral blood flow. Psychopharmacology (Berl) 2010; 208:575-84. [PMID: 20066400 PMCID: PMC2891406 DOI: 10.1007/s00213-009-1758-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/11/2009] [Indexed: 12/13/2022]
Abstract
AIM The purpose of this study was to determine if acute nicotine attenuated ketamine-induced regional cerebral blood flow (rCBF). METHOD Following 2-4 h of nicotine abstinence, healthy chronic smokers participated in four sets of rCBF studies, H2(15)O positron emission tomography, during a simple sensory motor control task. The four drug conditions studied were placebo, ketamine alone, nicotine alone, and ketamine + nicotine. RESULTS Intravenous ketamine increased rCBF in frontal, orbital-frontal, and anterior cingulate areas. Nicotine alone induced marked rCBF elevations in the lateral occipital cortex and rCBF suppressions in the basal ganglia and anterior cingulate cortex. Nicotine added to ketamine attenuated the ketamine-induced elevated rCBF in the anterior cingulate cortex but caused a marked rCBF increase in the orbital frontal region. CONCLUSION This study illustrates the interactive effects of ketamine, an NMDA receptor antagonist, and nicotine in multiple brain regions. Nicotine substantially ameliorated the effects of ketamine on anterior cingulate rCBF and, when given alone, markedly suppressed anterior cingulate rCBF. The enhanced, synergistic orbitofrontal effects observed with ketamine and nicotine together suggest a marked increase in excitatory neurotransmission in a brain region often linked to psychosis, reward, and addictive behaviors.
Collapse
|
13
|
Dissanayake DW, Zachariou M, Marsden CA, Mason R. Effects of phencyclidine on auditory gating in the rat hippocampus and the medial prefrontal cortex. Brain Res 2009; 1298:153-60. [DOI: 10.1016/j.brainres.2009.08.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 10/20/2022]
|
14
|
Jackson KJ, Walters CL, Damaj MI. Beta 2 subunit-containing nicotinic receptors mediate acute nicotine-induced activation of calcium/calmodulin-dependent protein kinase II-dependent pathways in vivo. J Pharmacol Exp Ther 2009; 330:541-9. [PMID: 19435931 PMCID: PMC2713089 DOI: 10.1124/jpet.109.153171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 05/11/2009] [Indexed: 11/22/2022] Open
Abstract
Nicotine is the addictive component of tobacco, and successful smoking cessation therapies must address the various processes that contribute to nicotine addiction. Thus, understanding the nicotinic acetylcholine receptor (nAChR) subtypes and subsequent molecular cascades activated after nicotine exposure is of the utmost importance in understanding the progression of nicotine dependence. One possible candidate is the calcium/calmodulin-dependent protein kinase II (CaMKII) pathway. Substrates of this kinase include the vesicle-associated protein synapsin I and the transcription factor cAMP response element-binding protein (CREB). The goal of these studies was to examine these postreceptor mechanisms after acute nicotine treatment in vivo. We first show that administration of nicotine increases CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), and amygdala. In beta2 nAChR knockout (KO) mice, nicotine does not induce an increase in kinase activity, phosphorylated (p)Synapsin I, or pCREB. In contrast, alpha7 nAChR KO mice show nicotine-induced increases in CaMKII activity and pCREB, similar to their wild-type littermates. Moreover, we show that when animals are pretreated with the CaMKII inhibitors 4-[(2S)-2-[(5-isoquinolinylsulfonyl) methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl]phenyl isoquinolinesulfonic acid ester (KN-62) and N-[2-[[[3-(4-chlorophenyl)-2 propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide (KN-93), nicotine-induced increase in the kinase activity and pCREB was attenuated in the VTA and NAc, whereas pretreatment with (2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, phosphate) (KN-92), the inactive analog, did not alter the nicotine-induced increase in pCREB. Taken together, these data suggest that the nicotine-induced increase in CaMKII activity may correlate with the nicotine-induced increase in pSynapsin I and pCREB in the VTA and NAc via beta2 subunit-containing nAChRs.
Collapse
Affiliation(s)
- K J Jackson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0613, USA
| | | | | |
Collapse
|
15
|
Faingold CL. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain. Med Hypotheses 2008; 71:668-81. [PMID: 18762389 DOI: 10.1016/j.mehy.2008.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 06/23/2008] [Accepted: 06/26/2008] [Indexed: 01/15/2023]
Abstract
CNS neuronal networks are known to control normal physiological functions, including locomotion and respiration. Neuronal networks also mediate the pathophysiology of many CNS disorders. Stimulation therapies, including localized brain and vagus nerve stimulation, electroshock, and acupuncture, are proposed to activate "therapeutic" neuronal networks. These therapeutic networks are dormant prior to stimulatory treatments, but when the dormant networks are activated they compete with pathophysiological neuronal networks, disrupting their function. This competition diminishes the disease symptoms, providing effective therapy for otherwise intractable CNS disorders, including epilepsy, Parkinson's disease, chronic pain, and depression. Competition between stimulation-activated therapeutic networks and pathophysiological networks is a major mechanism mediating the therapeutic effects of stimulation. This network interaction is hypothesized to involve competition for "control" of brain regions that contain high proportions of conditional multireceptive (CMR) neurons. CMR regions, including brainstem reticular formation, amygdala, and cerebral cortex, have extensive connections to numerous brain areas, allowing these regions to participate potentially in many networks. The participation of CMR regions in any network is often variable, depending on the conditions affecting the organism, including vigilance states, drug treatment, and learning. This response variability of CMR neurons is due to the high incidence of excitatory postsynaptic potentials that are below threshold for triggering action potentials. These subthreshold responses can be brought to threshold by blocking inhibition or enhancing excitation via the paradigms used in stimulation therapies. Participation of CMR regions in a network is also strongly affected by pharmacological treatments (convulsant or anesthetic drugs) and stimulus parameters (strength and repetition rate). Many studies indicate that treatment of unanesthetized animals with antagonists (bicuculline or strychnine) of inhibitory neurotransmitter (GABA or glycine) receptors can cause CMR neurons to become consistently responsive to external inputs (e.g., peripheral nerve, sensory, or electrical stimuli in the brain) to which these neurons did not previously respond. Conversely, agents that enhance GABA-mediated inhibition (e.g., barbiturates and benzodiazepines) or antagonize glutamate-mediated excitation (e.g., ketamine) can cause CMR neurons to become unresponsive to inputs to which they responded previously. The responses of CMR neurons exhibit extensive short-term and long-term plasticity, which permits them to participate to a variable degree in many networks. Short-term plasticity subserves termination of disease symptoms, while long-term plasticity in CMR regions subserves symptom prevention. This network interaction hypothesis has value for future research in CNS disease mechanisms and also for identifying therapeutic targets in specific brain networks for more selective stimulation and pharmacological therapies.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
16
|
Hajós M, Hoffmann WE, Kocsis B. Activation of cannabinoid-1 receptors disrupts sensory gating and neuronal oscillation: relevance to schizophrenia. Biol Psychiatry 2008; 63:1075-83. [PMID: 18261715 DOI: 10.1016/j.biopsych.2007.12.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 12/11/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Impaired auditory gating and abnormal neuronal synchrony are indicators of dysfunctional information processing in schizophrenia patients and possible underlying mechanisms of their impaired sensory and cognitive functions. Because cannabinoid receptors and endocannabinoids have been linked to psychiatric disorders, including schizophrenia, the aim of this study was to evaluate the effects of cannabinoid-1 (CB1) receptor activation on sensory gating and neuronal oscillations in rats. METHODS Auditory sensory gating has been recorded from the hippocampus and entorhinal cortex (EC) in anesthetized rats. Neuronal network oscillations were recorded from the hippocampus, medial septum, EC, and medial prefrontal cortex in anesthetized and freely moving rats. Effects of systemic administration of CB1 receptor agonist CP-55940 were evaluated on these parameters. RESULTS CP-55940 significantly disrupted auditory gating both in the hippocampus and EC in anesthetized rats. Theta field potential oscillations were disrupted in the hippocampus and EC, with simultaneous interruption of theta-band oscillations of septal neurons. Administration of the CB1 receptor antagonist AM-251 reversed both the agonist-induced gating deficit and the diminished oscillations. In freely moving rats, CP-55940 significantly reduced theta and gamma power in the hippocampus, whereas in the EC, only gamma power was attenuated. However, novelty-induced theta and gamma activities were significantly diminished by CP-55940 in both the hippocampus and EC. CONCLUSIONS Our data indicate that activation of CB1 receptors interferes with neuronal network oscillations and impairs sensory gating function in the limbic circuitry, further supporting the connection between cannabis abuse and increased susceptibility of developing schizophrenia spectrum disorders.
Collapse
Affiliation(s)
- Mihály Hajós
- Department of Neuroscience, Pfizer Global Research and Development, Groton, CT 06340, USA.
| | | | | |
Collapse
|
17
|
Cromwell HC, Mears RP, Wan L, Boutros NN. Sensory gating: a translational effort from basic to clinical science. Clin EEG Neurosci 2008; 39:69-72. [PMID: 18450171 PMCID: PMC4127047 DOI: 10.1177/155005940803900209] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory gating (SG) is a prevalent physiological process important for information filtering in complex systems. SG is evaluated by presenting repetitious stimuli and measuring the degree of neural inhibition that occurs. SG has been found to be impaired in several psychiatric disorders. Recent animal and human research has made great progress in the study of SG, and in this review we provide an overview of recent research on SG using different methods. Animal research has uncovered findings that suggest (1) SG is displayed by single neurons and can be similar to SG observed from scalp recordings in humans, (2) SG is found in numerous brain structures located in sensory, motor and limbic subregions, (3) SG can be significantly influenced by state changes of the organism, and (4) SG has a diverse pharmacological profile accented by a strong influence from nicotine receptor activation. Human research has addressed similar issues using deep electrode recordings of brain structures. These experiments have revealed that (1) SG can be found in cortical regions surrounding hippocampus, (2) the order of neural processing places hippocampal involvement during a later stage of sensory processing than originally thought, and (3) multiple subtypes of gating exist that could be dependent on different brain circuits and more or less influenced by alterations in organismal state. Animal and human research both have limitations. We emphasize the need for integrative approaches to understand the process and combine information between basic and clinical fields so that a more complete picture of SG will emerge.
Collapse
Affiliation(s)
- Howard C Cromwell
- Department of Psychology, Bowling Green State University, Ohio 43403, USA.
| | | | | | | |
Collapse
|
18
|
Cromwell HC, Klein A, Mears RP. Single unit and population responses during inhibitory gating of striatal activity in freely moving rats. Neuroscience 2007; 146:69-85. [PMID: 17321056 PMCID: PMC4127048 DOI: 10.1016/j.neuroscience.2007.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/29/2006] [Accepted: 01/13/2007] [Indexed: 10/23/2022]
Abstract
The striatum is thought to be an essential region for integrating diverse information in the brain. Rapid inhibitory gating (IG) of sensory input is most likely an early factor necessary for appropriate integration to be completed. Gating is currently evaluated in clinical settings and is dramatically altered in a variety of psychiatric illnesses. Basic neuroscience research using animals has revealed specific neural sites involved in IG including the hippocampus, thalamus, brainstem, amygdala and medial prefrontal cortex. The present study investigated local IG in the basal ganglia structure of the striatum using chronic recording microwires. We obtained both single unit activations and local field potentials (LFPs) in awake behaving rats from each wire during the standard two-tone paradigm. Single units responded with different types of activations including a phasic and sustained excitation, an inhibitory response and a combination response that contained both excitatory and inhibitory components. IG was observed in all the response types; however, non-gating was observed in a large proportion of responses as well. Positive wave field potentials at 50-60 ms post-stimulus (P60) showed consistent gating across the wire arrays. No significant correlations were found between single unit and LFP measures of gating during the initial baseline session. Gating was strengthened (Tamp/Camp ratios approaching 0) following acute stress (saline injection) at both the single unit and LFP level due to the reduction in the response to the second tone. Alterations in sensory responding reflected by changes in the neural response to the initial tone were primarily observed following long-term internal state deviation (food deprivation) and during general locomotion. Overall, our results support local IG by single neurons in striatum but also suggest that rapid inhibition is not the dominant activation profile observed in other brain regions.
Collapse
Affiliation(s)
- H C Cromwell
- Department of Psychology and The J. P. Scott Center for Neuroscience, Mind and Behavior at Bowling Green State University, Psychology Building, Bowling Green, OH 43403, USA.
| | | | | |
Collapse
|