1
|
Concerto C, Chiarenza C, Di Francesco A, Natale A, Privitera I, Rodolico A, Trovato A, Aguglia A, Fisicaro F, Pennisi M, Bella R, Petralia A, Signorelli MS, Lanza G. Neurobiology and Applications of Inositol in Psychiatry: A Narrative Review. Curr Issues Mol Biol 2023; 45:1762-1778. [PMID: 36826058 PMCID: PMC9955821 DOI: 10.3390/cimb45020113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Inositol is a natural sugar-like compound, commonly present in many plants and foods. It is involved in several biochemical pathways, most of them controlling vital cellular mechanisms, such as cell development, signaling and nuclear processes, metabolic and endocrine modulation, cell growth, signal transduction, etc. In this narrative review, we focused on the role of inositol in human brain physiology and pathology, with the aim of providing an update on both potential applications and current limits in its use in psychiatric disorders. Overall, imaging and biomolecular studies have shown the role of inositol levels in the pathogenesis of mood disorders. However, when administered as monotherapy or in addition to conventional drugs, inositol did not seem to influence clinical outcomes in both mood and psychotic disorders. Conversely, more encouraging results have emerged for the treatment of panic disorders. We concluded that, despite its multifaceted neurobiological activities and some positive findings, to date, data on the efficacy of inositol in the treatment of psychiatric disorders are still controversial, partly due to the heterogeneity of supporting studies. Therefore, systematic use of inositol in routine clinical practice cannot be recommended yet, although further basic and translational research should be encouraged.
Collapse
Affiliation(s)
- Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Cecilia Chiarenza
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Di Francesco
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antimo Natale
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Ivan Privitera
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonio Trovato
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, 16132 Genoa, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Rita Bella
- Department of Medical, Surgical, and Advanced Technology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy
- CERNUT–Research Centre for Nutraceuticals and Health Products, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: ; Tel.: +39-095-3782448
| |
Collapse
|
2
|
Wozniak J, Farrell A, DiSalvo M, Ceranoglu A, Uchida M, Vaudreuil C, Joshi G, Faraone SV, Cook E, Biederman J. A Randomized, Double-Blind, Controlled Clinical Trial of Omega-3 Fatty Acids and Inositol as Monotherapies and in Combination for the Treatment of Pediatric Bipolar Spectrum Disorder in Children Age 5-12. PSYCHOPHARMACOLOGY BULLETIN 2022; 52:31-51. [PMID: 36339275 PMCID: PMC9611796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objectives The aim of this study was to assess the efficacy and tolerability of omega-3 fatty acids (FAs) and inositol alone and in combination for the treatment of pediatric bipolar (BP) spectrum disorder in young children. Methods Participants were male and female children ages 5-12 meeting DSM-IV diagnostic criteria for a BP spectrum disorder and displaying mixed, manic, or hypomanic symptoms without psychotic features at the time of evaluation. Results Participants concomitantly taking psychotropic medication were excluded from efficacy analyses. There were significant reductions in YMRS and HDRS mean scores in the inositol and combination treatment groups (all p < 0.05) and in CDRS mean scores in the combination treatment group (p < 0.001), with the largest changes seen in the combination group. Those receiving the combination treatment had the highest rates of antimanic and antidepressant response. The odds ratios for the combination group compared to the omega-3 FAs and inositol groups were clinically meaningful (ORs ≥2) for 50% improvement on the YMRS, normalization of the YMRS (score <12) (vs. inositol group only), 50% improvement on the HDRS, 50% improvement on CDRS (vs. omega-3 FAs group only), and CGI-I Mania, CGI-I MDD, and CGI-I Anxiety scores <2. Conclusion The antimanic and antidepressant effects of the combination treatment of omega-3 FAs and inositol were consistently superior to either treatment used alone. This combination may offer a safe and effective alternative or augmenting treatment for youth with BP spectrum disorder, but more work is needed to confirm the statistical significance of this finding.
Collapse
Affiliation(s)
- Janet Wozniak
- Janet Wozniak, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Abigail Farrell
- Abigail Farrell, BS, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Maura DiSalvo
- Maura DiSalvo, MPH, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Atilla Ceranoglu
- Atilla Ceranoglu, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mai Uchida
- Mai Uchida, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carrie Vaudreuil
- Carrie Vaudreuil, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Gagan Joshi
- Gagan Joshi, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen V Faraone
- Stephen V. Faraone, PhD, Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Emmaline Cook
- Emmaline Cook, BA, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph Biederman
- Joseph Biederman, MD, Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA, Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Bravi B, Bollettini I, Di Pasquasio C, Falini A, Colombo C, Zanardi R, Poletti S, Benedetti F. Brain spectroscopic measures of glutamatergic and neuronal metabolism and glial activation influence white matter integrity in bipolar depression. Psychiatry Res Neuroimaging 2022; 326:111534. [PMID: 36049317 DOI: 10.1016/j.pscychresns.2022.111534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Bipolar disorder (BD) is associated with alterations in white matter (WM) microstructure, glutamatergic neurotransmission, and glia activity. Previous studies showed higher concentrations of glutamate (Glu), glutamate+glutamine (Glx), and reduced N-acetyl-aspartate (NAA) in BD. We investigated brain concentrations of Glu, Glx, NAA, mI as indirect marker of microglia activation, and Glx/NAA ratio as index of neuronal damage through 1H-MR, and WM integrity with Tract-Based Spatial Statistics in 93 depressed BD patients and 58 healthy controls (HC). We tested for linear effects of cited spectroscopic metabolites on DTI measures of WM integrity with general linear models for each group, then performing a conjunction analysis of Glx/NAA and mI concentration on the same measures. Statistical analyses (whole sample) revealed higher concentration of Glx/NAA, Glx and mI in BD patients compared to HC, and a positive association between mI and the ratio. DTI analyses (87 BD and 35 HC) showed a significant association of Glx/NAA ratio, and mI with WM microstructure. Conjunction analysis revealed a joint negative association between Glx/NAA and mI with fractional anisotropy. This is the first study showing an association between brain metabolites involved in neuronal damage, and glial activation and the alterations in WM consistently reported in BD.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| | - Camilla Di Pasquasio
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Andrea Falini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy.
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Liu L, Meng M, Zhu X, Zhu G. Research Status in Clinical Practice Regarding Pediatric and Adolescent Bipolar Disorders. Front Psychiatry 2022; 13:882616. [PMID: 35711585 PMCID: PMC9197260 DOI: 10.3389/fpsyt.2022.882616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
Bipolar disorders (BDs) have high morbidity. The first onset of 27.7% of BDs occurs in children under 13 years and of 37.6% occurs in adolescents between 13 and 18 years. However, not all of the pediatric and adolescent patients with BD receive therapy in time. Therefore, studies about pediatric and adolescent patients with disorders have aroused increased attention in the scientific community. Pediatric and adolescent patients with BD present with a high prevalence rate (0.9-3.9%), and the pathogenic factors are mostly due to genetics and the environment; however, the pathological mechanisms remain unclear. Pediatric and adolescent patients with BD manifest differently from adults with BDs and the use of scales can be helpful for diagnosis and treatment evaluation. Pediatric and adolescent patients with BDs have been confirmed to have a high comorbidity rate with many other kinds of disorders. Both medication and psychological therapies have been shown to be safe and efficient methods for the treatment of BD. This review summarizes the research status related to the epidemiology, pathogenic factors, clinical manifestations, comorbidities, diagnostic and treatment scales, medications, and psychological therapies associated with BDs.
Collapse
Affiliation(s)
- Lu Liu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming Meng
- Department of Psychiatry, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.,Shenyang Mental Health Center, Shenyang, China
| | - Xiaotong Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Patino LR, Klein CC, Strawn JR, Blom TJ, Tallman MJ, Adler CM, Welge JA, DelBello MP. A Randomized, Double-Blind, Controlled Trial of Lithium Versus Quetiapine for the Treatment of Acute Mania in Youth with Early Course Bipolar Disorder. J Child Adolesc Psychopharmacol 2021; 31:485-493. [PMID: 34520250 PMCID: PMC8568789 DOI: 10.1089/cap.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective: To compare the efficacy and tolerability of lithium versus quetiapine for the treatment of manic or mixed episodes in youths with early course bipolar I disorder. Methods: Six-week, randomized, double-blind clinical trial of lithium versus quetiapine for the treatment of adolescents with acute manic/mixed episode. Target dose of quetiapine dose was adjusted to a target dose of 400-600 mg and target serum level for lithium was 1.0-1.2 mEq/L. Primary outcome measure was baseline-to-endpoint change in the Young Mania Rating Scale (YMRS). Secondary outcomes were treatment response (50% or more decrease from baseline in YMRS score) and remission (YMRS score ≤12, Children's Depression Rating Scale-Revised [CDRS-R] total score ≤28 and Clinical Global Impression Bipolar Severity Scale [CGI-BP-S] overall score of ≤3, respectively). Results: A total of 109 patients were randomized (quetiapine = 58 and lithium = 51). Participants in the quetiapine treatment group showed a significantly greater reduction in YMRS score than those in the lithium group (-11.0 vs. -13.2; p < 0.001; effect size 0.39). Response rate was 72% in the quetiapine group and 49% in the lithium group (p = 0.012); no differences in remission rates between groups were observed. Most frequent side effects for lithium were headaches (60.8%), nausea (39.2%), somnolence (27.5%), and tremor (27.5%); for quetiapine somnolence (63.8%), headaches (55.2%), tremor (36.2%), and dizziness (36.2%) were evidenced. Participants receiving quetiapine experienced more somnolence (p < 0.001), dizziness (p < 0.05), and weight gain (p < 0.05). Conclusions: Treatment with both lithium and quetiapine led to clinical improvement. Most study participants in this study experienced a clinical response; however, less than half of the participants in this study achieved symptomatic remission. The head-to-head comparison of both treatment groups showed quetiapine was associated with a statistically significant greater rate of response and overall symptom reduction compared with lithium. Trial registration: clinicaltrials.gov NCT00893581.
Collapse
Affiliation(s)
- Luis R. Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Address correspondence to: Luis R. Patino, MD, MS, Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 260 Stetson St. Suite 3200, Cincinnati, OH 45219, USA
| | - Christina C. Klein
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Thomas J. Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Maxwell J. Tallman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Caleb M. Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jeffrey A. Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
6
|
Soeiro-de-Souza MG, Scotti-Muzzi E, Fernandes F, De Sousa RT, Leite CC, Otaduy MC, Machado-Vieira R. Anterior cingulate cortex neuro-metabolic changes underlying lithium-induced euthymia in bipolar depression: A longitudinal 1H-MRS study. Eur Neuropsychopharmacol 2021; 49:93-100. [PMID: 33882433 DOI: 10.1016/j.euroneuro.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 12/30/2022]
Abstract
The diagnosis and treatment of bipolar depression (BDep) poses complex clinical challenges for psychiatry. Proton magnetic resonance spectroscopy (1H-MRS) is a useful imaging tool for investigating in vivo levels of brain neuro-metabolites, critical to understanding the process of mood dysregulation in Bipolar Disorder. Few studies have evaluated longitudinal clinical outcomes in BDep associated with 1H-MRS metabolic changes. This study aimed to longitudinally assess brain 1H-MRS metabolites in the anterior cingulate cortex (ACC) correlated with improvement in depression (from BDep to euthymia) after lithium treatment in BDep patients versus matched healthy controls (HC). Twenty-eight medication-free BDep patients and 28 HC, matched for age and gender, were included in this study. All subjects were submitted to a 3-Tesla brain 1H-MRS scan in the ACC using a single-voxel (8cm3) PRESS sequence at baseline. At follow-up (6 weeks), 14 BDep patients repeated the exam in euthymia. Patients with current BDep had higher baseline Myo-inositol/Cr (mI/Cr) and Choline/Cr (Cho/Cr) compared to HC. After six weeks, mI/Cr or Cho/Cr levels in subjects that achieved euthymia no longer differed to levels in HC, while high Cho/Cr levels persisted in non-responders . Elevated ACC mI/Cr and Cho/Cr in BDep might indicate increased abnormal membrane phospholipid metabolism and phosphatidylinositol (PI) cycle activity. Return of mI/Cr and Cho/Cr to normal levels after lithium-induced euthymia suggests a critical regulatory effect of lithium targeting the PI cycle involved in mood regulation.
Collapse
Affiliation(s)
- M G Soeiro-de-Souza
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil.
| | - E Scotti-Muzzi
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - F Fernandes
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - R T De Sousa
- Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo, Brazil
| | - C C Leite
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - M C Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | | |
Collapse
|
7
|
Szulc A, Wiedlocha M, Waszkiewicz N, Galińska-Skok B, Marcinowicz P, Gierus J, Mosiolek A. Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic review. Psychiatry Res Neuroimaging 2018; 273:1-8. [PMID: 29414126 DOI: 10.1016/j.pscychresns.2018.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
1H MRS is widely used in the research of mental disorders. It enables evaluation of concentration or ratios of several metabolites, which play important roles in brain metabolism: N-acetylaspartate (NAA), choline containing compounds, myo-inositol and glutamate, glutamine and GABA (together as Glx complex or separately). Specifically in bipolar disorder brain metabolite abnormalities include mostly NAA reduces and Glx increases in different brain regions. Bipolar disorder is associated with impairment in neurotrophic and cellular plasticity, resilience pathways and in neuroprotective processes. Lithium, which is commonly used in BD treatment, modulates neurotransmitter release, reduces oxidative stress and apoptosis, induces angiogenesis, neurogenesis and neurotrophic response. Thus brain metabolite abnormalities may elucidate the mechanisms of this processes. In the present article we systematically reviewed 26 studies - the majority of them investigated bipolar disorder ( 7 follow-up and all 11 cross-sectional studies). Moreover we dispute whether the influence of lithium on brain metabolites in bipolar disorder could explain the background of its potential neuroprotective action. The results of our literature review do not equivocally confirm Lithium's influence the metabolite changes in the brain. The majority of the follow-up studies do not support the initially assumed influence of Lithium on the increase of NAA level in various brain structures. The results of studies are inconclusive with regard to levels of Glx or Glu and Lithium intake, rather point a lack of relationship. The above results were reviewed according to the most recent theories in the field accounting for the impact of lithium (1)HMRS measures.
Collapse
Affiliation(s)
- Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | | | | | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Jacek Gierus
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Anna Mosiolek
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland; Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| |
Collapse
|
8
|
Mathias LK, Monette PJ, Harper DG, Forester BP. Application of magnetic resonance spectroscopy in geriatric mood disorders. Int Rev Psychiatry 2017; 29:597-617. [PMID: 29199890 DOI: 10.1080/09540261.2017.1397608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The prevalence of mood disorders in the rapidly-growing older adult population merits attention due to the likelihood of increased medical comorbidities, risk of hospitalization or institutionalization, and strains placed on caregivers and healthcare providers. Magnetic resonance spectroscopy (MRS) quantifies biochemical compounds in vivo, and has been used specifically for analyses of neural metabolism and bioenergetics in older adults with mood disorders, usually via proton or phosphorous spectroscopy. While yet to be clinically implemented, data gathered from research subjects may help indicate potential biomarkers of disease state or trait or putative drug targets. Three prevailing hypotheses for these mood disorders are used as a framework for the present review, and the current biochemical findings within each are discussed with respect to particular metabolites and brain regions. This review covers studies of MRS in geriatric mood disorders and reveals persisting gaps in research knowledge, especially with regard to older age bipolar disorder. Further MRS work, using higher field strengths and larger sample sizes, is warranted in order to better understand the neurobiology of these prevalent late-life disorders.
Collapse
Affiliation(s)
- Liana K Mathias
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA
| | - Patrick J Monette
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA
| | - David G Harper
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA.,b Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Brent P Forester
- a Division of Geriatric Psychiatry , McLean Hospital , Belmont , MA , USA.,b Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
9
|
Li H, Xu H, Zhang Y, Guan J, Zhang J, Xu C, Shen Z, Xiao B, Liang C, Chen K, Zhang J, Wu R. Differential neurometabolite alterations in brains of medication-free individuals with bipolar disorder and those with unipolar depression: a two-dimensional proton magnetic resonance spectroscopy study. Bipolar Disord 2016; 18:583-590. [PMID: 27870506 DOI: 10.1111/bdi.12445] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 09/30/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is a mental disorder characterized by periods of elevated mood and depression. Many individuals with BD are initially misdiagnosed and treated for unipolar depression (UD). In this study, we report direct comparisons between medication-free individuals with BD and those with UD in terms of the neurometabolites in the anterior cingulate cortex (ACC), medial prefrontal cortex (mPFC), parietal cortex (PC), and posterior cingulate cortex (PCC) of the brain. METHODS Participants included medication-free patients with BD or UD, and matched healthy controls. All patients were in the depressive state and had similar symptoms. All subjects were subjected to a multi-voxel proton magnetic resonance spectroscopy procedure with a 3.0 T GE Signa MR scanner. After post-processing, the absolute concentrations of glycerophosphocholine + phosphocholine (GPC + PC), phosphocreatine + creatine (PCr + Cr), Glx (glutamate + glutamine), myo-inositol (MI), and N-acetyl aspartate (NAA) from the above brain regions were compared across the three groups. RESULTS Patients with BD showed significantly higher levels of Glx in their ACC, lower GPC + PC, PCr + Cr, MI, and NAA in their PC, and lower NAA in their mPFC, compared to healthy controls; patients with UD presented significantly lower levels of GPC + PC, PCr + Cr, and NAA in their PCC, and lower Glx in their mPFC. All analyzed brain metabolites, except Glx, were significantly lower in the PC of patients with BD, whereas levels of GPC + PC, PCr + Cr, and NAA were significantly reduced in the PCC of patients with UD. CONCLUSIONS These results add to the evidence of brain metabolite differences in brains of patients with UD and BD which may be of help in differentiating these two mood disorders.
Collapse
Affiliation(s)
- Hui Li
- Mental Health Center, Shantou University Medical College, Shantou, China
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haiyun Xu
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Yinnan Zhang
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Jitian Guan
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jie Zhang
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Chongtao Xu
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Zhiwei Shen
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Bo Xiao
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Chunlian Liang
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Kaiyuan Chen
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Jinling Zhang
- Mental Health Center, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou, China
- The Provincial Key Laboratory of Medical Molecular Imaging, Shantou, China
| |
Collapse
|
10
|
Osmoregulatory inositol transporter SMIT1 modulates electrical activity by adjusting PI(4,5)P2 levels. Proc Natl Acad Sci U S A 2016; 113:E3290-9. [PMID: 27217553 DOI: 10.1073/pnas.1606348113] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Myo-inositol is an important cellular osmolyte in autoregulation of cell volume and fluid balance, particularly for mammalian brain and kidney cells. We find it also regulates excitability. Myo-inositol is the precursor of phosphoinositides, key signaling lipids including phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. However, whether myo-inositol accumulation during osmoregulation affects signaling and excitability has not been fully explored. We found that overexpression of the Na(+)/myo-inositol cotransporter (SMIT1) and myo-inositol supplementation enlarged intracellular PI(4,5)P2 pools, modulated several PI(4,5)P2-dependent ion channels including KCNQ2/3 channels, and attenuated the action potential firing of superior cervical ganglion neurons. Further experiments using the rapamycin-recruitable phosphatase Sac1 to hydrolyze PI(4)P and the P4M probe to visualize PI(4)P suggested that PI(4)P levels increased after myo-inositol supplementation with SMIT1 expression. Elevated relative levels of PIP and PIP2 were directly confirmed using mass spectrometry. Inositol trisphosphate production and release of calcium from intracellular stores also were augmented after myo-inositol supplementation. Finally, we found that treatment with a hypertonic solution mimicked the effect we observed with SMIT1 overexpression, whereas silencing tonicity-responsive enhancer binding protein prevented these effects. These results show that ion channel function and cellular excitability are under regulation by several "physiological" manipulations that alter the PI(4,5)P2 setpoint. We demonstrate a previously unrecognized linkage between extracellular osmotic changes and the electrical properties of excitable cells.
Collapse
|
11
|
Machado-Vieira R, Gattaz WF, Zanetti MV, De Sousa RT, Carvalho AF, Soeiro-de-Souza MG, Leite CC, Otaduy MC. A Longitudinal (6-week) 3T (1)H-MRS Study on the Effects of Lithium Treatment on Anterior Cingulate Cortex Metabolites in Bipolar Depression. Eur Neuropsychopharmacol 2015; 25:2311-7. [PMID: 26428274 DOI: 10.1016/j.euroneuro.2015.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 10/24/2022]
Abstract
The anterior cingulate cortex (ACC) is a key area in mood regulation. To date, no longitudinal study has specifically evaluated lithium׳s effects on ACC metabolites using (1)H-MRS, as well as its association with clinical improvement in bipolar depression. This (1)H-MRS (TE=35ms) study evaluated 24 drug-free BD patients during depressive episodes and after lithium treatment at therapeutic levels. Brain metabolite levels (N-acetyl aspartate (NAA), creatine (tCr), choline, myo-inositol, and glutamate levels) were measured in the ACC at baseline (week 0) and after lithium monotherapy (week 6). The present investigation showed that ACC glutamate (Glu/tCr) and glutamate+glutamine (Glx/tCr) significantly increased after six weeks of lithium therapy. Regarding the association with clinical improvement, remitters showed an increase in myoinositol levels (mI/tCr) after lithium treatment compared to non-remitters. The present findings reinforce a role for ACC glutamate-glutamine cycling and myoinositol pathway as key targets for lithium׳s therapeutic effects in BD.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States.
| | - Wagner F Gattaz
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Marcus V Zanetti
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Rafael T De Sousa
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Andre F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group Faculty of Medicine Federal University of Ceara, Fortaleza, Brazil
| | | | - Claudia C Leite
- Laboratory of Magnetic Resonance in Neuroradiology, LIM- 44, Institute and Department of Radiology, University of Sao Paulo, Brazil
| | - Maria C Otaduy
- Laboratory of Magnetic Resonance in Neuroradiology, LIM- 44, Institute and Department of Radiology, University of Sao Paulo, Brazil
| |
Collapse
|
12
|
Using neuroimaging to evaluate and guide pharmacological and psychotherapeutic treatments for mood disorders in children. CNS Spectr 2015; 20:359-68. [PMID: 25659836 DOI: 10.1017/s1092852914000819] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mood disorders are increasing in childhood, and often require multimodal and comprehensive treatment plans to address a complex array of symptoms and associated morbidities. Pharmacotherapy, in combination with psychotherapeutic interventions, is essential for treatment and stabilization. Current evidence supports the use of a number of interventions in children and adolescents diagnosed with DSM-5 mood spectrum disorders, which are associated with impairments in prefrontal-striatal-limbic networks, which are key for emotional functioning and regulation. Yet, little is known about the neurobiological effects of interventions on the developing brain. This chapter provides a synopsis of the literature demonstrating the neural effects of psychotropic medications and psychotherapy in youth with depressive or bipolar spectrum disorders. Additional longitudinal and biological studies are warranted to characterize the effects of these interventions on all phases and stages of mood illness development in children and adolescents.
Collapse
|
13
|
Ko A, Swampillai B, Timmins V, Scavone A, Collinger K, Goldstein BI. Clinical characteristics associated with lithium use among adolescents with bipolar disorder. J Child Adolesc Psychopharmacol 2014; 24:382-9. [PMID: 25010788 DOI: 10.1089/cap.2013.0120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Little is known regarding demographic and/or clinical characteristics associated with the use of lithium among adolescents with bipolar disorder (BP) in naturalistic clinical settings. We therefore examined factors associated with lithium among adolescents with BP presenting to a tertiary outpatient clinic. METHODS Participants were 100 adolescents 13-19 years of age, with BP-I, BP-II, or BP not otherwise specified (BP-NOS). Diagnoses and lifetime medication exposure were determined using the Schedule for Affective Disorders and Schizophrenia for School Age Children, Present and Lifetime Version (KSADS-PL). Analyses examined for demographic and clinical correlates of lifetime lithium exposure. RESULTS Twenty percent of participants reported lifetime lithium use. Participants with, versus those without, lifetime lithium use were significantly older and significantly more likely to have BP-I, lifetime history of psychiatric hospitalization, and psychosis. Lithium-treated participants were significantly more likely to report use of second-generation antipsychotics (SGAs) and antimanic anticonvulsants. In contrast, participants with lithium exposure were significantly less likely to have BP-II, self-injurious behavior, and a family history of depression. Adolescents with lithium exposure had significantly less parent-reported family conflict and mood lability, and significantly less self-reported impulsivity, emotional dysregulation, identity confusion, and interpersonal problems. In multivariable analyses, lithium use was associated with greater lifetime SGA use, lower parent-reported family conflict, and lower adolescent-reported interpersonal problems. CONCLUSIONS Lithium was infrequently used among adolescents with BP in this sample. Although constrained by retrospective methodology and a single site, our findings suggest that clinicians may be deferring lithium use until late in treatment. The fact that there are lower rates of lithium use among adolescents with suicidal ideation, impulsivity, mood lability, and family history of depression suggests potential missed opportunities for use of lithium among high-risk adolescents with BP.
Collapse
Affiliation(s)
- Athena Ko
- Centre for Youth Bipolar Disorder , Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Kondo DG, Hellem TL, Shi XF, Sung YH, Prescot AP, Kim TS, Huber RS, Forrest LN, Renshaw PF. A review of MR spectroscopy studies of pediatric bipolar disorder. AJNR Am J Neuroradiol 2014; 35:S64-80. [PMID: 24557702 DOI: 10.3174/ajnr.a3844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pediatric bipolar disorder is a severe mental illness whose pathophysiology is poorly understood and for which there is an urgent need for improved diagnosis and treatment. MR spectroscopy is a neuroimaging method capable of in vivo measurement of neurochemicals relevant to bipolar disorder neurobiology. MR spectroscopy studies of adult bipolar disorder provide consistent evidence for alterations in the glutamate system and mitochondrial function. In bipolar disorder, these 2 phenomena may be linked because 85% of glucose in the brain is consumed by glutamatergic neurotransmission and the conversion of glutamate to glutamine. The purpose of this article is to review the MR spectroscopic imaging literature in pediatric bipolar disorder, at-risk samples, and severe mood dysregulation, with a focus on the published findings that are relevant to glutamatergic and mitochondrial functioning. Potential directions for future MR spectroscopy studies of the glutamate system and mitochondrial dysfunction in pediatric bipolar disorder are discussed.
Collapse
Affiliation(s)
- D G Kondo
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - T L Hellem
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - X-F Shi
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - Y H Sung
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)
| | - A P Prescot
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahRadiology (A.P.P.), University of Utah School of Medicine, Salt Lake City, Utah
| | - T S Kim
- and Department of Psychiatry (T.S.K.), Catholic University of Korea Graduate School of Medicine, Seoul, Republic of Korea
| | - R S Huber
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - L N Forrest
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, Utah
| | - P F Renshaw
- From The Brain Institute (D.G.K., T.L.H., X.F.S., Y.H.S., A.P.P., R.S.H., L.N.F., P.F.R), University of Utah, Salt Lake City, UtahDepartments of Psychiatry (D.G.K., X.F.S., Y.H.S., P.F.R.)Veterans Integrated Service Network 19 Mental Illness Research (P.F.R.), Education and Clinical Center, VA Salt Lake City Health Care System, Salt Lake City, Utah
| |
Collapse
|
15
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
16
|
Bitter SM, Weber WA, Chu WJ, Adler CM, Eliassen JC, Strakowski SM, DelBello MP. N-acetyl aspartate levels in adolescents with bipolar and/or cannabis use disorders. J Dual Diagn 2014; 10:39-43. [PMID: 24729763 PMCID: PMC3979563 DOI: 10.1080/15504263.2013.869077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Bipolar and cannabis use disorders commonly co-occur during adolescence, and neurochemical studies may help clarify the pathophysiology underlying this co-occurrence. This study compared metabolite concentrations in the left ventral lateral prefrontal cortex among adolescents with bipolar disorder (bipolar group; n = 14), adolescents with a cannabis use disorder (cannabis use group; n = 13), adolescents with cannabis use and bipolar disorders (bipolar and cannabis group; n = 25), and healthy adolescents (healthy controls; n = 15). We hypothesized that adolescents with bipolar disorder (with or without cannabis use disorder) would have decreased N-acetyl aspartate levels in the ventral lateral prefrontal cortex compared to the other groups and that the bipolar and cannabis group would have the lowest N-acetyl aspartate levels of all groups. METHODS N-acetyl aspartate concentrations in the left ventral lateral prefrontal cortex were obtained using proton magnetic resonance spectroscopy. RESULTS Adolescents with bipolar disorder showed significantly lower left ventral lateral prefrontal cortex N-acetyl aspartate levels, but post hoc analyses indicated that this was primarily due to increased N-acetyl aspartate levels in the cannabis group. The cannabis use disorder group had significantly higher N-acetyl aspartate levels compared to the bipolar disorder and the bipolar and cannabis groups (p = .0002 and p = .0002, respectively). Pearson correlations revealed a significant positive correlation between amount of cannabis used and N-acetyl aspartate concentrations. CONCLUSIONS Adolescents with cannabis use disorder showed higher levels of N-acetyl aspartate concentrations that were significantly positively associated with the amount of cannabis used; however, this finding was not present in adolescents with comorbid bipolar disorder.
Collapse
Affiliation(s)
- Samantha M Bitter
- Department of Psychiatry & Behavioral Neuroscience, Division of Bipolar Disorder Research , University of Cincinnati College of Medicine , Cincinnati , OH 45219 , USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Prospective neurochemical characterization of child offspring of parents with bipolar disorder. Psychiatry Res 2013; 214:153-60. [PMID: 24028795 PMCID: PMC3796054 DOI: 10.1016/j.pscychresns.2013.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 03/28/2013] [Accepted: 05/16/2013] [Indexed: 01/04/2023]
Abstract
We wished to determine whether decreases in N-acetyl aspartate (NAA) and increases in myoinositol (mI) concentrations as a ratio of creatine (Cr) occurred in the dorsolateral prefrontal cortex (DLPFC) of pediatric offspring of parents with bipolar disorder (BD) and a healthy comparison group (HC) over a 5-year period using proton magnetic resonance spectroscopy ((1)H-MRS). Paticipants comprised 64 offspring (9-18 years old) of parents with BD (36 with established BD, and 28 offspring with symptoms subsyndromal to mania) and 28 HCs, who were examined for group differences in NAA/Cr and mI/Cr in the DLPFC at baseline and follow-up at either 8, 10, 12, 52, 104, 156, 208, or 260 weeks. No significant group differences were found in metabolite concentrations at baseline or over time. At baseline, BD offspring had trends for higher mI/Cr concentrations in the right DLPFC than the HC group. mI/Cr concentrations increased with age, but no statistically significant group differences were found between groups on follow-up. It may be the case that with intervention youth at risk for BD are normalizing otherwise potentially aberrant neurochemical trajectories in the DLPFC. A longer period of follow-up may be required before observing any group differences.
Collapse
|
18
|
Frey BN, Andreazza AC, Houenou J, Jamain S, Goldstein BI, Frye MA, Leboyer M, Berk M, Malhi GS, Lopez-Jaramillo C, Taylor VH, Dodd S, Frangou S, Hall GB, Fernandes BS, Kauer-Sant'Anna M, Yatham LN, Kapczinski F, Young LT. Biomarkers in bipolar disorder: a positional paper from the International Society for Bipolar Disorders Biomarkers Task Force. Aust N Z J Psychiatry 2013; 47:321-32. [PMID: 23411094 DOI: 10.1177/0004867413478217] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the etiology of bipolar disorder remains uncertain, multiple studies examining neuroimaging, peripheral markers and genetics have provided important insights into the pathophysiologic processes underlying bipolar disorder. Neuroimaging studies have consistently demonstrated loss of gray matter, as well as altered activation of subcortical, anterior temporal and ventral prefrontal regions in response to emotional stimuli in bipolar disorder. Genetics studies have identified several potential candidate genes associated with increased risk for developing bipolar disorder that involve circadian rhythm, neuronal development and calcium metabolism. Notably, several groups have found decreased levels of neurotrophic factors and increased pro-inflammatory cytokines and oxidative stress markers. Together these findings provide the background for the identification of potential biomarkers for vulnerability, disease expression and to help understand the course of illness and treatment response. In other areas of medicine, validated biomarkers now inform clinical decision-making. Although the findings reviewed herein hold promise, further research involving large collaborative studies is needed to validate these potential biomarkers prior to employing them for clinical purposes. Therefore, in this positional paper from the ISBD-BIONET (biomarkers network from the International Society for Bipolar Disorders), we will discuss our view of biomarkers for these three areas: neuroimaging, peripheral measurements and genetics; and conclude the paper with our position for the next steps in the search for biomarkers for bipolar disorder.
Collapse
Affiliation(s)
- Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Singh MK, Chang KD. The Neural Effects of Psychotropic Medications in Children and Adolescents. Child Adolesc Psychiatr Clin N Am 2012; 21:753-71. [PMID: 23040900 PMCID: PMC3590023 DOI: 10.1016/j.chc.2012.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Little is known about the neurobiological effects of psychotropic medications used in the treatment of children and adolescents diagnosed with a psychiatric disorder. This review provides a synopsis of the literature demonstrating the neural effects associated with exposure to psychotropic medication in youth using multimodal neuroimaging. The article concludes by illustrating how, taken together, these studies suggest that pharmacological interventions during childhood do indeed affect brain structure and function in a detectable manner, and the effects appear to be ameliorative.
Collapse
|
20
|
Shi XF, Kondo DG, Sung YH, Hellem TL, Fiedler KK, Jeong EK, Huber RS, Renshaw PF. Frontal lobe bioenergetic metabolism in depressed adolescents with bipolar disorder: a phosphorus-31 magnetic resonance spectroscopy study. Bipolar Disord 2012; 14:607-17. [PMID: 22816670 PMCID: PMC4651435 DOI: 10.1111/j.1399-5618.2012.01040.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To compare the concentrations of high-energy phosphorus metabolites associated with mitochondrial function in the frontal lobe of depressed adolescents with bipolar disorder (BD) and healthy controls (HC). METHODS We used in vivo phosphorus-31 magnetic resonance spectroscopy ((31) P-MRS) at 3 Tesla to measure phosphocreatine (PCr), beta-nucleoside triphosphate (β-NTP), inorganic phosphate (Pi), and other neurometabolites in the frontal lobe of eight unmedicated and six medicated adolescents with bipolar depression and 24 adolescent HCs. RESULTS Analysis of covariance, including age as a covariate, revealed differences in PCr (p=0.037), Pi (p=0.017), and PCr/Pi (p=0.002) between participant groups. Percentage neurochemical differences were calculated with respect to mean metabolite concentrations in the HC group. Post-hoc Tukey-Kramer analysis showed that unmedicated BD participants had decreased Pi compared with both HC (17%; p=0.038) and medicated BD (24%; p=0.022). The unmedicated BD group had increased PCr compared with medicated BD (11%; p=0.032). The PCr/Pi ratio was increased in unmedicated BD compared with HC (24%; p=0.013) and with medicated BD (39%; p=0.002). No differences in β-NTP or pH were observed. CONCLUSIONS Our results support the view that frontal lobe mitochondrial function is altered in adolescent BD and may have implications for the use of Pi as a biomarker. These findings join volumetric studies of the amygdala, and proton MRS studies of n-acetyl aspartate in pointing to potential differences in neurobiology between pediatric and adult BD.
Collapse
Affiliation(s)
- Xian-Feng Shi
- The Brain Institute, University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108, USA.
| | - Douglas G Kondo
- The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT, USA,Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA,VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Young-Hoon Sung
- The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT, USA,Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tracy L Hellem
- The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristen K Fiedler
- The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Rebekah S Huber
- The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Perry F Renshaw
- The Brain Institute, University of Utah School of Medicine, Salt Lake City, UT, USA,Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT, USA,VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Chang K, DelBello M, Chu WJ, Garrett A, Kelley R, Mills N, Howe M, Bryan H, Adler C, Eliassen J, Spielman D, Strakowski SM. Neurometabolite effects of response to quetiapine and placebo in adolescents with bipolar depression. J Child Adolesc Psychopharmacol 2012; 22:261-8. [PMID: 22849427 PMCID: PMC3472676 DOI: 10.1089/cap.2011.0153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Mood stabilizers have been reported to affect brain concentrations of myo-inositol (mI) and N-acetylaspartate (NAA). We examined the effects of quetiapine (QUET), an atypical antipsychotic, on these neurochemicals, and potential predictors of response to QUET in adolescents with bipolar depression. METHODS Twenty-six adolescents with bipolar depression participated in an 8-week placebo-controlled trial of QUET monotherapy. Subjects were scanned at baseline and after 8 weeks with proton magnetic resonance spectroscopy (1H-MRS) at 3T and 4T at two sites, with 8 cm(3) voxels placed in the right and left dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC). LCModel was used to calculate absolute concentrations of NAA and mI. RESULTS Twenty-six subjects had pre- and posttreatment scans (mean age=15.6 years, 9 boys). Of these subjects, 5 out of 16 subjects receiving QUET and 5 out of 10 receiving placebo (PBO) were responders (50% decrease in Children's Depression Rating Scale [CDRS] score). Although baseline ACC mI did not predict responder status, responders had significantly lower posttreatment ACC mI values than did nonresponders (3.27±.71 vs. 4.23±.70; p=0.004). There were no significant differences in the changes in ACC and DLPFC NAA levels in the QUET group compared with the PBO group (ACC: -0.55±1.3 vs.+0.25±1.5, p=0.23; right-DLPFC: -0.55±1.3 vs. 0.33±0.89, p=0.13; left-DLPFC: -0.04±0.91 vs.+0.29±0.61, p=0.41). CONCLUSION We found that posttreatment, not baseline, ACC mI levels were associated with response to QUET in adolescents with bipolar depression. There were no differences in NAA concentration changes between the QUET and PBO groups. Larger studies including different brain regions would help to clarify the effects of QUET on neurochemistry in patients with bipolar disorder.
Collapse
Affiliation(s)
- Kiki Chang
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California 94305-5540, USA.
| | - Melissa DelBello
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wen-Jang Chu
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amy Garrett
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Ryan Kelley
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Neil Mills
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Meghan Howe
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Holly Bryan
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Cal Adler
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jim Eliassen
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Daniel Spielman
- Pediatric Bipolar Disorders Program, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Stephen M. Strakowski
- Division of Bipolar Disorders Research, Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
22
|
Maddock RJ, Buonocore MH. MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci 2012; 11:199-251. [PMID: 22294088 DOI: 10.1007/7854_2011_197] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The measurement of brain metabolites with magnetic resonance spectroscopy (MRS) provides a unique perspective on the brain bases of neuropsychiatric disorders. As a context for interpreting MRS studies of neuropsychiatric disorders, we review the characteristic MRS signals, the metabolic dynamics,and the neurobiological significance of the major brain metabolites that can be measured using clinical MRS systems. These metabolites include N-acetylaspartate(NAA), creatine, choline-containing compounds, myo-inositol, glutamate and glutamine, lactate, and gamma-amino butyric acid (GABA). For the major adult neuropsychiatric disorders (schizophrenia, bipolar disorder, major depression, and the anxiety disorders), we highlight the most consistent MRS findings, with an emphasis on those with potential clinical or translational significance. Reduced NAA in specific brain regions in schizophrenia, bipolar disorder, post-traumatic stress disorder, and obsessive–compulsive disorder corroborate findings of reduced brain volumes in the same regions. Future MRS studies may help determine the extent to which the neuronal dysfunction suggested by these findings is reversible in these disorders. Elevated glutamate and glutamine (Glx) in patients with bipolar disorder and reduced Glx in patients with unipolar major depression support models of increased and decreased glutamatergic function, respectively, in those conditions. Reduced phosphomonoesters and intracellular pH in bipolar disorder and elevated dynamic lactate responses in panic disorder are consistent with metabolic models of pathogenesis in those disorders. Preliminary findings of an increased glutamine/glutamate ratio and decreased GABA in patients with schizophrenia are consistent with a model of NMDA hypofunction in that disorder. As MRS methods continue to improve, future studies may further advance our understanding of the natural history of psychiatric illnesses, improve our ability to test translational models of pathogenesis, clarify therapeutic mechanisms of action,and allow clinical monitoring of the effects of interventions on brain metabolicmarkers
Collapse
|
23
|
Goldsmith M, Singh M, Chang K. Antidepressants and psychostimulants in pediatric populations: is there an association with mania? Paediatr Drugs 2011; 13:225-43. [PMID: 21692547 PMCID: PMC3394932 DOI: 10.2165/11591660-000000000-00000] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article reviews the literature that examines whether exposure to psychostimulants or antidepressants precipitates or exacerbates manic symptoms, or decreases the age at onset of mania in pediatric populations. A PubMed search using relevant key words identified studies targeting five distinct clinical groups: (i) youth without a diagnosis of bipolar disorder (BD) at the time of exposure to psychostimulants; (ii) youth with a diagnosis of BD at the time of exposure to psychostimulants; (iii) youth without a diagnosis of BD at the time of exposure to antidepressants; (iv) youth with a diagnosis of BD at the time of exposure to antidepressants; and (v) youth who develop BD after exposure to these medications. In patients with attention-deficit hyperactivity disorder (ADHD), the risk for mania was found to be relatively low with the use of psychostimulants. For patients with BD and ADHD, effective mood stabilization is important prior to adding a stimulant. For children with depression and/or anxiety, the risk of antidepressant-induced mania (AIM) was generally low (<2%), but the risk of general 'activation' secondary to a selective serotonin reuptake inhibitor (SSRI) may be greater (2-10%). However, rates of AIM in specialty clinics appear to be much higher. SSRIs may be particularly problematic in specific populations, such as those with some symptoms of mania or a family history of BD, but the precise risk is unknown. There is no clear evidence that stimulants or SSRIs accelerate the natural course of BD development in overall samples, but in individual cases prescribers should proceed cautiously when using these agents in youth already at risk for developing BD, such as those with ADHD and mood dysregulation, a history of prior AIM, a history of psychosis, or a family history of BD.
Collapse
Affiliation(s)
- Michelle Goldsmith
- Stanford Pediatric Bipolar Disorders Program, Stanford University School of Medicine, Department of Psychiatry, 401 Quarry Road, Stanford, CA 94305, USA
| | | | | |
Collapse
|
24
|
Caetano SC, Olvera RL, Hatch JP, Sanches M, Chen HH, Nicoletti M, Stanley JA, Fonseca M, Hunter K, Lafer B, Pliszka SR, Soares JC. Lower N-acetyl-aspartate levels in prefrontal cortices in pediatric bipolar disorder: a ¹H magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry 2011; 50:85-94. [PMID: 21156273 DOI: 10.1016/j.jaac.2010.10.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 10/15/2010] [Accepted: 10/19/2010] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The few studies applying single-voxel ¹H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low N-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol / phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study was to evaluate NAA, glycerophosphocholine plus phosphocholine (GPC+PC) and PCr+Cr in various frontal cortical areas in children and adolescents with BD. We hypothesized that NAA levels within the prefrontal cortex are lower in BD patients than in healthy controls, indicating neurodevelopmental alterations in the former. METHOD We studied 43 pediatric patients with DSM-IV BD (19 female, mean age 13.2 ± 2.9 years) and 38 healthy controls (19 female, mean age 13.9 ± 2.7 years). We conducted multivoxel in vivo ¹H spectroscopy measurements at 1.5 Tesla using a long echo time of 272 ms to obtain bilateral metabolite levels from the medial prefrontal cortex (MPFC), DLPFC (white and gray matter), cingulate (anterior and posterior), and occipital lobes. We used the nonparametric Mann-Whitney U test to compare neurochemical levels between groups. RESULTS In pediatric BD patients, NAA and GPC+PC levels in the bilateral MPFC, and PCr+Cr levels in the left MPFC were lower than those seen in the controls. In the left DLPFC white matter, levels of NAA and PCr+Cr were also lower in BD patients than in controls. CONCLUSIONS Lower NAA and PCr+Cr levels in the PFC of children and adolescents with BD may be indicative of abnormal dendritic arborization and neuropil, suggesting neurodevelopmental abnormalities.
Collapse
|
25
|
Kondo DG, Hellem TL, Sung YH, Kim N, Jeong EK, DelMastro KK, Shi X, Renshaw PF. Review: magnetic resonance spectroscopy studies of pediatric major depressive disorder. DEPRESSION RESEARCH AND TREATMENT 2010; 2011:650450. [PMID: 21197097 PMCID: PMC3003951 DOI: 10.1155/2011/650450] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022]
Abstract
Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS) to the study of Major Depressive Disorder (MDD) in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.
Collapse
Affiliation(s)
- Douglas G. Kondo
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Tracy L. Hellem
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Young-Hoon Sung
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Namkug Kim
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Eun-Kee Jeong
- Department of Radiology, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| | - Kristen K. DelMastro
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Xianfeng Shi
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
| | - Perry F. Renshaw
- The Brain Institute at the University of Utah, 383 Colorow Drive, Salt Lake City, UT 84108-1201, USA
- Department of Psychiatry, University of Utah School of Medicine, 30 N. 1900 E, Salt Lake City, UT 84132, USA
| |
Collapse
|
26
|
Silverstone PH, McGrath BM. Lithium and valproate and their possible effects on themyo-inositol second messenger system in healthy volunteers and bipolar patients. Int Rev Psychiatry 2010; 21:414-23. [PMID: 20374155 DOI: 10.1080/09540260902962214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over 25 years ago it was suggested that the mechanism by which lithium was clinically effective may be due to a stabilizing effect on the phosphoinositol second messenger system (PI-cycle), which has multiple effects within cells. It was proposed that lithium, which is an inhibitor of one of the key enzymes in the PI-cycle, acted to lower myo-inositol concentrations; termed the 'inositol-depletion hypothesis'. Initial animal evidence supported this hypothesis, and also suggested that it was possible that sodium valproate could affect the PI-cycle. Since the first magnetic resonance studies in this area in the early 1990s many studies have examined various aspects of this hypothesis in both healthy volunteers and patients utilizing magnetic resonance spectroscopy (MRS). The present review considers research in this area and concludes that, despite initial promise, current evidence suggests that it is unlikely that either lithium or valproate produce clinically relevant changes in myo-inositol concentrations or the PI-cycle. These findings do not suggest that lithium-induced changes in the PI-cycle are the primary mechanism by which lithium or valproate exert their beneficial clinical effects in bipolar disorder. Nonetheless, given the current technical and clinical limitations of the literature to date, this conclusion cannot be considered completely definitive.
Collapse
Affiliation(s)
- Peter H Silverstone
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada T6G 2B7.
| | | |
Collapse
|
27
|
Singh M, Spielman D, Adleman N, Alegria D, Howe M, Reiss A, Chang K. Brain glutamatergic characteristics of pediatric offspring of parents with bipolar disorder. Psychiatry Res 2010; 182:165-71. [PMID: 20413280 PMCID: PMC2866778 DOI: 10.1016/j.pscychresns.2010.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/13/2009] [Accepted: 01/12/2010] [Indexed: 11/28/2022]
Abstract
We wished to determine whether decreases in prefrontal glutamate concentrations occur in offspring of parents with bipolar disorder with and at high risk for mania. Sixty children and adolescents, 9-18 years old, of parents with bipolar I or II disorder (20 offspring with established history of mania, "BD", 20 offspring with symptoms subsyndromal to mania, "SS", and 20 healthy controls "HC") were examined using proton magnetic resonance spectroscopy at 3T to study glutamatergic metabolite concentrations in the anterior cingulate cortex (ACC). A signal for reductions in absolute glutamate concentrations in the ACC was seen in the BD compared with HC and SS groups. No other statistically significant differences among groups were found. Offspring of parents with BD with prior histories of mania may have disruptions in glutamatergic function compared with HC or children at risk for BD who have not yet developed mania. Longitudinal studies are necessary to confirm whether prefrontal glutamate decreases only after the onset of full mania.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Henin A, Micco JA, Wozniak J, Briesch JM, Narayan AJ, Hirshfeld-Becker DR. Neurocognitive functioning in bipolar disorder. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1468-2850.2009.01162.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Potter M, Moses A, Wozniak J. Alternative treatments in pediatric bipolar disorder. Child Adolesc Psychiatr Clin N Am 2009; 18:483-514, xi. [PMID: 19264275 DOI: 10.1016/j.chc.2008.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There has been growing interest in the use of complementary and alternative treatments in pediatric bipolar disorder (BPD). There are limited data, however, regarding the safety and efficacy of these treatments. This article discusses select complementary and alternative treatments that have been considered for use in pediatric BPD and/or depression, including omega-3-fatty acids, inositol, St. John's wort, SAMe, melatonin, lecithin, and acupuncture. Background information, reference to available adult and pediatric data, proposed mechanisms of action, dosing, side effects, and precautions of these treatments are included. Across the board, more research is necessary and warranted regarding the long-term safety and efficacy of available complementary and alternative treatments for the management of pediatric BPD.
Collapse
Affiliation(s)
- Mona Potter
- Department of Child and Adolescent Psychiatry, Massachusetts General Hospital and McLean Hospital, Yawkey Center for Outpatient Care, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
30
|
Dickstein DP, Towbin KE, Van Der Veen JW, Rich BA, Brotman MA, Knopf L, Onelio L, Pine DS, Leibenluft E. Randomized double-blind placebo-controlled trial of lithium in youths with severe mood dysregulation. J Child Adolesc Psychopharmacol 2009; 19:61-73. [PMID: 19232024 PMCID: PMC2692186 DOI: 10.1089/cap.2008.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The diagnosis and treatment of youth with severe nonepisodic irritability and hyperarousal, a syndrome defined as severe mood dysregulation (SMD) by Leibenluft, has been the focus of increasing concern. We conducted the first randomized double-blind, placebo-controlled trial in SMD youth, choosing lithium on the basis of its potential in treating irritability and aggression and neuro-metabolic effects. METHODS SMD youths 7-17 years were tapered off their medications. Those who continued to meet SMD criteria after a 2-week, single-blind, placebo run-in were randomized to a 6-week double-blind trial of either lithium (n = 14) or placebo (n = 11). Clinical outcome measures were: (1) Clinical Global Impressions-Improvement (CGI-I) score less than 4 at trial's end and (2) the Positive and Negative Syndrome Scale (PANSS) factor 4 score. Magnetic resonance spectroscopy (MRS) outcome measures were myoinositol (mI), N-acetyl-aspartate (NAA), and combined glutamate/glutamine (GLX), all referenced to creatine (Cr). RESULTS In all, 45% (n = 20/45) of SMD youths were not randomized due to significant clinical improvement during the placebo run-in. Among randomized patients, there were no significant between-group differences in either clinical or MRS outcome measures. CONCLUSION Our study suggests that although lithium may not result in significant clinical or neurometabolic alterations in SMD youths, further SMD treatment trials are warranted given its prevalence.
Collapse
Affiliation(s)
- Daniel P. Dickstein
- Present address: E.P. Bradley Hospital, an affiliate of the Alpert Medical School of Brown University
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Patel NC, Cecil KM, Strakowski SM, Adler CM, DelBello MP. Neurochemical alterations in adolescent bipolar depression: a proton magnetic resonance spectroscopy pilot study of the prefrontal cortex. J Child Adolesc Psychopharmacol 2008; 18:623-7. [PMID: 19108667 PMCID: PMC2935834 DOI: 10.1089/cap.2007.151] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Identifying neurochemical alterations in adolescent bipolar depression may enhance our understanding of the neurophysiology of bipolar disorder across the age spectrum. The objective of this study was to compare in vivo neurometabolite concentrations in bipolar adolescents with a depressed episode and healthy adolescents using proton magnetic resonance spectroscopy ((1)H MRS). METHOD Bipolar adolescents with a depressed episode (n = 28) and healthy adolescents (n = 10) underwent a (1)H MRS scan. Anterior cingulate (ACC) and left and right ventral lateral prefrontal (LVLPFC, RVLPFC) metabolite concentrations were calculated and compared between groups using analysis of covariance (ANCOVA). RESULTS ANCOVA showed significant group differences in ACC N-acetyl-aspartate (NAA) (F(1,33) = 17.8, p = 0.0002), LVLPFC choline (Cho) (F(1,32) = 13.1, p = 0.001), creatine/phosphocreatine (Cr) (F(1,32) = 18.5, p = 0.0002), and NAA (F(1,32) = 13.6, p = 0.0008), and RVLPFC Cr (F(1,32) = 9.6, p = 0.004), mI (F(1,32) = 11.1, p = 0.002), and NAA (F(1,32) = 11.4, p = 0.002) concentrations. In general, the bipolar depressed group had higher neurometabolite concentrations than the healthy group. CONCLUSIONS There may be localized alterations in brain neurometabolites in adolescents with bipolar depression. Limitations include lack of bipolar adolescents in other mood states and potential confounding effects of prior psychotropic medication use. Confirmatory (1)H MRS studies in larger samples of youths with bipolar depression are needed.
Collapse
Affiliation(s)
- Nick C. Patel
- LifeSynch, Fort Worth, Texas.,Department of Psychiatry & Health Behavior, Medical College of Georgia, Augusta, Georgia
| | - Kim M. Cecil
- Imaging Research Center of the Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephen M. Strakowski
- Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Caleb M. Adler
- Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melissa P. DelBello
- Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
32
|
Forester BP, Finn CT, Berlow YA, Wardrop M, Renshaw PF, Moore CM. Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study. Bipolar Disord 2008; 10:691-700. [PMID: 18837863 PMCID: PMC4100250 DOI: 10.1111/j.1399-5618.2008.00627.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES We investigated the relationship between brain lithium levels and the metabolites N-acetyl aspartate (NAA) and myo-inositol (myo-Ino) in the anterior cingulate cortex of a group of older adults with bipolar disorder (BD). METHODS This cross-sectional assessment included nine subjects (six males and three females) with bipolar I disorder and currently treated with lithium, who were examined at McLean Hospital's Geriatric Psychiatry Research Program and Brain Imaging Center. The subjects' ages ranged from 56 to 85 years (66.0 +/- 9.7 years) and all subjects had measurements of serum and brain lithium levels. Brain lithium levels were assessed using lithium magnetic resonance spectroscopy. All subjects also had proton magnetic resonance spectroscopy to obtain measurements of NAA and myo-Ino. RESULTS Brain lithium levels were associated with higher NAA levels [df = (1, 8), Beta = 12.53, t = 4.09, p < 0.005] and higher myo-Ino levels [df = (1, 7), F = 16.81, p < 0.006]. There were no significant effects of serum lithium levels on any of the metabolites. CONCLUSION Our findings of a relationship between higher brain lithium levels and elevated NAA levels in older adult subjects with BD may support previous evidence of lithium's neuroprotective, neurotrophic, and mitochondrial function-enhancing effects. Elevated myo-Ino related to elevated brain lithium levels may reflect increased inositol monophosphatase (IMPase) activity, which would lead to an increase in myo-Ino levels. This is the first study to demonstrate alterations in NAA and myo-Ino in a sample of older adults with BD treated with lithium.
Collapse
Affiliation(s)
- Brent P Forester
- Geriatric Psychiatry Research Program, McLean Hospital, Belmont, MA 02478, USA.
| | | | - Yosef A Berlow
- Geriatric Psychiatry Research Program, McLean Hospital, Belmont,Department of Psychiatry, Harvard Medical School, Boston
| | - Megan Wardrop
- Brain Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Perry F Renshaw
- Department of Psychiatry, Harvard Medical School, Boston,Brain Imaging Center, McLean Hospital, Belmont, MA, USA
| | - Constance M Moore
- Department of Psychiatry, Harvard Medical School, Boston,Brain Imaging Center, McLean Hospital, Belmont, MA, USA
| |
Collapse
|
33
|
Proton magnetic resonance spectroscopy in youth with severe mood dysregulation. Psychiatry Res 2008; 163:30-9. [PMID: 18403184 DOI: 10.1016/j.pscychresns.2007.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 09/11/2007] [Accepted: 11/19/2007] [Indexed: 12/18/2022]
Abstract
Increasing numbers of youth are presenting for psychiatric evaluation with markedly irritable mood plus "hyperarousal" symptoms. Diagnostically homeless in current nosology, the syndrome (as well as its underlying neurobiology) is little understood. To address this problem, we conducted an exploratory proton magnetic resonance spectroscopy (MRS) study in a large sample of youth with chronic, functionally disabling irritability accompanied by hyperarousal, a clinical syndrome known as "severe mood dysregulation" (SMD), which may represent a broad phenotype of pediatric bipolar disorder. Medication-free SMD youth (N=36) and controls (N=48) underwent 1.5 Tesla MRS in four regions of interest. The following three neurometabolites, relative to creatine (Cr), were quantified with LCModel Software: (a) myo-inositol (mI), a marker of intra-cellular second messengers linked to the neurobiology of bipolar disorder; (b) glutamate/glutamine (GLX), a marker of the major excitatory neurotransmitter glutamate; and (c) N-acetyl aspartate (NAA), a marker of neuronal energetics. SMD subjects had significantly lower temporal mI/Cr versus controls. However, this difference did not survive correction for multiple comparisons. Given studies implicating mI in lithium's action in BD adults and youth, further work is necessary to determine potential therapeutic implications of our present finding and how SMD youth differ pathophysiologically from those with strictly defined BD.
Collapse
|
34
|
Abstract
Bipolar disorder is a serious and difficult-to-treat condition in any age group. In childhood and adolescence, diagnosis and treatment present specific challenges, as the disorder often manifests in atypical presentations, such as marked irritability and frequent alterations of mood states not typically seen in adults. The lack of double-blind, placebo-controlled studies in pediatric populations also leads to many difficult pharmacologic challenges. In this paper, we review available studies in neuroanatomy, neurochemistry, neurocognitive functioning, and genetics to further explore the underlying neurobiologic mechanisms of child and adolescent bipolar disorder. Future investigation should elicit distinct mechanisms for diagnosing and treating bipolar disorder from a neurobiologic perspective.
Collapse
Affiliation(s)
- Angelica Kloos
- Department of Psychiatry, Thomas Jefferson University Hospital, 833 Chestnut Street, Suite 210, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
35
|
Patel NC, DelBello MP, Cecil KM, Stanford KE, Adler CM, Strakowski SM. Temporal change in N-acetyl-aspartate concentrations in adolescents with bipolar depression treated with lithium. J Child Adolesc Psychopharmacol 2008; 18:132-9. [PMID: 18439111 DOI: 10.1089/cap.2007.0088] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This proton magnetic resonance spectroscopy (1H MRS) study identified the in vivo effects of lithium on N-acetyl-aspartate (NAA) concentrations in adolescent bipolar depression. METHOD Twenty eight adolescents with bipolar I disorder in a depressive episode received open-label lithium 30 mg/kg, adjusted to achieve serum levels of 1.0-1.2 mEq/L. Medial ventral and ventral lateral prefrontal NAA concentrations were measured at baseline, day 7, and day 42 of treatment. Temporal changes in NAA concentrations were analyzed and effect sizes (Cohen's d) were calculated. RESULTS Medial ventral prefrontal NAA concentrations decreased over time (p = 0.03), with day-42 concentrations significantly lower than baseline concentrations (p = 0.01, d = 0.7). No significant time effects on NAA concentrations were observed in the left (p = 0.2) or right ventral lateral (p = 0.3) prefrontal cortices. CONCLUSIONS In contrast with prior studies of bipolar adults, this study observes that ventral prefrontal NAA concentrations do not significantly increase from baseline following lithium treatment in adolescent bipolar depression. The results should be viewed in the context of the study's limitations, including the lack of a matched healthy control group. Additional longitudinal magnetic resonance imaging studies are warranted to understand better the role of NAA in the pathophysiology of bipolar disorder and neurochemical mechanisms by which lithium stabilizes mood.
Collapse
Affiliation(s)
- Nick C Patel
- College of Pharmacy, University of Georgia, Medical College of Georgia, Augusta, Georgia 30912-2450, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Lithium is clinically available for the treatment of mood disorders. However, it has remained unclear how lithium acts on the brain to produce its effects. The aim of this study was to evaluate the effects of chronic lithium on human brain activity using positron emission tomography and clarify the correlation between brain activity changes and cognitive functional changes as induced by chronic lithium administration. A total of 20 healthy male subjects (mean age, 32 +/- 6 years) underwent positron emission tomographic scans with F-fluorodeoxyglucose and a battery of neuropsychological tests at baseline condition and after 4 weeks of lithium administration. Brain metabolic data were analyzed using statistical parametric mapping. Lithium increased relative regional cerebral glucose metabolism (rCMRglc) in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased rCMRglc in the right cerebellum and left lingual gyrus/cuneus. There was no difference in any of the variables of cognitive functions between the baseline condition and after chronic lithium administration. There was no correlation between rCMRglc changes in any of the brain regions and individual variable changes in any of the neuropsychological tests. The results suggest that the effects of chronic lithium are associated with increased activity in the bilateral dorsomedial frontal cortices including the anterior cingulate gyrus and decreased activity in the right cerebellum and left lingual gyrus/cuneus.
Collapse
|
37
|
Biederman J. The evolving face of pediatric mania. Biol Psychiatry 2006; 60:901-2. [PMID: 17056392 DOI: 10.1016/j.biopsych.2006.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/13/2006] [Accepted: 09/18/2006] [Indexed: 11/21/2022]
|