1
|
Burns LH, Pei Z, Wang HY. Targeting α7 nicotinic acetylcholine receptors and their protein interactions in Alzheimer's disease drug development. Drug Dev Res 2023; 84:1085-1095. [PMID: 37291958 DOI: 10.1002/ddr.22085] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
The decades-old cholinergic hypothesis of Alzheimer's disease (AD) led to clinical testing and FDA approval of acetylcholinesterase inhibitor drugs. Subsequently, the α7 nicotinic acetylcholine receptor (α7nAChR) was proposed as a new drug target for enhancing cholinergic neurotransmission. Nearly simultaneously, soluble amyloid β1-42 (Aβ42 ) was shown to bind α7nAChR with picomolar affinity to activate kinases that hyperphosphorylate tau, the precursor to tau-containing tangles. Multiple biopharmaceutical companies explored α7nAChR as a drug target for AD, mostly to enhance neurotransmission. Directly targeting α7nAChR proved to be a drug development challenge. The ultra-high-affinity interaction between Aβ42 and α7nAChR posed a significant hurdle for direct competition in the AD brain. The receptor rapidly desensitizes, undermining efficacy of agonists. Drug discovery approaches therefore included partial agonists and allosteric modulators of α7nAChR. After substantial effort, numerous drug candidates were abandoned due to lack of efficacy or drug-related toxicities. As alternatives, proteins interacting with α7nAChR were sought. In 2016, a novel nAChR regulator was identified, but no drug candidates have emerged from this effort. In 2012, the interaction of filamin A with α7nAChR was shown to be critical to Aβ42 's toxic signaling via α7nAChR, presenting a new drug target. The novel drug candidate simufilam disrupts the filamin A-α7nAChR interaction, reduces Aβ42 's high-affinity binding to α7nAChR, and suppresses Aβ42 's toxic signaling. Early clinical trials of simufilam showed improvements in experimental CSF biomarkers and indications of cognitive improvement in mild AD patients at 1 year. Simufilam is currently in phase 3 clinical trials as a disease-modifying treatment for AD.
Collapse
Affiliation(s)
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
| | - Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, New York, USA
- Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, New York, USA
| |
Collapse
|
2
|
Lao K, Zhang R, Luan J, Zhang Y, Gou X. Therapeutic Strategies Targeting Amyloid-β Receptors and Transporters in Alzheimer's Disease. J Alzheimers Dis 2021; 79:1429-1442. [PMID: 33459712 DOI: 10.3233/jad-200851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that has been recognized as one of the most intractable medical problems with heavy social and economic costs. Amyloid-β (Aβ) has been identified as a major factor that participates in AD progression through its neurotoxic effects. The major mechanism of Aβ-induced neurotoxicity is by interacting with membrane receptors and subsequent triggering of aberrant cellular signaling. Besides, Aβ transporters also plays an important role by affecting Aβ homeostasis. Thus, these Aβ receptors and transporters are potential targets for the development of AD therapies. Here, we summarize the reported therapeutic strategies targeting Aβ receptors and transporters to provide a molecular basis for future rational design of anti-AD agents.
Collapse
Affiliation(s)
- Kejing Lao
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Ruisan Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Jing Luan
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Yuelin Zhang
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| | - Xingchun Gou
- Institute of Basic and Translational Medicine & Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, PR China
| |
Collapse
|
3
|
Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev 2021; 122:143-164. [PMID: 33440197 DOI: 10.1016/j.neubiorev.2020.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/13/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Mild cognitive impairment (MCI) is defined as an intermediate state between normal cognitive aging and dementia. It describes a status of the subjective impression of cognitive decline and objectively detectible memory impairment beyond normal age-related changes. Activities of daily living are not affected. As the population ages, there is a growing need for early, proactive programs that can delay the consequences of dementia and improve the well-being of people with MCI and their caregivers. Various forms and approaches of intervention for older people with MCI have been suggested to delay cognitive decline. Pharmacological as well as non-pharmacological approaches (cognitive, physiological, nutritional supplementation, electric stimulation, psychosocial therapeutic) and multicomponent interventions have been proposed. Interventional approaches in MCI from 2009 to April 2019 concerning the cognitive performance are presented in this review.
Collapse
|
4
|
Tetrapeptide Ac-HAEE-NH 2 Protects α4β2 nAChR from Inhibition by Aβ. Int J Mol Sci 2020; 21:ijms21176272. [PMID: 32872553 PMCID: PMC7504039 DOI: 10.3390/ijms21176272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
The cholinergic deficit in Alzheimer’s disease (AD) may arise from selective loss of cholinergic neurons caused by the binding of Aβ peptide to nicotinic acetylcholine receptors (nAChRs). Thus, compounds preventing such an interaction are needed to address the cholinergic dysfunction. Recent findings suggest that the 11EVHH14 site in Aβ peptide mediates its interaction with α4β2 nAChR. This site contains several charged amino acid residues, hence we hypothesized that the formation of Aβ-α4β2 nAChR complex is based on the interaction of 11EVHH14 with its charge-complementary counterpart in α4β2 nAChR. Indeed, we discovered a 35HAEE38 site in α4β2 nAChR, which is charge-complementary to 11EVHH14, and molecular modeling showed that a stable Aβ42-α4β2 nAChR complex could be formed via the 11EVHH14:35HAEE38 interface. Using surface plasmon resonance and bioinformatics approaches, we further showed that a corresponding tetrapeptide Ac-HAEE-NH2 can bind to Aβ via 11EVHH14 site. Finally, using two-electrode voltage clamp in Xenopus laevis oocytes, we showed that Ac-HAEE-NH2 tetrapeptide completely abolishes the Aβ42-induced inhibition of α4β2 nAChR. Thus, we suggest that 35HAEE38 is a potential binding site for Aβ on α4β2 nAChR and Ac-HAEE-NH2 tetrapeptide corresponding to this site is a potential therapeutic for the treatment of α4β2 nAChR-dependent cholinergic dysfunction in AD.
Collapse
|
5
|
Ahmad F, Liu P. Synaptosome as a tool in Alzheimer's disease research. Brain Res 2020; 1746:147009. [PMID: 32659233 DOI: 10.1016/j.brainres.2020.147009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 12/29/2022]
Abstract
Synapse dysfunction is an integral feature of Alzheimer's disease (AD) pathophysiology. In fact, prodromal manifestation of structural and functional deficits in synapses much prior to appearance of overt pathological hallmarks of the disease indicates that AD might be considered as a degenerative disorder of the synapses. Several research instruments and techniques have allowed us to study synaptic function and plasticity and their alterations in pathological conditions, such as AD. One such tool is the biochemically isolated preparations of detached and resealed synaptic terminals, the "synaptosomes". Because of the preservation of many of the physiological processes such as metabolic and enzymatic activities, synaptosomes have proved to be an indispensable ex vivo model system to study synapse physiology both when isolated from fresh or cryopreserved tissues, and from animal or human post-mortem tissues. This model system has been tremendously successful in the case of post-mortem tissues because of their accessibility relative to acute brain slices or cultures. The current review details the use of synaptosomes in AD research and its potential as a valuable tool in furthering our understanding of the pathogenesis and in devising and testing of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Zhou Z, Liu F, Wang L, Zhu B, Chen Y, Yu Y, Wang X. Inflammation has synergistic effect with nicotine in periodontitis by up-regulating the expression of α7 nAChR via phosphorylated GSK-3β. J Cell Mol Med 2020; 24:2663-2676. [PMID: 31930698 PMCID: PMC7028870 DOI: 10.1111/jcmm.14986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/26/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is the leading cause of adult tooth loss, and those who smoke are at an increased risk of developing periodontitis. α7 nicotinic acetylcholine receptor (α7 nAChR) is proposed to mediate the potential synergistic effect of nicotine and inflammation in smoking‐related periodontitis. However, this has not been experimentally demonstrated. We isolated and cultured human periodontal ligament stem cells (PDLSCs) from healthy and inflamed tissues. PDLSCs were treated with either inflammatory factors or nicotine. We measured expression of genes that are associated with osteogenic differentiation and osteoclast formation using RT‐qPCR and Western blot analyses. Besides, immunohistochemical staining, micro‐CT analysis and tartaric acid phosphatase staining were used to measure α7 nAChR expression and function. Inflammation up‐regulated α7 nAChR expression in both periodontal ligament tissues and PDLSCs. The up‐regulated α7 nAChR contributed to the synergistic effect of nicotine and inflammation, leading to a decreased capability of osteogenic differentiation and increased capability of osteoclast formation‐induction of PDLSCs. Moreover, the inflammation‐induced up‐regulation of α7 nAChR was partially dependent on the level of phosphorylated GSK‐3β. This study provides experimental evidence for the pathological development of smoking‐related periodontitis and sheds new light on developing inflammation and α7 nAChR‐targeted therapeutics to treat and prevent the disease.
Collapse
Affiliation(s)
- Zhifei Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China.,Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, China
| | - Fen Liu
- Department of Stomatology, Northwest Women's and Children's Hospital, Xi'an, China.,State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Lulu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Bin Zhu
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, China
| | - Yujiang Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yang Yu
- Stomatological Hospital of Chongqing Medical University & Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higer Education, Chongqing, China
| | - Xiaojing Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Air Force Medical University, Xi'an, China
| |
Collapse
|
7
|
Wang HY, Capuano AW, Khan A, Pei Z, Lee KC, Bennett DA, Ahima RS, Arnold SE, Arvanitakis Z. Insulin and adipokine signaling and their cross-regulation in postmortem human brain. Neurobiol Aging 2019; 84:119-130. [PMID: 31539648 DOI: 10.1016/j.neurobiolaging.2019.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Aberrant insulin and adipokine signaling has been implicated in cognitive decline associated with both type 2 diabetes mellitus and neurodegenerative diseases. We established methods that reliably measure insulin, adiponectin and leptin signaling, and their crosstalk, in thawed postmortem mid-frontal cortical tissue from cognitively normal older subjects with a short postmortem interval. Insulin-evoked insulin receptor (IR) activation increases activated, tyrosine-phosphorylated IRβ on tyrosine residues 960, 1150, and 1151, insulin receptor substrate-1 recruitment to IRβ and phosphorylated RAC-α-serine/threonine-protein kinase. Adiponectin augments, but leptin inhibits, insulin signaling. Adiponectin activates adiponectin receptors to induce APPL1 binding to adiponectin receptor 1 and 2 and T-cadherin and downstream adenosine monophosphate-dependent protein kinase phosphorylation. Insulin inhibited adiponectin-induced signaling. In addition, leptin-induced leptin receptor (OB-R) signaling promotes Janus kinase 2 recruitment to OB-R and Janus kinase 2 and downstream signal transducer and activator of transcription 3 phosphorylation. Insulin enhanced leptin signaling. These data demonstrate insulin and adipokine signaling interactions in human brain. Future studies can use these methods to examine insulin, adiponectin, and leptin metabolic dysregulation in aging and disease states, such as type 2 diabetes and Alzheimer's disease-related dementias.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of The City University of New York, New York, NY, USA.
| | - Ana W Capuano
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Amber Khan
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of The City University of New York, New York, NY, USA
| | - Zhe Pei
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA
| | - Kuo-Chieh Lee
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven E Arnold
- Department of Neurology and the Massachusetts Alzheimer's Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
8
|
Isomerization of Asp7 in Beta-Amyloid Enhances Inhibition of the α7 Nicotinic Receptor and Promotes Neurotoxicity. Cells 2019; 8:cells8080771. [PMID: 31349637 PMCID: PMC6721525 DOI: 10.3390/cells8080771] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/02/2023] Open
Abstract
Cholinergic dysfunction in Alzheimer’s disease (AD) can be mediated by the neuronal α7 nicotinic acetylcholine receptor (α7nAChR). Beta-amyloid peptide (Aβ) binds to the α7nAChR, disrupting the receptor’s function and causing neurotoxicity. In vivo not only Aβ but also its modified forms can drive AD pathogenesis. One of these forms, iso-Aβ (containing an isomerized Asp7 residue), shows an increased neurotoxicity in vitro and stimulates amyloidogenesis in vivo. We suggested that such effects of iso-Aβ are α7nAChR-dependent. Here, using calcium imaging and electrophysiology, we found that iso-Aβ is a more potent inhibitor of the α7nAChR-mediated calcium current than unmodified Aβ. However, Asp7 isomerization eliminated the ability of Aβ to decrease the α7nAChR levels. These data indicate differences in the interaction of the peptides with the α7nAChR, which we demonstrated using computer modeling. Neither Aβ nor iso-Aβ competed with 125I-α-bungarotoxin for binding to the orthosteric site of the receptor, suggesting the allosteric binging mode of the peptides. Further we found that increased neurotoxicity of iso-Aβ was mediated by the α7nAChR. Thus, the isomerization of Asp7 enhances the inhibitory effect of Aβ on the functional activity of the α7nAChR, which may be an important factor in the disruption of the cholinergic system in AD.
Collapse
|
9
|
Cecon E, Dam J, Luka M, Gautier C, Chollet AM, Delagrange P, Danober L, Jockers R. Quantitative assessment of oligomeric amyloid β peptide binding to α7 nicotinic receptor. Br J Pharmacol 2019; 176:3475-3488. [PMID: 30981214 DOI: 10.1111/bph.14688] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Progressive dysfunction of cholinergic transmission is a well-known characteristic of Alzheimer's disease (AD). Amyloid β (Aβ) peptide oligomers are known to play a central role in AD and are suggested to impair the function of the cholinergic nicotinic ACh receptor α7 (α7nAChR). However, the mechanism underlying the effect of Aβ on α7nAChR function is not fully understood, limiting the therapeutic exploration of this observation in AD. Here, we aimed to detect and characterize Aβ binding to α7nAChR, including the possibility of interfering with this interaction for therapeutic purposes. EXPERIMENTAL APPROACH We developed a specific and quantitative time-resolved FRET (TR-FRET)-based binding assay for Aβ to α7nAChR and pharmacologically characterized this interaction. KEY RESULTS We demonstrated specific and high-affinity (low nanomolar) binding of Aβ to the orthosteric binding site of α7nAChR. Aβ binding was prevented and reversed by the well-characterized orthosteric ligands of α7nAChR (epibatidine, α-bungarotoxin, methylylcaconitine, PNU-282987, S24795, and EVP6124) and by the type II positive allosteric modulator (PAM) PNU-120596 but not by the type I PAM NS1738. CONCLUSIONS AND IMPLICATIONS Our TR-FRET Aβ binding assay demonstrates for the first time the specific binding of Aβ to α7nAChR, which will be a crucial tool for the development, testing, and selection of a novel generation of AD drug candidates targeting Aβ/α7nAChR complexes with high specificity and fewer side effects compared to currently approved α7nAChR drugs. LINKED ARTICLES This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Erika Cecon
- Inserm U1016, Institut Cochin, Dept Endocrinology, Metabolism and Diabetes, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julie Dam
- Inserm U1016, Institut Cochin, Dept Endocrinology, Metabolism and Diabetes, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marine Luka
- Inserm U1016, Institut Cochin, Dept Endocrinology, Metabolism and Diabetes, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clément Gautier
- Institut de Recherches SERVIER, Division Therapeutic Innovation in Neuropsychiatry, Croissy-sur-Seine, France
| | - Anne-Marie Chollet
- Institut de Recherches SERVIER, Division Therapeutic Innovation in Neuropsychiatry, Croissy-sur-Seine, France
| | - Philippe Delagrange
- Institut de Recherches SERVIER, Division Therapeutic Innovation in Neuropsychiatry, Croissy-sur-Seine, France
| | - Laurence Danober
- Institut de Recherches SERVIER, Division Therapeutic Innovation in Neuropsychiatry, Croissy-sur-Seine, France
| | - Ralf Jockers
- Inserm U1016, Institut Cochin, Dept Endocrinology, Metabolism and Diabetes, Paris, France.,CNRS UMR 8104, Paris, France.,University Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
10
|
Wang HY, Trocmé-Thibierge C, Stucky A, Shah SM, Kvasic J, Khan A, Morain P, Guignot I, Bouguen E, Deschet K, Pueyo M, Mocaer E, Ousset PJ, Vellas B, Kiyasova V. Increased Aβ 42-α7-like nicotinic acetylcholine receptor complex level in lymphocytes is associated with apolipoprotein E4-driven Alzheimer's disease pathogenesis. ALZHEIMERS RESEARCH & THERAPY 2017; 9:54. [PMID: 28750690 PMCID: PMC5530996 DOI: 10.1186/s13195-017-0280-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The apolipoprotein E ε4 (APOE4) genotype is a prominent late-onset Alzheimer's disease (AD) risk factor. ApoE4 disrupts memory function in rodents and may contribute to both plaque and tangle formation. METHODS Coimmunoprecipitation and Western blot detection were used to determine: 1) the effects of select fragments from the apoE low-density lipoprotein (LDL) binding domain and recombinant apoE subtypes on amyloid beta (Aβ)42-α7 nicotinic acetylcholine receptor (α7nAChR) interaction and tau phosphorylation in rodent brain synaptosomes; and 2) the level of Aβ42-α7nAChR complexes in matched controls and patients with mild cognitive impairment (MCI) and dementia due to AD with known APOE genotypes. RESULTS In an ex vivo study using rodent synaptosomes, apoE141-148 of the apoE promotes Aβ42-α7nAChR association and Aβ42-induced α7nAChR-dependent tau phosphorylation. In a single-blind study, we examined lymphocytes isolated from control subjects, patients with MCI and dementia due to AD with known APOE genotypes, sampled at two time points (1 year apart). APOE ε4 genotype was closely correlated with heightened Aβ42-α7nAChR complex levels and with blunted exogenous Aβ42 effects in lymphocytes derived from AD and MCI due to AD cases. Similarly, plasma from APOE ε4 carriers enhanced the Aβ42-induced Aβ42-α7nAChR association in rat cortical synaptosomes. The progression of cognitive decline in APOE ε4 carriers correlated with higher levels of Aβ42-α7nAChR complexes in lymphocytes and greater enhancement by their plasma of Aβ42-induced Aβ42-α7nAChR association in rat cortical synaptosomes. CONCLUSIONS Our data suggest that increased lymphocyte Aβ42-α7nAChR-like complexes may indicate the presence of AD pathology especially in APOE ε4 carriers. We show that apoE, especially apoE4, promotes Aβ42-α7nAChR interaction and Aβ42-induced α7nAChR-dependent tau phosphorylation via its apoE141-148 domain. These apoE-mediated effects may contribute to the APOE ε4-driven neurodysfunction and AD pathologies.
Collapse
Affiliation(s)
- Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA. .,Department of Physiology, Pharmacology & Neuroscience, The City University of New York School of Medicine, CDI-3370 85 St. Nicholas Terrace, New York, NY, 10027, USA.
| | | | - Andres Stucky
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA.,Department of Biology, Neuroscience Program, Graduate School of The City University of New York, New York, New York, 10061, USA
| | - Sanket M Shah
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA
| | - Jessica Kvasic
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA
| | - Amber Khan
- Department of Physiology, Pharmacology and Neuroscience, CUNY School of Medicine, 160 Convent Avenue, New York, NY, 10031, USA
| | - Philippe Morain
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Isabelle Guignot
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Eva Bouguen
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Karine Deschet
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Maria Pueyo
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Elisabeth Mocaer
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| | - Pierre-Jean Ousset
- Alzheimer's Disease Research and Clinical Center, Inserm U1027, Toulouse University Hospital, Toulouse, France
| | - Bruno Vellas
- Alzheimer's Disease Research and Clinical Center, Inserm U1027, Toulouse University Hospital, Toulouse, France
| | - Vera Kiyasova
- Institut de Recherches Internationales Servier, 50 Rue Carnot, 92284, Suresnes, France
| |
Collapse
|
11
|
Wang HY, Lee KC, Pei Z, Khan A, Bakshi K, Burns LH. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging 2017; 55:99-114. [DOI: 10.1016/j.neurobiolaging.2017.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
|
12
|
Callahan PM, Bertrand D, Bertrand S, Plagenhoef MR, Terry AV. Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals. Neuropharmacology 2017; 117:422-433. [PMID: 28259598 DOI: 10.1016/j.neuropharm.2017.02.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Accepted: 02/25/2017] [Indexed: 01/02/2023]
Abstract
Tropisetron, a 5-HT3 receptor antagonist commonly prescribed for chemotherapy-induced nausea and vomiting also exhibits high affinity, partial agonist activity at α7 nicotinic acetylcholine receptors (α7 nAChRs). α7 nAChRs are considered viable therapeutic targets for neuropsychiatric disorders such as Alzheimer's disease (AD). Here we further explored the nAChR pharmacology of tropisetron to include the homomeric α7 nAChR and recently characterized heteromeric α7β2 nAChR (1:10 ratio) and we evaluated its cognitive effects in young and aged animals. Electrophysiological studies on human nAChRs expressed in Xenopus oocytes confirmed the partial agonist activity of tropisetron at α7 nAChRs (EC50 ∼2.4 μM) with a similar effect at α7β2 nAChRs (EC50 ∼1.5 μM). Moreover, currents evoked by irregular pulses of acetylcholine (40 μM) at α7 and α7β2 nAChRs were enhanced during sustained exposure to low concentrations of tropisetron (10 and 30 nM) indicative of a "priming" or co-agonist effect. Tropisetron (0.1-10 mg/kg) improved novel object recognition performance in young Sprague-Dawley rats and in aged Fischer rats. In aged male and female rhesus monkeys, tropisetron (0.03-1 mg/kg) produced a 17% increase from baseline levels in delayed match to sample long delay accuracy while combination of non-effective doses of donepezil (0.1 mg/kg) and tropisetron (0.03 and 0.1 mg/kg) produced a 24% change in accuracy. Collectively, these animal experiments indicate that tropisetron enhances cognition and has the ability to improve the effective dose range of currently prescribed AD therapy (donepezil). Moreover, these effects may be explained by tropisetron's ability to sensitize α7 containing nAChRs to low levels of acetylcholine.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States.
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Sonia Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Marc R Plagenhoef
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
13
|
Burns LH, Wang HY. Altered filamin A enables amyloid beta-induced tau hyperphosphorylation and neuroinflammation in Alzheimer's disease. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2017; 4:263-271. [PMID: 34295950 PMCID: PMC8294116 DOI: 10.20517/2347-8659.2017.50] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with proteopathy characterized by abnormalities in amyloid beta (Aβ) and tau proteins. Defective amyloid and tau propagate and aggregate, leading to eventual amyloid plaques and neurofibrillary tangles. New data show that a third proteopathy, an altered conformation of the scaffolding protein filamin A (FLNA), is critically linked to the amyloid and tau pathologies in AD. Altered FLNA is pervasive in AD brain and without apparent aggregation. In a striking interdependence, altered FLNA is both induced by Aβ and required for two prominent pathogenic signaling pathways of Aβ. Aβ monomers or small oligomers signal via the α7 nicotinic acetylcholine receptor (α7nAChR) to activate kinases that hyperphosphorylate tau to cause neurofibrillary lesions and formation of neurofibrillary tangles. Altered FLNA also enables a persistent activation of toll-like-receptor 4 (TLR4) by Aβ, leading to excessive inflammatory cytokine release and neuroinflammation. The novel AD therapeutic candidate PTI-125 binds and reverses the altered FLNA conformation to prevent Aβ’s signaling via α7nAChR and aberrant activation of TLR4, thus reducing multiple AD-related neuropathologies. As a regulator of Aβ’s signaling via α7nAChR and TLR4, altered FLNA represents a novel AD therapeutic target.
Collapse
Affiliation(s)
| | - Hoau-Yan Wang
- Department of Physiology, Pharmacology and Neuroscience, City University of New York School of Medicine, New York, NY 10031, USA.,Department of Biology and Neuroscience, Graduate School of the City University of New York, New York, NY 10031, USA
| |
Collapse
|
14
|
Thomsen MS, Arvaniti M, Jensen MM, Shulepko MA, Dolgikh DA, Pinborg LH, Härtig W, Lyukmanova EN, Mikkelsen JD. Lynx1 and Aβ1-42 bind competitively to multiple nicotinic acetylcholine receptor subtypes. Neurobiol Aging 2016; 46:13-21. [PMID: 27460145 DOI: 10.1016/j.neurobiolaging.2016.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023]
Abstract
Lynx1 regulates synaptic plasticity in the brain by regulating nicotinic acetylcholine receptors (nAChRs). It is not known to which extent Lynx1 can bind to endogenous nAChR subunits in the brain or how this interaction is affected by Alzheimer's disease pathology. We apply affinity purification to demonstrate that a water-soluble variant of human Lynx1 (Ws-Lynx1) isolates α3, α4, α5, α6, α7, β2, and β4 nAChR subunits from human and rat cortical extracts, and rat midbrain and olfactory bulb extracts, suggesting that Lynx1 forms complexes with multiple nAChR subtypes in the human and rodent brain. Incubation with Ws-Lynx1 decreases nicotine-mediated extracellular signal-regulated kinase phosphorylation in PC12 cells and striatal neurons, indicating that binding of Ws-Lynx1 is sufficient to inhibit signaling downstream of nAChRs. The effect of nicotine in PC12 cells is independent of α7 or α4β2 nAChRs, suggesting that Lynx1 can affect the function of native non-α7, non-α4β2 nAChR subtypes. We further show that Lynx1 and oligomeric β-amyloid1-42 compete for binding to several nAChR subunits, that Ws-Lynx1 prevents β-amyloid1-42-induced cytotoxicity in cortical neurons, and that cortical Lynx1 levels are decreased in a transgenic mouse model with concomitant β-amyloid and tau pathology. Our data suggest that Lynx1 binds to multiple nAChR subtypes in the brain and that this interaction might have functional and pathophysiological implications in relation to Alzheimer's disease.
Collapse
Affiliation(s)
- Morten S Thomsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark; Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Maria Arvaniti
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mikhail A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Lars H Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark; Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the α7 nicotinic receptor. Exp Neurol 2015; 275 Pt 1:69-77. [PMID: 26496817 DOI: 10.1016/j.expneurol.2015.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 01/03/2023]
Abstract
The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Aβ peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain. Little is known about the relationship between nAChR and phospho-tau degradation machinery. Activation of nAChRs has been reported to increase and decrease tau phosphorylation levels, and the mechanisms responsible for this discrepancy are not presently understood. The co-chaperone BAG2 is capable of regulating phospho-tau levels via protein degradation. In SH-SY5Y cell line and rat primary hippocampal cell culture low endogenous BAG2 levels constitute an intracellular environment conducive to nicotine-induced accumulation of phosphorylated tau protein. Further, nicotine treatment inhibited endogenous expression of BAG2, resulting in increased levels of phosphorylated tau indistinguishable from those induced by BAG2 knockdown. Conversely, overexpression of BAG2 is conducive to a nicotine-induced reduction in cellular levels of phosphorylated tau protein. In both cases the effect of nicotine was p38MAPK-dependent, while the α7 antagonist MLA was synthetic to nicotine treatment, either increasing levels of phospho-Tau in the absence of BAG2, or further decreasing the levels of phospho-Tau in the presence of BAG2. Taken together, these findings reconcile the apparently contradictory effects of nicotine on tau phosphorylation by suggesting a role for BAG2 as an important regulator of p38-dependent tau kinase activity and phospho-tau degradation in response to nicotinic receptor stimulation. Thus, we report that BAG2 expression dictates a functional intracellular switch between the p38-dependent functions of nicotine on tau phosphorylation levels via the α7 nicotinic receptor.
Collapse
|
16
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
17
|
Koukouli F, Maskos U. The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system. Biochem Pharmacol 2015. [PMID: 26206184 DOI: 10.1016/j.bcp.2015.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) play an important role in a variety of modulatory and regulatory processes including neurotransmitter release and synaptic transmission in various brain regions of the central nervous system (CNS). Glutamate is the principal excitatory neurotransmitter in the brain and the glutamatergic system participates in the pathophysiology of several neuropsychiatric disorders. Underpinning the importance of nAChRs, many studies demonstrated that nAChRs containing the α7 subunit facilitate glutamate release. Here, we review the currently available body of experimental evidence pertaining to α7 subunit containing nAChRs in their contribution to the modulation of glutamatergic neurotransmission, and we highlight the role of α7 in synaptic plasticity, the morphological and functional maturation of the glutamatergic system and therefore its important contribution in the modulation of neural circuits of the CNS.
Collapse
Affiliation(s)
- Fani Koukouli
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France.
| | - Uwe Maskos
- Institut Pasteur, Neurobiologie intégrative des systèmes cholinergiques, CNRS UMR 3571, Paris, France.
| |
Collapse
|
18
|
Zhao LN, Zheng J, Chew LY, Mu Y. An Investigation on the Fundamental Interaction between Abeta Peptides and the AT-Rich DNA. J Phys Chem B 2015; 119:8247-59. [PMID: 26086541 DOI: 10.1021/acs.jpcb.5b00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DNA damage is ubiquitous in all mammalian cells with the occurrence of more than 60,000 times per day per cell. In particular, DNA damage in neurons is found to accumulate with age and has been suggested to interfere with the synthesis of functional proteins. Moreover, recent studies have found through transgenic mice that human amyloid precursor protein causes an increase in DNA double-strand breaks (DSBs) with the effect of a prolongation in DNA repair. It is surmised that amyloid β (Aβ) exacerbates the DNA DSBs in neurons, possibly engendering neuronal dysfunction as a result. However, a good understanding on the holistic interaction mechanisms and the manner in which Aβ intertwines with DNA damage is still in its infancy. In our study, we found that DNA with an AT-rich sequence has a very low binding affinity toward Aβ by means of molecular dynamics simulation. While we have pursued a particular sequence of DNA in this study, other DNA sequences are expected to affect the interaction and binding affinity between DNA and Aβ, and will be pursued in our further research. Nonetheless, we have uncovered favorable interaction between the positively charged side chain of Aβ and the two ends of DNA. The latest experiment reveals that many of the double-stranded breaks in neurons can be fixed via DNA repair mechanisms but not in the case that Aβs are present. It is found that the increased numbers of DSBs prevail in active neurons. Here, on the basis of the favorable interaction between Aβ and the two ends of DNA, we propose the possibility that Aβ prevents DNA repair via binding directly to the break ends of the DNA, which further exacerbates DNA damage. Moreover, we have found that the base pair oxygen of the DNA has a greater preference to form hydrogen bonds than the backbone oxygen with Aβ at the two ends. Thus, we postulate that Aβ could serve to prevent the repair of AT-rich DNA, and it is unlikely to cause its breakage or affect its binding toward histone. Another important observation from our study is that AT-rich DNA has very little or no influence on Aβ oligomerization. Finally, even though we do not observe any dramatic DNA conformational change in the presence of Aβ, we do observe an increase in diversity of the DNA structural parameters such as groove width, local base step, and torsional angles in lieu of Aβ interactions.
Collapse
Affiliation(s)
- Li Na Zhao
- †School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore.,‡School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.,§Bioinformatics Institute, 30 Biopolis Street, Singapore 138671
| | - Jie Zheng
- ‡School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.,∥Genome Institute of Singapore, A* STAR, 60 Biopolis Street, Singapore 138672
| | - Lock Yue Chew
- †School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore.,⊥Complexity Institute, Nanyang Technological University, 18 Nanyang Drive, Singapore
| | - Yuguang Mu
- #School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| |
Collapse
|
19
|
Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 2015; 36:96-108. [PMID: 25639674 PMCID: PMC4324614 DOI: 10.1016/j.tips.2014.12.002] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/30/2023]
Abstract
The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor (nAChR) channels. These receptors are widely distributed throughout the central nervous system (CNS), being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however, the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer's disease, AD), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain.
Collapse
Affiliation(s)
- Kelly T Dineley
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Anshul A Pandya
- Chukchi Campus, Department of Bioscience, College of Rural and Community Development, University of Alaska Fairbanks, P.O. Box 297, Kotzebue, AK 99752-0297, USA
| | - Jerrel L Yakel
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health (NIEHS/NIH), Department of Health and Human Services (DHHS), F2-08, P.O. Box 12233, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
20
|
Fan H, Gu R, Wei D. The α7 nAChR selective agonists as drug candidates for Alzheimer's disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:353-65. [PMID: 25387975 DOI: 10.1007/978-94-017-9245-5_21] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are ion channels distribute in the central or peripheral nervous system. They are receptors of the neurotransmitter acetylcholine and activation of them by agonists mediates synaptic transmission in the neuron and muscle contraction in the neuromuscular junction. Current studies reveal relationship between the nAChRs and the learning and memory as well as cognation deficit in various neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia and drug addiction. There are various subtypes in the nAChR family and the α7 nAChR is one of the most abundant subtypes in the brain. The α7 nAChR is significantly reduced in the patients of Alzheimer's disease and is believed to interact with the Aβ amyloid. Aβ amyloid is co-localized with α7 nAChR in the senile plaque and interaction between them induces neuron apoptosis and reduction of the α7 nAChR expression. Treatment with α7 agonist in vivo shows its neuron protective and procognation properties and significantly improves the learning and memory ability of the animal models. Therefore, the α7 nAChR agonists are excellent drug candidates for Alzheimer's disease and we summarized here the current agonists that have selectivity of the α7 nAChR over the other nAChR, introduced recent molecular modeling works trying to explain the molecular mechanism of their selectivity and described the design of novel allosteric modulators in our lab.
Collapse
Affiliation(s)
- Huaimeng Fan
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
21
|
Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology 2014; 96:255-62. [PMID: 25514383 DOI: 10.1016/j.neuropharm.2014.11.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022]
Abstract
Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Sylvia Lombardo
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France.
| | - Uwe Maskos
- Département de Neuroscience, Institut Pasteur, Unité Neurobiologie Intégrative des Systèmes Cholinergiques, Paris Cedex 15, France; CNRS, UMR 3571, Paris, France
| |
Collapse
|
22
|
|
23
|
Salamone A, Zappettini S, Grilli M, Olivero G, Agostinho P, Tomé AR, Chen J, Pittaluga A, Cunha RA, Marchi M. Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens. Neuropharmacology 2013; 79:488-97. [PMID: 24373903 DOI: 10.1016/j.neuropharm.2013.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/20/2013] [Accepted: 12/14/2013] [Indexed: 01/10/2023]
Abstract
The presynaptic control of dopamine release in the nucleus accumbens (NAc) by glutamate and acetylcholine has a profound impact on reward signaling. Here we provide immunocytochemical and neurochemical evidence supporting the co-localization and functional interaction between nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartic acid (NMDA) receptors in dopaminergic terminals of the NAc. Most NAc dopaminergic terminals possessed the nAChR α4 subunit and the pre-exposure of synaptosomes to nicotine (30 μM) or to the α4β2-containing nAChR agonist 5IA85380 (10 nM) selectively inhibited the NMDA (100 μM)-evoked, but not the 4-aminopyridine (10 μM)-evoked, [(3)H] dopamine outflow; this inhibition was blunted by mecamylamine (10 μM). Nicotine and 5IA85380 pretreatment also inhibited the NMDA (100 μM)-evoked increase of calcium levels in single nerve terminals, an effect prevented by dihydro-β-erythroidine (1 μM). This supports a functional interaction between α4β2-containing nAChR and NMDA receptors within the same terminal, as supported by the immunocytochemical co-localization of α4 and GluN1 subunits in individual NAc dopaminergic terminals. The NMDA-evoked [(3)H]dopamine outflow was blocked by MK801 (1 μM) and inhibited by the selective GluN2B-selective antagonists ifenprodil (1 μM) and RO 25-6981 (1 μM), but not by the GluN2A-preferring antagonists CPP-19755 (1 μM) and ZnCl2 (1 nM). Notably, nicotine pretreatment significantly decreased the density of biotin-tagged GluN2B proteins in NAc synaptosomes. These results show that nAChRs dynamically and negatively regulate NMDA receptors in NAc dopaminergic terminals through the internalization of GluN2B receptors.
Collapse
Affiliation(s)
| | | | | | | | - Paula Agostinho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Angelo R Tomé
- Faculty of Life Sciences, University of Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Jiayang Chen
- Department of Pharmacy, University of Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Italy
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Italy; Center of Excellence for Biomedical Research, University of Genoa, Italy.
| |
Collapse
|
24
|
Wang ZC, Zhao J, Li S. Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β. Neurosci Bull 2013; 29:752-60. [PMID: 24136243 DOI: 10.1007/s12264-013-1383-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 02/25/2013] [Indexed: 02/07/2023] Open
Abstract
The toxicity of amyloid-beta (Aβ) is strongly associated with Alzheimer's disease (AD), which has a high incidence in the elderly worldwide. Recent evidence showed that alteration in the activity of N-methyl-D-aspartate receptors (NMDARs) plays a key role in Aβ-induced neurotoxicity. However, the activation of synaptic and extrasynaptic NMDARs has distinct consequences for plasticity, gene regulation, neuronal death, and Aβ production. This review focuses on the dysregulation of synaptic and extrasynaptic NMDARs induced by Aβ. On one hand, Aβ downregulates the synaptic NMDAR response by promoting NMDAR endocytosis, leading to either neurotoxicity or neuroprotection. On the other hand, Aβ enhances the activation of extrasynaptic NMDARs by decreasing neuronal glutamate uptake and inducing glutamate spillover, subsequently causing neurotoxicity. In addition, selective enhancement of synaptic activity by low doses of NMDA, or reduction of extrasynaptic activity by memantine, a non-competitive NMDAR antagonist, halts Aβ-induced neurotoxicity. Therefore, future neuroprotective drugs for AD should aim at both the enhancement of synaptic activity and the disruption of extrasynaptic NMDAR-dependent death signaling.
Collapse
Affiliation(s)
- Zhi-Cong Wang
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | | | | |
Collapse
|
25
|
Nery AA, Magdesian MH, Trujillo CA, Sathler LB, Juliano MA, Juliano L, Ulrich H, Ferreira ST. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype. PLoS One 2013; 8:e67194. [PMID: 23894286 PMCID: PMC3718777 DOI: 10.1371/journal.pone.0067194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ) and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs). Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.
Collapse
Affiliation(s)
- Arthur A. Nery
- Department of Biochemistry, Chemistry Institute, São Paulo University, São Paulo, SP, Brazil
| | - Margaret H. Magdesian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cleber A. Trujillo
- Department of Biochemistry, Chemistry Institute, São Paulo University, São Paulo, SP, Brazil
| | - Luciana B. Sathler
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria A. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luiz Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Chemistry Institute, São Paulo University, São Paulo, SP, Brazil
- * E-mail: (HU); (STF)
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail: (HU); (STF)
| |
Collapse
|
26
|
Reducing amyloid-related Alzheimer's disease pathogenesis by a small molecule targeting filamin A. J Neurosci 2012; 32:9773-84. [PMID: 22815492 DOI: 10.1523/jneurosci.0354-12.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PTI-125 is a novel compound demonstrating a promising new approach to treating Alzheimer's disease (AD), characterized by neurodegeneration and amyloid plaque and neurofibrillary pathologies. We show that the toxic signaling of amyloid-β(42) (Aβ(42)) by the α7-nicotinic acetylcholine receptor (α7nAChR), which results in tau phosphorylation and formation of neurofibrillary tangles, requires the recruitment of the scaffolding protein filamin A (FLNA). By binding FLNA with high affinity, PTI-125 prevents Aβ(42)'s toxic cascade, decreasing phospho-tau and Aβ aggregates and reducing the dysfunction of α7nAChRs, NMDARs, and insulin receptors. PTI-125 prevents Aβ(42) signaling by drastically reducing its affinity for α7nAChRs and can even dissociate existing Aβ(42)-α7nAChR complexes. Additionally, PTI-125 prevents Aβ-induced inflammatory cytokine release by blocking FLNA recruitment to toll-like receptor 4, illustrating an anti-inflammatory effect. PTI-125's broad spectrum of beneficial effects is demonstrated here in an intracerebroventricular Aβ(42) infusion mouse model of AD and in human postmortem AD brain tissue.
Collapse
|
27
|
Zappettini S, Grilli M, Olivero G, Mura E, Preda S, Govoni S, Salamone A, Marchi M. Beta Amyloid Differently Modulate Nicotinic and Muscarinic Receptor Subtypes which Stimulate in vitro and in vivo the Release of Glycine in the Rat Hippocampus. Front Pharmacol 2012; 3:146. [PMID: 22866037 PMCID: PMC3406330 DOI: 10.3389/fphar.2012.00146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/09/2012] [Indexed: 12/31/2022] Open
Abstract
Using both in vitro (hippocampal synaptosomes in superfusion) and in vivo (microdialysis) approaches we investigated whether and to what extent β amyloid peptide 1-40 (Aβ 1-40) interferes with the cholinergic modulation of the release of glycine (GLY) in the rat hippocampus. The nicotine-evoked overflow of endogenous GLY in hippocampal synaptosomes in superfusion was significantly inhibited by Aβ 1-40 (10 nM) while increasing the concentration to 100 nM the inhibitory effect did not further increase. Both the Choline (Ch; α7 agonist; 1 mM) and the 5-Iodo-A-85380 dihydrochloride (5IA85380, α4β2 agonist; 10 nM)-evoked GLY overflow were inhibited by Aβ 1-40 at 100 nM but not at 10 nM concentrations. The KCl evoked [(3)H]GLY and [(3)H]Acetylcholine (ACh) overflow were strongly inhibited in presence of oxotremorine; however this inhibitory muscarinic effect was not affected by Aβ 1-40. The effects of Aβ 1-40 on the administration of nicotine, veratridine, 5IA85380, and PHA543613 hydrochloride (PHA543613; a selective agonist of α7 subtypes) on hippocampal endogenous GLY release in vivo were also studied. Aβ 1-40 significantly reduced (at 10 μM but not at 1 μM) the nicotine-evoked in vivo release of GLY. Aβ 1-40 (at 10 μM but not at 1 μM) significantly inhibited the PHA543613 (1 mM)-elicited GLY overflow while was ineffective on the GLY overflow evoked by 5IA85380 (1 mM). Aβ 40-1 (10 μM) did not produce any inhibitory effect on nicotine-evoked GLY overflow both in the in vitro and in vivo experiments. Our results indicate that (a) the cholinergic modulation of the release of GLY occurs by the activation of both α7 and α4β2 nicotinic ACh receptors (nAChRs) as well as by the activation of inhibitory muscarinic ACh receptors (mAChRs) and (b) Aβ 1-40 can modulate cholinergic evoked GLY release exclusively through the interaction with α7 and the α4β2 nAChR nicotinic receptors but not through mAChR subtypes.
Collapse
Affiliation(s)
- Stefania Zappettini
- Section of Pharmacology and Toxicology, Department of Experimental Medicine, University of Genoa Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hicks DA, Nalivaeva NN, Turner AJ. Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling. Front Physiol 2012; 3:189. [PMID: 22737128 PMCID: PMC3381238 DOI: 10.3389/fphys.2012.00189] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022] Open
Abstract
Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein–protein interactions and for cellular signaling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses), axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD). Lipid rafts promote interaction of the amyloid precursor protein (APP) with the secretase (BACE-1) responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signaling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signaling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signaling events.
Collapse
Affiliation(s)
- David A Hicks
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | | | | |
Collapse
|
29
|
Zhao LN, Long H, Mu Y, Chew LY. The toxicity of amyloid β oligomers. Int J Mol Sci 2012; 13:7303-7327. [PMID: 22837695 PMCID: PMC3397527 DOI: 10.3390/ijms13067303] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/01/2012] [Accepted: 06/08/2012] [Indexed: 12/13/2022] Open
Abstract
In this review, we elucidate the mechanisms of Aβ oligomer toxicity which may contribute to Alzheimer's disease (AD). In particular, we discuss on the interaction of Aβ oligomers with the membrane through the process of adsorption and insertion. Such interaction gives rises to phase transitions in the sub-structures of the Aβ peptide from α-helical to β-sheet structure. By means of a coarse-grained model, we exhibit the tendency of β-sheet structures to aggregate, thus providing further insights to the process of membrane induced aggregation. We show that the aggregated oligomer causes membrane invagination, which is a precursor to the formation of pore structures and ion channels. Other pathological progressions to AD due to Aβ oligomers are also covered, such as their interaction with the membrane receptors, and their direct versus indirect effects on oxidative stress and intraneuronal accumulation. We further illustrate that the molecule curcumin is a potential Aβ toxicity inhibitor as a β-sheet breaker by having a high propensity to interact with certain Aβ residues without binding to them. The comprehensive understanding gained from these current researches on the various toxicity mechanisms show promises in the provision of better therapeutics and treatment strategies in the near future.
Collapse
Affiliation(s)
- Li Na Zhao
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
| | - HonWai Long
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
- High Performance Computing Centre, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Lock Yue Chew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637731, Singapore; E-Mails: (L.N.Z.); (H.W.L.)
| |
Collapse
|
30
|
Mehta M, Adem A, Kahlon MS, Sabbagh MN. The nicotinic acetylcholine receptor: smoking and Alzheimer's disease revisited. Front Biosci (Elite Ed) 2012; 4:169-80. [PMID: 22201862 PMCID: PMC5502782 DOI: 10.2741/367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies regarding Alzheimer's disease (AD) in smokers currently suggest inconsistent results. The clinicopathological findings also vary as to how AD pathology is affected by smoking behavior. Even though clinicopathological, functional, and epidemiological studies in humans do not present a consistent picture, much of the in vitro data implies that nicotine has neuroprotective effects when used in neurodegenerative disorder models. Current studies of the effects of nicotine and nicotinic agonists on cognitive function in both the non-demented and those with AD are not convincing. More data is needed to determine whether repetitive activation of nAChR with intermittent or acute exposure to nicotine, acute activation of nAChR, or long-lasting inactivation of nAChR secondary to chronic nicotine exposure will have a therapeutic effect and/or explain the beneficial effects of those types of drugs. Other studies show multifaceted connections between nicotine, nicotinic agonists, smoking, and nAChRs implicated in AD etiology. Although many controversies still exist, ongoing studies are revealing how nicotinic receptor changes and functions may be significant to the neurochemical, pathological, and clinical changes that appear in AD.
Collapse
Affiliation(s)
- Mona Mehta
- Banner Sun Health Research Institute, Sun City, AZ
| | - Abdu Adem
- Department of Pharmacology, Faculty of Medicine and Health Sciences, Al Ain, United Arab Emirates 3. Arizona Neurological Institute, Sun City, AZ
| | | | | |
Collapse
|
31
|
Ondrejcak T, Wang Q, Kew JNC, Virley DJ, Upton N, Anwyl R, Rowan MJ. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aß-mediated inhibition of LTP in the rat hippocampus. Eur J Pharmacol 2011; 677:63-70. [PMID: 22200627 DOI: 10.1016/j.ejphar.2011.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/28/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022]
Abstract
Nicotinic acetylcholine receptors mediate fast cholinergic modulation of glutamatergic transmission and synaptic plasticity. Here we investigated the effects of subtype selective activation of the α7 nicotinic acetylcholine receptors on hippocampal transmission and the inhibition of synaptic long-term potentiation by the Alzheimer's disease associated amyloid ß-protein (Aß). The α7 nicotinic acetylcholine receptor agonist "compound A" ((R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl))thiophene-2-carboxamide) induced a rapid-onset persistent enhancement of synaptic transmission in the dentate gyrus in vitro. Consistent with a requirement for activation of α7 nicotinic acetylcholine receptors, the type II α7-selective positive allosteric modulator PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) potentiated, and the antagonist methyllycaconitine (MLA) prevented the persistent enhancement. Systemic injection of the agonist also induced a similar MLA-sensitive persistent enhancement of synaptic transmission in the CA1 area in vivo. Remarkably, although compound A did not affect control long-term potentiation (LTP) in vitro, it prevented the inhibition of LTP by Aß1-42 and this effect was inhibited by MLA. These findings strongly indicate that activation of α7 nicotinic acetylcholine receptors is sufficient to persistently enhance hippocampal synaptic transmission and to overcome the inhibition of LTP by Aß.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
32
|
Yu W, Mechawar N, Krantic S, Quirion R. α7 Nicotinic receptor activation reduces β-amyloid-induced apoptosis by inhibiting caspase-independent death through phosphatidylinositol 3-kinase signaling. J Neurochem 2011; 119:848-58. [DOI: 10.1111/j.1471-4159.2011.07466.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer's disease. Biochem Pharmacol 2011; 82:931-42. [DOI: 10.1016/j.bcp.2011.06.039] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/18/2011] [Accepted: 06/27/2011] [Indexed: 11/19/2022]
|
34
|
Bakshi K, Kosciuk M, Nagele RG, Friedman E, Wang HY. Prenatal cocaine exposure increases synaptic localization of a neuronal RasGEF, GRASP-1 via hyperphosphorylation of AMPAR anchoring protein, GRIP. PLoS One 2011; 6:e25019. [PMID: 21980374 PMCID: PMC3181332 DOI: 10.1371/journal.pone.0025019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
Prenatal cocaine exposure causes sustained phosphorylation of the synaptic anchoring protein, glutamate receptor interacting protein (GRIP1/2), preventing synaptic targeting of the GluR2/3-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs; J. Neurosci. 29: 6308–6319, 2009). Because overexpression of GRIP-associated neuronal rasGEF protein (GRASP-1) specifically reduces the synaptic targeting of AMPARs, we hypothesized that prenatal cocaine exposure enhances GRASP-1 synaptic membrane localization leading to hyper-activation of ras family proteins and heightened actin polymerization. Our results show a markedly increased GRIP1-associated GRASP-1 content with approximately 40% reduction in its rasGEF activity in frontal cortices (FCX) of 21-day-old (P21) prenatal cocaine-exposed rats. This cocaine effect is the result of a persistent protein kinase C (PKC)- and downstream Src tyrosine kinase-mediated GRIP phosphorylation. The hyperactivated PKC also increased membrane-associated GRASP-1 and activated small G-proteins RhoA, cdc42/Rac1 and Rap1 as well as filamentous actin (F-actin) levels without an effect on the phosphorylation state of actin. Since increased F-actin facilitates protein transport, our results suggest that increased GRASP-1 synaptic localization in prenatal cocaine-exposed brains is an adaptive response to restoring the synaptic expression of AMPA-GluR2/3. Our earlier data demonstrated that persistent PKC-mediated GRIP phosphorylation reduces GluR2/3 synaptic targeting in prenatal cocaine-exposed brains, we now show that the increased GRIP-associated GRASP-1 may contribute to the reduction in GluR2/3 synaptic expression and AMPAR signaling defects.
Collapse
Affiliation(s)
- Kalindi Bakshi
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- Department of Biology & Neuroscience, Graduate Center of the City University of New York, New York, New York, United States of America
- Center for Developmental Neuroscience/Institute for Basic Research/City University of New York Graduate School, Staten Island, New York, United States of America
| | - Mary Kosciuk
- New Jersey Institute for Successful Aging, University of Medicine and Dentistry New Jersey-School of Osteopathic Medicine, Stratford, New Jersey, United States of America
| | - Robert G. Nagele
- New Jersey Institute for Successful Aging, University of Medicine and Dentistry New Jersey-School of Osteopathic Medicine, Stratford, New Jersey, United States of America
| | - Eitan Friedman
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- Department of Biology & Neuroscience, Graduate Center of the City University of New York, New York, New York, United States of America
| | - Hoau-Yan Wang
- Departments of Physiology, Pharmacology and Neuroscience, Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York, United States of America
- Department of Biology & Neuroscience, Graduate Center of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mohamed A, Posse de Chaves E. Aβ internalization by neurons and glia. Int J Alzheimers Dis 2011; 2011:127984. [PMID: 21350608 PMCID: PMC3042623 DOI: 10.4061/2011/127984] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 12/23/2010] [Indexed: 11/20/2022] Open
Abstract
In the brain, the amyloid β peptide (Aβ) exists extracellularly and inside neurons. The intracellular accumulation of Aβ in Alzheimer's disease brain has been questioned for a long time. However, there is now sufficient strong evidence indicating that accumulation of Aβ inside neurons plays an important role in the pathogenesis of Alzheimer's disease. Intraneuronal Aβ originates from intracellular cleavage of APP and from Aβ internalization from the extracellular milieu. We discuss here the different molecular mechanisms that are responsible for Aβ internalization in neurons and the links between Aβ internalization and neuronal dysfunction and death. A brief description of Aβ uptake by glia is also presented.
Collapse
Affiliation(s)
- Amany Mohamed
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | |
Collapse
|
36
|
Wu J, Ishikawa M, Zhang J, Hashimoto K. Brain imaging of nicotinic receptors in Alzheimer's disease. Int J Alzheimers Dis 2010; 2010:548913. [PMID: 21253523 PMCID: PMC3022172 DOI: 10.4061/2010/548913] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 12/08/2010] [Indexed: 11/30/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels which are widely distributed in the human brain. Several lines of evidence suggest that two major subtypes (α4β2 and α7) of nAChRs play an important role in the pathophysiology of Alzheimer's disease (AD). Postmortem studies demonstrated alterations in the density of these subtypes of nAChRs in the brain of patients with AD. Currently, nAChRs are one of the most attractive therapeutic targets for AD. Therefore, several researchers have made an effort to develop novel radioligands that can be used to study quantitatively the distribution of these two subtypes in the human brain with positron emission tomography (PET) and single-photon emission computed tomography (SPECT). In this paper, we discuss the current topics on in vivo imaging of two subtypes of nAChRs in the brain of patients with AD.
Collapse
Affiliation(s)
- Jin Wu
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, 1-8-1 Inohana Chiba 260-8670, Japan
| | | | | | | |
Collapse
|