1
|
N P, M M G, C RR, D P, E H, A G, M MÁ, C G, V LM, E M SR, R G. Modulation of morphine antinociceptive and rewarding effect by mirtazapine in an animal model of osteoarthritic pain. Eur J Pharmacol 2025; 987:177165. [PMID: 39615867 DOI: 10.1016/j.ejphar.2024.177165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/31/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024]
Abstract
People with chronic pain mitigate their suffering by the action of opioids. Adverse reactions aside, opioids are not exempt from potential complications like addiction and abuse, which have posed a global public health problem lately. Finding new therapeutic strategies to improve analgesia and to reduce opioid side effects has become a priority. In this regard, the association of different adjuvant therapies has been postulated. Despite preclinical and clinical evidence supporting the use of antidepressants as analgesics, it is not clear whether they could help reduce the risk of addiction in combination with opioids. To further explore this idea a model of chronic osteoarthritis pain was employed, and a combination of mirtazapine and morphine was used in a chronic regimen in male and female rats. The effects on the development of tactile allodynia, movement-evoked pain, reward, analgesic tolerance, naloxone-induced withdrawal symptoms, impaired locomotor activity and anxiety were evaluated under a 25-day experimental protocol. Additionally, protein expression of μ-opioid receptors and clusterin (related with substance abuse) was evaluated in plasma and in brain structures of the reward system. Chronic morphine caused analgesic tolerance, reward and naloxone-induced withdrawal symptoms. The combination reduced the analgesic tolerance and prevented the development of withdrawal symptoms but showed sex-based differences regarding reward. Increased levels of clusterin in plasma were observed in females treated with morphine, but not with combined therapy. The combination of mirtazapine and morphine could be a promising strategy to improve the management of long-term opioid treatment and its risk of abuse, especially in females.
Collapse
Affiliation(s)
- Paniagua N
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - García M M
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Rodríguez Rivera C
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Pascual D
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Herradón E
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - González A
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Molina-Álvarez M
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Goicoechea C
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - López-Miranda V
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| | - Sánchez-Robles E M
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain.
| | - Girón R
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Rey Juan Carlos University (URJC), Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Scientific Research Superior Council (CSIC), Alcorcón, Spain; High Performance Research Group in Experimental Pharmacology (PHARMAKOM) of the Rey Juan Carlos University, Alcorcón, Spain
| |
Collapse
|
2
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
3
|
Barbosa-Méndez S, Salazar-Juárez A. Mirtazapine decreased cocaine-induced c-fos expression and dopamine release in rats. Front Psychiatry 2024; 15:1428730. [PMID: 39188520 PMCID: PMC11346032 DOI: 10.3389/fpsyt.2024.1428730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction Chronic cocaine exposure induces an increase in dopamine release and an increase in the expression of the Fos protein in the rat striatum. It has been suggested that both are necessary for the expression of cocaine-induced alterations in behavior and neural circuitry. Mirtazapine dosing attenuated the cocaine-induced psychomotor and reinforcer effects. Methods The study evaluates the effect of chronic dosing of mirtazapine on cocaine-induced extracellular dopamine levels and Fos protein expression in rats. Male Wistar rats received cocaine (10 mg/Kg; i.p.) during the induction and expression of locomotor sensitization. The mirtazapine (30 mg/Kg; MIR), was administered 30 minutes before cocaine during the cocaine withdrawal. After each treatment, the locomotor activity was recorded for 30 minutes. Animals were sacrificed after treatment administration. Dopamine levels were determined by high-performance liquid chromatographic (HPLC) in the ventral striatum, the prefrontal cortex (PFC), and the ventral tegmental area (VTA) in animals treated with mirtazapine and cocaine. The quantification of c-fos immunoreactive cells was carried out by stereology analysis. Results Mirtazapine generated a decrease in cocaine-induced locomotor activity. In addition, mirtazapine decreased the amount of cocaine-induced dopamine and the number of cells immunoreactive to the Fos protein in the striatum, PFC, and VTA. Discussion These data suggest that mirtazapine could prevent the consolidation of changes in behavior and the cocaine-induced reorganization of neuronal circuits. It would explain the mirtazapine-induced effects on cocaine behavioral sensitization. Thus, these data together could support its possible use for the treatment of patients with cocaine use disorder.
Collapse
|
4
|
Choi S, Methiwala HN, Graves SM. Isradipine, an L-type calcium channel inhibitor, attenuates cue-associated methamphetamine-seeking in mice. Brain Res 2023; 1818:148528. [PMID: 37567548 PMCID: PMC10530265 DOI: 10.1016/j.brainres.2023.148528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Methamphetamine (meth) is an addictive psychostimulant and there are no FDA-approved treatment options for patients suffering from meth use disorders. In addition to being addictive, meth is also neurotoxic and chronic administration results in degeneration of substantia nigra pars compacta (SNc) dopamine and locus coeruleus (LC) norepinephrine neurons in mice. Optimal treatment strategies for meth use disorders would attenuate maladaptive meth-seeking behavior as well as provide neuroprotection. The L-type calcium channel inhibitor isradipine and the monoamine oxidase (MAO) inhibitor rasagiline both prevent chronic meth-induced SNc and LC degeneration but effects on meth-seeking are unknown. To test whether these clinically available compounds can mitigate meth-seeking, mice were implanted with chronic indwelling jugular vein catheters and allowed to self-administer meth (0.1 mg/kg/infusion) for 10 consecutive days (2-hrs/day) on a fixed ratio (FR) 1 schedule of reinforcement with meth infusions paired to a cue light. One day after the last self-administration session mice were tested for cue-associated meth-seeking behavior wherein the meth-associated cue light was contingently presented but meth reinforcement withheld. Isradipine (3 mg/kg) attenuated cue-associated meth-seeking in both male and female mice. In contrast, rasagiline (1 mg/kg) had no effect on seeking in either sex. These results suggest that isradipine may have the potential to serve as a dual-purpose pharmacotherapy for meth use disorders by attenuating seeking behavior and providing neuroprotection.
Collapse
Affiliation(s)
- Sanghoon Choi
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | | | - Steven M Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Barbosa-Méndez S, Perez-Sánchez G, Salazar-Juárez A. Vortioxetine treatment decreases cocaine-induced locomotor sensitization in rats. Physiol Behav 2022; 257:113989. [DOI: 10.1016/j.physbeh.2022.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
|
6
|
Choi S, Du Y, Wokosin DL, Graves SM. Acute and protracted abstinence from methamphetamine bidirectionally changes intrinsic excitability of indirect pathway spiny projection neurons in the dorsomedial striatum. Sci Rep 2022; 12:12116. [PMID: 35840639 PMCID: PMC9287428 DOI: 10.1038/s41598-022-16272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (meth) is an addictive psychostimulant and illicit use presents significant personal and socioeconomic harm. Behavioral studies support the involvement of the dorsal striatum in drug-seeking but stimulant induced dysfunction in this region is understudied. The dorsal striatum can be subdivided into the dorsomedial (DMS) and dorsolateral (DLS) striatum with the DMS implicated in goal-directed and DLS in habitual behaviors; both regions are primarily composed of GABAergic direct (dSPNs) and indirect pathway (iSPNs) spiny projection neurons. To examine the effect of repeated meth on SPNs, mice were administered meth (2 mg/kg) for ten consecutive days and intrinsic excitability, dendritic excitability, and spine density were examined. DMS iSPN intrinsic excitability was increased at 1 day but decreased at 21 days of abstinence. In contrast, DMS dSPN intrinsic excitability was unchanged at either timepoint. Dendritic excitability and spine densities were unaltered in DMS iSPNs and dSPNs at 1 and 21 days of abstinence. The effect of repeated meth on iSPN excitability was specific to the DMS; DLS iSPN intrinsic excitability, dendritic excitability, and spine density were unchanged at 1 and 21 days of abstinence. These findings point toward DMS iSPN dysfunction in meth use disorders with differential dysfunction dependent on abstinence duration.
Collapse
Affiliation(s)
- Sanghoon Choi
- grid.17635.360000000419368657Department of Pharmacology, University of Minnesota, Minneapolis, MN USA
| | - Yijuan Du
- grid.17635.360000000419368657Department of Pharmacology, University of Minnesota, Minneapolis, MN USA
| | - David L. Wokosin
- grid.16753.360000 0001 2299 3507Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL USA
| | - Steven M. Graves
- grid.17635.360000000419368657Department of Pharmacology, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
7
|
Jessen K, Slaker Bennett ML, Liu S, Olsen CM. Comparison of prefrontal cortex sucrose seeking ensembles engaged in multiple seeking sessions: Context is key. J Neurosci Res 2022; 100:1008-1029. [PMID: 35137974 PMCID: PMC8940716 DOI: 10.1002/jnr.25025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022]
Abstract
Encoding of memories, including those associated with prior drug or reward, is thought to take place within distinct populations of neurons, termed ensembles. Neuronal ensembles for drug- and reward-seeking have been identified in regions of the medial prefrontal cortex, but much of our understanding of these ensembles is based on experiments that take place in a single reward-associated environment and measure ensemble encoding over short durations of time. In contrast, reward seeking behavior is evident across different reward-associated environments and persists over time. Using TetTag mice and Fos immunohistochemistry, we examined the relationship between persistent sucrose-seeking and ensemble encoding in mice that undergo seeking sessions in the same or different sucrose self-administration contexts 2 weeks apart. We found that prelimbic (PrL) and anterior cingulate cortex ensembles tagged in the first seeking session were highly sensitive to the context in which a second seeking session took place: reactivation of these ensembles was reduced in the same context but elevated in a distinct sucrose self-administration context. Correlational analyses revealed that ensemble reactivation in the PrL was proportional to the persistence of sucrose seeking behavior across sessions in differing ways in female mice. In the same context, reactivation was proportional to the persistence of non-reinforced operant responses, whereas in a distinct context, reactivation was proportional to the persistence of non-reinforced head entries into the sucrose receptacle. This study underlines the importance of the medial prefrontal cortex importance in maintaining a reward-seeking ensemble over time and identifies context-dependent changes in behavioral correlates of ensemble reactivation.
Collapse
Affiliation(s)
- Kristen Jessen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Megan L Slaker Bennett
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Neuroscience, Wisconsin Lutheran College, Milwaukee, Wisconsin, USA
| | - Shuai Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher M Olsen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Calma ID, Persons AL, Napier TC. Mitochondrial function influences expression of methamphetamine-induced behavioral sensitization. Sci Rep 2021; 11:24529. [PMID: 34972820 PMCID: PMC8720100 DOI: 10.1038/s41598-021-04301-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 12/21/2022] Open
Abstract
Repeated methamphetamine use leads to long lasting brain and behavioral changes in humans and laboratory rats. These changes have high energy requirements, implicating a role for mitochondria. We explored whether mitochondrial function underpins behaviors that occur in rats months after stopping methamphetamine self-administration. Accordingly, rats self-administered intravenous methamphetamine for 3 h/day for 14 days. The mitochondrial toxin rotenone was administered as (1 mg/kg/day for 6 days) via an osmotic minipump starting at 0, 14 or 28 days of abstinence abstinence. On abstinence day 61, expression of methamphetamine-induced behavioral sensitization was obtained with an acute methamphetamine challenge in rotenone-free rats. Rotenone impeded the expression of sensitization, with the most robust effects obtained with later abstinence exposure. These findings verified that self-titration of moderate methamphetamine doses results in behavioral (and thus brain) changes that can be revealed months after exposure termination, and that the meth-initiated processes progressed during abstinence so that longer abstinence periods were more susceptible to the consequences of exposure to a mitochondrial toxin.
Collapse
Affiliation(s)
- I. Daphne Calma
- grid.240684.c0000 0001 0705 3621Departments of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612 USA
| | - Amanda L. Persons
- grid.240684.c0000 0001 0705 3621Departments of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Departments of Physician Assistant Studies, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612 USA
| | - T. Celeste Napier
- grid.240684.c0000 0001 0705 3621Departments of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612 USA ,grid.240684.c0000 0001 0705 3621Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Suite 424, Cohn Research Building, 1735 W. Harrison Street, Chicago, IL 60610 USA
| |
Collapse
|
9
|
Persons AL, Bradaric BD, Kelly LP, Kousik SM, Graves SM, Yamamoto BK, Napier TC. Gut and brain profiles that resemble pre-motor and early-stage Parkinson's disease in methamphetamine self-administering rats. Drug Alcohol Depend 2021; 225:108746. [PMID: 34098381 PMCID: PMC8483557 DOI: 10.1016/j.drugalcdep.2021.108746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Methamphetamine is a potent psychomotor stimulant, and methamphetamine abusers are up to three times more likely to develop Parkinson's disease (PD) later in life. Prodromal PD may involve gut inflammation and the accumulation of toxic proteins that are transported from the enteric nervous system to the central nervous system to mediate, in part, the degeneration of dopaminergic projections. We hypothesized that self-administration of methamphetamine in rats produces a gut and brain profile that mirrors pre-motor and early-stage PD. METHODS Rats self-administered methamphetamine in daily 3 h sessions for two weeks. Motor function was assessed before self-administration, during self-administration and throughout the 56 days of forced abstinence. Assays for pathogenic markers (tyrosine hydroxylase, glial fibrillary acidic protein (GFAP), α-synuclein) were conducted on brain and gut tissue collected at one or 56 days after cessation of methamphetamine self-administration. RESULTS Motor deficits emerged by day 14 of forced abstinence and progressively worsened up to 56 days of forced abstinence. In the pre-motor stage, we observed increased immunoreactivity for GFAP and α-synuclein within the ganglia of the myenteric plexus in the distal colon. Increased α-synuclein was also observed in the substantia nigra pars compacta. At 56 days, GFAP and α-synuclein normalized in the gut, but the accumulation of nigral α-synuclein persisted, and the dorsolateral striatum exhibited a significant loss of tyrosine hydroxylase. CONCLUSION The pre-motor profile is consistent with gut inflammation and gut/brain α-synuclein accumulation associated with prodromal PD and the eventual development of the neurological disease.
Collapse
Affiliation(s)
- Amanda L. Persons
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612,Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Brinda D. Bradaric
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Health Sciences, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Leo P. Kelly
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612
| | - Sharanya M. Kousik
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Steven M. Graves
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - T. Celeste Napier
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612,Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612,Department of Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
10
|
Barbosa-Méndez S, López-Morado C, Salazar-Juárez A. Mirtazapine-induced decrease in cocaine sensitization is enhanced by environmental enrichment in rats. Pharmacol Biochem Behav 2021; 208:173237. [PMID: 34274360 DOI: 10.1016/j.pbb.2021.173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/03/2023]
Abstract
Several studies have reported that mirtazapine attenuated the induction and expression of cocaine-induced locomotor sensitization. Animals placed in enriched housing environments have shown a decrease in cocaine-induced locomotor activity and sensitization. In addition, it has been suggested that a pharmacological treatment combined with a behavioral intervention increases the efficacy of the former. Thus, the objective of this study was to determine if dosing of mirtazapine in an enriched housing environment enhanced the mirtazapine-induced decrease on the induction and expression of cocaine-induced locomotor sensitization. Wistar male rats were dosed with cocaine (10 mg/kg, i.p.). During the drug-withdrawal phase, mirtazapine (30 mg/kg, i.p.) was administered under standard and enriched housing environmental conditions. The environmental enrichment consisted of housing the animals in enclosures with plastic toys, tunnels, and running wheels. After each administration, locomotor activity for each animal was recorded for 30 min. The study found that treatment with mirtazapine in an enriched housing environment produced an enhanced and persistent attenuation of the induction and expression of cocaine-induced locomotor sensitization. Additionally, it reduced the duration of cocaine-induced locomotor activity in the expression phase of locomotor sensitization. Dosing of mirtazapine in an enriched housing environment enhanced the effectiveness of mirtazapine to decrease cocaine-induced locomotor sensitization. This suggests the potential use of enriched environments to enhance the effect of mirtazapine.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Casandra López-Morado
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico.
| |
Collapse
|
11
|
Barbosa Méndez S, Salazar-Juárez A. Mirtazapine decreased induction and expression of cocaine + nicotine-induced locomotor sensitisation in rats. World J Biol Psychiatry 2020; 21:595-611. [PMID: 31104538 DOI: 10.1080/15622975.2019.1620967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: Concurrent abuse of cocaine and nicotine is considered a public health problem. To date, no effective therapy has been known to reduce the reinforcing effects of concurrent use of cocaine and nicotine. Mirtazapine, an antagonist of the α2-adrenoceptor and the 5-HT2A/C and the 5-HT3 receptors has proven effective in reducing the cocaine, nicotine and methamphetamine behavioural effects in humans and animals. Our study evaluated the effect of mirtazapine on enhancing locomotor activity during the induction and expression of locomotor sensitisation induced by a cocaine + nicotine mixture.Methods: Wistar rats were dosed with cocaine, nicotine or cocaine + nicotine combination. Mirtazapine (30 mg/kg, i.p.) was administered during the extinction phase.Results: Mirtazapine decreased cocaine + nicotine-induced locomotor activity and induction and expression of locomotor sensitisation. In addition, we found that co-administration of mecamylamine and mirtazapine significantly enhanced the effect of mirtazapine on cocaine + nicotine-induced locomotor activity during induction and expression of behavioural sensitisation.Conclusions: Our results suggest that mirtazapine demonstrated efficacy in decreasing the psycho-stimulant effects of concurrent use of cocaine and nicotine.
Collapse
Affiliation(s)
- Susana Barbosa Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía, y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, 14370, México
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía, y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, 14370, México
| |
Collapse
|
12
|
Barbosa-Méndez S, Osorio-Santiago KL, Salazar-Juárez A. Mirtazapine reduces the expression of cocaine-induced locomotor sensitization in male and female Wistar rats. Horm Behav 2020; 125:104817. [PMID: 32682854 DOI: 10.1016/j.yhbeh.2020.104817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Epidemiological studies have described that women are more vulnerable to the reinforcing effects of cocaine. In animals, the findings are similar: female rats show higher levels of cocaine self-administration and increased cocaine-induced locomotor activity. In contrast, women with depression respond better to treatment with antidepressants, however their therapeutic response to tetracyclic antidepressants is lower. Several studies have shown that mirtazapine-a tetracyclic antidepressant-decreases the behavioral effects of cocaine in male rats. The objective of this study was to evaluate the efficacy of daily dosing of mirtazapine on cocaine-induced locomotor activity and sensitization in naive female rats compared to male rats. METHODS Male and female Wistar rats were daily dosed with 10 mg/kg of cocaine. During extinction, cocaine was withdrawn and the groups received daily mirtazapine (30 mg/kg, i.p.) or saline. Tamoxifen was administered during the antagonism phase. After each administration, locomotor activity for each animal was recorded for 30 min in transparent Plexiglass activity chambers. RESULTS In this study, a higher cocaine locomotor response was found in females than in males and the mirtazapine was equally effective in decreasing cocaine-induced locomotor activity and the expression of locomotor sensitization in male and female rats. In addition, co-administration of mirtazapine and tamoxifen enhanced the efficacy of mirtazapine in female rats. CONCLUSION The results suggest that mirtazapine may be considered an effective therapeutic option for the treatment of cocaine use disorder in men and women.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370. Mexico
| | - Katya Lorena Osorio-Santiago
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370. Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370. Mexico.
| |
Collapse
|
13
|
De Deurwaerdère P, Bharatiya R, Chagraoui A, Di Giovanni G. Constitutive activity of 5-HT receptors: Factual analysis. Neuropharmacology 2020; 168:107967. [DOI: 10.1016/j.neuropharm.2020.107967] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022]
|
14
|
Abstract
BACKGROUND Nicotine is the major psychoactive component of tobacco. A number of pharmacological therapies have been evaluated, with poor results. Given the lack of success of these therapies, several authors have proposed alternative therapeutic strategies. One of these is the use of antidepressant drugs that may have a specific effect on the neural pathways or receptors underlying nicotine addiction. Mirtazapine is an antagonist of α2 NE receptors (noradrenergic receptor), 5-HT2A/C and 5-HT3 receptors and has demonstrated efficacy in reducing behavioral effects induced by drugs of abuse in human and animal models. AIMS In this study, we evaluated the effect of chronic dosing of mirtazapine during extinction on the re-acquisition of nicotine-seeking in rodents. METHODS We used the nicotine self-administration paradigm to assess the effects of mirtazapine on rats trained to self-administer nicotine under a pharmacological fixed-ratio schedule. Mirtazapine (30 mg/kg, i.p.) was administered during extinction. RESULTS In this work, we found that mirtazapine attenuates the re-acquisition of nicotine-seeking responses. CONCLUSIONS These results support the use of mirtazapine in clinical controlled trials as a useful therapy that prolongs and increases rates of preventing relapse into nicotine intake in humans.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, México
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México, México
| |
Collapse
|
15
|
Shahidi S, Komaki A, Sadeghian R, Soleimani Asl S. Effect of a 5-HT 1D receptor agonist on the reinstatement phase of the conditioned place preference test and hippocampal long-term potentiation in methamphetamine-treated rats. Brain Res 2018; 1698:151-160. [PMID: 30076792 DOI: 10.1016/j.brainres.2018.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Methamphetamine (METH)-seeking relapse is associated with memory and synaptic plasticity changes. Serotonin is a key neuromodulator in this process. While there is a known distribution of 5-HT1D receptors in reward and memory areas, such as the hippocampus, its physiological function is currently unknown. Here, we evaluated effect of a 5-HT1D receptor agonist, PNU142633, on the reinstatement of METH-seeking behavior and long-term potentiation. Rats were implanted with a cannula into lateral ventricle, then treated with saline or METH (5 mg/kg) during the acquisition phase of the conditioned place preference (CPP) test. On day 13 of the extinction phase, METH groups were divided into four groups: METH (0: saline, 1, or 2.5 (priming METH) mg/kg; i.p.) + vehicle (5 µl/rat) or a priming dose of METH (2.5 mg/kg; i.p.) + PNU (2 µg/5 µl; i.c.v.) and their preference scores were calculated on reinstatement day (day 14). Immediately following this, electrophysiology was performed to assay the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude between groups. The results showed that CPP induction by METH gradually declined to extinction on days 12 and 13. A priming METH treatment significantly increased preference for the METH-paired chamber when compared with other groups, but pre-treatment with PNU significantly attenuated this effect. PS amplitude and fEPSP slopes in vehicle + priming METH rats were greater when compared with other groups. Furthermore, PNU attenuated the priming METH-induced increase in PS amplitude. These findings suggest that PNU can decrease synaptic transmission and prevent METH reinstatement in rats.
Collapse
Affiliation(s)
- Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reihaneh Sadeghian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sara Soleimani Asl
- Anatomy Departments, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
16
|
Ohene-Nyako M, Persons AL, Napier TC. Region-specific changes in markers of neuroplasticity revealed in HIV-1 transgenic rats by low-dose methamphetamine. Brain Struct Funct 2018; 223:3503-3513. [PMID: 29931627 DOI: 10.1007/s00429-018-1701-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/15/2018] [Indexed: 12/15/2022]
Abstract
Methamphetamine abuse co-occurring with HIV infection presents neuropathology in brain regions that mediate reward and motivation. A neuronal signaling cascade altered acutely by meth and some HIV-1 proteins is the mitogen-activated protein kinase (MAPK) pathway. It remains unknown if chronic co-exposure to meth and HIV-1 proteins converge on MAPK in vivo. To make this determination, we studied young adult Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats that self-administered meth (0.02-0.04 mg/kg/0.05 ml iv infusion, 2 h/day for 21 days) and their saline-yoked controls. One day following the operant task, rats were killed. Brain regions involved in reward-motivation [i.e., nucleus accumbens (NA) and ventral pallidum (VP)], were assayed for a MAPK cascade protein, extracellular signal-regulated kinase (ERK), and a downstream transcription factor, ΔFosB. In the NA, activated (phosphorylated; p) ERK-to-ERK ratio (pERK/ERK) was increased in meth-exposed Tg rats versus saline Tg controls, and versus meth non-Tg rats. ΔFosB was increased in meth Tg rats versus saline and meth non-Tg rats. Assessment of two targets of ΔFosB-regulated transcription revealed (1) increased dopamine D1 receptor (D1R) immunoreactivity in the NA shell of Tg-meth rats versus saline Tg controls, but (2) no changes in the AMPA receptor subunit, GluA2. No changes related to genotype or meth occurred for ERK, ΔFosB or D1R protein in the VP. Results reveal a region-specific activation of ERK, and increases in ΔFosB and D1R expression induced by HIV-1 proteins and meth. Such effects may contribute to the neuronal and behavioral pathology associated with meth/HIV comorbidity.
Collapse
Affiliation(s)
- Michael Ohene-Nyako
- Department of Pharmacology, Rush University, Chicago, IL, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - Amanda L Persons
- Department of Physician Assistant Studies, Rush University, Chicago, IL, USA.,Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA.,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA
| | - T Celeste Napier
- Department of Psychiatry, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building Suite #424, Chicago, IL, 60612, USA. .,Center for Compulsive Behavior and Addiction, Rush University, Chicago, IL, USA.
| |
Collapse
|
17
|
Dassanayake AF, Canales JJ. Replacement treatment during extinction training with the atypical dopamine uptake inhibitor, JHW-007, reduces relapse to methamphetamine seeking. Neurosci Lett 2018; 671:88-92. [PMID: 29452175 DOI: 10.1016/j.neulet.2018.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 12/29/2022]
Abstract
There are currently no approved medications to effectively counteract the effects of methamphetamine (METH), reduce its abuse and prolong abstinence from it. Data accumulated in recent years have shown that a range of N-substituted benztropine (BZT) analogues possesses psychopharmacological features consistent with those of a potential replacement or "substitute" treatment for stimulant addiction. On the other hand, the evidence that antidepressant therapy may effectively prevent relapse to stimulant seeking is controversial. Here, we compared in rats the ability of the BZT analogue and high affinity dopamine (DA) reuptake inhibitor, JHW-007, and the antidepressant, trazodone, administered during extinction sessions after chronic METH self-administration, to alter METH-primed reinstatement of drug seeking. The data showed that trazodone produced paradoxical effects on lever pressing during extinction of METH self-administration, decreasing active, but increasing inactive, lever pressing. JHW-007 did not have any observable effects on extinction training. Importantly, JHW-007 significantly attenuated METH-primed reinstatement, whereas trazodone enhanced it. These findings lend support to the candidacy of selective DA uptake blockers, such as JHW-007, as potential treatments for METH addiction, but not to the use of antidepressant medication as a single therapeutic approach for relapse prevention.
Collapse
Affiliation(s)
- Ashlea F Dassanayake
- Division of Psychology, School of Medicine, University of Tasmania, Private Bag 30, Hobart, TAS, 7001, Australia
| | - Juan J Canales
- Division of Psychology, School of Medicine, University of Tasmania, Private Bag 30, Hobart, TAS, 7001, Australia.
| |
Collapse
|
18
|
Mirtazapine impairs acquisition and reinstatement of cocaine-induced place preference in rats. Eur J Pharmacol 2018; 820:183-190. [DOI: 10.1016/j.ejphar.2017.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/05/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022]
|
19
|
Persons AL, Bradaric BD, Dodiya HB, Ohene-Nyako M, Forsyth CB, Keshavarzian A, Shaikh M, Napier TC. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats. PLoS One 2018; 13:e0190078. [PMID: 29293553 PMCID: PMC5749763 DOI: 10.1371/journal.pone.0190078] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023] Open
Abstract
The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.
Collapse
Affiliation(s)
- Amanda L. Persons
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States of America
- Department of Physician Assistant Studies, Rush University Medical Center, Chicago, IL, United States of America
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- * E-mail:
| | - Brinda D. Bradaric
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Health Sciences, Rush University Medical Center, Chicago, IL, United States of America
| | - Hemraj B. Dodiya
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, United States of America
| | - Michael Ohene-Nyako
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, United States of America
| | - Christopher B. Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, United States of America
| | - Ali Keshavarzian
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, United States of America
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, United States of America
| | - T. Celeste Napier
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States of America
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, United States of America
- Department of Pharmacology, Rush University Medical Center, Chicago, IL, United States of America
| |
Collapse
|
20
|
Synergistic interactions between mirtazapine and prazosin prevent the induction and expression of behavioral sensitization to cocaine in rats. Physiol Behav 2017; 180:137-145. [DOI: 10.1016/j.physbeh.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022]
|
21
|
Mirtazapine attenuates cocaine seeking in rats. J Psychiatr Res 2017; 92:38-46. [PMID: 28391178 DOI: 10.1016/j.jpsychires.2017.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Relapse to cocaine use is a major problem in the clinical treatment of cocaine addiction. Antidepressants have been studied for their therapeutic potential to treat cocaine use disorder. Research has suggested that antidepressants attenuate both drug craving and the re-acquisition of drug-seeking and drug-taking behaviors. This study examined the efficacy of mirtazapine, an antidepressant/anxiolytic, in decreasing cocaine seeking in rats. METHODS We used the cocaine self-administration paradigm to assess the effects of mirtazapine on rats trained to self-administer cocaine or food under a fixed-ratio schedule. Mirtazapine (30 mg/kg, i.p.) was administered during extinction. RESULTS Mirtazapine significantly attenuated non-reinforced lever-press responses during extinction. Moreover, the mirtazapine dosed for 30 days during extinction produced sustained attenuation of lever-press responses during re-acquisition of cocaine self-administration, without changing food-seeking behavior. Our results showed that mirtazapine attenuated the re-acquisition of cocaine-seeking responses. CONCLUSION Our study pointed to the efficacy of mirtazapine in reducing the risk of drug relapse during abstinence, suggesting for its potential use as a novel pharmacological agent to treat drug abuse.
Collapse
|
22
|
Barbosa-Méndez S, Matus-Ortega M, Flores-Zamora A, Jurado N, Salazar-Juárez A. Dose- and time-dependent effects of mirtazapine on the expression of cocaine-induced behavioral sensitization in rats. Psychiatry Res 2017; 254:301-310. [PMID: 28501735 DOI: 10.1016/j.psychres.2017.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 04/11/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
Abstract
Relapse to cocaine use is a major problem in the clinical treatment of cocaine dependence. Antidepressant medications have been studied as potential therapeutic drugs to relieve a cocaine dependence disorder. Mirtazapine is an antidepressant implicated in reducing behavioral alterations induced by drugs of abuse. We have reported elsewhere that 30mg/kg mirtazapine administered for 30 days during cocaine extinction significantly attenuated the induction and expression of cocaine-induced locomotor sensitization and decreased the duration of the cocaine-induced locomotor effect. This study focused on exploring whether different mirtazapine dosing regimens could optimize and/or improve the effect of 30mg/kg mirtazapine administered for 30 days on cocaine-induced locomotor activity during the expression phase of behavioral sensitization. Our study revealed that the daily dosing regimen with a fixed dose of mirtazapine (30mg/kg ip) over 60 days improved the decrease in cocaine-induced locomotor activity and behavioral sensitization obtained by dosing of 30mg mirtazapine for 30 days. In addition, it showed that a dosing regimen of 30mg/Kg mirtazapine for 30 days managed to reduce cocaine toxicity. These results suggested that dosage of mirtazapine for 30 consecutive days may be an effective therapy.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Maura Matus-Ortega
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Anabel Flores-Zamora
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Noe Jurado
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Alberto Salazar-Juárez
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico.
| |
Collapse
|
23
|
Persons AL, Tedford SE, Napier TC. Mirtazapine and ketanserin alter preference for gambling-like schedules of reinforcement in rats. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:178-184. [PMID: 28412411 PMCID: PMC5656013 DOI: 10.1016/j.pnpbp.2017.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022]
Abstract
Drug and behavioral addictions have overlapping features, e.g., both manifest preference for larger, albeit costlier, reinforcement options in cost/benefit decision-making tasks. Our prior work revealed that the mixed-function serotonergic compound, mirtazapine, attenuates behaviors by rats motivated by abused drugs. To extend this work to behavioral addictions, here we determined if mirtazapine and/or ketanserin, another mixed-function serotonin-acting compound, can alter decision-making in rats that is independent of drug (or food)-motivated reward. Accordingly, we developed a novel variable-ratio task in rats wherein intracranial self-stimulation was used as the positive reinforcer. Using lever pressing for various levels of brain stimulation, the operant task provided choices between a small brain stimulation current delivered on a fixed-ratio schedule (i.e., a predictable reward) and a large brain stimulation delivered following an unpredictable number of responses (i.e., a variable-ratio schedule). This task allowed for demonstration of individualized preference and detection of shifts in motivational influences during a pharmacological treatment. Once baseline preference was established, we determined that pretreatment with mirtazapine or ketanserin significantly decreased preference for the large reinforcer presented after gambling-like schedules of reinforcement. When the rats were tested the next day without drug, preference for the unpredictable large reinforcer option was restored. These data demonstrate that mirtazapine and ketanserin can reduce preference for larger, costlier reinforcement options, and illustrate the potential for these drugs to alter behavior.
Collapse
Affiliation(s)
- Amanda L. Persons
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL,Dept. of Physician Assistant Studies, Rush University Medical Center, Chicago, IL,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL
| | - Stephanie E. Tedford
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL
| | - T. Celeste Napier
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL,Dept. of Psychiatry, Rush University Medical Center, Chicago, IL,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL
| |
Collapse
|
24
|
Morley KC, Cornish JL, Faingold A, Wood K, Haber PS. Pharmacotherapeutic agents in the treatment of methamphetamine dependence. Expert Opin Investig Drugs 2017; 26:563-578. [PMID: 28351169 DOI: 10.1080/13543784.2017.1313229] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Methamphetamine use is a serious public health concern in many countries and is second to cannabis as the most widely abused illicit drug in the world. Effective management for methamphetamine dependence remains elusive and the large majority of methamphetamine users relapse following treatment. Areas covered: Progression in the understanding of the pharmacological basis of methamphetamine use has provided us with innovative opportunities to develop agents to treat dependence. The current review summarizes relevant literature on the neurobiological and clinical correlates associated with methamphetamine use. We then outline agents that have been explored for potential treatments in preclinical studies, human laboratory phase I and phase II trials over the last ten years. Expert opinion: No agent has demonstrated a broad and strong effect in achieving MA abstinence in Phase II trials. Agents with novel therapeutic targets appear promising. Advancement in MA treatment, including translation into practice, faces several clinical challenges.
Collapse
Affiliation(s)
- Kirsten C Morley
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia
| | - Jennifer L Cornish
- b Department of Psychology , Centre for Emotional Health, Macquarie University , Sydney , Australia
| | - Alon Faingold
- c Drug Health Services , Royal Prince Alfred Hospital , Camperdown , Australia
| | - Katie Wood
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia
| | - Paul S Haber
- a NHMRC Centre for Excellence in Mental Health and Substance Use, Discipline of Addiction Medicine , The University of Sydney , Sydney , Australia.,c Drug Health Services , Royal Prince Alfred Hospital , Camperdown , Australia
| |
Collapse
|
25
|
Salazar-Juárez A, Barbosa-Méndez S, Merino-Reyes P, Matus-Ortega M, Hernández-Calderón JA, Antón B. Chronic dosing with mirtazapine does not produce sedation in rats. ACTA ACUST UNITED AC 2017; 39:228-236. [PMID: 28355345 PMCID: PMC7111384 DOI: 10.1590/1516-4446-2016-2058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/09/2016] [Indexed: 05/29/2023]
Abstract
Objective: Sedation/somnolence are major side effects of pharmacotherapies for depression, and negatively affect long-term treatment compliance in depressed patients. Use of mirtazapine (MIR), an atypical antidepressant approved for the treatment of moderate to severe depression with comorbid anxiety disorders, is associated with significant sedation/somnolence, especially in short-term therapy. Nonetheless, studies with human subjects suggest that MIR-induced sedation is transient, especially when high and repeated doses are used. The purpose of this study was to explore the effects of acute and chronic administration of different doses of MIR on sedation in the rat. Methods: Assessment of sedation was carried out behaviorally using the rotarod, spontaneous locomotor activity, and fixed-bar tests. Results: A 15-mg/kg dose of MIR induced sedative effects for up to 60 minutes, whereas 30 mg/kg or more produced sedation within minutes and only in the first few days of administration. Conclusion: These results suggest that 30 mg/kg is a safe, well-tolerated dose of MIR which generates only temporary sedative effects.
Collapse
Affiliation(s)
- Alberto Salazar-Juárez
- Laboratorio de Neurobiología Molecular y Neuroquímica de Adicciones, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Susana Barbosa-Méndez
- Laboratorio de Neurobiología Molecular y Neuroquímica de Adicciones, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Paola Merino-Reyes
- Laboratorio de Neurobiología Molecular y Neuroquímica de Adicciones, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Maura Matus-Ortega
- Laboratorio de Neurobiología Molecular y Neuroquímica de Adicciones, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jorge A Hernández-Calderón
- Laboratorio de Neurobiología Molecular y Neuroquímica de Adicciones, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Benito Antón
- Laboratorio de Neurobiología Molecular y Neuroquímica de Adicciones, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
26
|
Holtz NA, Tedford SE, Persons AL, Grasso SA, Napier TC. Pharmacologically distinct pramipexole-mediated akinesia vs. risk-taking in a rat model of Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:77-84. [PMID: 27216282 PMCID: PMC5410378 DOI: 10.1016/j.pnpbp.2016.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
Abstract
Pramipexole and ropinirole are dopamine agonists that are efficacious in treating motor disturbances of neuropathologies, e.g., Parkinson's disease and restless legs syndrome. A significant portion of treated patients develop impulsive/compulsive behaviors. Current treatment is dose reduction or switching to an alternative dopamine replacement, both of which can undermine the motor benefits. Needed is a preclinical model that can assist in identifying adjunct treatments to dopamine agonist therapy that reduce impulsive/compulsive behaviors without interfering with motor benefits of the dopamine agonist. Toward that objective, the current study implemented a rat model of Parkinson's disease to behaviorally profile chronically administered pramipexole. This was accomplished with male Sprague-Dawley rats wherein (i) 6-hydroxydopamine-induced lesions of the dorsolateral striatum produced Parkinson's disease-like akinesia, measured in the forelimbs, (ii) intracranial self-stimulation-mediated probability discounting indicated impulsivity/risk-taking, and (iii) two doses of pramipexole were continuously administered for 14-28days via osmotic minipumps to mirror the chronic, stable exposure achieved with extended release formulations. The atypical antidepressant, mirtazapine, is known to reduce behaviors associated with drug addiction in rats; thus, we demonstrated model utility here by determining the effects of mirtazapine on pramipexole-induced motor improvements versus probability discounting. We observed that forelimb akinesia subsequent to striatal lesions was attenuated by both pramipexole doses tested (0.3 and 1.2mg/kg/day) within 4h of pump implant dispensing 0.3mg/kg/day and 1h by 1.2mg/kg/day. By contrast, 12-14days of infusion with 0.3mg/kg/day did not alter discounting, but increases were obtained with 1.2mg/kg/day pramipexole, with 67% of 1.2mg/kg/day-treated rats meeting categorical criteria for 'high risk-taking'. Insertion of a second minipump delivering mirtazapine did not alter motor function during 14days of co-administration with pramipexole, but was sufficient to attenuate risk-taking. These outcomes revealed distinct probability discounting and anti-akinesia profiles for pramipexole, indicating that pharmacotherapy, (e.g., mirtazapine treatments), can be developed that reduce risk-taking while leaving motor benefits intact.
Collapse
Affiliation(s)
- Nathan A. Holtz
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Stephanie E. Tedford
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Amanda L. Persons
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Salvatore A. Grasso
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - T. Celeste Napier
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Dept. of Psychiatry, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
27
|
Salazar-Juárez A, Barbosa-Méndez S, Jurado N, Hernández-Miramontes R, Leff P, Antón B. Mirtazapine prevents induction and expression of cocaine-induced behavioral sensitization in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68:15-24. [PMID: 26922897 DOI: 10.1016/j.pnpbp.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 01/07/2023]
Abstract
Cocaine abuse is a major health problem worldwide. Treatment based on both 5-HT2A/C and 5-HT3 receptor antagonists attenuate not only the effects of cocaine abuse but also the incentive/motivational effect related to cocaine-paired cues. Mirtazapine, an antagonist of postsynaptic α2-adrenergic, 5-HT2A/C and 5HT3 receptors and inverse agonist of the 5-HT2C receptor, has been shown to effectively modify, at the preclinical and clinical levels, various behavioral alterations induced by drugs abuse. Therefore, it is important to assess whether chronic dosing of mirtazapine alters locomotor effects of cocaine as well as induction and expression of cocaine sensitization. Our results reveal that a daily mirtazapine regimen administered for 30days effectively induces a significant attenuation of cocaine-dependent locomotor activity and as well as the induction and expression of behavioral sensitization. These results suggest that mirtazapine may be used as a potentially effective therapy to attenuate induction and expression of cocaine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Alberto Salazar-Juárez
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Susana Barbosa-Méndez
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Noe Jurado
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Ricardo Hernández-Miramontes
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Philippe Leff
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico
| | - Benito Antón
- Subdirección de investigaciones Clínicas, Laboratorio de Neurobiología Molecular y Neuroquímica de las Adicciones, Instituto Nacional de Psiquiatría, México DF 14370, Mexico.
| |
Collapse
|
28
|
Phillips TJ, Mootz JRK, Reed C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:39-85. [PMID: 27055611 DOI: 10.1016/bs.irn.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction.
Collapse
Affiliation(s)
- T J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - J R K Mootz
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - C Reed
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
29
|
Lalanne L, Lutz PE, Trojak B, Lang JP, Kieffer BL, Bacon E. Medications between psychiatric and addictive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:215-23. [PMID: 26514592 DOI: 10.1016/j.pnpbp.2015.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/02/2015] [Accepted: 10/25/2015] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Many epidemiological studies have revealed a frequent co-occurrence of psychiatric and substance use disorders. The term used in the literature to refer to this co-occurrence is dual diagnosis. The high prevalence of dual diagnosis has led physicians to observe the effects of medication prescribed to treat psychiatric disorders on the co-occurring substance use disorder and vice versa. The concept of medications between psychiatric and addictive disorders stems from these clinical observations, alongside which, however, it has developed from the observation that both psychiatric and substance use disorders share common neurobiological pathways and trigger common cognitive disorders. This has led researchers to develop medications on the basis of neurobiological and cognitive rationales. MATERIAL AND METHOD In our article, we review peculiar medications based on neurobiological and cognitive rationales and that have an impact in both psychiatric and addictive disorders. RESULTS We highlight how interesting these new prescriptions are for clinical observation and for the treatment of patients suffering from dual diagnosis. CONCLUSION We then go on to discuss the interest in them from the perspective of clinical practice and clinical research, in that the development of medications to treat dual diagnosis helps to further our knowledge of both psychiatric and substance use disorders.
Collapse
Affiliation(s)
- Laurence Lalanne
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Molé-culaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, France; CHRU de Strasbourg-INSERM1114, Department of Psychiatry, University of Strasbourg, France.
| | - Pierre-Eric Lutz
- McGill Group for Suicide Studies, Douglas Mental Health research Centre, McGill University, Montréal, Canada; Douglas Mental Health Research Centre, McGill University, Montréal, Canada.
| | - Benoit Trojak
- Department of Psychiatry and Addictology, University Hospital of Dijon, France, EA 4452, LPPM, University of Burgundy, France.
| | - Jean-Philippe Lang
- CHRU de Strasbourg-INSERM1114, Department of Psychiatry, University of Strasbourg, France.
| | - Brigitte L Kieffer
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Molé-culaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, France; Douglas Mental Health Research Centre, McGill University, Montréal, Canada.
| | - Elisabeth Bacon
- Inserm U-1114, Department of Psychiatry, University of Strasbourg, France.
| |
Collapse
|
30
|
Wayman WN, Chen L, Napier TC, Hu XT. Cocaine self-administration enhances excitatory responses of pyramidal neurons in the rat medial prefrontal cortex to human immunodeficiency virus-1 Tat. Eur J Neurosci 2015; 41:1195-206. [PMID: 25707266 DOI: 10.1111/ejn.12853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/28/2022]
Abstract
The medial prefrontal cortex (mPFC) plays a critical role in reward-motivated behaviors. Repeated cocaine exposure dysregulates the dorsal mPFC, and this is thought to contribute to cocaine-seeking and relapse of abstinent abusers. Neuropathology of the mPFC also occurs in human immunodeficiency virus (HIV)-positive individuals, and this is exaggerated in those who also abuse cocaine. The impact of the comorbid condition on mPFC neuronal function is unknown. To fill this knowledge gap, we performed a behavioral and electrophysiological study utilising adult male rats that self-administered cocaine by pressing a lever for 14 once-daily operant sessions. Saline-yoked (SAL-yoked) rats served as controls. Cue reactivity (CR) was used to indicate drug-seeking, assessed by re-exposing the rats to cocaine-paired cues wherein non-reinforced lever pressing was quantified 1 day (CR1) and 18-21 days (CR2) after the 14th operant session. Only cocaine self-administration (COC-SA) rats showed CR. One day after CR2, brain slices were prepared for electrophysiological assessment. Whole-cell patch-clamp recordings of dorsal (prelimbic) mPFC pyramidal neurons from COC-SA rats showed a significant increase in firing evoked by depolarizing currents as compared with those from SAL-yoked control rats. Bath application of the toxic HIV-1 protein transactivator of transcription (Tat) also depolarized neuronal membranes and increased evoked firing. The Tat-induced excitation was greater in the neurons from withdrawn COC-SA rats than in controls. Tat also reduced spike amplitude, and this co-varied with cocaine-seeking during CR2. Taken together, these novel findings provide support at the neuronal level for the concept that the increased excitability of mPFC pyramidal neurons following cocaine self-administration drives drug-seeking and augments the neuropathophysiology caused by HIV-1 Tat.
Collapse
Affiliation(s)
- Wesley N Wayman
- Department of Pharmacology, Rush University Medical Center, 1735 W. Harrison Street, Cohn Research Building, Rm. 463, Chicago, IL, 60612, USA; Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | | | | |
Collapse
|
31
|
Mata MM, Napier TC, Graves SM, Mahmood F, Raeisi S, Baum LL. Methamphetamine decreases CD4 T cell frequency and alters pro-inflammatory cytokine production in a model of drug abuse. Eur J Pharmacol 2015; 752:26-33. [PMID: 25678251 DOI: 10.1016/j.ejphar.2015.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/10/2023]
Abstract
The reason co-morbid methamphetamine use and HIV infection lead to more rapid progression to AIDS is unclear. We used a model of methamphetamine self-administration to measure the effect of methamphetamine on the systemic immune system to better understand the co-morbidity of methamphetamine and HIV. Catheters were implanted into the jugular veins of male, Sprague Dawley rats so they could self-administer methamphetamine (n=18) or be given saline (control; n=16) for 14 days. One day after the last operant session, blood and spleens were collected. We measured serum levels of pro-inflammatory cytokines, intracellular IFN-γ and TNF-α, and frequencies of CD4(+), CD8(+), CD200(+) and CD11b/c(+) lymphocytes in the spleen. Rats that self-administered methamphetamine had a lower frequency of CD4(+) T cells, but more of these cells produced IFN-γ. Methamphetamine did not alter the frequency of TNF-α-producing CD4(+) T cells. Methamphetamine using rats had a higher frequency of CD8(+) T cells, but fewer of them produced TNF-α. CD11b/c and CD200 expression were unchanged. Serum cytokine levels of IFN-γ, TNF-α and IL-6 in methamphetamine rats were unchanged. Methamphetamine lifetime dose inversely correlated with serum TNF-α levels. Our data suggest that methamphetamine abuse may exacerbate HIV disease progression by activating CD4 T cells, making them more susceptible to HIV infection, and contributing to their premature demise. Methamphetamine may also increase susceptibility to HIV infection, explaining why men who have sex with men (MSM) and frequently use methamphetamine are at the highest risk of HIV infection.
Collapse
Affiliation(s)
- Mariana M Mata
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - T Celeste Napier
- Department of Pharmacology and Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States
| | - Steven M Graves
- Department of Pharmacology and Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL 60612, United States
| | - Fareeha Mahmood
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Shohreh Raeisi
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Linda L Baum
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, United States.
| |
Collapse
|
32
|
Perry CJ, Zbukvic I, Kim JH, Lawrence AJ. Role of cues and contexts on drug-seeking behaviour. Br J Pharmacol 2014; 171:4636-72. [PMID: 24749941 PMCID: PMC4209936 DOI: 10.1111/bph.12735] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/15/2023] Open
Abstract
Environmental stimuli are powerful mediators of craving and relapse in substance-abuse disorders. This review examined how animal models have been used to investigate the cognitive mechanisms through which cues are able to affect drug-seeking behaviour. We address how animal models can describe the way drug-associated cues come to facilitate the development and persistence of drug taking, as well as how these cues are critical to the tendency to relapse that characterizes substance-abuse disorders. Drug-associated cues acquire properties of conditioned reinforcement, incentive motivation and discriminative control, which allow them to influence drug-seeking behaviour. Using these models, researchers have been able to investigate the pharmacology subserving the behavioural impact of environmental stimuli, some of which we highlight. Subsequently, we examine whether the impact of drug-associated stimuli can be attenuated via a process of extinction, and how this question is addressed in the laboratory. We discuss how preclinical research has been translated into behavioural therapies targeting substance abuse, as well as highlight potential developments to therapies that might produce more enduring changes in behaviour.
Collapse
Affiliation(s)
- Christina J Perry
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Isabel Zbukvic
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Jee Hyun Kim
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| | - Andrew J Lawrence
- Behavioural Neuroscience Division, The Florey Institute of Neuroscience and Mental HealthParkville, Vic., Australia
- Florey Department of Neuroscience and Mental Health, University of MelbourneParkville, Vic., Australia
| |
Collapse
|
33
|
Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism. Neuropharmacology 2014; 89:113-21. [PMID: 25229719 DOI: 10.1016/j.neuropharm.2014.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/25/2014] [Accepted: 09/01/2014] [Indexed: 11/21/2022]
Abstract
Methamphetamine profoundly increases brain monoamines and is a widely abused psychostimulant. The effects of methamphetamine self-administration on neuron function are not known for the nucleus accumbens, a brain region involved in addictive behaviors, including drug-seeking. One therapeutic target showing preclinical promise at attenuating psychostimulant-seeking is 5-HT2C receptors; however, the effects of 5-HT2C receptor ligands on neuronal physiology are unclear. 5-HT2C receptor agonism decreases psychostimulant-mediated behaviors, and the putative 5-HT2C receptor inverse agonist, SB 206553, attenuates methamphetamine-seeking in rats. To ascertain the effects of methamphetamine, and 5-HT2C receptor inverse agonism and agonism, on neuronal function in the nucleus accumbens, we evaluated methamphetamine, SB 206553, and the 5-HT2C receptor agonist and Ro 60-0175, on neuronal excitability within the accumbens shell subregion using whole-cell current-clamp recordings in forebrain slices ex vivo. We reveal that methamphetamine self-administration decreased generation of evoked action potentials. In contrast, SB 206553 and Ro 60-0175 increased evoked spiking, effects that were prevented by the 5-HT2C receptor antagonist, SB 242084. We also assessed signaling mechanisms engaged by 5-HT2C receptors, and determined that accumbal 5-HT2C receptors stimulated Gq, but not Gi/o. These findings demonstrate that methamphetamine-induced decreases in excitability of neurons within the nucleus accumbens shell were abrogated by both 5-HT2C inverse agonism and agonism, and this effect likely involved activation of Gq-mediated signaling pathways.
Collapse
|
34
|
Kousik SM, Napier TC, Ross RD, Sumner DR, Carvey PM. Dopamine receptors and the persistent neurovascular dysregulation induced by methamphetamine self-administration in rats. J Pharmacol Exp Ther 2014; 351:432-9. [PMID: 25185214 DOI: 10.1124/jpet.114.217802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently abstinent methamphetamine (Meth) abusers showed neurovascular dysregulation within the striatum. The factors that contribute to this dysregulation and the persistence of these effects are unclear. The current study addressed these knowledge gaps. First, we evaluated the brains of rats with a history of Meth self-administration following various periods of forced abstinence. Micro-computed tomography revealed a marked reduction in vessel diameter and vascular volume uniquely within the striatum between 1 and 28 days after Meth self-administration. Microvessels showed a greater impairment than larger vessels. Subsequently, we determined that dopamine (DA) D2 receptors regulated Meth-induced striatal vasoconstriction via acute noncontingent administration of Meth. These receptors likely regulated the response to striatal hypoxia, as hypoxia inducible factor 1α was elevated. Acute Meth exposure also increased striatal levels of endothelin receptor A and decreased neuronal nitric oxide synthase. Collectively, the data provide novel evidence that Meth-induced striatal neurovascular dysregulation involves DA receptor signaling that results in vasoconstriction via endothelin receptor A and nitric oxide signaling. As these effects can lead to hypoxia and trigger neuronal damage, these findings provide a mechanistic explanation for the selective striatal toxicity observed in the brains of Meth-abusing humans.
Collapse
Affiliation(s)
- Sharanya M Kousik
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - T Celeste Napier
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - Ryan D Ross
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - D Rick Sumner
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| | - Paul M Carvey
- Center for Compulsive Behavior and Addiction (S.M.K., T.C.N., P.M.C.), Department of Pharmacology (S.M.K., T.C.N., P.M.C.), Department of Psychiatry (T.C.N.), Department of Neurologic Sciences (P.M.C.), and Department of Anatomy and Cell Biology (R.D.R., D.R.S.), Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
35
|
Nicotine enhances the expression of a sucrose or cocaine conditioned place preference in adult male rats. Pharmacol Biochem Behav 2014; 124:320-5. [PMID: 24967870 DOI: 10.1016/j.pbb.2014.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/20/2014] [Accepted: 06/15/2014] [Indexed: 12/30/2022]
Abstract
Nicotine has been shown to enhance the motivational properties of non-nicotine stimuli. This reinforcement-enhancing property of nicotine has the potential to promote the use of other illicit substances as well as maladaptive patterns of food intake. Therefore, the current study aimed to examine whether nicotine enhances preference for contexts paired with cocaine or sucrose utilizing a place conditioning procedure. Separate groups of adult male rats were administered sucrose or cocaine in one of two compartments of a standard CPP chamber on four consecutive days. Preference was then assessed following no injection, a single subcutaneous (s.c.) injection of nicotine, and a s.c. saline injection. The animals preferred the chamber paired with either sucrose or cocaine, as evident from an increased time spent in the paired chamber compared to baseline. Nicotine further increased the time spent in the sucrose- or cocaine-paired chamber, consistent with a reinforcement-enhancement effect. Previous results demonstrate an interaction between nicotine and intake of other drugs or food. The present findings provide an additional mechanism that may underlie these effects and which may have implications for drug dependence and obesity.
Collapse
|
36
|
Kousik SM, Carvey PM, Napier TC. Methamphetamine self-administration results in persistent dopaminergic pathology: implications for Parkinson's disease risk and reward-seeking. Eur J Neurosci 2014; 40:2707-14. [PMID: 24890790 DOI: 10.1111/ejn.12628] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/13/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022]
Abstract
Methamphetamine (Meth) abuse may be a risk factor for Parkinson's disease (PD); a problematic event as approximately 33 million people abuse Meth worldwide. The current study determined if a mild form of PD-like nigrostriatal pathology occurred following forced abstinence in Meth self-administering rats. The average daily intake of self-administered Meth was 3.6 ± 0.2 mg/kg/3 h over 14 sessions. Subsequently, animals were killed and the brains harvested at 1, 7, 28 or 56 days of abstinence. Post mortem, tyrosine hydroxylase (TH) immunostaining in the dorsal striatum progressively decreased throughout abstinence, reaching a 50% loss at 56 days. In the substantia nigra, there was marked reduction of TH+ cells, and Fluorogold (retrograde tracer) transport from the striatum to the nigra, at 28 and 56 days after Meth. Thus, Meth-induced progressive nigrostriatal damage occurred retrogradely, similar to PD pathology. The mesolimbic dopamine pathway [i.e. ventral tegmental area (VTA) and nucleus accumbens (NAc)], critical for Meth-induced reward, was also evaluated. TH immunostaining was decreased in the NAc-core at 28 and 56 days of forced abstinence, while staining in the dorsomedial NAc-shell was preserved. Accordingly, TH+ cell loss was evident in the lateral VTA, the origin of projections to the NAc-core, but not the medial VTA where NAc-shell projections originate. Thus, after Meth-taking ceased, a time-dependent, progressive degeneration occurred within nigrostriatal projections that eventually engulfed lateral mesolimbic projections. This pathological pattern is consistent with a trajectory for developing PD; therefore, these findings provide preclinical support for Meth abuse to increase vulnerability to developing PD.
Collapse
Affiliation(s)
- Sharanya M Kousik
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA; Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| | | | | |
Collapse
|
37
|
Napier TC, Herrold AA, de Wit H. Using conditioned place preference to identify relapse prevention medications. Neurosci Biobehav Rev 2013; 37:2081-6. [PMID: 23680702 PMCID: PMC3815959 DOI: 10.1016/j.neubiorev.2013.05.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 12/26/2022]
Abstract
Stimuli, including contexts, which predict the availability or onset of a drug effect, can acquire conditioned incentive motivational properties. These conditioned properties endure after withdrawal, and can promote drug-seeking which may result in relapse. Conditioned place preference (CPP) assesses the associations between drugs and the context in which they are experienced. Here, we review the potential utility of CPP procedures in rodents and humans to evaluate medications that target conditioned drug-seeking responses. We discuss the translational potential of the CPP procedure from rodents to humans, and review findings with FDA-approved treatments that support the use of CPP to develop relapse-reduction medications. We also discuss challenges and methodological questions in applying the CPP procedure to this purpose. We argue that an efficient and valid CPP procedure in humans may reduce the burden of full clinical trials with drug-abusing patients that are currently required for testing promising treatments.
Collapse
Affiliation(s)
- T Celeste Napier
- Department of Pharmacology and Center for Compulsive Behaviors and Addiction, Rush University, Chicago, IL, United States.
| | | | | |
Collapse
|
38
|
Crawford JT, Roberts DC, Beveridge TJ. The group II metabotropic glutamate receptor agonist, LY379268, decreases methamphetamine self-administration in rats. Drug Alcohol Depend 2013; 132:414-9. [PMID: 23953655 PMCID: PMC3804156 DOI: 10.1016/j.drugalcdep.2013.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Given the problems associated with the escalation in methamphetamine (METH) use, the identification of more effective treatment strategies is essential. Group II metabotropic glutamate receptors (mGluRs) have been suggested to be a novel therapeutic target for psychostimulant addiction. We sought to test the ability of the selective group II mGluR agonist LY379268 to reduce METH self-administration in rats. METHODS Rats were trained to self-administer METH on a progressive ratio (PR) schedule. Animals were then switched to fixed ratio responding and given daily extended access (6 h/day) to METH self-administration for 14 days. Rats were then re-tested on the PR schedule. The effect of LY379268 on METH-reinforced PR responding was determined before and after 14 days of extended access. To test for non-specific effects, a separate group of animals received LY379268 prior to a sucrose pellet-reinforced PR schedule. RESULTS Animals escalated their daily intake of METH during extended access. PR responding did not change as a function of extended access. LY379268 significantly attenuated METH reinforced responding, both before and after extended access. The degree of attenuation did not change as a function of extended access. LY379268 had no effect on sucrose pellet-reinforced responding at any dose. CONCLUSIONS LY379268 selectively reduced the motivation to self-administer METH. In contrast to data with other compounds, the sensitivity to the effects of LY379268 did not change following extended access to METH self-administration. Group II mGluR agonists, therefore, may represent a relatively new class of compounds for the development of pharmacotherapies for METH addiction.
Collapse
|
39
|
Cornett EM, Goeders NE. 96-hour methamphetamine self-administration in male and female rats: a novel model of human methamphetamine addiction. Pharmacol Biochem Behav 2013; 111:51-7. [PMID: 23958580 DOI: 10.1016/j.pbb.2013.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant drug of abuse for which no FDA-approved treatment exists. While high on MA, both male and female MA users report engaging in risky behaviors and are more likely to be involved in violent criminal activities and to engage in domestic and sexual violence. A unique aspect of MA is that it is typically used in binges. However, there is no animal model of MA self-administration that appears to represent a human MA self-administration binge. We recently developed a 96-hour MA self-administration paradigm in rats that more closely resembles how human MA users take the drug. Male and female rats were trained to self-administer MA for 96 consecutive hours for 5 weeks. Responding by female and male rats tended to escalate to binge-like behavior, as the animals responded continuously during their normal periods of activity as well as during their inactive periods for up to 72 h, followed by a crash of 6 or more hours. Thus, this 96-hour model of MA self-administration is a novel way to study MA addition in rats that may contribute to the development of improved treatments for recovering human MA users.
Collapse
Affiliation(s)
- Elyse M Cornett
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Shreveport Health Sciences Center, Shreveport, LA 71103, United States.
| | | |
Collapse
|
40
|
Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, Barr AM. Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 2013; 129:167-79. [PMID: 23273775 DOI: 10.1016/j.drugalcdep.2012.11.016] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022]
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant drug that principally affects the monoamine neurotransmitter systems of the brain and results in feelings of alertness, increased energy and euphoria. The drug is particularly popular with young adults, due to its wide availability, relatively low cost, and long duration of psychoactive effects. Extended use of MA is associated with many health problems that are not limited to the central nervous system, and contribute to increased morbidity and mortality in drug users. Numerous studies, using complementary techniques, have provided evidence that chronic MA use is associated with substantial neurotoxicity and cognitive impairment. These pathological effects of the drug, combined with the addictive properties of MA, contribute to a spectrum of psychosocial issues that include medical and legal problems, at-risk behaviors and high societal costs, such as public health consequences, loss of family support and housing instability. Treatment options include pharmacological, psychological or combination therapies. The present review summarizes the key findings in the literature spanning from molecular through to clinical effects.
Collapse
Affiliation(s)
- William J Panenka
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Graves SM, Rafeyan R, Watts J, Napier TC. Mirtazapine, and mirtazapine-like compounds as possible pharmacotherapy for substance abuse disorders: evidence from the bench and the bedside. Pharmacol Ther 2012; 136:343-53. [PMID: 22960395 DOI: 10.1016/j.pharmthera.2012.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/16/2012] [Indexed: 10/27/2022]
Abstract
Understanding substance use disorders (SUDs) and the problems associated with abstinence has grown in recent years. Nonetheless, highly efficacious treatment targeting relapse prevention has remained elusive, and there remains no FDA-approved pharmacotherapy for psychostimulant dependence. Preclinical and clinical investigations assessing the utility of classical antidepressants, which block monoamine reuptake, show mixed and often contradictory results. Mirtazapine (Remeron®) is a unique FDA-approved antidepressant, with negligible affinity for reuptake proteins, indirectly augments monoamine transmission presumably through antagonist activity at multiple receptors including the norepinephrine (NE)(α2), and serotonin (5-HT)(2A/C) receptors. Historically, mirtazapine was also considered to be a 5-HT(2C) antagonist, but recent evidence indicates that mirtazapine is an inverse agonist at this receptor subtype. Suggesting a promising role for mixed-action serotonergic drugs for addiction pharmacotherapy, mirtazapine attenuates psychostimulant-induced behaviors in several rodent models of substance abuse, and antagonizes methamphetamine-induced biochemical and electrophysiological alterations in rats. Preclinical findings are confirmed through published case studies documenting successful outcomes with mirtazapine therapy across a number of SUDs. To date, a large scale clinical trial assessing the utility of mirtazapine in substance abuse pharmacotherapy has yet to be conducted. However, as reviewed here, accumulating preclinical and clinical evidence argues that mirtazapine, or compounds that emulate aspects of its pharmacological profile, may prove useful in helping treat addictions.
Collapse
Affiliation(s)
- Steven M Graves
- Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Methamphetamine (meth) is a potent psychostimulant known to cause neurotoxicity. Clinical reports suggest meth abuse is a risk factor for Parkinson's disease. We investigated changes in the blood-brain barrier and cerebral vasculature as a mechanism underlying this risk in rats treated acutely and trained to self-administer meth. We observed blood-brain barrier leakage in rats treated acutely with meth. Hypoperfusion in the striatum was detected with acute and chronic meth treatment and was associated with hypoxia. This was correlated with reductions in striatal tyrosine hydroxylase in rats trained to self-administer meth. These findings suggest a new mechanism of meth-induced neurotoxicity involving striatal vasoconstriction resulting in hypoxia and dopamine reductions leading to an increased risk for Parkinson's disease for meth abusers.
Collapse
|
43
|
Graves SM, Persons AL, Riddle JL, Napier TC. The atypical antidepressant mirtazapine attenuates expression of morphine-induced place preference and motor sensitization. Brain Res 2012; 1472:45-53. [PMID: 22820297 DOI: 10.1016/j.brainres.2012.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 06/24/2012] [Accepted: 07/03/2012] [Indexed: 12/27/2022]
Abstract
Opioid abuse and dependence remains prevalent despite having multiple FDA-approved medications to help maintain abstinence. Mirtazapine is an atypical antidepressant receiving attention for substance abuse pharmacotherapy, and its action includes alterations in monoaminergic transmission. As monoamines are indirectly altered by opioids, the current investigation assessed the ability of mirtazapine to ameliorate morphine-induced behaviors. Conditioned place preference (CPP) is a behavioral assay wherein a rewarding drug is paired with a distinct environmental context resulting in reward-related salience of cues through learning-related neuronal plasticity. A second behavioral assay involved motor sensitization (MSn), wherein repeated administration results in an enhanced motoric response to an acute challenge, also reflecting neuronal plasticity. Attenuation of CPP and/or MSn provides two behavioral measures to suggest therapeutic potential for addiction therapy, and the present study evaluated the effectiveness of mirtazapine to reduce both behaviors. To do so, morphine-induced CPP was established using an eight day conditioning paradigm, and expression of CPP was tested on day 10 following a 24h or 30min mirtazapine pretreatment. To determine if mirtazapine altered the expression of MSn, on day 11, rats received a pretreatment of mirtazapine, followed 30min later by a challenge injection of morphine. Pretreatment with mirtazapine 24h prior to the CPP test had no effect on CPP expression. In contrast, a 30min pretreatment of mirtazapine attenuated the expression of both CPP and MSn. Collectively, these results indicate that mirtazapine may help to maintain abstinence in opioid dependent patients.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology, Center for Compulsive Behaviors and Addiction, Rush University Medical Center, Chicago, IL 60657, USA
| | | | | | | |
Collapse
|
44
|
Graves SM, Napier TC. SB 206553, a putative 5-HT2C inverse agonist, attenuates methamphetamine-seeking in rats. BMC Neurosci 2012; 13:65. [PMID: 22697313 PMCID: PMC3441362 DOI: 10.1186/1471-2202-13-65] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/01/2012] [Indexed: 12/11/2022] Open
Abstract
Background Methamphetamine (meth) dependence presents a substantial socioeconomic burden. Despite the need, there is no FDA-approved pharmacotherapy for psychostimulant dependence. We consider 5-HT2C receptors as viable therapeutic targets. We recently revealed that the atypical antidepressant, mirtazapine, attenuates meth-seeking in a rodent model of human substance abuse. Mirtazapine historically has been considered to be an antagonist at 5-HT2C receptors, but more recently shown to exhibit inverse agonism at constitutively active 5-HT2C receptors. To help distinguish the roles for antagonism vs. inverse agonism, here we explored the ability of a more selective 5-HT2C inverse agonist, SB 206553 to attenuate meth-seeking behavior, and compared its effects to those obtained with 5-HT2C antagonists, SDZ Ser 082 and SB 242084. To do so, rats were trained to self-administer meth and tested for seeking-like behavior in cue reactivity sessions consisting of contingently presenting meth-associated cues without meth reinforcement. We also explored motor function to determine the influence of SB 206553 and SDZ Ser 082 on motor activity in the presence and absence of meth. Results Like mirtazapine, pretreatment with SB 206553 (1.0, 5.0, and 10.0 mg/kg), attenuated meth-seeking. In contrast, the antagonists, SDZ Ser 082 (0.1, 0.3, and 1.0 mg/kg) and SB 242084 (3.0 mg/kg) had no effect on cue reactivity (CR). SB 242084 (3.0 mg/kg) failed to attenuate the effects of 5.0 and 10 mg/kg SB 206553 on CR. Motor function was largely unaltered by the 5-HT2C ligands; however, SB 206553, at the highest dose tested (10.0 mg/kg), attenuated meth-induced rearing behavior. Conclusions The lack of effect by 5-HT2C antagonists suggests that meth-seeking and meth-evoked motor activity are independent of endogenous 5-HT acting at 5-HT2C receptors. While SB 206553 dramatically impacted meth-evoked behaviors it is unclear whether the observed effects were 5-HT2C receptor mediated. Thus, SB 206553 deserves further attention in the study of psychostimulant abuse disorders.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology Rush, University Medical Center, 1735 W Harrison Street, Cohn Research Building, Chicago, IL 60612, USA.
| | | |
Collapse
|
45
|
Kufahl PR, Olive MF. Investigating Methamphetamine Craving Using the Extinction-Reinstatement Model in the Rat. JOURNAL OF ADDICTION RESEARCH & THERAPY 2011; S1:003. [PMID: 22428089 PMCID: PMC3305273 DOI: 10.4172/2155-6105.s1-003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like all other drugs of abuse, the primary therapeutic objective for treating methamphetamine addiction research is the maintenance of abstinence and prevention of relapse to habitual drug-taking. Compounds with the potential to prevent relapse are often investigated in rats that are trained to self-administer intravenous methamphetamine, subjected to extinction training where responding is no longer reinforced, and then given tests for reinstatement of drug-seeking behavior triggered by methamphetamine injections or re-exposure to drug-paired cues. Experimental compounds are administered to the animals prior to the reinstatement tests to evaluate their potential for attenuating or preventing drug-seeking behavior. This article describes the common procedures of the extinction-reinstatement model in studies of this type, and identifies areas of discrepancy. This is followed by a comprehensive overview of the currently published anti-reinstatement effects of pharmacological compounds, classified by the most relevant neurological systems associated with these compounds. The article concludes with a brief discussion of how the study of anti-reinstatement effects can be expanded to further verify existing positive results or to find novel neurobiological targets.
Collapse
Affiliation(s)
- Peter R. Kufahl
- Department of Psychology, Arizona State University, Tempe, AZ85287, USA
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|