1
|
Zanda MT, Saikali L, Morris P, Daws SE. MicroRNA-mediated translational pathways are regulated in the orbitofrontal cortex and peripheral blood samples during acute abstinence from heroin self-administration. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11668. [PMID: 38389822 PMCID: PMC10880771 DOI: 10.3389/adar.2023.11668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 02/24/2024]
Abstract
Opioid misuse in the United States contributes to >70% of annual overdose deaths. To develop additional therapeutics that may prevent opioid misuse, further studies on the neurobiological consequences of opioid exposure are needed. Here we sought to characterize molecular neuroadaptations involving microRNA (miRNA) pathways in the brain and blood of adult male rats that self-administered the opioid heroin. miRNAs are ∼18-24 nucleotide RNAs that regulate protein expression by preventing mRNA translation into proteins. Manipulation of miRNAs and their downstream pathways can critically regulate drug seeking behavior. We performed small-RNA sequencing of miRNAs and proteomics profiling on tissue from the orbitofrontal cortex (OFC), a brain region associated with heroin seeking, following 2 days of forced abstinence from self-administration of 0.03 mg/kg/infusion heroin or sucrose. Heroin self-administration resulted in a robust shift of the OFC miRNA profile, regulating 77 miRNAs, while sucrose self-administration only regulated 9 miRNAs that did not overlap with the heroin-induced profile. Conversely, proteomics revealed dual regulation of seven proteins by both heroin and sucrose in the OFC. Pathway analysis determined that heroin-associated miRNA pathways are predicted to target genes associated with the term "prion disease," a term that was also enriched in the heroin-induced protein expression dataset. Lastly, we confirmed that a subset of heroin-induced miRNA expression changes in the OFC are regulated in peripheral serum and correlate with heroin infusions. These findings demonstrate that peripheral blood samples may have biomarker utility for assessment of drug-induced miRNA pathway alterations that occur in the brain following chronic drug exposure.
Collapse
Affiliation(s)
- Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| | - Leila Saikali
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- College of Liberal Arts, Temple University, Philadelphia, PA, United States
| | - Paige Morris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| | - Stephanie E. Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Temple University, Philadelphia, PA, United States
| |
Collapse
|
2
|
Khani F, Pourmotabbed A, Hosseinmardi N, Nedaei SE, Fathollahi Y, Azizi H. Development of anxiety-like behaviors during adolescence: Persistent effects of adolescent morphine exposure in male rats. Dev Psychobiol 2022; 64:e22315. [PMID: 36282759 DOI: 10.1002/dev.22315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Epidemiological studies show the prevalence of opioid use, misuse and abuse in adolescents, which imposes social and economic accountability worldwide. Chronic opioid exposure, especially in adolescents, may have lasting effects on emotional behaviors that persist into adulthood. The current experiments were therefore designed to study the effects of sustained opioid exposure during adolescence on anxiety-like behaviors. Adolescent male Wistar rats underwent increasing doses of morphine for 10 days (PNDs 31-40). After that the open field test (OFT) and elevated plus maze (EPM) test were performed over a 4-week postmorphine treatment from adolescence to adulthood. Moreover, the weight of the animals was measured at these time points. We found that chronic adolescent morphine exposure reduces the weight gain during the period of morphine treatment and 4 weeks after that. It had no significant effect on the locomotor activity in the animals. Moreover, anxiolytic-like behavior was observed in the rats exposed to morphine during adolescence evaluated by OFT and EPM test. Thus, long-term exposure to morphine during adolescence has the profound potential of altering the anxiety-like behavior profile in the period from adolescence to adulthood. The maturation of the nervous system can be affected by drug abuse during the developmental window of adolescence and these effects may lead to behaviorally stable alterations.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ershad Nedaei
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Mason B, Calhoun C, Woytowicz V, Pina L, Kanda R, Dunn C, Alves A, Donaldson ST. CXCR4 inhibition with AMD3100 attenuates amphetamine induced locomotor activity in adolescent Long Evans male rats. PLoS One 2021; 16:e0247707. [PMID: 33647040 PMCID: PMC7920371 DOI: 10.1371/journal.pone.0247707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 02/02/2023] Open
Abstract
Adolescent psychostimulant abuse has been on the rise over the past decade. This trend has demonstrable ramifications on adolescent behavior and brain morphology, increasing risk for development of addiction during adolescence and in later adulthood. Neuroimmune substrates are implicated in the etiology of substance use disorders. To add to this body of work, the current study was developed to explore the role of a chemokine receptor, CXC Chemokine Receptor 4 (CXCR4), in the development of amphetamine (AMPH) sensitization. We targeted CXCR4 as it is implicated in developmental processes, dopaminergic transmission, neuroimmune responses, and the potentiation of psychostimulant abuse pathology. To evaluate the role of CXCR4 activity on the development of AMPH sensitization, a CXCR4 antagonist (Plerixafor; AMD3100) was administered to rats as a pretreatment variable. Specifically, adolescent Long Evans male rats (N = 37) were divided into four groups: (1) AMD3100 (IP, 4.0 mg/kg) + AMPH (IP, 4.0 mg/kg), (2) saline (SAL; 0.9% NaCl) + AMPH, (3) AMD3100 + SAL, and (4) SAL + SAL. Animals were first habituated to locomotor activity (LMA) chambers, then injected with a pretreatment drug (AMD3100 or SAL) followed by AMPH or SAL every other for four days. After a one-week withdrawal period, all animals were administered a low challenge dose of AMPH (IP, 1.0 mg/kg). AMPH-injected rats displayed significantly more locomotor activity compared to controls across all testing days. CXCR4 antagonism significantly attenuated AMPH-induced locomotor activity. On challenge day, AMD3100 pre-treated animals exhibited diminutive AMPH-induced locomotor activity compared to SAL pre-treated animals. Postmortem analyses of brain tissue revealed elevated CXCR4 protein levels in the striatum of all experimental groups. Our results implicate CXCR4 signaling in the development of AMPH sensitization and may represent an important therapeutic target for future research in psychostimulant abuse.
Collapse
Affiliation(s)
- Briana Mason
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Corey Calhoun
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Victoria Woytowicz
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Latifa Pina
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Roshninder Kanda
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Curtis Dunn
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Antonio Alves
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - S. Tiffany Donaldson
- Department of Psychology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
4
|
Areal LB, Blakely RD. Neurobehavioral changes arising from early life dopamine signaling perturbations. Neurochem Int 2020; 137:104747. [PMID: 32325191 PMCID: PMC7261509 DOI: 10.1016/j.neuint.2020.104747] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Dopamine (DA) signaling is critical to the modulation of multiple brain functions including locomotion, reinforcement, attention and cognition. The literature provides strong evidence that altered DA availability and actions can impact normal neurodevelopment, with both early and enduring consequences on anatomy, physiology and behavior. An appreciation for the developmental contributions of DA signaling to brain development is needed to guide efforts to preclude and remedy neurobehavioral disorders, such as attention-deficit/hyperactivity disorder, addiction, bipolar disorder, schizophrenia and autism spectrum disorder, each of which exhibits links to DA via genetic, cellular and/or pharmacological findings. In this review, we highlight research pursued in preclinical models that use genetic and pharmacological approaches to manipulate DA signaling at sensitive developmental stages, leading to changes at molecular, circuit and/or behavioral levels. We discuss how these alterations can be aligned with traits displayed by neuropsychiatric diseases. Lastly, we review human studies that evaluate contributions of developmental perturbations of DA systems to increased risk for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lorena B Areal
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Randy D Blakely
- Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA; Brain Institute, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
5
|
Salmanzadeh H, Ahmadi-Soleimani SM, Pachenari N, Azadi M, Halliwell RF, Rubino T, Azizi H. Adolescent drug exposure: A review of evidence for the development of persistent changes in brain function. Brain Res Bull 2020; 156:105-117. [PMID: 31926303 DOI: 10.1016/j.brainresbull.2020.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/24/2022]
Abstract
Over the past decade, many studies have indicated that adolescence is a critical period of brain development and maturation. The refinement and maturation of the central nervous system over this prolonged period, however, makes the adolescent brain highly susceptible to perturbations from acute and chronic drug exposure. Here we review the preclinical literature addressing the long-term consequences of adolescent exposure to common recreational drugs and drugs-of-abuse. These studies on adolescent exposure to alcohol, nicotine, opioids, cannabinoids and psychostimulant drugs, such as cocaine and amphetamine, reveal a variety of long-lasting behavioral and neurobiological consequences. These agents can affect development of the prefrontal cortex and mesolimbic dopamine pathways and modify the reward systems, socio-emotional processing and cognition. Other consequences include disruption in working memory, anxiety disorders and an increased risk of subsequent drug abuse in adult life. Although preventive and control policies are a valuable approach to reduce the detrimental effects of drugs-of-abuse on the adolescent brain, a more profound understanding of their neurobiological impact can lead to improved strategies for the treatment and attenuation of the detrimental neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Hamed Salmanzadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | | | - Narges Pachenari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Robert F Halliwell
- TJ Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, CA, USA
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences, University of Insubria, Busto Arsizio, VA, Italy
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Delgado H, Agrati D, Machado L, Reyes L, Savio E, Engler H, Ferreira A. Cocaine treatment before pregnancy differentially affects the anxiety and brain glucose metabolism of lactating rats if performed during adulthood or adolescence. Behav Brain Res 2019; 372:112070. [PMID: 31276701 DOI: 10.1016/j.bbr.2019.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cocaine exposure disrupts the maternal behavior of lactating rats, yet it is less known whether it alters the affective changes that accompany motherhood. As the long-term action of cocaine on anxiety varies according to the developmental stage of the individuals, this study aimed to compare the effect of a chronic treatment with cocaine to adult and adolescent non-pregnant females on their anxiety-like behavior and basal brain metabolic activity during lactation. Thus, adult and adolescent virgin rats were exposed to cocaine (0.0 or 15.0 mg/kg ip) during 10 days and were mated four days later. Anxiety behavior was evaluated on postpartum days 3-4 in the elevated plus maze test, and the basal brain glucose metabolism was determined on postpartum days 7-9 by means of [18F] fluorodeoxyglucose positron emission tomography. Cocaine treatment during adulthood increased the anxiety-like behavior of lactating females whereas its administration during adolescence decreased it. Also, the basal glucose metabolism of the medial prefrontal cortex differed between lactating females treated with cocaine during adulthood and adolescence. These differential effects of cocaine, according to the age at which the drug was administered, support the idea that the adolescent and adult brains have a distinct susceptibility to this drug, which leads to divergent long-term changes in the neural circuits that regulate anxiety during lactation.
Collapse
Affiliation(s)
- Hernán Delgado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Basic Research Center in Psychology, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay.
| | - Daniella Agrati
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luna Machado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Reyes
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Annabel Ferreira
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
7
|
Wolstenholme JT, Miles MF. Connecting the Dots: Adolescent Alcohol, Enhancer RNA, and Anxiety. Biol Psychiatry 2019; 85:884-885. [PMID: 31122337 DOI: 10.1016/j.biopsych.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia; Department of Neurology, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
8
|
MicroRNA Expression Profiling in the Prefrontal Cortex: Putative Mechanisms for the Cognitive Effects of Adolescent High Fat Feeding. Sci Rep 2018; 8:8344. [PMID: 29844565 PMCID: PMC5974184 DOI: 10.1038/s41598-018-26631-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
The medial prefrontal cortex (mPFC), master regulator of higher-order cognitive functions, is the only brain region that matures until late adolescence. During this period, the mPFC is sensitive to stressful events or suboptimal nutrition. For instance, high-fat diet (HFD) feeding during adolescence markedly impairs prefrontal-dependent cognition. It also provokes multiple changes at the cellular and synaptic scales within the mPFC, suggesting that major transcriptional events are elicited by HFD during this maturational period. The nature of this transcriptional reprogramming remains unknown, but may include epigenetic processes, in particular microRNAs, known to directly regulate synaptic functions. We used high–throughput screening in the adolescent mouse mPFC and identified 38 microRNAs differentially regulated by HFD, in particular mir-30e-5p. We used a luciferase assay to confirm the functional effect of mir-30e-5p on a chosen target: Ephrin-A3. Using global pathway analyses of predicted microRNA targets, we identified biological pathways putatively affected by HFD. Axon guidance was the top-1 pathway, validated by identifying gene expression changes of axon guidance molecules following HFD. Our findings delineate major microRNA transcriptional reprogramming within the mPFC induced by adolescent HFD. These results will help understanding the contribution of microRNAs in the emergence of cognitive deficits following early-life environmental events.
Collapse
|
9
|
|
10
|
García-Fuster MJ, Parsegian A, Watson SJ, Akil H, Flagel SB. Adolescent cocaine exposure enhances goal-tracking behavior and impairs hippocampal cell genesis selectively in adult bred low-responder rats. Psychopharmacology (Berl) 2017; 234:1293-1305. [PMID: 28210781 PMCID: PMC5792824 DOI: 10.1007/s00213-017-4566-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Environmental challenges during adolescence, such as drug exposure, can cause enduring behavioral and molecular changes that contribute to life-long maladaptive behaviors, including addiction. Selectively bred high-responder (bHR) and low-responder (bLR) rats represent a unique model for assessing the long-term impact of adolescent environmental manipulations, as they inherently differ on a number of addiction-related traits. bHR rats are considered "addiction-prone," whereas bLR rats are "addiction-resilient," at least under baseline conditions. Moreover, relative to bLRs, bHR rats are more likely to attribute incentive motivational value to reward cues, or to "sign-track." OBJECTIVES We utilized bHR and bLR rats to determine whether adolescent cocaine exposure can alter their inborn behavioral and neurobiological profiles, with a specific focus on Pavlovian conditioned approach behavior (i.e., sign- vs. goal-tracking) and hippocampal neurogenesis. METHODS bHR and bLR rats were administered cocaine (15 mg/kg) or saline for 7 days during adolescence (postnatal day, PND 33-39) and subsequently tested for Pavlovian conditioned approach behavior in adulthood (PND 62-75), wherein an illuminated lever (conditioned stimulus) was followed by the response-independent delivery of a food pellet (unconditioned stimulus). Behaviors directed toward the lever and the food cup were recorded as sign- and goal-tracking, respectively. Hippocampal cell genesis was evaluated on PND 77 by immunohistochemistry. RESULTS Adolescent cocaine exposure impaired hippocampal cell genesis (proliferation and survival) and enhanced the inherent propensity to goal-track in adult bLR, but not bHR, rats. CONCLUSIONS Adolescent cocaine exposure elicits long-lasting changes in stimulus-reward learning and enduring deficits in hippocampal neurogenesis selectively in adult bLR rats.
Collapse
Affiliation(s)
- M. Julia García-Fuster
- IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain,Corresponding author: M. Julia García-Fuster. IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain. Phone: +34 971 259992. Fax: +34 971 259501.
| | - Aram Parsegian
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Stanley J. Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Shelly B. Flagel
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
11
|
Morphine administration induces change in anxiety-related behavior via Wnt/β-catenin signaling. Neurosci Lett 2017; 639:199-206. [DOI: 10.1016/j.neulet.2017.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/01/2023]
|
12
|
Wang JR, Sun PH, Ren ZX, Meltzer HY, Zhen XC. GSK-3β Interacts with Dopamine D1 Receptor to Regulate Receptor Function: Implication for Prefrontal Cortical D1 Receptor Dysfunction in Schizophrenia. CNS Neurosci Ther 2016; 23:174-187. [PMID: 27996211 DOI: 10.1111/cns.12664] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Impaired dopamine D1 receptor (D1R) function in prefrontal cortex (PFC) is believed to contribute to the PFC hypofunction that has been hypothesized to be associated with negative symptoms and cognitive deficits in schizophrenia. It is therefore critical to understand the mechanisms for modulation of D1R function. AIMS To investigate the physical interaction and functional modulation between D1R and GSK-3β. RESULTS D1R and GSK-3β physically interact in cultured cells and native brain tissues. This direct interaction was found to occur at the S(417)PALS(421) motif in the C-terminus of D1R. Inhibition of GSK-3β impaired D1R activation along with a decrease in D1R-GSK-3β interaction. GSK-3β inhibition reduced agonist-stimulated D1R desensitization and endocytosis, the latter associated with the reduction of membrane translocation of β-arrestin-2. Similarly, inhibition of GSK-3β in rat PFC also resulted in impaired D1R activation and association with GSK-3β. Moreover, in a NMDA antagonist animal model of schizophrenia, we detected a decrease in prefrontal GSK-3β activity and D1R-GSK-3β association and decreased D1R activation in the PFC. CONCLUSIONS The present work identified GSK-3β as a new interacting protein for D1R functional regulation and revealed a novel mechanism for GSK-3β-regulated D1R function which may underlie D1R dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Jing-Ru Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Pei-Hua Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Zhao-Xiang Ren
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|
14
|
Wong WC, Marinelli M. Adolescent-onset of cocaine use is associated with heightened stress-induced reinstatement of cocaine seeking. Addict Biol 2016. [PMID: 26202521 DOI: 10.1111/adb.12284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adolescent rats take cocaine more readily than adults, are more sensitive to lower doses of the drug and work harder for it. It remains unknown if adolescent-onset of cocaine use has long-term consequences on adult relapse liability. Therefore, we tested if self-administering cocaine during adolescence impacts subsequent stress-induced reinstatement to cocaine seeking and taking, after a prolonged drug-free period. Adolescent (~P42) or adult (P88) rats self-administered cocaine (0.6 or 1.2 mg/kg/infusion) for 7 or 10 days. Then, they underwent a prolonged drug-free period (21-40 days), after which they were tested for reinstatement of cocaine-seeking (i.e. responding in the absence of cocaine) induced by the stress hormone corticosterone, the pharmacological stressor yohimbine or electric footshock. Studies employed either single extinction session (within-session extinction/reinstatement) or repeated extinction prior to reinstatement (between-session extinction/reinstatement). Finally, in a separate set of experiments, rats underwent a prolonged drug-free period (~40 days) and were then allowed to self-administer cocaine again, using progressive-ratio procedures that appraise the reinforcing efficacy of cocaine. Rats with adolescent-onset of cocaine use showed greater stress-induced reinstatement of cocaine seeking than rats with adult-onset of cocaine use. This was observed across conditions, providing external validity to these results. Groups did not differ on drug taking in progressive-ratio tests. Our studies indicate that experiencing cocaine during adolescence renders subjects particularly responsive to the subsequent effects of stress on drug seeking. This heightened propensity for reinstatement puts adolescent-onset drug users at heightened risk for relapse.
Collapse
Affiliation(s)
- Wai Chong Wong
- Department of Cellular and Molecular Pharmacology; Chicago Medical School, Rosalind Franklin University of Medicine and Science; North Chicago IL USA
- Department of Dermatology; Brown University; Providence RI USA
| | - Michela Marinelli
- Department of Cellular and Molecular Pharmacology; Chicago Medical School, Rosalind Franklin University of Medicine and Science; North Chicago IL USA
- Division of Pharmacology and Toxicology, College of Pharmacy; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
15
|
Zhu W, Mao Z, Zhu C, Li M, Cao C, Guan Y, Yuan J, Xie G, Guan X. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats. Neuroscience 2015; 313:174-83. [PMID: 26621120 DOI: 10.1016/j.neuroscience.2015.11.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/24/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults.
Collapse
Affiliation(s)
- W Zhu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Z Mao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - M Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Cao
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Y Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Yuan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - G Xie
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - X Guan
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
17
|
García-Cabrerizo R, Keller B, García-Fuster MJ. Hippocampal cell fate regulation by chronic cocaine during periods of adolescent vulnerability: Consequences of cocaine exposure during adolescence on behavioral despair in adulthood. Neuroscience 2015. [PMID: 26215918 DOI: 10.1016/j.neuroscience.2015.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Given that adolescence represents a critical moment for shaping adult behavior and may predispose to disease vulnerability later in life, the aim of this study was to find a vulnerable period during adolescence in which hippocampal cell fate regulation was altered by cocaine exposure, and to evaluate the long-term consequences of a cocaine experience during adolescence in affecting hippocampal plasticity and behavioral despair in adulthood. Study I: Male rats were treated with cocaine (15mg/kg, i.p.) or saline for 7 consecutive days during adolescence (early post-natal day (PND) 33-39, mid PND 40-46, late PND 47-53). Hippocampal plasticity (i.e., cell fate regulation, cell genesis) was evaluated 24h after the last treatment dose during the course of adolescence (PND 40, PND 47, PND 54). Study II: The consequences of cocaine exposure during adolescence (PND 33-39 or PND 33-46; 7 or 14days) were measured in adulthood at the behavioral (i.e., forced swim test, PND 62-63) and molecular (hippocampal cell markers, PND 64) levels. Chronic cocaine during early adolescence dysregulated FADD forms only in the hippocampus (HC), as compared to other brain regions, and during mid adolescence, impaired cell proliferation (Ki-67) and increased PARP-1 cleavage (a cell death maker) in the HC. Interestingly, chronic cocaine exposure during adolescence did not alter the time adult rats spent immobile in the forced swim test. These results suggest that this paradigm of chronic cocaine administration during adolescence did not contribute to the later manifestation of behavioral despair (i.e., one pro-depressive symptom) as measured by the forced swim test in adulthood.
Collapse
Affiliation(s)
- R García-Cabrerizo
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - B Keller
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| | - M J García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain; Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| |
Collapse
|
18
|
Zhang Y, Wang Y, Wang L, Bai M, Zhang X, Zhu X. Dopamine Receptor D2 and Associated microRNAs Are Involved in Stress Susceptibility and Resistance to Escitalopram Treatment. Int J Neuropsychopharmacol 2015; 18:pyv025. [PMID: 25740916 PMCID: PMC4571637 DOI: 10.1093/ijnp/pyv025] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Early life stress has been demonstrated to increase the risk of developing depression in adulthood. However, the roles and associated molecular mechanisms of stresses in the onset and relapse of depression have yet to be fully elucidated. METHODS Depression-like behaviors were induced in rats by maternal deprivation and chronic unpredictable stress. Depression- and anxiety-like behaviors of rats, dopamine receptor D2 level, and microRNAs expression in rats' brain tissues were measured. RESULTS Chronic unpredictable stress alone induced depression-like behaviors in rats, but maternal deprivation enhanced the effect of chronic unpredictable stress. Escitalopram significantly decreased depression-like behaviors in chronic unpredictable stress rats but was less effective in maternal deprivation with chronic unpredictable stress rats. Maternal deprivation increased dopamine receptor D2 messenger RNA expression and decreased microRNA-9 expression in the striatum. Chronic unpredictable stress increased dopamine receptor D2 mRNA and protein levels and decreased microRNA-9 expression in the nucleus accumbens. Furthermore, maternal deprivation enhanced the effect of chronic unpredictable stress on dopamine receptor D2 gene and microRNA-9 expression. Chronic unpredictable stress increased the expression of microRNA-326 in the nucleus accumbens but decreased it in the striatum, whereas maternal deprivation elevated microRNA-326 expression in the striatum. Escitalopram normalized microRNA-326 expression but had no effect on the expression of microRNA-9, dopamine receptor D2 mRNA, and dopamine receptor D2 protein in both the nucleus accumbens and striatum. The in vitro study showed that only microRNA-9 directly targeted the 3' untranslated region of dopamine receptor D2 mRNA and inhibited dopamine receptor D2 protein expression. CONCLUSION Early life stress enhanced the susceptibility to late life stress and resistance to escitalopram treatment through decreasing microRNA-9 expression and subsequently upregulating dopamine receptor D2 expression in the nucleus accumbens. microRNA-326 may be a novel target of escitalopram.
Collapse
Affiliation(s)
- Yi Zhang
- Medical Psychological Institute, Second Xiangya Hospital, Central South University,Changsha, PR China (Drs Y. Zhang, Y. Wang, L. Wang, Bai, and Zhu); Department of Radiation Oncology, University of Maryland, Baltimore, MD (Drs Y. Zhang and X. Zhang); National Technology Institute of Psychiatry, Central South University, Changsha, PR China (Drs Y. Wang and L. Wang); Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, PR China (Drs Bai and Zhu)
| | - Yuting Wang
- Medical Psychological Institute, Second Xiangya Hospital, Central South University,Changsha, PR China (Drs Y. Zhang, Y. Wang, L. Wang, Bai, and Zhu); Department of Radiation Oncology, University of Maryland, Baltimore, MD (Drs Y. Zhang and X. Zhang); National Technology Institute of Psychiatry, Central South University, Changsha, PR China (Drs Y. Wang and L. Wang); Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, PR China (Drs Bai and Zhu)
| | - Lei Wang
- Medical Psychological Institute, Second Xiangya Hospital, Central South University,Changsha, PR China (Drs Y. Zhang, Y. Wang, L. Wang, Bai, and Zhu); Department of Radiation Oncology, University of Maryland, Baltimore, MD (Drs Y. Zhang and X. Zhang); National Technology Institute of Psychiatry, Central South University, Changsha, PR China (Drs Y. Wang and L. Wang); Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, PR China (Drs Bai and Zhu)
| | - Mei Bai
- Medical Psychological Institute, Second Xiangya Hospital, Central South University,Changsha, PR China (Drs Y. Zhang, Y. Wang, L. Wang, Bai, and Zhu); Department of Radiation Oncology, University of Maryland, Baltimore, MD (Drs Y. Zhang and X. Zhang); National Technology Institute of Psychiatry, Central South University, Changsha, PR China (Drs Y. Wang and L. Wang); Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, PR China (Drs Bai and Zhu)
| | - Xiuwu Zhang
- Medical Psychological Institute, Second Xiangya Hospital, Central South University,Changsha, PR China (Drs Y. Zhang, Y. Wang, L. Wang, Bai, and Zhu); Department of Radiation Oncology, University of Maryland, Baltimore, MD (Drs Y. Zhang and X. Zhang); National Technology Institute of Psychiatry, Central South University, Changsha, PR China (Drs Y. Wang and L. Wang); Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, PR China (Drs Bai and Zhu)
| | - Xiongzhao Zhu
- Medical Psychological Institute, Second Xiangya Hospital, Central South University,Changsha, PR China (Drs Y. Zhang, Y. Wang, L. Wang, Bai, and Zhu); Department of Radiation Oncology, University of Maryland, Baltimore, MD (Drs Y. Zhang and X. Zhang); National Technology Institute of Psychiatry, Central South University, Changsha, PR China (Drs Y. Wang and L. Wang); Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, PR China (Drs Bai and Zhu).
| |
Collapse
|
19
|
Huang X, Huang K, Zheng W, Beveridge TJR, Yang S, Li X, Li P, Zhou W, Liu Y. The effects of GSK-3β blockade on ketamine self-administration and relapse to drug-seeking behavior in rats. Drug Alcohol Depend 2015; 147:257-65. [PMID: 25497591 DOI: 10.1016/j.drugalcdep.2014.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE The role of glycogen synthase kinase-3 (GSK-3) has recently been implicated in the neurochemical mechanism underlying ketamine-induced neuronal toxicity and behavioral disturbance. OBJECTIVES The primary goal of the present study was to determine the role of GSK-3β in ketamine self-administration (SA) and relapse to drug-seeking behavior after abstinence. METHODS In Experiment 1, the level of phosphorylated GSK-3β (p-GSK-3β) and total GSK-3β (t-GSK-3β) was determined in various brain areas following 14 days of ketamine SA. In Experiments 2 and 3, the effects of a GSK-3β inhibitor, SB216763 (2 and 4 mg/kg) and a GSK-3 inhibitor, lithium (LiCl, 100mg/kg) on the responding maintained by 0.5mg/kg/infusion ketamine SA were evaluated. In Experiments 4 and 5, rats underwent ketamine SA for 14 days followed by a 10-day abstinence period. The animals were treated with 2 or 4 mg/kg GSK-3β inhibitor, or 100mg/kg LiCl during the cue-induced relapse test. Seven days later, animals received the same drug treatment and underwent the drug-induced relapse test. Finally, the effect of saline and DMSO on locomotor activity was evaluated in Experiment 6. RESULTS Ketamine SA significantly decreased the ratio p-GSK-3β and t-GSK-3β (p-GSK-3β:t-GSK-3β) in the caudate putamen, nucleus accumbens, and ventral tegmental area. Both SB216763 and LiCl decreased responding on a progressive ratio schedule, but not on a fixed ratio schedule. Cue-induced relapse was suppressed only by 4mg/kg SB216763, whereas drug-induced relapse was inhibited by 2, 4 mg/kg SB216763 and LiCl. However, inactive responses were also suppressed by LiCl during progressive ratio and drug-induced relapse testing. CONCLUSIONS SB216763 was effective at decreasing ketamine SA under the PR schedule and reducing drug-seeking behavior after abstinence.
Collapse
Affiliation(s)
- Xianni Huang
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China
| | - Kunyu Huang
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China
| | - Wenhui Zheng
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China
| | - Thomas J R Beveridge
- Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Ferring Pharmaceuticals Inc., 100 Interpace Pkwy, Parsippany, NJ 07054 USA
| | - Shujun Yang
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China
| | - Xingxing Li
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China
| | - Pengping Li
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China
| | - Wenhua Zhou
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China; Drug Addiction Research and Treatment Center of Ningbo, 42 Xibei St., Ningbo 315010, Zhejiang, PR China.
| | - Yu Liu
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
20
|
Higher sensitivity to the conditioned rewarding effects of cocaine and MDMA in High-Novelty-Seekers mice exposed to a cocaine binge during adolescence. Psychopharmacology (Berl) 2015; 232:101-13. [PMID: 24908272 DOI: 10.1007/s00213-014-3642-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Exposure to drugs during adolescence can induce alterations in the central nervous system. The novelty-seeking personality trait influences differences observed among individuals exposed to drugs of abuse. OBJECTIVES Long-term effects of intensive pre-treatment with cocaine during adolescence or adulthood were evaluated in High- and Low-Novelty Seeker (HNS and LNS) mice. It was hypothesized that a cocaine binge during adolescence would increase sensitivity to the rewarding effects of cocaine and MDMA, especially in HNS animals, and modify the spontaneous behaviour of adult animals. METHODS Adolescent (PND 33) and adult (PND 60) mice were identified as HNS or LNS according to their performance in the hole-board test. Subsequently, they received pre-treatment with cocaine (three injections per day of an increasing dose for 10 days) or saline. Three weeks later, the mice performed the hole-board, elevated plus maze, spontaneous locomotor activity and cocaine- (1 mg/kg) or MDMA- (1.25 mg/kg) induced conditioning place preference (CPP) tests. In another set of mice, the effects of pre-treatment of cocaine during adulthood on MDMA- or cocaine-induced CPP were also evaluated 3 weeks later. RESULTS Only HNS mice treated with cocaine during adolescence acquired MDMA- or cocaine-induced CPP in adulthood. Moreover, pre-exposure to cocaine during adolescence caused subsequent behavioural alterations, including reduced exploratory behaviour and increased locomotor reactivity. CONCLUSIONS Cocaine binge administration during adolescence induces a higher sensitivity to the rewarding effects of MDMA and cocaine in HNS mice in adulthood. This may explain the greater vulnerability often seen among individuals exposed early in life to drugs of abuse.
Collapse
|
21
|
Gulley JM, Juraska JM. The effects of abused drugs on adolescent development of corticolimbic circuitry and behavior. Neuroscience 2013; 249:3-20. [PMID: 23711583 DOI: 10.1016/j.neuroscience.2013.05.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/01/2023]
Abstract
Adolescence is a period of significant neurobiological change that occurs as individuals transition from childhood to adulthood. Because the nervous system is in a relatively labile state during this stage of development, it may be especially sensitive to experience-induced plasticity. One such experience that is relatively common to adolescents is the exposure to drugs of abuse, particularly alcohol and psychostimulants. In this review, we highlight recent findings on the long-lasting effects of exposure to these drugs during adolescence in humans as well as in animal models. Whenever possible, our focus is on studies that use comparison groups of adolescent- and adult-exposed subjects as this is a more direct test of the hypothesis that adolescence represents a period of enhanced vulnerability to the effects of drug-induced plasticity. Lastly, we suggest areas of future investigation that are needed and methodological concerns that should be addressed.
Collapse
Affiliation(s)
- J M Gulley
- Department of Psychology and Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA.
| | | |
Collapse
|
22
|
Lee MJ, Burau KD, Dafny N. Behavioral daily rhythmic activity pattern of adolescent female rat is modulated by acute and chronic cocaine. J Neural Transm (Vienna) 2013; 120:733-44. [PMID: 23297093 DOI: 10.1007/s00702-012-0929-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/16/2012] [Indexed: 01/10/2023]
Abstract
Cocaine is one of well-known drugs of abuse, and many children experience early exposure to cocaine. Because of an immature neuronal system in adolescents, they may react differently to repeated cocaine administration compared to adults. Most of the published papers report the effect of cocaine on adult male rats and this paper focused on the effects of cocaine on the 24 h locomotor activity rhythm patterns activity of adolescent Sprague Dawley (SD) female rats. Changes in the locomotor activity rhythm patterns could indicate that cocaine elicits long-term changes in the clock genes of the body that regulate different physiological processes. The objective of this study was to investigate whether cocaine in adolescent female rats modulated their daily activity pattern. Animals were divided into control (saline), 3.0, 7.5, 15.0 mg/kg cocaine groups. On experimental day 1 (ED 1), all groups were given saline injection. From ED 2 to ED 7, either saline or cocaine (3.0, 7.5, or 15.0 mg/kg) was given daily. ED 8 to ED 10 were the washout days, where no injection was given. On ED 11, the animals were injected with saline or with the same dose of cocaine as they were treated on ED 2 to ED 7. Each animal's locomotor activities was recorded nonstop following saline or cocaine injection for 11 consecutive days using the open field assay. In conclusion, it was observed that all three groups receiving repeated cocaine administration (3.0, 7.5, and 15.0 mg/kg) displayed significantly altered locomotor activity rhythm patterns.
Collapse
Affiliation(s)
- Min J Lee
- Department of Neurobiology and Anatomy, The University of Texas-Medical School at Houston, PO Box 20708, Houston, TX 77225, USA
| | | | | |
Collapse
|
23
|
Sillivan SE, Konradi C. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat. Neuroscience 2011; 199:501-14. [PMID: 22015925 PMCID: PMC3253459 DOI: 10.1016/j.neuroscience.2011.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
The timeline of dopamine (DA) system maturation and the signaling properties of DA receptors (DRs) during rat brain development are not fully characterized. We used in situ hybridization and quantitative PCR to map DR mRNA transcripts in the medial frontal cortex (mFC) and striatum (STR) of the rat from embryonic day (E) 15 to E21. The developmental trajectory of DR mRNAs revealed distinct patterns of DA receptors 1 and 2 (DRD1, DRD2) in these brain regions. Whereas the mFC had a steeper increase in DRD1 mRNA, the STR had a steeper increase in DRD2 mRNA. Both DR mRNAs were expressed at a higher level in the STR compared with the mFC. To identify the functional properties of DRs during embryonic development, the phosphorylation states of cyclic AMP response element binding protein, extracellular signal-regulated kinase 1/2, and glycogen synthase kinase 3 beta were examined after DR stimulation in primary neuronal cultures obtained from E15 and E18 embryos and cultured for 3 days to ensure a stable baseline level. DR-mediated signaling cascades were functional in E15 cultures in both brain regions. Because DA fibers do not reach the mFC by E15, and DA was not present in cultures, these data indicate that DRs can become functional in the absence of DA innervation. Because activation of DR signal transduction pathways can affect network organization of the developing brain, maternal exposure to drugs that affect DR activity may be liable to interfere with fetal brain development.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37232, USA
| | - Christine Konradi
- Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Departments of Pharmacology and Psychiatry, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee, 37232, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, 37203, USA
| |
Collapse
|