1
|
Zonca V, Marizzoni M, Saleri S, Zajkowska Z, Manfro PH, Souza L, Viduani A, Sforzini L, Swartz JR, Fisher HL, Kohrt BA, Kieling C, Riva MA, Cattaneo A, Mondelli V. Inflammation and immune system pathways as biological signatures of adolescent depression-the IDEA-RiSCo study. Transl Psychiatry 2024; 14:230. [PMID: 38824135 PMCID: PMC11144232 DOI: 10.1038/s41398-024-02959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
The biological mechanisms underlying the onset of major depressive disorder (MDD) have predominantly been studied in adult populations from high-income countries, despite the onset of depression typically occurring in adolescence and the majority of the world's adolescents living in low- and middle-income countries (LMIC). Taking advantage of a unique adolescent sample in an LMIC (Brazil), this study aimed to identify biological pathways characterizing the presence and increased risk of depression in adolescence, and sex-specific differences in such biological signatures. We collected blood samples from a risk-stratified cohort of 150 Brazilian adolescents (aged 14-16 years old) comprising 50 adolescents with MDD, 50 adolescents at high risk of developing MDD but without current MDD, and 50 adolescents at low risk of developing MDD and without MDD (25 females and 25 males in each group). We conducted RNA-Seq and pathway analysis on whole blood. Inflammatory-related biological pathways, such as role of hypercytokinemia/hyperchemokinemia in the pathogenesis of influenza (z-score = 3.464, p < 0.001), interferon signaling (z-score = 2.464, p < 0.001), interferon alpha/beta signaling (z-score = 3.873, p < 0.001), and complement signaling (z-score = 2, p = 0.002) were upregulated in adolescents with MDD compared with adolescents without MDD independently from their level of risk. The up-regulation of such inflammation-related pathways was observed in females but not in males. Inflammatory-related pathways involved in the production of cytokines and in interferon and complement signaling were identified as key indicators of adolescent depression, and this effect was present only in females.
Collapse
Affiliation(s)
- Valentina Zonca
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Samantha Saleri
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Zuzanna Zajkowska
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Pedro H Manfro
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Laila Souza
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Anna Viduani
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Luca Sforzini
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| | - Johnna R Swartz
- Department of Human Ecology, University of California, Davis, Davis, CA, 95616, USA
| | - Helen L Fisher
- King's College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- ESRC Centre for Society and Mental Health, King's College London, London, UK
| | - Brandon A Kohrt
- Center for Global Mental Health Equity, Department of Psychiatry and Behavioral Health, School of Medicine and Health Sciences, The George Washington University, 2120 L St NW, Ste 600, Washington, DC, 20037D, USA
| | - Christian Kieling
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Child & Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350-400N, Porto Alegre, RS, 90035-903, Brazil
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125, Brescia, Italy
| | - Valeria Mondelli
- King's College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, London, UK
- National Institute for Health and Care Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, King's College London, London, UK
| |
Collapse
|
2
|
Wang Q, Yu C, Shi S, Su X, Zhang J, Ding Y, Sun Y, Liu M, Li C, Zhao X, Jiang W, Wei T. An analysis of plasma reveals proteins in the acute phase response pathway to be candidate diagnostic biomarkers for depression. Psychiatry Res 2019; 272:404-410. [PMID: 30611956 DOI: 10.1016/j.psychres.2018.11.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 10/14/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022]
Abstract
Globally, depression is one of the most serious debilitating psychiatric mental disorders. In this study, we validated the expression levels of fibrinogen alpha (FGA), fibrinogen beta (FGB), fibrinogen gamma (FGG), Complement factor B (CFB) and serpin family D member 1(SERPIND1) in the acute phase response signaling pathway in plasma samples using enzyme-linked immunosorbent assay (ELISA).Then illuminate the roles of FGA, FGB, FGG, CFB, SERPIND1 in depression using microarray data. Gene expression dataset GSE98793 was downloaded from the Gene Expression Omnibus database. There were 128 whole blood samples included 64 patients with major depressed patients and 64 healthy controls. Differentially expressed genes (DEGs) were identified, and then protein-protein interaction (PPI) network was constructed to screen crucial genes associated with FGA, FGB, FGG, CFB and SERPIND1. Moreover, gene ontology (GO) biological processes analyses was performed. The ELISA data showed that the expression levels of FGA, FGB, FGG, CFB and SERPIND1 were up-regulated in depressed patients. The enriched GO terms were predominantly associated with the biological processes including more genes were inflammation related. The PPI network was found these five genes interacted with 11 genes. FGA, FGB, FGG, CFB and SERPIND1 may be important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Chunyue Yu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Shanshan Shi
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Xiaojie Su
- Department of Biochemistry and molecular biology, College of Medical laboratory and technology, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Jian Zhang
- College of Medical Informatics, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Yongqing Ding
- Department of Women's Psychological Clinic, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163000, PR China
| | - Yanan Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Min Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Chunquan Li
- College of Medical Informatics, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China
| | - Xiwu Zhao
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - Wenhai Jiang
- Department of Neurology, The Third People's Hospital of Daqing, Daqing, Heilongjiang 163000, PR China
| | - Taiming Wei
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163000, PR China.
| |
Collapse
|
3
|
Chen C, Hu Y, Dong XZ, Zhou XJ, Mu LH, Liu P. Proteomic Analysis of the Antidepressant Effects of Shen-Zhi-Ling in Depressed Patients: Identification of Proteins Associated with Platelet Activation and Lipid Metabolism. Cell Mol Neurobiol 2018; 38:1123-1135. [PMID: 29564590 DOI: 10.1007/s10571-018-0582-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/12/2022]
Abstract
Shen-Zhi-Ling (SZL) is a Chinese medicine formulated from a Kai-Xin-San decoction that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. However, the underlying mechanisms remain unclear. We investigated biological changes in depression patients (DPs) exhibiting antidepressant responses to SZL treatment using proteomic techniques. We performed label-free quantitative proteomic analysis and liquid chromatography-tandem mass spectrometry to discover and examine altered proteins involved in depression and antidepressant treatment. Serum samples were collected from DPs, DPs who underwent 8 weeks of SZL treatment and healthy controls (HCs). The proteins that differed among the three groups were further validated by Western blot analysis. By performing multivariate analyses, we identified 12 potential serum biomarkers that were differentially expressed among the HC, DP, and SZL groups. We then confirmed the significant changes in alpha-1-antitrypsin, von Willebrand factors, apolipoprotein C-III, and alpha-2-macroglobulin among the three groups by performing Western blot analysis, which supported the proteomic results. Profiling the proteomic changes in DPs treated with SZL could improve our understanding of the pathways involved in SZL responses, such as alterations in platelet activation, inflammatory regulation, and lipid metabolism. Future studies involving larger patient cohorts are necessary to draw more definitive conclusions.
Collapse
Affiliation(s)
- Chao Chen
- Department of Clinical Pharmacology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, People's Republic of China
| | - Yuan Hu
- Department of Clinical Pharmacology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, People's Republic of China
| | - Xian-Zhe Dong
- Department of Clinical Pharmacology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, People's Republic of China
| | - Xiao-Jiang Zhou
- Department of Clinical Pharmacology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, People's Republic of China
| | - Li-Hua Mu
- Department of Clinical Pharmacology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, People's Republic of China
| | - Ping Liu
- Department of Clinical Pharmacology, General Hospital of Chinese People's Liberation Army, Beijing, 100853, People's Republic of China.
| |
Collapse
|
4
|
Dubey N, Hoffman JF, Schuebel K, Yuan Q, Martinez PE, Nieman LK, Rubinow DR, Schmidt PJ, Goldman D. The ESC/E(Z) complex, an effector of response to ovarian steroids, manifests an intrinsic difference in cells from women with premenstrual dysphoric disorder. Mol Psychiatry 2017; 22:1172-1184. [PMID: 28044059 PMCID: PMC5495630 DOI: 10.1038/mp.2016.229] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022]
Abstract
Clinical evidence suggests that mood and behavioral symptoms in premenstrual dysphoric disorder (PMDD), a common, recently recognized, psychiatric condition among women, reflect abnormal responsivity to ovarian steroids. This differential sensitivity could be due to an unrecognized aspect of hormonal signaling or a difference in cellular response. In this study, lymphoblastoid cell line cultures (LCLs) from women with PMDD and asymptomatic controls were compared via whole-transcriptome sequencing (RNA-seq) during untreated (ovarian steroid-free) conditions and following hormone treatment. The women with PMDD manifested ovarian steroid-triggered behavioral sensitivity during a hormone suppression and addback clinical trial, and controls did not, leading us to hypothesize that women with PMDD might differ in their cellular response to ovarian steroids. In untreated LCLs, our results overall suggest a divergence between mRNA (for example, gene transcription) and protein (for example, RNA translation in proteins) for the same genes. Pathway analysis of the LCL transcriptome revealed, among others, over-expression of ESC/E(Z) complex genes (an ovarian steroid-regulated gene silencing complex) in untreated LCLs from women with PMDD, with more than half of these genes over-expressed as compared with the controls, and with significant effects for MTF2, PHF19 and SIRT1 (P<0.05). RNA and protein expression of the 13 ESC/E(Z) complex genes were individually quantitated. This pattern of increased ESC/E(Z) mRNA expression was confirmed in a larger cohort by qRT-PCR. In contrast, protein expression of ESC/E(Z) genes was decreased in untreated PMDD LCLs with MTF2, PHF19 and SIRT1 all significantly decreased (P<0.05). Finally, mRNA expression of several ESC/E(Z) complex genes were increased by progesterone in controls only, and decreased by estradiol in PMDD LCLs. These findings demonstrate that LCLs from women with PMDD manifest a cellular difference in ESC/E(Z) complex function both in the untreated condition and in response to ovarian hormones. Dysregulation of ESC/E(Z) complex function could contribute to PMDD.
Collapse
Affiliation(s)
| | | | | | | | | | - Lynnette K. Nieman
- Intramural Research Program on Reproductive and Adult Endocrinology, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHSS
| | - David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC
| | | | | |
Collapse
|
5
|
The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav Immun 2017; 61:184-196. [PMID: 27890560 DOI: 10.1016/j.bbi.2016.11.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Clinical studies suggest that key genetic factors involved in stress resilience are related to the innate immune system. In the brain, this system includes microglia cells, which play a major role in stress responsiveness. Consistently, mice with deletion of the CX3CR1 gene (CX3CR1-/- mice), which in the brain is expressed exclusively by microglia, exhibit resilience to chronic stress. Here, we compared the emotional, cognitive, neurogenic and microglial responses to chronic unpredictable stress (CUS) between CX3CR1-/- and wild type (WT) mice. This was followed by hippocampal whole transcriptome (RNA-seq) analysis. We found that following CUS exposure, WT mice displayed reduced sucrose preference, impaired novel object recognition memory, and reduced neurogenesis, whereas CX3CR1-/- mice were completely resistant to these effects of CUS. CX3CR1-/- mice were also resilient to the memory-suppressive effect of a short period of unpredictable stress. Microglial somas were larger in CX3CR1-/- than in WT, but in both genotypes CUS induced a similar decline in hippocampal microglial density and processes length. RNA sequencing and pathway analysis revealed basal strain differences, particularly reduced expression of interferon (IFN)-regulated and MHC class I gene transcripts in CX3CR1-/- mice. Furthermore, while CUS exposure similarly altered neuronal gene transcripts (e.g. Arc, Npas4) in both strains, transcripts downstream of hippocampal estrogen receptor signaling (particularly Igf2 and Igfbp2) were altered only in CX3CR1-/- mice. These findings indicate that emotional and cognitive stress resilience involves CX3CR1-dependent basal and stress-induced alterations in hippocampal transcription, implicating inhibition of CX3CR1 signaling as a novel approach for promoting stress resilience.
Collapse
|
6
|
Nikolac Perkovic M, Svob Strac D, Nedic Erjavec G, Uzun S, Podobnik J, Kozumplik O, Vlatkovic S, Pivac N. Monoamine oxidase and agitation in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:131-46. [PMID: 26851573 DOI: 10.1016/j.pnpbp.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | - Josip Podobnik
- Department of Psychiatry, Psychiatric Hospital for Children and Youth Zagreb, Kukuljeviceva 11, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
7
|
Ruland T, Chan MK, Stocki P, Grosse L, Rothermundt M, Cooper JD, Arolt V, Bahn S. Molecular serum signature of treatment resistant depression. Psychopharmacology (Berl) 2016; 233:3051-9. [PMID: 27325393 DOI: 10.1007/s00213-016-4348-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/04/2016] [Indexed: 01/24/2023]
Abstract
RATIONALE A substantial number of patients suffering from major depressive disorder (MDD) do not respond to multiple trials of anti-depressants, develop a chronic course of disease and become treatment resistant. Most of the studies investigating molecular changes in treatment-resistant depression (TRD) have only examined a limited number of molecules and genes. Consequently, biomarkers associated with TRD are still lacking. OBJECTIVES This study aimed to use recently advanced high-throughput proteomic platforms to identify peripheral biomarkers of TRD defined by two staging models, the Thase and Rush staging model (TRM) and the Maudsley Staging Model (MSM). METHODS Serum collected from an inpatient cohort of 65 individuals suffering from MDD was analysed using two different mass spectrometric-based platforms, label-free liquid chromatography mass spectrometry (LC-MS(E)) and selective reaction monitoring (SRM), as well as a multiplex bead based assay. RESULTS In the LC-MS(E) analysis, proteins involved in the acute phase response and complement activation and coagulation were significantly different between the staging groups in both models. In the multiplex bead-based assay analysis TNF-α levels (log(odds) = -4.95, p = 0.045) were significantly different in the TRM comparison. Using SRM, significant changes of three apolipoproteins A-I (β = 0.029, p = 0.035), M (β = -0.017, p = 0.009) and F (β = -0.031, p = 0.024) were associated with the TRM but not the MSM. CONCLUSION Overall, our findings suggest that proteins, which are involved in immune and complement activation, may represent potential biomarkers that could be used by clinicians to identify high-risk patients. Nevertheless, given that the molecular changes between the staging groups were subtle, the results need to be interpreted cautiously.
Collapse
Affiliation(s)
- Tillmann Ruland
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany. .,Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK.
| | - Man K Chan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Pawel Stocki
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Laura Grosse
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany.,Radiology Morphological Solutions, Rotterdam, The Netherlands
| | - Matthias Rothermundt
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Jason D Cooper
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Volker Arolt
- Mood and Anxiety Disorders Research Unit, Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Money KM, Olah Z, Korade Z, Garbett KA, Shelton RC, Mirnics K. An altered peripheral IL6 response in major depressive disorder. Neurobiol Dis 2016; 89:46-54. [PMID: 26804030 DOI: 10.1016/j.nbd.2016.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent major psychiatric disorders with a lifetime prevalence of 17%. Recent evidence suggests MDD is not only a brain dysfunction, but a systemic disease affecting the whole body. Central and peripheral inflammatory changes seem to be a centerpiece of MDD pathology: a subset of patients show elevated blood cytokine and chemokine levels that partially normalize with symptom improvement over the course of anti-depressant treatment. As this inflammatory process in MDD is poorly understood, we hypothesized that the peripheral tissues of MDD patients will respond differently to inflammatory stimuli, resulting in an aberrant transcriptional response to elevated pro-inflammatory cytokines. To test this, we used MDD patient- and control-derived dermal fibroblast cultures to investigate their response to an acute treatment with IL6, IL1β, TNFα, or vehicle. Following RNA isolation and subsequent cDNA synthesis, quantitative PCR was used to determine the relative expression level of several families of inflammation-responsive genes. Our results showed comparable expression of the tested genes between MDD patients and controls at baseline. In contrast, MDD patient fibroblasts had a diminished transcriptional response to IL6 in all the gene sets tested (oxidative stress response, mitochondrial function, and lipid metabolism). We also found a significant increase in baseline and IL6 stimulated transcript levels of the IL6 receptor gene. This IL6 receptor transcript increase in MDD fibroblasts was accompanied by an IL6 stimulated increase in induction of SOCS3, which dampens IL6 receptor signaling. Altogether our results demonstrate that there is an altered transcriptional response to IL6 in MDD, which may represent one of the molecular mechanisms contributing to disease pathophysiology. Ultimately we hope that these studies will lead to validation of novel MDD drug targets focused on normalizing the altered IL6 response in patients.
Collapse
Affiliation(s)
- Kelli M Money
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Zita Olah
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt International Scholar Program, Vanderbilt University, Nashville, TN 37232, USA; Department of Psychiatry, University of Szeged, 6725 Szeged, Hungary
| | - Zeljka Korade
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Richard C Shelton
- Department of Psychiatry, University of Alabama, Birmingham, AL 35294, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Linnstaedt SD, Walker MG, Parker JS, Yeh E, Sons RL, Zimny E, Lewandowski C, Hendry PL, Damiron K, Pearson C, Velilla MA, O'Neil BJ, Jones J, Swor R, Domeier R, Hammond S, McLean SA. MicroRNA circulating in the early aftermath of motor vehicle collision predict persistent pain development and suggest a role for microRNA in sex-specific pain differences. Mol Pain 2015; 11:66. [PMID: 26498117 PMCID: PMC4619556 DOI: 10.1186/s12990-015-0069-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Molecular mediators influencing the transition from acute to persistent musculoskeletal pain following common stress exposures such as motor vehicle collision (MVC) remain poorly understood. In this exploratory, proof of concept study, we compared circulating microRNA (miRNA) expression profiles in the early aftermath of MVC among individuals who did and did not subsequently develop persistent pain. Blood RNA samples were obtained from African American individuals (n = 53) who presented to the emergency department after MVC and were discharged to home after evaluation. The presence or absence of severe pain in the axial region, the most common and morbid region in which post-MVC pain occurs, was assessed 6 weeks following MVC via standardized questionnaire. miRNA expression was determined using miRNA-sequencing; nonparametric analyses were used to compare miRNA expression levels among individuals with and without persistent pain. RESULTS Thirty-two mature miRNA were differentially expressed (p < 0.05) in those with and without severe axial pain at 6 weeks. miR-135a-5p, a regulator of the serotonin receptor that is known to be stress-responsive, differed most significantly between groups (p = 3 × 10(-4)). This miRNA, and miR-3613-3p (p = 0.001) survived correction for multiple testing (FDR = 0.15) in this small sample. Interestingly, differentially expressed miRNA were enriched for X chromosome location. In secondary analyses, the eight X chromosome miRNA were (a) more significantly associated with axial pain in women than men, (b) expressed more highly in the peripheral blood of women than men, and (c) predicted in pathway analyses (DIANA miRPath v 2.0) to regulate neuronal and neuroendocrine pathways previously implicated in various pain pathologies. CONCLUSIONS These results show that circulating miRNA predict persistent severe axial pain after MVC and suggest that they may be involved in the pathogenesis of post-traumatic musculoskeletal pain. However, further studies are needed to determine if these miRNA play a direct causal role.
Collapse
Affiliation(s)
- Sarah D Linnstaedt
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
| | - Margaret G Walker
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
| | - Joel S Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Eunice Yeh
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
| | - Robert L Sons
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| | - Erin Zimny
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, USA.
| | | | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Gainesville, FL, USA.
| | - Kathia Damiron
- Department of Emergency Medicine, Albert Einstein Medical Center, Philadelphia, PA, USA.
| | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, MI, USA.
| | | | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit, MI, USA.
- The Cardiovascular Research Institute, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Jeffrey Jones
- Department of Emergency Medicine, Spectrum Health Butterworth Campus, Grand Rapids, MI, USA.
| | - Robert Swor
- Department of Emergency Medicine, William Beaumont Hospital, Troy, MI, USA.
| | - Robert Domeier
- Department of Emergency Medicine, St Joseph Mercy Health System, Ypsilanti, MI, USA.
| | - Scott Hammond
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| | - Samuel A McLean
- TRYUMPH Research Program, Chapel Hill, NC, USA.
- Department of Anesthesiology, University of North Carolina, Medical School Wing C CB#7010, Chapel Hill, NC, 27599-7010, USA.
- Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|