1
|
Gutiérrez-García B, Cáceres CM, Núñez-Marín F, Molero J, Prats L, Mestre N, Martínez S, Teixidor P, Comas S, Balañà C, Villà S. Early region-specific impact of adjuvant radiation therapy on cognition and quality of life in adult patients with primary brain tumors. Clin Transl Oncol 2025; 27:2143-2159. [PMID: 39367900 DOI: 10.1007/s12094-024-03740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
PURPOSE While treatments for primary brain tumors increase survival, they have cognitive sequelae. Neurocognition's anatomical distribution makes it susceptible to brain damage. This study aims to evaluate the contribution of radiotherapy on short-term cognitive impairment. METHODS/PATIENTS Using a prospective database of cognitive rehabilitation in adults operated on for primary brain tumors, a retrospective sub-analysis of the contribution of radiotherapy was performed. Thirty-four subdivisions of 12 neurocognitive regions were delineated in 48 irradiated patients and 30 non-irradiated patients. In the first group, the correlation between radiation dose and deterioration was evaluated. In all patients, the impact of tumor and surgical changes on dysfunction was calculated and compared with dose-dependent response. RESULTS The correlation between cognitive status and radiation dose is especially strong and significant in the left hemisphere and in specific subdivisions such as the posterior hippocampus or the dorsolateral prefrontal cortex, with the left prevailing over posterior dominance. Memory is the most affected domain 1 month after radiotherapy, as attention is three months later. The hippocampus is involved in various cognitive domains in addition to memory. The prefrontal subregions and the genu of the corpus callosum are more affected by the relationship with disease and surgical changes than by radiation exposure. Patients ongoing a course of radiotherapy do not benefit from concurrent cognitive rehabilitation. CONCLUSIONS There is a correlation between the dose of radiation received by several encephalic regions and degree of short-term domain-specific cognition decline, considering other factors of risk and cognitive rehabilitation.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-García
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.
| | - Cynthia M Cáceres
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Jaume Molero
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Lluis Prats
- Radiophysics and Radiological Protection, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Neus Mestre
- Biostatistics, Centro de Regulación Genómica, Barcelona, Spain
| | - Silvia Martínez
- Neuropsychology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Pilar Teixidor
- Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Silvia Comas
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Carme Balañà
- Medical Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Salvador Villà
- Radiation Oncology, Institut Català d'Oncologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
2
|
Wu Y, Lu C, Li M, Li B, Shang X, Jian G, Zhang Q, Chen X, Cao X, He B, Wang J, Liu H, Chen H. Atypical Developmental Patterns of Sensorimotor-Related Networks in Autism Spectrum Disorder: A BrainAGE Study Based on Resting-State fMRI. Autism Res 2025; 18:765-773. [PMID: 39995361 DOI: 10.1002/aur.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/04/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Autism spectrum disorder (ASD) is a type of neurodevelopmental disorder characterized by atypical brain development. Previous whole-brain BrainAGE studies have unveiled the presence of accelerated or delayed brain function developmental patterns in individuals with ASD. However, it remains unclear whether these patterns manifest at a global level throughout the entire brain or are specific to certain functional sub-networks. The study included resting-state functional magnetic resonance imaging (fMRI) data from 127 individuals with ASD and 135 healthy controls (aged between 5 and 40 years). ALFF maps were measured for each participant. Then, sub-network-level BrainAGE analyses were conducted across 10 sub-networks using the Individual-weighted Multilayer Perceptron Network (ILWMLP) regression method. The BrainAGE analyses revealed atypical developmental trajectories in sensorimotor-related sub-networks, encompassing auditory, motor, and sensorimotor sub-networks. In individuals with ASD, delayed brain function development was observed in the auditory and sensorimotor networks, with a more pronounced delay observed in older individuals. Conversely, the motor network exhibited accelerated development in younger individuals but delayed development in older individuals. Our findings unveiled aberrant developmental patterns in sensorimotor-related sub-networks among individuals with ASD, exhibiting distinct atypical profiles across different sub-networks. These results might contribute to a deeper understanding of the deviant brain development observed in ASD.
Collapse
Affiliation(s)
- Yifei Wu
- Medical College, Guizhou University, Guiyang, China
| | - Chunying Lu
- Medical College, Guizhou University, Guiyang, China
| | - Min Li
- Medical College, Guizhou University, Guiyang, China
| | - Bowen Li
- Medical College, Guizhou University, Guiyang, China
| | - Xing Shang
- Medical College, Guizhou University, Guiyang, China
| | - Guifen Jian
- Medical College, Guizhou University, Guiyang, China
| | - Qianyue Zhang
- GuiZhou Equipment Manufacturing Polytechnic, Public College in Guizhou Province, Guiyang, China
| | - Xue Chen
- GuiZhou Polytechnic of Construction, Public College in Guizhou, Guiyang, China
| | - Xuan Cao
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Bifang He
- Medical College, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang, China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Heng Chen
- Medical College, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Lyu W, Thung KH, Huynh KM, Wang L, Lin W, Ahmad S, Yap PT. The Growing Little Brain: Cerebellar Functional Development from Cradle to School. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.12.617938. [PMID: 39416101 PMCID: PMC11482888 DOI: 10.1101/2024.10.12.617938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Despite the cerebellum's crucial role in brain functions, its early development, particularly in relation to the cerebrum, remains poorly understood. Here, we examine cerebellocortical connectivity using over 1,000 high-quality resting-state functional MRI scans of children from birth to 60 months. By mapping cerebellar topography with fine temporal detail for the first time, we show the hierarchical organization of cerebellocortical functional connectivity from infancy. We observe dynamic shifts in cerebellar network gradients, which become more focal with age while generally maintaining stable anchor points similar to adults, highlighting the cerebellum's evolving yet stable role in functional integration during early development. Our findings provide the first evidence of cerebellar connections to higher-order networks at birth, which generally strengthen with age, emphasizing the cerebellum's early role in cognitive processing beyond sensory and motor functions. Our study provides insights into early cerebellocortical interactions, reveals functional asymmetry and sex-specific patterns in cerebellar development, and lays the groundwork for future research on cerebellum-related disorders in children.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Kim-Han Thung
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Li Wang
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Weili Lin
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Waugh JL, Hassan AOA, Funk AT, Maldjian JA. The striatal matrix compartment is expanded in autism spectrum disorder. J Neurodev Disord 2025; 17:8. [PMID: 39955485 PMCID: PMC11829417 DOI: 10.1186/s11689-025-09596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is the second-most common neurodevelopmental disorder in childhood. This complex developmental disorder manifests with restricted interests, repetitive behaviors, and difficulties in communication and social awareness. The inherited and acquired causes of ASD impact many and diverse brain regions, challenging efforts to identify a shared neuroanatomical substrate for this range of symptoms. The striatum and its connections are among the most implicated sites of abnormal structure and/or function in ASD. Striatal projection neurons develop in segregated tissue compartments, the matrix and striosome, that are histochemically, pharmacologically, and functionally distinct. Immunohistochemical assessment of ASD and animal models of autism described abnormal matrix:striosome volume ratios, with an possible shift from striosome to matrix volume. Shifting the matrix:striosome ratio could result from expansion in matrix, reduction in striosome, spatial redistribution of the compartments, or a combination of these changes. Each type of ratio-shifting abnormality may predispose to ASD but yield different combinations of ASD features. METHODS We developed a cohort of 426 children and adults (213 matched ASD-control pairs) and performed connectivity-based parcellation (diffusion tractography) of the striatum. This identified voxels with matrix-like and striosome-like patterns of structural connectivity. RESULTS Matrix-like volume was increased in ASD, with no evident change in the volume or organization of the striosome-like compartment. The inter-compartment volume difference (matrix minus striosome) within each individual was 31% larger in ASD. Matrix-like volume was increased in both caudate and putamen, and in somatotopic zones throughout the rostral-caudal extent of the striatum. Subjects with moderate elevations in ADOS (Autism Diagnostic Observation Schedule) scores had increased matrix-like volume, but those with highly elevated ADOS scores had 3.7-fold larger increases in matrix-like volume. CONCLUSIONS Matrix and striosome are embedded in distinct structural and functional networks, suggesting that compartment-selective injury or maldevelopment may mediate specific and distinct clinical features. Previously, assessing the striatal compartments in humans required post mortem tissue. Striatal parcellation provides a means to assess neuropsychiatric diseases for compartment-specific abnormalities. While this ASD cohort had increased matrix-like volume, other mechanisms that shift the matrix:striosome ratio may also increase the chance of developing the diverse social, sensory, and motor phenotypes of ASD.
Collapse
Affiliation(s)
- Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA.
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Asim O A Hassan
- Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, Dallas, TX, USA
| | - Adrian T Funk
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern, Dallas, TX, USA
- Department of Natural Sciences and Mathematics, University of Texas at Dallas, Dallas, TX, USA
| | - Joseph A Maldjian
- Department of Radiology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
5
|
Lyle TT, Verpeut JL. Adolescent Cerebellar Nuclei Manipulation Alters Reversal Learning and Perineuronal Net Intensity Independently in Male and Female Mice. J Neurosci 2025; 45:e2182232024. [PMID: 39753302 PMCID: PMC11823351 DOI: 10.1523/jneurosci.2182-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/14/2025] Open
Abstract
The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown. Connectivity deficits, specifically between lateral CN (LCN) and cortical regions have been found in autism spectrum disorder with patients displaying reduced cognitive flexibility. To examine the role of LCN on cognition, neural activity was perturbed in both male and female mice using designer receptors exclusively activated by designer drugs (DREADDs) from postnatal day 21 to 35. We found that while an adolescent LCN disruption did not alter task acquisition, correct choice reversal performance was dependent on DREADD manipulation and sex. Inhibitory DREADDs improved reversal learning in males (5 d faster to criteria), and excitatory DREADDs improved female reversal learning (10 d faster to criteria) compared with controls. Interestingly, the DREADD manipulation in females regardless of direction reduced PNN intensity, whereas in males, only the inhibitory DREADDs reduced PNNs. This suggests a chronic adolescent LCN manipulation may have sex-specific compensatory changes in PNN structure and LCN output to improve reversal learning. This study provides new evidence for LCN in nonmotor functions and sex-dependent differences in behavior and CN plasticity.
Collapse
Affiliation(s)
- Tristan T Lyle
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
6
|
Li H, Xie X. Cerebellar activity and functional connectivity in subacute subcortical aphasia: Association with language recovery. Neuroscience 2025; 565:320-326. [PMID: 39626825 DOI: 10.1016/j.neuroscience.2024.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Loss of language function (aphasia) is a common complication after stroke, and post-stroke recovery remains highly unpredictable due to the absence of reliable neurobiomarkers. Growing evidence points to involvement of the cerebellum in language processing; however, it is unclear if abnormal cerebellar activity and altered functional connectivity (FC) to language-related regions of cerebral cortex are underlying neural mechanisms for subcortical aphasia. In this longitudinal observational study, we used resting-state functional magnetic resonance imaging to examine potential abnormalities in spontaneous cerebellar activity and resting-state (rs)FC with language networks among post-stroke patients with subacute subcortical aphasia (n = 19) compared to healthy controls (HCs, n = 18). In addition, correlations between rsFC variables and language performance metrics were examined at post-stroke baseline and at follow-up. Compared to HCs, patients with subacute subcortical aphasia exhibited significantly reduced fractional amplitude of low frequency fluctuations, a measure of spontaneous activity, in the right cerebellar Crus II (rCrus II) region and reduced rsFC between rCrus II and left inferior frontal gyrus (LIFG), left angular gyrus (LAG), and left middle temporal gyrus (LMTG). Both rCrus II-LAG and rCrus II-LMTG rsFC values were positively correlated with Aphasia Battery of Chinese scores at baseline. Baseline rCrus II-LIFG rsFC was also positively correlated with spontaneous speech and naming scores at follow-up. A stronger baseline rCrus II-LIFG rsFC predicted superior recovery of language function post-stroke. We conclude that the right cerebellum may be an effective therapeutic target for subcortical aphasia.
Collapse
Affiliation(s)
- Hailong Li
- Department of Orthopedics, The Second People's Hospital of Fuyang, Fuyang, Anhui Province, China
| | - Xiaohui Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
7
|
Wang Y, Cao A, Wang J, Bai H, Liu T, Sun C, Li Z, Tang Y, Xu F, Liu S. Abnormalities in cerebellar subregions' volume and cerebellocerebral structural covariance in autism spectrum disorder. Autism Res 2025; 18:83-97. [PMID: 39749789 PMCID: PMC11782717 DOI: 10.1002/aur.3287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
The cerebellum plays a crucial role in functions, including sensory-motor coordination, cognition, and emotional processing. Compared to the neocortex, the human cerebellum exhibits a protracted developmental trajectory. This delayed developmental timeline may lead to increased sensitivity of the cerebellum to external influences, potentially extending the vulnerability period for neurological disorders. Abnormal cerebellar development in individuals with autism has been confirmed, and these atypical cerebellar changes may affect the development of the neocortex. However, due to the heterogeneity of autism spectrum disorder (ASD), the regional changes in the cerebellum and cerebellocerebral structural relationship remain unknown. To address these issues, we utilized imaging methods optimized for the cerebellum and cerebrum on 817 individuals aged 5-18 years in the ABIDE II dataset. After FDR correction, significant differences between groups were found in the right crus II/VIIB and vermis VI-VII. Structural covariance analysis revealed enhanced structural covariance in individuals with autism between the cerebellum and parahippocampal gyrus, pars opercularis, and transverse temporal gyrus in the right hemisphere after FDR correction. Furthermore, the structural covariance between the cerebellum and some regions of the cerebrum varied across sexes. A significant increase in structural covariance between the cerebellum and specific subcortical structures was also observed in individuals with ASD. Our study found atypical patterns in the structural covariance between the cerebellum and cerebrum in individuals with autism, which suggested that the underlying pathological processes of ASD might concurrently affect these brain regions. This study provided insight into the potential of cerebellocerebral pathways as therapeutic targets for ASD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Aihua Cao
- Department of PediatricsShandong University Qilu HospitalJinanShandongChina
| | - Jing Wang
- Children's Hospital Affiliated to Shandong UniversityJinanShandongChina
- Jinan Children's HospitalJinanShandongChina
| | - He Bai
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Tianci Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Chenxi Sun
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Zhuoran Li
- Department of UltrasoundShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| |
Collapse
|
8
|
Cai XY, Wang XT, Guo JW, Xu FX, Ma KY, Wang ZX, Zhao Y, Xie W, Schonewille M, De Zeeuw C, Chen W, Shen Y. Aberrant outputs of cerebellar nuclei and targeted rescue of social deficits in an autism mouse model. Protein Cell 2024; 15:872-888. [PMID: 39066574 PMCID: PMC11637611 DOI: 10.1093/procel/pwae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The cerebellum is heavily connected with other brain regions, sub-serving not only motor but also nonmotor functions. Genetic mutations leading to cerebellar dysfunction are associated with mental diseases, but cerebellar outputs have not been systematically studied in this context. Here, we present three dimensional distributions of 50,168 target neurons of cerebellar nuclei (CN) from wild-type mice and Nlgn3R451C mutant mice, a mouse model for autism. Our results derived from 36 target nuclei show that the projections from CN to thalamus, midbrain and brainstem are differentially affected by Nlgn3R451C mutation. Importantly, Nlgn3R451C mutation altered the innervation power of CN→zona incerta (ZI) pathway, and chemogenetic inhibition of a neuronal subpopulation in the ZI that receives inputs from the CN rescues social defects in Nlgn3R451C mice. Our study highlights potential role of cerebellar outputs in the pathogenesis of autism and provides potential new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Xin-Yu Cai
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin-Tai Wang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jing-Wen Guo
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kuang-Yi Ma
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | | | - Yue Zhao
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Chris De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
- The Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, 1105 BA Amsterdam, The Netherlands
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Center for Brain Health, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
9
|
Márquez-García AV, Vakorin VA, Kozhemiako N, Iarocci G, Moreno S, Doesburg SM. Atypical Brain Connectivity During Pragmatic and Semantic Language Processing in Children with Autism. Brain Sci 2024; 14:1066. [PMID: 39595829 PMCID: PMC11592362 DOI: 10.3390/brainsci14111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Children with Autism Spectrum Disorder (ASD) face challenges in social communication due to difficulties in considering context, processing information, and interpreting social cues. This study aims to explore the neural processes related to pragmatic language communication in children with ASD and address the research question of how functional brain connectivity operates during complex pragmatic language tasks. METHODS We examined differences in brain functional connectivity between children with ASD and typically developing peers while they engaged in video recordings of spoken language tasks. We focused on two types of speech acts: semantic and pragmatic. RESULTS Our results showed differences between groups during the pragmatic and semantic language processing, indicating more idiosyncratic connectivity in children with ASD in the Left Somatomotor and Left Limbic networks, suggesting that these networks play a role in task-dependent functional connectivity. Additionally, these functional differences were mainly localized to the left hemisphere.
Collapse
Affiliation(s)
- Amparo V. Márquez-García
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (A.V.M.-G.); (V.A.V.)
| | - Vasily A. Vakorin
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (A.V.M.-G.); (V.A.V.)
| | - Nataliia Kozhemiako
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Grace Iarocci
- Department of Psychology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Sylvain Moreno
- Department of School of Interactive Arts & Technology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Sam M. Doesburg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (A.V.M.-G.); (V.A.V.)
- Institute of Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
10
|
Carson WE, Major S, Akkineni H, Fung H, Peters E, Carpenter KLH, Dawson G, Carlson DE. Model selection to achieve reproducible associations between resting state EEG features and autism. Sci Rep 2024; 14:25301. [PMID: 39455733 PMCID: PMC11511871 DOI: 10.1038/s41598-024-76659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
A concern in the field of autism electroencephalography (EEG) biomarker discovery is their lack of reproducibility. In the present study, we considered the problem of learning reproducible associations between multiple features of resting state (RS) neural activity and autism, using EEG data collected during a RS paradigm from 36 to 96 month-old children diagnosed with autism (N = 224) and neurotypical children (N = 69). Specifically, EEG spectral power and functional connectivity features were used as inputs to a regularized generalized linear model trained to predict diagnostic group (autism versus neurotypical). To evaluate our model, we proposed a procedure that quantified both the predictive generalization and reproducibility of learned associations produced by the model. When prioritizing both model predictive performance and reproducibility of associations, a highly reproducible profile of associations emerged. This profile revealed a distinct pattern of increased gamma power and connectivity in occipital and posterior midline regions associated with an autism diagnosis. Conversely, model selection based on predictive performance alone resulted in non-robust associations. Finally, we built a custom machine learning model that further empirically improved robustness of learned associations. Our results highlight the need for model selection criteria that maximize the scientific utility provided by reproducibility instead of predictive performance.
Collapse
Affiliation(s)
- William E Carson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Samantha Major
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27708, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
| | - Harshitha Akkineni
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27708, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
| | - Hannah Fung
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27708, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
| | - Elias Peters
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27708, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
| | - Kimberly L H Carpenter
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27708, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27708, USA
| | - Geraldine Dawson
- Duke Center for Autism and Brain Development, Duke University, Durham, NC, 27708, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27708, USA
| | - David E Carlson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27708, USA.
- Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
11
|
Tanigawa M, Liu M, Sekiguchi M, Goda K, Kato C, Ono T, Uesaka N. Nasal obstruction during development leads to defective synapse elimination, hypersynchrony, and impaired cerebellar function. Commun Biol 2024; 7:1381. [PMID: 39443666 PMCID: PMC11500345 DOI: 10.1038/s42003-024-07095-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Nasal respiratory disorders are linked to craniofacial anomalies and systemic dysfunctions. However, the implications of nasal respiratory disorders on brain development and their subsequent impact on brain functionalization remain largely unknown. Here, we describe that nasal obstruction from postnatal developmental stages in mice precipitates deficits in cerebellum-associated behaviors and compromised refinement and maturation of neural circuits in the cerebellum. We show that mice with nasal obstruction during developmental phases exhibit marked impairments in motor function and exhibit increased immobility time in forced swimming test. Additionally, we identified critical periods during which nasal respiration is essential for optimizing motor function and preserving mental health. Our study also reveals that nasal obstruction in mice disrupts the typical developmental process of synapse elimination in the cerebellum and hinders the normal transition of activity patterns in cerebellar Purkinje cell populations during development. Through comparing activity patterns in mouse models subjected to nasal obstruction at various stages, we suggest that the maturation of specific activity pattern among Purkinje cell populations is fundamental to the functional integrity of the cerebellum. Our findings highlight the indispensable role of adequate nasal respiration during development for the establishment and functional integrity of neural circuits, thereby significantly affecting brain function.
Collapse
Affiliation(s)
- Moe Tanigawa
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mengke Liu
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Mariko Sekiguchi
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Kyosuke Goda
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naofumi Uesaka
- Department of Cognitive Neurobiology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Halliday AR, Vucic SN, Georges B, LaRoche M, Mendoza Pardo MA, Swiggard LO, McDonald K, Olofsson M, Menon SN, Francis SM, Oberman LM, White T, van der Velpen IF. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature. Front Psychiatry 2024; 15:1474003. [PMID: 39479591 PMCID: PMC11521827 DOI: 10.3389/fpsyt.2024.1474003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background A growing body of literature classifies autism spectrum disorder (ASD) as a heterogeneous, complex neurodevelopmental disorder that often is identified prior to three years of age. We aim to provide a narrative review of key structural and functional properties that differentiate the neuroimaging profile of autistic youth from their typically developing (TD) peers across different neuroimaging modalities. Methods Relevant studies were identified by searching for key terms in PubMed, with the most recent search conducted on September 1, 2023. Original research papers were included if they applied at least one of seven neuroimaging modalities (structural MRI, functional MRI, DTI, MRS, fNIRS, MEG, EEG) to compare autistic children or those with a family history of ASD to TD youth or those without ASD family history; included only participants <18 years; and were published from 2013 to 2023. Results In total, 172 papers were considered for qualitative synthesis. When comparing ASD to TD groups, structural MRI-based papers (n = 26) indicated larger subcortical gray matter volume in ASD groups. DTI-based papers (n = 14) reported higher mean and radial diffusivity in ASD participants. Functional MRI-based papers (n = 41) reported a substantial number of between-network functional connectivity findings in both directions. MRS-based papers (n = 19) demonstrated higher metabolite markers of excitatory neurotransmission and lower inhibitory markers in ASD groups. fNIRS-based papers (n = 20) reported lower oxygenated hemoglobin signals in ASD. Converging findings in MEG- (n = 20) and EEG-based (n = 32) papers indicated lower event-related potential and field amplitudes in ASD groups. Findings in the anterior cingulate cortex, insula, prefrontal cortex, amygdala, thalamus, cerebellum, corpus callosum, and default mode network appeared numerous times across modalities and provided opportunities for multimodal qualitative analysis. Conclusions Comparing across neuroimaging modalities, we found significant differences between the ASD and TD neuroimaging profile in addition to substantial heterogeneity. Inconsistent results are frequently seen within imaging modalities, comparable study populations and research designs. Still, converging patterns across imaging modalities support various existing theories on ASD.
Collapse
Affiliation(s)
- Amanda R. Halliday
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samuel N. Vucic
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Georges
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Madison LaRoche
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - María Alejandra Mendoza Pardo
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Liam O. Swiggard
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaylee McDonald
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Olofsson
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sahit N. Menon
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sunday M. Francis
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle F. van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Shafer RL, Bartolotti J, Driggers A, Bojanek E, Wang Z, Mosconi MW. Visual feedback and motor memory contributions to sustained motor control deficits in autism spectrum disorder across childhood and into adulthood. RESEARCH SQUARE 2024:rs.3.rs-4831158. [PMID: 39281871 PMCID: PMC11398565 DOI: 10.21203/rs.3.rs-4831158/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Autistic individuals show deficits in sustained fine motor control which are associated with an over-reliance on visual feedback. Motor memory deficits also have been reported during sustained fine motor control in autism spectrum disorders (ASD). The development of motor memory and visuomotor feedback processes contributing to sustained motor control issues in ASD are not known. The present study aimed to characterize age-related changes in visual feedback and motor memory processes contributing to sustained fine motor control issues in ASD. Methods Fifty-four autistic participants and 31 neurotypical (NT) controls ages 10-25 years completed visually guided and memory guided sustained precision gripping tests by pressing on force sensors with their dominant hand index finger and thumb. For visually guided trials, participants viewed a stationary target bar and a force bar that moved upwards with increased force for 15s. During memory guided trials, the force bar was visible for 3s, after which participants attempted to maintain their force output without visual feedback for another 12s. To assess visual feedback processing, force accuracy, variability (standard deviation), and regularity (sample entropy) were examined. To assess motor memory, force decay latency, slope, and magnitude were examined during epochs without visual feedback. Results Relative to NT controls, autistic individuals showed a greater magnitude and steeper slope of force decay during memory guided trials. Across conditions, the ASD group showed reduced force accuracy (β = .41, R2 = 0.043, t79.3=2.36, p = 0.021) and greater force variability (β=-2.16, R2 = .143, t77.1=-4.04, p = 0.0001) and regularity (β=-.52, R2 = .021, t77.4=-2.21, p = 0.030) relative to controls at younger ages, but these differences normalized by adolescence (age × group interactions). Lower force accuracy and greater force variability during visually guided trials and steeper decay slope during memory guided trials were associated with overall autism severity. Conclusions Our findings that autistic individuals show a greater rate and magnitude of force decay than NT individuals following the removal of visual feedback indicate that motor memory deficits contribute to fine motor control issues in ASD. Findings that sensorimotor differences in ASD were specific to younger ages suggest delayed development across multiple motor control processes.
Collapse
Affiliation(s)
| | | | | | - Erin Bojanek
- University of Rochester School of Medicine and Dentistry
| | | | | |
Collapse
|
14
|
Guerra M, Medici V, La Sala G, Farini D. Unravelling the Cerebellar Involvement in Autism Spectrum Disorders: Insights into Genetic Mechanisms and Developmental Pathways. Cells 2024; 13:1176. [PMID: 39056758 PMCID: PMC11275240 DOI: 10.3390/cells13141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorders (ASDs) are complex neurodevelopmental conditions characterized by deficits in social interaction and communication, as well as repetitive behaviors. Although the etiology of ASD is multifactorial, with both genetic and environmental factors contributing to its development, a strong genetic basis is widely recognized. Recent research has identified numerous genetic mutations and genomic rearrangements associated with ASD-characterizing genes involved in brain development. Alterations in developmental programs are particularly harmful during critical periods of brain development. Notably, studies have indicated that genetic disruptions occurring during the second trimester of pregnancy affect cortical development, while disturbances in the perinatal and early postnatal period affect cerebellar development. The developmental defects must be viewed in the context of the role of the cerebellum in cognitive processes, which is now well established. The present review emphasizes the genetic complexity and neuropathological mechanisms underlying ASD and aims to provide insights into the cerebellar involvement in the disorder, focusing on recent advances in the molecular landscape governing its development in humans. Furthermore, we highlight when and in which cerebellar neurons the ASD-associated genes may play a role in the development of cortico-cerebellar circuits. Finally, we discuss improvements in protocols for generating cerebellar organoids to recapitulate the long period of development and maturation of this organ. These models, if generated from patient-induced pluripotent stem cells (iPSC), could provide a valuable approach to elucidate the contribution of defective genes to ASD pathology and inform diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Vanessa Medici
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (M.G.); (V.M.)
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), 00015 Monterotondo Scalo, Italy
| | - Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
15
|
Biswas MS, Roy SK, Hasan R, PK MMU. The crucial role of the cerebellum in autism spectrum disorder: Neuroimaging, neurobiological, and anatomical insights. Health Sci Rep 2024; 7:e2233. [PMID: 38966075 PMCID: PMC11222293 DOI: 10.1002/hsr2.2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
Background and Aims Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by a wide range of symptoms and challenges. While ASD is primarily associated with atypical social and communicative behaviors, increasing research has pointed towards the involvement of various brain regions, including the cerebellum. This review article aims to provide a comprehensive overview of the role of cerebellar lobules in ASD, highlighting recent findings and potential therapeutic implications. Methods Using published articles found in PubMed, Scopus, and Google Scholar, we extracted pertinent data to complete this review work. We have searched for terms including anatomical insights, neuroimaging, neurobiological, and autism spectrum disorder. Results The intricate relationship between the cerebellum and other brain regions linked to ASD has been highlighted by neurobiological research, which has shown abnormalities in neurotransmitter systems and cerebellar circuitry. The relevance of the cerebellum in the pathophysiology of ASD has been further highlighted by anatomical studies that have revealed evidence of cerebellar abnormalities, including changes in volume, morphology, and connectivity. Conclusion Thorough knowledge of the cerebellum's function in ASD may lead to new understandings of the underlying mechanisms of the condition and make it easier to create interventions and treatments that are more specifically targeted at treating cerebellar dysfunction in ASD patients.
Collapse
Affiliation(s)
- Mohammad Shahangir Biswas
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
- Department of Public HealthDaffodil International UniversityDhakaBangladesh
| | - Suronjit Kumar Roy
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
| | - Rubait Hasan
- Department of Biochemistry and BiotechnologyKhwaja Yunus Ali UniversitySirajganjBangladesh
| | - Md Moyen Uddin PK
- Institute of Biological ScienceRajshahi UniversityMotihar, RajshahiBangladesh
| |
Collapse
|
16
|
Xie X, Zhou R, Fang Z, Zhang Y, Wang Q, Liu X. Seeing beyond words: Visualizing autism spectrum disorder biomarker insights. Heliyon 2024; 10:e30420. [PMID: 38694128 PMCID: PMC11061761 DOI: 10.1016/j.heliyon.2024.e30420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024] Open
Abstract
Objective This study employs bibliometric and visual analysis to elucidate global research trends in Autism Spectrum Disorder (ASD) biomarkers, identify critical research focal points, and discuss the potential integration of diverse biomarker modalities for precise ASD assessment. Methods A comprehensive bibliometric analysis was conducted using data from the Web of Science Core Collection database until December 31, 2022. Visualization tools, including R, VOSviewer, CiteSpace, and gCLUTO, were utilized to examine collaborative networks, co-citation patterns, and keyword associations among countries, institutions, authors, journals, documents, and keywords. Results ASD biomarker research emerged in 2004, accumulating a corpus of 4348 documents by December 31, 2022. The United States, with 1574 publications and an H-index of 213, emerged as the most prolific and influential country. The University of California, Davis, contributed significantly with 346 publications and an H-index of 69, making it the leading institution. Concerning journals, the Journal of Autism and Developmental Disorders, Autism Research, and PLOS ONE were the top three publishers of ASD biomarker-related articles among a total of 1140 academic journals. Co-citation and keyword analyses revealed research hotspots in genetics, imaging, oxidative stress, neuroinflammation, gut microbiota, and eye tracking. Emerging topics included "DNA methylation," "eye tracking," "metabolomics," and "resting-state fMRI." Conclusion The field of ASD biomarker research is dynamically evolving. Future endeavors should prioritize individual stratification, methodological standardization, the harmonious integration of biomarker modalities, and longitudinal studies to advance the precision of ASD diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyue Xie
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Rongyi Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Zihan Fang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Yongting Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Pediatrics Hospital, Zhengzhou, Henan, 450000, China
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Qirong Wang
- Henan University of Chinese Medicine, School of Pediatrics, Zhengzhou, Henan, 450046, China
| | - Xiaomian Liu
- Henan University of Chinese Medicine, School of Medicine, Zhengzhou, Henan, 450046, China
| |
Collapse
|
17
|
Nagai Y, Kirino E, Tanaka S, Usui C, Inami R, Inoue R, Hattori A, Uchida W, Kamagata K, Aoki S. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI. Cereb Cortex 2024; 34:129-145. [PMID: 38012112 PMCID: PMC11065111 DOI: 10.1093/cercor/bhad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
We evaluated functional connectivity (FC) in patients with adult autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI). We acquired rs-fMRI data from 33 individuals with ASD and 33 healthy controls (HC) and DKI data from 18 individuals with ASD and 17 HC. ASD showed attenuated FC between the right frontal pole (FP) and the bilateral temporal fusiform cortex (TFusC) and enhanced FC between the right thalamus and the bilateral inferior division of lateral occipital cortex, and between the cerebellar vermis and the right occipital fusiform gyrus (OFusG) and the right lingual gyrus, compared with HC. ASD demonstrated increased axial kurtosis (AK) and mean kurtosis (MK) in white matter (WM) tracts, including the right anterior corona radiata (ACR), forceps minor (FM), and right superior longitudinal fasciculus (SLF). In ASD, there was also a significant negative correlation between MK and FC between the cerebellar vermis and the right OFusG in the corpus callosum, FM, right SLF and right ACR. Increased DKI metrics might represent neuroinflammation, increased complexity, or disrupted WM tissue integrity that alters long-distance connectivity. Nonetheless, protective or compensating adaptations of inflammation might lead to more abundant glial cells and cytokine activation effectively alleviating the degeneration of neurons, resulting in increased complexity. FC abnormality in ASD observed in rs-fMRI may be attributed to microstructural alterations of the commissural and long-range association tracts in WM as indicated by DKI.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, 1129 Nagaoka Izunokuni-shi Shizuoka 410-2295, Japan
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioi-cho Chiyoda-ku Tokyo 102-8554, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Aki Hattori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode Urayasu-shi Chiba 279-0013, Japan
| |
Collapse
|
18
|
Shan X, Uddin LQ, Ma R, Xu P, Xiao J, Li L, Huang X, Feng Y, He C, Chen H, Duan X. Disentangling the Individual-Shared and Individual-Specific Subspace of Altered Brain Functional Connectivity in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:870-880. [PMID: 37741308 DOI: 10.1016/j.biopsych.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Despite considerable effort toward understanding the neural basis of autism spectrum disorder (ASD) using case-control analyses of resting-state functional magnetic resonance imaging data, findings are often not reproducible, largely due to biological and clinical heterogeneity among individuals with ASD. Thus, exploring the individual-shared and individual-specific altered functional connectivity (AFC) in ASD is important to understand this complex, heterogeneous disorder. METHODS We considered 254 individuals with ASD and 295 typically developing individuals from the Autism Brain Imaging Data Exchange to explore the individual-shared and individual-specific subspaces of AFC. First, we computed AFC matrices of individuals with ASD compared with typically developing individuals. Then, common orthogonal basis extraction was used to project AFC of ASD onto 2 subspaces: an individual-shared subspace, which represents altered connectivity patterns shared across ASD, and an individual-specific subspace, which represents the remaining individual characteristics after eliminating the individual-shared altered connectivity patterns. RESULTS Analysis yielded 3 common components spanning the individual-shared subspace. Common components were associated with differences of functional connectivity at the group level. AFC in the individual-specific subspace improved the prediction of clinical symptoms. The default mode network-related and cingulo-opercular network-related magnitudes of AFC in the individual-specific subspace were significantly correlated with symptom severity in social communication deficits and restricted, repetitive behaviors in ASD. CONCLUSIONS Our study decomposed AFC of ASD into individual-shared and individual-specific subspaces, highlighting the importance of capturing and capitalizing on individual-specific brain connectivity features for dissecting heterogeneity. Our analysis framework provides a blueprint for parsing heterogeneity in other prevalent neurodevelopmental conditions.
Collapse
Affiliation(s)
- Xiaolong Shan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Rui Ma
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengfei Xu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Huang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Feng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Changchun He
- College of Blockchain Industry, Chengdu University of Information Technology, Chengdu, China
| | - Huafu Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xujun Duan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
19
|
Liu M, Yu W, Xu D, Wang M, Peng B, Jiang H, Dai Y. Diagnosis for autism spectrum disorder children using T1-based gray matter and arterial spin labeling-based cerebral blood flow network metrics. Front Neurosci 2024; 18:1356241. [PMID: 38694903 PMCID: PMC11061487 DOI: 10.3389/fnins.2024.1356241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in motor skills, communication, emotional expression, and social interaction. Accurate diagnosis of ASD remains challenging due to the reliance on subjective behavioral observations and assessment scales, lacking objective diagnostic indicators. Methods In this study, we introduced a novel approach for diagnosing ASD, leveraging T1-based gray matter and ASL-based cerebral blood flow network metrics. Thirty preschool-aged patients with ASD and twenty-two typically developing (TD) individuals were enrolled. Brain network features, including gray matter and cerebral blood flow metrics, were extracted from both T1-weighted magnetic resonance imaging (MRI) and ASL images. Feature selection was performed using statistical t-tests and Minimum Redundancy Maximum Relevance (mRMR). A machine learning model based on random vector functional link network was constructed for diagnosis. Results The proposed approach demonstrated a classification accuracy of 84.91% in distinguishing ASD from TD. Key discriminating network features were identified in the inferior frontal gyrus and superior occipital gyrus, regions critical for social and executive functions in ASD patients. Discussion Our study presents an objective and effective approach to the clinical diagnosis of ASD, overcoming the limitations of subjective behavioral observations. The identified brain network features provide insights into the neurobiological mechanisms underlying ASD, potentially leading to more targeted interventions.
Collapse
Affiliation(s)
- Mingyang Liu
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Weibo Yu
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, China
| | - Dandan Xu
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Miaoyan Wang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Bo Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Haoxiang Jiang
- Department of Radiology, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| |
Collapse
|
20
|
Morgado F, Vandewouw MM, Hammill C, Kelley E, Crosbie J, Schachar R, Ayub M, Nicolson R, Georgiades S, Arnold P, Iaboni A, Kushki A, Taylor MJ, Anagnostou E, Lerch JP. Behaviour-correlated profiles of cerebellar-cerebral functional connectivity observed in independent neurodevelopmental disorder cohorts. Transl Psychiatry 2024; 14:173. [PMID: 38570480 PMCID: PMC10991387 DOI: 10.1038/s41398-024-02857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
The cerebellum, through its connectivity with the cerebral cortex, plays an integral role in regulating cognitive and affective processes, and its dysregulation can result in neurodevelopmental disorder (NDD)-related behavioural deficits. Identifying cerebellar-cerebral functional connectivity (FC) profiles in children with NDDs can provide insight into common connectivity profiles and their correlation to NDD-related behaviours. 479 participants from the Province of Ontario Neurodevelopmental Disorders (POND) network (typically developing = 93, Autism Spectrum Disorder = 172, Attention Deficit/Hyperactivity Disorder = 161, Obsessive-Compulsive Disorder = 53, mean age = 12.2) underwent resting-state functional magnetic resonance imaging and behaviour testing (Social Communication Questionnaire, Toronto Obsessive-Compulsive Scale, and Child Behaviour Checklist - Attentional Problems Subscale). FC components maximally correlated to behaviour were identified using canonical correlation analysis. Results were then validated by repeating the investigation in 556 participants from an independent NDD cohort provided from a separate consortium (Healthy Brain Network (HBN)). Replication of canonical components was quantified by correlating the feature vectors between the two cohorts. The two cerebellar-cerebral FC components that replicated to the greatest extent were correlated to, respectively, obsessive-compulsive behaviour (behaviour feature vectors, rPOND-HBN = -0.97; FC feature vectors, rPOND-HBN = -0.68) and social communication deficit contrasted against attention deficit behaviour (behaviour feature vectors, rPOND-HBN = -0.99; FC feature vectors, rPOND-HBN = -0.78). The statistically stable (|z| > 1.96) features of the FC feature vectors, measured via bootstrap re-sampling, predominantly comprised of correlations between cerebellar attentional and control network regions and cerebral attentional, default mode, and control network regions. In both cohorts, spectral clustering on FC loading values resulted in subject clusters mixed across diagnostic categories, but no cluster was significantly enriched for any given diagnosis as measured via chi-squared test (p > 0.05). Overall, two behaviour-correlated components of cerebellar-cerebral functional connectivity were observed in two independent cohorts. This suggests the existence of generalizable cerebellar network differences that span across NDD diagnostic boundaries.
Collapse
Affiliation(s)
- Felipe Morgado
- Dept. Medical Biophysics, University of Toronto, Toronto, Canada.
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Marlee M Vandewouw
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Christopher Hammill
- Data Science & Advanced Analytics, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | | | - Jennifer Crosbie
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Russell Schachar
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Muhammad Ayub
- Department of Psychiatry, University College London, London, UK
| | - Robert Nicolson
- Department of Psychiatry, University of Western Ontario, London, Canada
- Lawson Research Institute, London, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
- Offord Centre for Child Studies, McMaster University, Hamilton, Canada
| | - Paul Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Psychiatry, University of Calgary, Calgary, Canada
| | - Alana Iaboni
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Azadeh Kushki
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Margot J Taylor
- Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| |
Collapse
|
21
|
Cakar ME, Okada NJ, Cummings KK, Jung J, Bookheimer SY, Dapretto M, Green SA. Functional connectivity of the sensorimotor cerebellum in autism: associations with sensory over-responsivity. Front Psychiatry 2024; 15:1337921. [PMID: 38590791 PMCID: PMC10999625 DOI: 10.3389/fpsyt.2024.1337921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
The cerebellum has been consistently shown to be atypical in autism spectrum disorder (ASD). However, despite its known role in sensorimotor function, there is limited research on its association with sensory over-responsivity (SOR), a common and impairing feature of ASD. Thus, this study sought to examine functional connectivity of the sensorimotor cerebellum in ASD compared to typically developing (TD) youth and investigate whether cerebellar connectivity is associated with SOR. Resting-state functional connectivity of the sensorimotor cerebellum was examined in 54 ASD and 43 TD youth aged 8-18 years. Using a seed-based approach, connectivity of each sensorimotor cerebellar region (defined as lobules I-IV, V-VI and VIIIA&B) with the whole brain was examined in ASD compared to TD youth, and correlated with parent-reported SOR severity. Across all participants, the sensorimotor cerebellum was functionally connected with sensorimotor and visual regions, though the three seed regions showed distinct connectivity with limbic and higher-order sensory regions. ASD youth showed differences in connectivity including atypical connectivity within the cerebellum and increased connectivity with hippocampus and thalamus compared to TD youth. More severe SOR was associated with stronger connectivity with cortical regions involved in sensory and motor processes and weaker connectivity with cognitive and socio-emotional regions, particularly prefrontal cortex. These results suggest that atypical cerebellum function in ASD may play a role in sensory challenges in autism.
Collapse
Affiliation(s)
- Melis E. Cakar
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States
| | - Nana J. Okada
- Department of Psychology, Harvard Medical School, Boston, MA, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Kaitlin K. Cummings
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
- Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| | - Shulamite A. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Li N, Xiao J, Mao N, Cheng D, Chen X, Zhao F, Shi Z. Joint learning of multi-level dynamic brain networks for autism spectrum disorder diagnosis. Comput Biol Med 2024; 171:108054. [PMID: 38350396 DOI: 10.1016/j.compbiomed.2024.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Graph convolutional networks (GCNs), with their powerful ability to model non-Euclidean graph data, have shown advantages in learning representations of brain networks. However, considering the complexity, multilayeredness, and spatio-temporal dynamics of brain activities, we have identified two limitations in current GCN-based research on brain networks: 1) Most studies have focused on unidirectional information transmission across brain network levels, neglecting joint learning or bidirectional information exchange among networks. 2) Most of the existing models determine node neighborhoods by thresholding or simply binarizing the brain network, which leads to the loss of edge weight information and weakens the model's sensitivity to important information in the brain network. To address the above issues, we propose a multi-level dynamic brain network joint learning architecture based on GCN for autism spectrum disorder (ASD) diagnosis. Specifically, firstly, constructing different-level dynamic brain networks. Then, utilizing joint learning based on GCN for interactive information exchange among these multi-level brain networks. Finally, designing an edge self-attention mechanism to assign different edge weights to inter-node connections, which allows us to pick out the crucial features for ASD diagnosis. Our proposed method achieves an accuracy of 81.5 %. The results demonstrate that our method enables bidirectional transfer of high-order and low-order information, facilitating information complementarity between different levels of brain networks. Additionally, the use of edge weights enhances the representation capability of ASD-related features.
Collapse
Affiliation(s)
- Na Li
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China; Department of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, China
| | - Jinjie Xiao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Dapeng Cheng
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Xiaobo Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
| | - Zhenghao Shi
- Department of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, China.
| |
Collapse
|
23
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Jimenez-Gomez A, Nguyen MX, Gill JS. Understanding the role of AMPA receptors in autism: insights from circuit and synapse dysfunction. Front Psychiatry 2024; 15:1304300. [PMID: 38352654 PMCID: PMC10861716 DOI: 10.3389/fpsyt.2024.1304300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Autism spectrum disorders represent a diverse etiological spectrum that converge on a syndrome characterized by discrepant deficits in developmental domains often highlighted by concerns in socialization, sensory integration, and autonomic functioning. Importantly, the incidence and prevalence of autism spectrum disorders have seen sharp increases since the syndrome was first described in the 1940s. The wide etiological spectrum and rising number of individuals being diagnosed with the condition lend urgency to capturing a more nuanced understanding of the pathogenic mechanisms underlying the autism spectrum disorders. The current review seeks to understand how the disruption of AMPA receptor (AMPAr)-mediated neurotransmission in the cerebro-cerebellar circuit, particularly in genetic autism related to SHANK3 or SYNGAP1 protein dysfunction function and autism associated with in utero exposure to the anti-seizure medications valproic acid and topiramate, may contribute to the disease presentation. Initially, a discussion contextualizing AMPAr signaling in the cerebro-cerebellar circuitry and microstructural circuit considerations is offered. Subsequently, a detailed review of the literature implicating mutations or deletions of SHANK3 and SYNGAP1 in disrupted AMPAr signaling reveals how bidirectional pathogenic modulation of this key circuit may contribute to autism. Finally, how pharmacological exposure may interact with this pathway, via increased risk of autism diagnosis with valproic acid and topiramate exposure and potential treatment of autism using AMPAr modulator perampanel, is discussed. Through the lens of the review, we will offer speculation on how neuromodulation may be used as a rational adjunct to therapy. Together, the present review seeks to synthesize the disparate considerations of circuit understanding, genetic etiology, and pharmacological modulation to understand the mechanistic interaction of this important and complex disorder.
Collapse
Affiliation(s)
- Andres Jimenez-Gomez
- Neurodevelopmental Disabilities Program, Department of Neurology, Joe DiMaggio Children’s Hospital, Hollywood, FL, United States
| | - Megan X. Nguyen
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology & Developmental Neurosciences, Baylor College of Medicine, Houston, TX, United States
- Jan & Dan Duncan Neurologic Research Institute, Texas Children’s Hospital, Houston, TX, United States
| |
Collapse
|
25
|
Alho J, Samuelsson JG, Khan S, Mamashli F, Bharadwaj H, Losh A, McGuiggan NM, Graham S, Nayal Z, Perrachione TK, Joseph RM, Stoodley CJ, Hämäläinen MS, Kenet T. Both stronger and weaker cerebro-cerebellar functional connectivity patterns during processing of spoken sentences in autism spectrum disorder. Hum Brain Mapp 2023; 44:5810-5827. [PMID: 37688547 PMCID: PMC10619366 DOI: 10.1002/hbm.26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Cerebellar differences have long been documented in autism spectrum disorder (ASD), yet the extent to which such differences might impact language processing in ASD remains unknown. To investigate this, we recorded brain activity with magnetoencephalography (MEG) while ASD and age-matched typically developing (TD) children passively processed spoken meaningful English and meaningless Jabberwocky sentences. Using a novel source localization approach that allows higher resolution MEG source localization of cerebellar activity, we found that, unlike TD children, ASD children showed no difference between evoked responses to meaningful versus meaningless sentences in right cerebellar lobule VI. ASD children also had atypically weak functional connectivity in the meaningful versus meaningless speech condition between right cerebellar lobule VI and several left-hemisphere sensorimotor and language regions in later time windows. In contrast, ASD children had atypically strong functional connectivity for in the meaningful versus meaningless speech condition between right cerebellar lobule VI and primary auditory cortical areas in an earlier time window. The atypical functional connectivity patterns in ASD correlated with ASD severity and the ability to inhibit involuntary attention. These findings align with a model where cerebro-cerebellar speech processing mechanisms in ASD are impacted by aberrant stimulus-driven attention, which could result from atypical temporal information and predictions of auditory sensory events by right cerebellar lobule VI.
Collapse
Affiliation(s)
- Jussi Alho
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John G. Samuelsson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and Technology, Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Sheraz Khan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Fahimeh Mamashli
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Hari Bharadwaj
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Speech, Language, and Hearing Sciences, and Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Ainsley Losh
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nicole M. McGuiggan
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Steven Graham
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Zein Nayal
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tyler K. Perrachione
- Department of Speech, Language, and Hearing SciencesBoston UniversityBostonMassachusettsUSA
| | - Robert M. Joseph
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Catherine J. Stoodley
- Department of PsychologyCollege of Arts and Sciences, American UniversityWashingtonDCUSA
| | - Matti S. Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Tal Kenet
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
26
|
Huang X, Ming Y, Zhao W, Feng R, Zhou Y, Wu L, Wang J, Xiao J, Li L, Shan X, Cao J, Kang X, Chen H, Duan X. Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain. Mol Autism 2023; 14:41. [PMID: 37899464 PMCID: PMC10614412 DOI: 10.1186/s13229-023-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account. METHOD In this study, diffusion tensor imaging was acquired from two independent cohorts, containing 91 autistic children and 100 typically developing children (TDC), aged 4-7 years. Developmental prediction modeling using support vector regression based on TDC participants was conducted to estimate the WM atypical development index of autistic children. Then, subgroups of autistic children were identified by using the k-means clustering method and were compared to each other on the basis of demographic information, WM atypical development index, and autistic trait by using two-sample t-test. Relationship of the WM atypical development index with age was estimated by using partial correlation. Furthermore, we performed threshold-free cluster enhancement-based two-sample t-test for the group comparison in WM microstructures of each subgroup of autistic children with the rematched subsets of TDC. RESULTS We clustered autistic children into two subgroups according to WM atypical development index. The two subgroups exhibited distinct developmental stages and age-dependent diversity. WM atypical development index was found negatively associated with age. Moreover, an inverse pattern of atypical WM microstructures and different clinical manifestations in the two stages, with subgroup 1 showing overgrowth with low level of autistic traits and subgroup 2 exhibiting delayed maturation with high level of autistic traits, were revealed. CONCLUSION This study illustrated age-dependent heterogeneity in early childhood autistic children and delineated developmental stage-specific difference that ranged from an overgrowth pattern to a delayed pattern. Trial registration This study has been registered at ClinicalTrials.gov (Identifier: NCT02807766) on June 21, 2016 ( https://clinicaltrials.gov/ct2/show/NCT02807766 ).
Collapse
Affiliation(s)
- Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yating Ming
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Weixing Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yuanyue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Lei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jing Cao
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Xiaodong Kang
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
27
|
Huang X, Ming Y, Zhao W, Feng R, Zhou Y, Wu L, Wang J, Xiao J, Li L, Shan X, Cao J, Kang X, Chen H, Duan X. Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain. Mol Autism 2023; 14:41. [DOI: https:/doi.org/10.1186/s13229-023-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 04/08/2025] Open
Abstract
Abstract
Objective
There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account.
Method
In this study, diffusion tensor imaging was acquired from two independent cohorts, containing 91 autistic children and 100 typically developing children (TDC), aged 4–7 years. Developmental prediction modeling using support vector regression based on TDC participants was conducted to estimate the WM atypical development index of autistic children. Then, subgroups of autistic children were identified by using the k-means clustering method and were compared to each other on the basis of demographic information, WM atypical development index, and autistic trait by using two-sample t-test. Relationship of the WM atypical development index with age was estimated by using partial correlation. Furthermore, we performed threshold-free cluster enhancement-based two-sample t-test for the group comparison in WM microstructures of each subgroup of autistic children with the rematched subsets of TDC.
Results
We clustered autistic children into two subgroups according to WM atypical development index. The two subgroups exhibited distinct developmental stages and age-dependent diversity. WM atypical development index was found negatively associated with age. Moreover, an inverse pattern of atypical WM microstructures and different clinical manifestations in the two stages, with subgroup 1 showing overgrowth with low level of autistic traits and subgroup 2 exhibiting delayed maturation with high level of autistic traits, were revealed.
Conclusion
This study illustrated age-dependent heterogeneity in early childhood autistic children and delineated developmental stage-specific difference that ranged from an overgrowth pattern to a delayed pattern.
Trial registration This study has been registered at ClinicalTrials.gov (Identifier: NCT02807766) on June 21, 2016 (https://clinicaltrials.gov/ct2/show/NCT02807766).
Collapse
|
28
|
Pan H, Mao Y, Liu P, Li Y, Wei G, Qiao X, Ren Y, Zhao F. Extracting transition features among brain states based on coarse-grained similarity measurement for autism spectrum disorder analysis. Med Phys 2023; 50:6269-6282. [PMID: 36995984 DOI: 10.1002/mp.16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The abnormal brain functional connectivity (FC) of patients with mental diseases is closely linked to the transition features among brain states. However, the current research on state transition will produce certain division deviations in the measurement method of state division, and also ignore the transition features among multiple states that contain more abundant information for analyzing brain diseases. PURPOSE To investigate the potential of the proposed method based on coarse-grained similarity measurement to solve the problem of state division, and consider the transition features among multiple states to analyze the FC abnormalities of autism spectrum disorder (ASD) patients. METHODS We used resting-state functional magnetic resonance imaging to examine 45 ASD and 47 healthy controls (HC). The FC between brain regions was calculated by the sliding window and correlation algorithm, and a novel coarse-grained similarity measure method was used to cluster the FC networks into five states, and then extract the features both of the state itself and the transition features among multiple states for analysis and diagnosis. RESULTS (1) The state as divided by the coarse-grained measurement method improves the diagnostic performance of individuals with ASD compared with previous methods. (2) The transition features among multiple states can provide complementary information to the features of the state itself in the ASD analysis and diagnosis. (3) ASD individuals have different brain state transitions than HC. Specifically, the abnormalities in intra- and inter-network connectivity of ASD patients mainly occur in the default mode network, the visual network, and the cerebellum. CONCLUSIONS Such results demonstrate that our approach with new measurements and new features is effective and promising in brain state analysis and ASD diagnosis.
Collapse
Affiliation(s)
- Hongxin Pan
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yanyan Mao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Peiqiang Liu
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Yuan Li
- School of Management Science and Engineering, Shandong Technology and Business University, Yantai, China
| | - Guanglan Wei
- Information Network Center, Shandong Second Provincial General Hospital, Jinan, China
| | - Xiaoyan Qiao
- School of Mathematics and Information Science, Shandong Technology and Business University, Yantai, China
| | - Yande Ren
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| |
Collapse
|
29
|
Zhao G, Zhang H, Ma L, Wang Y, Chen R, Liu N, Men W, Tan S, Gao JH, Qin S, He Y, Dong Q, Tao S. Reduced volume of the left cerebellar lobule VIIb and its increased connectivity within the cerebellum predict more general psychopathology one year later via worse cognitive flexibility in children. Dev Cogn Neurosci 2023; 63:101296. [PMID: 37690374 PMCID: PMC10507200 DOI: 10.1016/j.dcn.2023.101296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Predicting the risk for general psychopathology (the p factor) requires the examination of multiple factors ranging from brain to cognitive skills. While an increasing number of findings have reported the roles of the cerebral cortex and executive functions, it is much less clear whether and how the cerebellum and cognitive flexibility (a core component of executive function) may be associated with the risk for general psychopathology. Based on the data from more than 400 children aged 6-12 in the Children School Functions and Brain Development (CBD) Project, this study examined whether the left cerebellar lobule VIIb and its connectivity within the cerebellum may prospectively predict the risk for general psychopathology one year later and whether cognitive flexibility may mediate such predictions in school-age children. The reduced gray matter volume in the left cerebellar lobule VIIb and the increased connectivity of this region to the left cerebellar lobule VI prospectively predicted the risk for general psychopathology and was partially mediated by worse cognitive flexibility. Deficits in cognitive flexibility may play an important role in linking cerebellar structure and function to the risk for general psychopathology.
Collapse
Affiliation(s)
- Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
30
|
Badke D’Andrea C, Marek S, Van AN, Miller RL, Earl EA, Stewart SB, Dosenbach NUF, Schlaggar BL, Laumann TO, Fair DA, Gordon EM, Greene DJ. Thalamo-cortical and cerebello-cortical functional connectivity in development. Cereb Cortex 2023; 33:9250-9262. [PMID: 37293735 PMCID: PMC10492576 DOI: 10.1093/cercor/bhad198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The thalamus is a critical relay center for neural pathways involving sensory, motor, and cognitive functions, including cortico-striato-thalamo-cortical and cortico-ponto-cerebello-thalamo-cortical loops. Despite the importance of these circuits, their development has been understudied. One way to investigate these pathways in human development in vivo is with functional connectivity MRI, yet few studies have examined thalamo-cortical and cerebello-cortical functional connectivity in development. Here, we used resting-state functional connectivity to measure functional connectivity in the thalamus and cerebellum with previously defined cortical functional networks in 2 separate data sets of children (7-12 years old) and adults (19-40 years old). In both data sets, we found stronger functional connectivity between the ventral thalamus and the somatomotor face cortical functional network in children compared with adults, extending previous cortico-striatal functional connectivity findings. In addition, there was more cortical network integration (i.e. strongest functional connectivity with multiple networks) in the thalamus in children than in adults. We found no developmental differences in cerebello-cortical functional connectivity. Together, these results suggest different maturation patterns in cortico-striato-thalamo-cortical and cortico-ponto-cerebellar-thalamo-cortical pathways.
Collapse
Affiliation(s)
- Carolina Badke D’Andrea
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, United States
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Ryland L Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric A Earl
- Data Science and Sharing Team, National Institute of Mental Health, NIH, DHHS, Bethesda, MD 20899, United States
| | - Stephanie B Stewart
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, United States
| | | | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Damien A Fair
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, United States
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
31
|
Thérien VD, Degré-Pelletier J, Barbeau EB, Samson F, Soulières I. Different levels of visuospatial abilities linked to differential brain correlates underlying visual mental segmentation processes in autism. Cereb Cortex 2023; 33:9186-9211. [PMID: 37317036 PMCID: PMC10350832 DOI: 10.1093/cercor/bhad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
The neural underpinnings of enhanced locally oriented visual processing that are specific to autistics with a Wechsler's Block Design (BD) peak are largely unknown. Here, we investigated the brain correlates underlying visual segmentation associated with the well-established autistic superior visuospatial abilities in distinct subgroups using functional magnetic resonance imaging. This study included 31 male autistic adults (15 with (AUTp) and 16 without (AUTnp) a BD peak) and 28 male adults with typical development (TYP). Participants completed a computerized adapted BD task with models having low and high perceptual cohesiveness (PC). Despite similar behavioral performances, AUTp and AUTnp showed generally higher occipital activation compared with TYP participants. Compared with both AUTnp and TYP participants, the AUTp group showed enhanced task-related functional connectivity within posterior visuoperceptual regions and decreased functional connectivity between frontal and occipital-temporal regions. A diminished modulation in frontal and parietal regions in response to increased PC was also found in AUTp participants, suggesting heavier reliance on low-level processing of global figures. This study demonstrates that enhanced visual functioning is specific to a cognitive phenotypic subgroup of autistics with superior visuospatial abilities and reinforces the need to address autistic heterogeneity by good cognitive characterization of samples in future studies.
Collapse
Affiliation(s)
- Véronique D Thérien
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal (Québec) H1E 1A4, Canada
| | - Janie Degré-Pelletier
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal (Québec) H1E 1A4, Canada
| | - Elise B Barbeau
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Fabienne Samson
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Isabelle Soulières
- Laboratory on Intelligence and Development in Autism, Department of Psychology, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
- Montreal Cognitive Neuroscience Autism Research Group, CIUSSS du Nord-de-l’île-de-Montreal, 7070, Boulevard Perras, Montréal (Québec) H1E 1A4, Canada
| |
Collapse
|
32
|
Unruh KE, Bartolotti JV, McKinney WS, Schmitt LM, Sweeney JA, Mosconi MW. Functional connectivity of cortical-cerebellar networks in relation to sensorimotor behavior and clinical features in autism spectrum disorder. Cereb Cortex 2023; 33:8990-9002. [PMID: 37246152 PMCID: PMC10350826 DOI: 10.1093/cercor/bhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - James V Bartolotti
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Walker S McKinney
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
33
|
Gaudfernau F, Lefebvre A, Engemann DA, Pedoux A, Bánki A, Baillin F, Landman B, Maruani A, Amsellem F, Bourgeron T, Delorme R, Dumas G. Cortico-Cerebellar neurodynamics during social interaction in Autism Spectrum Disorders. Neuroimage Clin 2023; 39:103465. [PMID: 37454469 PMCID: PMC10368923 DOI: 10.1016/j.nicl.2023.103465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Exploring neural network dynamics during social interaction could help to identify biomarkers of Autism Spectrum Disorders (ASD). A cerebellar involvement in autism has long been suspected and recent methodological advances now enable studying cerebellar functioning in a naturalistic setting. Here, we investigated the electrophysiological activity of the cerebro-cerebellar network during real-time social interaction in ASD. We focused our analysis on theta oscillations (3-8 Hz), which have been associated with large-scale coordination of distant brain areas and might contribute to interoception, motor control, and social event anticipation, all skills known to be altered in ASD. METHODS We combined the Human Dynamic Clamp, a paradigm for studying realistic social interactions using a virtual avatar, with high-density electroencephalography (HD-EEG). Using source reconstruction, we investigated power in the cortex and the cerebellum, along with coherence between the cerebellum and three cerebral-cortical areas, and compared our findings in a sample of participants with ASD (n = 107) and with typical development (TD) (n = 33). We developed an open-source pipeline to analyse neural dynamics at the source level from HD-EEG data. RESULTS Individuals with ASD showed a significant increase in theta band power over the cerebellum and the frontal and temporal cortices during social interaction compared to resting state, along with significant coherence increases between the cerebellum and the sensorimotor, frontal and parietal cortices. However, a phase-based connectivity measure did not support a strict activity increase in the cortico-cerebellar functional network. We did not find any significant differences between the ASD and the TD group. CONCLUSIONS This exploratory study uncovered increases in the theta band activity of participants with ASD during social interaction, pointing at the presence of neural interactions between the cerebellum and cerebral networks associated with social cognition. It also emphasizes the need for complementary functional connectivity measures to capture network-level alterations. Future work will focus on optimizing artifact correction to include more participants with TD and increase the statistical power of group-level contrasts.
Collapse
Affiliation(s)
- Fleur Gaudfernau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Inria, HeKA, PariSantéCampus, Paris, France; Inserm, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris Cité, Paris, France
| | - Aline Lefebvre
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Denis-Alexander Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland; Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | - Amandine Pedoux
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Anna Bánki
- Research Unit Developmental Psychology, Department of Developmental and Educational Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Florence Baillin
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Benjamin Landman
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Frederique Amsellem
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris University, Paris, France
| | - Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR 3571 CNRS, University Paris Diderot, Paris, France; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada; Precision Psychiatry and Social Physiology laboratory, CHU Sainte-Justine Research Centre, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
34
|
Hughes DE, Kunitoki K, Elyounssi S, Luo M, Bazer OM, Hopkinson CE, Dowling KF, Doyle AE, Dunn EC, Eryilmaz H, Gilman JM, Holt DJ, Valera EM, Smoller JW, Cecil CAM, Tiemeier H, Lee PH, Roffman JL. Genetic patterning for child psychopathology is distinct from that for adults and implicates fetal cerebellar development. Nat Neurosci 2023; 26:959-969. [PMID: 37202553 PMCID: PMC7614744 DOI: 10.1038/s41593-023-01321-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/29/2023] [Indexed: 05/20/2023]
Abstract
Childhood psychiatric symptoms are often diffuse but can coalesce into discrete mental illnesses during late adolescence. We leveraged polygenic scores (PGSs) to parse genomic risk for childhood symptoms and to uncover related neurodevelopmental mechanisms with transcriptomic and neuroimaging data. In independent samples (Adolescent Brain Cognitive Development, Generation R) a narrow cross-disorder neurodevelopmental PGS, reflecting risk for attention deficit hyperactivity disorder, autism, depression and Tourette syndrome, predicted psychiatric symptoms through early adolescence with greater sensitivity than broad cross-disorder PGSs reflecting shared risk across eight psychiatric disorders, the disorder-specific PGS individually or two other narrow cross-disorder (Compulsive, Mood-Psychotic) scores. Neurodevelopmental PGS-associated genes were preferentially expressed in the cerebellum, where their expression peaked prenatally. Further, lower gray matter volumes in cerebellum and functionally coupled cortical regions associated with psychiatric symptoms in mid-childhood. These findings demonstrate that the genetic underpinnings of pediatric psychiatric symptoms differ from those of adult illness, and implicate fetal cerebellar developmental processes that endure through childhood.
Collapse
Affiliation(s)
- Dylan E Hughes
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Keiko Kunitoki
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Safia Elyounssi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Mannan Luo
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oren M Bazer
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Casey E Hopkinson
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin F Dowling
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Alysa E Doyle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Erin C Dunn
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center on the Developing Child at Harvard University, Cambridge, MA, USA
| | - Hamdi Eryilmaz
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jodi M Gilman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Daphne J Holt
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Eve M Valera
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia, Rotterdam, the Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Phil H Lee
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joshua L Roffman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
35
|
Xi K, Cai SQ, Yan HF, Tian Y, Cai J, Yang XM, Wang JM, Xing GG. CSMD3 Deficiency Leads to Motor Impairments and Autism-Like Behaviors via Dysfunction of Cerebellar Purkinje Cells in Mice. J Neurosci 2023; 43:3949-3969. [PMID: 37037606 PMCID: PMC10219040 DOI: 10.1523/jneurosci.1835-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Mutations of CUB and sushi multiple domains 3 (CSMD3) gene have been reported in individuals with ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain unexplored. Here, using male CSMD3 knock-out (CSMD3 -/-) mice, we found that genetic deletion of CSMD3 produced core autistic-like symptoms (social interaction deficits, restricted interests, and repetitive and stereotyped behaviors) and motor dysfunction in mice, indicating that the CSMD3 gene can be considered as a candidate for ASD. Moreover, we discovered that the ablation of CSMD3 in mice led to abnormal cerebellar Purkinje cell (PC) morphology in Crus I/II lobules, including aberrant developmental dendritogenesis and spinogenesis of PCs. Furthermore, combining in vivo fiber photometry calcium imaging and ex vivo electrophysiological recordings, we showed that the CSMD3 -/- mice exhibited an increased neuronal activity (calcium fluorescence signals) in PCs of Crus I/II lobules in response to movement activity, as well as an enhanced intrinsic excitability of PCs and an increase of excitatory rather than inhibitory synaptic input to the PCs, and an impaired long-term depression at the parallel fiber-PC synapse. These results suggest that CSMD3 plays an important role in the development of cerebellar PCs. Loss of CSMD3 causes abnormal PC morphology and dysfunction in the cerebellum, which may underlie the pathogenesis of motor deficits and core autistic-like symptoms in CSMD3 -/- mice. Our findings provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a neurodevelopmental disorder with highly heritable heterogeneity. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD. Recently, a novel giant gene CSMD3 encoding a protein with CUB and sushi multiple domains (CSMDs) has been identified as a candidate gene for ASD. However, the underlying mechanisms of CSMD3 for the onset of ASD remain largely unknown. Here, we unravel that loss of CSMD3 results in abnormal morphology, increased intrinsic excitabilities, and impaired synaptic plasticity in cerebellar PCs, subsequently leading to motor deficits and ASD-like behaviors in mice. These results provide novel insight into the pathophysiological mechanisms by which CSMD3 mutations cause impairments in cerebellar function that may contribute to ASD.
Collapse
Affiliation(s)
- Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Si-Qing Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Hui-Fang Yan
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jing-Min Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, People's Republic of China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
- Health Science Center, Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, People's Republic of China
- Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, People's Republic of China
| |
Collapse
|
36
|
Bylemans T, Heleven E, Asselman E, Baetens K, Deroost N, Baeken C, Van Overwalle F. Sex differences in autistic adults: A preliminary study showing differences in mentalizing, but not in narrative coherence. Acta Psychol (Amst) 2023; 236:103918. [PMID: 37071947 DOI: 10.1016/j.actpsy.2023.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 04/20/2023] Open
Abstract
Studying autism might be a complex endeavor due to its clinical heterogeneity. Little is currently known about potential sex differences in autistic adults, especially regarding mentalizing and narrative coherence. In this study, male and female participants told a personal story about one of their most positive and most negative life events and performed two mentalizing tasks. One of these mentalizing tasks was a recently developed Picture and Verbal Sequencing task that has shown cerebellar recruitment, and which requires mentalizing in a sequential context (i.e., participants chronologically ordered scenarios that required true and false belief mentalizing). Our preliminary comparison shows that males were faster and more accurate on the Picture Sequencing task compared to female participants when ordering sequences involving false beliefs, but not true beliefs. No sex differences were found for the other mentalizing and narrative tasks. These results highlight the importance of looking at sex differences in autistic adults and provide a possible explanation for sex-related differences in daily life mentalizing functions, which suggest a need for more sensitive diagnosis and tailored support.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Elien Heleven
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Emma Asselman
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Kris Baetens
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Natacha Deroost
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| | - Chris Baeken
- Ghent University: Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| | - Frank Van Overwalle
- Brain Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Belgium.
| |
Collapse
|
37
|
Bylemans T, Heleven E, Baetens K, Deroost N, Baeken C, Van Overwalle F. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. Neurosci Biobehav Rev 2023; 146:105045. [PMID: 36646260 DOI: 10.1016/j.neubiorev.2023.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BYLEMANS, T., et al. Mentalizing and narrative coherence in autistic adults: Cerebellar sequencing and prediction. NEUROSCI BIOBEHAV REV, 2022. - This review focuses on autistic adults and serves 4 purposes: (1) providing an overview of their difficulties regarding mentalizing (understanding others' mental states) and narrative coherence (structured storytelling), (2) highlighting the relations between both skills by examining behavioral observations and shared neural substrates, (3) providing an integrated perspective regarding novel diagnostic tools and support services, and (4) raising awareness of adult autism. We suggest that mentalizing and narrative coherence are related at the behavioral level and neural level. In addition to the traditional mentalizing network, the cerebellum probably serves as an important hub in shared cerebral networks implicated in mentalizing and narrative coherence. Future autism research and support services should tackle new questions within a framework of social cerebellar (dys)functioning.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Elien Heleven
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Kris Baetens
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Natacha Deroost
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Chris Baeken
- Ghent University: Department of Head and Skin (UZGent), Ghent Experimental Psychiatry (GHEP) Lab, Belgium; Vrije Universiteit Brussel (VUB), Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium; Eindhoven University of Technology, Department of Electrical Engineering, Eindhoven, the Netherlands.
| | - Frank Van Overwalle
- Brain, Body and Cognition, Department of Psychology, and Center for Neuroscience, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
38
|
Nakamura T, Kaneko T, Sasayama D, Yoshizawa T, Kito Y, Fujinaga Y, Washizuka S. Cerebellar network changes in depressed patients with and without autism spectrum disorder: A case-control study. Psychiatry Res Neuroimaging 2023; 329:111596. [PMID: 36669239 DOI: 10.1016/j.pscychresns.2023.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
Pathophysiological difference of depression in patients with and without autistic spectrum disorder (ASD) has not been investigated previously. Therefore, we sought to determine whether there were differences between non-ASD and ASD groups on resting-state functional magnetic resonance imaging (rs-fMRI) in patients with depression. We performed 3T MRI under resting state in 8 patients with depression and ASD and 12 patients with depression but without ASD. The ASD group showed increased functional connectivity in the cerebellar network of the left posterior inferior temporal gyrus and anterior cerebellar lobes compared to the non-ASD group in an analysis of covariance. Adding antipsychotics, antidepressants, benzodiazepines, nonbenzodiazepines, anxiolytics, hypnotics, or age as covariates showed a similar increase in functional connectivity. Thus, this study found that depressive patients with ASD had increased functional connectivity in the cerebellar network. Our findings suggest that fMRI may be able to evaluate differences in depressed patients with and without ASD.
Collapse
Affiliation(s)
- Toshinori Nakamura
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan.
| | - Tomoki Kaneko
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Daimei Sasayama
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Tomonari Yoshizawa
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Yoshihiro Kito
- Radiology Division, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Yasunari Fujinaga
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| | - Shinsuke Washizuka
- Department of Psychiatry, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Nagano, Japan
| |
Collapse
|
39
|
Li H, Guan Q, Huang R, Lei M, Luo YJ, Zhang Z, Tao W. Altered functional coupling between the cerebellum and cerebrum in patients with amnestic mild cognitive impairment. Cereb Cortex 2023; 33:2061-2074. [PMID: 36857720 DOI: 10.1093/cercor/bhac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
Abstract
Cognitive processing relies on the functional coupling between the cerebrum and cerebellum. However, it remains unclear how the 2 collaborate in amnestic mild cognitive impairment (aMCI) patients. With functional magnetic resonance imaging techniques, we compared cerebrocerebellar functional connectivity during the resting state (rsFC) between the aMCI and healthy control (HC) groups. Additionally, we distinguished coupling between functionally corresponding and noncorresponding areas across the cerebrum and cerebellum. The results demonstrated decreased rsFC between both functionally corresponding and noncorresponding areas, suggesting distributed deficits of cerebrocerebellar connections in aMCI patients. Increased rsFC was also observed, which were between functionally noncorresponding areas. Moreover, the increased rsFC was positively correlated with attentional scores in the aMCI group, and this effect was absent in the HC group, supporting that there exists a compensatory mechanism in patients. The current study contributes to illustrating how the cerebellum adjusts its coupling with the cerebrum in individuals with cognitive impairment.
Collapse
Affiliation(s)
- Hehui Li
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Rong Huang
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Mengmeng Lei
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| | - Yue-Jia Luo
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China.,State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, P.R. China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, P.R. China
| | - Wuhai Tao
- Center for Brain Disorders and Cognitive Sciences, Shenzhen University, 3688 Nanhai Avenue, Nanshan District, Shenzhen 518060, P.R. China
| |
Collapse
|
40
|
Laidi C, Neu N, Watilliaux A, Martinez-Teruel A, Razafinimanana M, Boisgontier J, Hotier S, d'Albis MA, Delorme R, Amestoy A, Holiga Š, Moal MLL, Coupé P, Leboyer M, Houenou J, Rondi-Reig L, Paradis AL. Preserved navigation abilities and spatio-temporal memory in individuals with autism spectrum disorder. Autism Res 2023; 16:280-293. [PMID: 36495045 DOI: 10.1002/aur.2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Cerebellar abnormalities have been reported in autism spectrum disorder (ASD). Beyond its role in hallmark features of ASD, the cerebellum and its connectivity with forebrain structures also play a role in navigation. However, the current understanding of navigation abilities in ASD is equivocal, as is the impact of the disorder on the functional anatomy of the cerebellum. In the present study, we investigated the navigation behavior of a population of ASD and typically developing (TD) adults related to their brain anatomy as assessed by structural and functional MRI at rest. We used the Starmaze task, which permits assessing and distinguishing two complex navigation behaviors, one based on allocentric learning and the other on egocentric learning of a route with multiple decision points. Compared to TD controls, individuals with ASD showed similar exploration, learning, and strategy performance and preference. In addition, there was no difference in the structural or functional anatomy of the cerebellar circuits involved in navigation between the two groups. The findings of our work suggest that navigation abilities, spatio-temporal memory, and their underlying circuits are preserved in individuals with ASD.
Collapse
Affiliation(s)
- Charles Laidi
- Univ Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Nathan Neu
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Aurélie Watilliaux
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| | - Axelle Martinez-Teruel
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | - Mihoby Razafinimanana
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| | - Jennifer Boisgontier
- UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Sevan Hotier
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France
| | - Marc-Antoine d'Albis
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Richard Delorme
- Service de psychiatrie de l'enfant et de l'adolescent, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Institut Pasteur, Human Genetics and Cognitive Functions Unit, Paris, France
| | | | - Štefan Holiga
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Pierrick Coupé
- Pictura Research Group, Laboratoire Bordelais de Recherche en Informatique, Unité Mixte de Recherche Centre National de la Recherche Scientifique (UMR 5800), University Bordeaux, Talence, France
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France
| | - Josselin Houenou
- Univ Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France.,Fondation fondaMental, Hôpital Albert Chenevier, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-Sur-Yvette, France
| | - Laure Rondi-Reig
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| | - Anne-Lise Paradis
- Sorbonne Université, CNRS, Inserm, IBPS, Neurosciences Paris Seine, CeZaMe Lab, Paris, France
| |
Collapse
|
41
|
Hawks ZW, Todorov A, Marrus N, Nishino T, Talovic M, Nebel MB, Girault JB, Davis S, Marek S, Seitzman BA, Eggebrecht AT, Elison J, Dager S, Mosconi MW, Tychsen L, Snyder AZ, Botteron K, Estes A, Evans A, Gerig G, Hazlett HC, McKinstry RC, Pandey J, Schultz RT, Styner M, Wolff JJ, Zwaigenbaum L, Markson L, Petersen SE, Constantino JN, White DA, Piven J, Pruett JR. A Prospective Evaluation of Infant Cerebellar-Cerebral Functional Connectivity in Relation to Behavioral Development in Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:149-161. [PMID: 36712571 PMCID: PMC9874081 DOI: 10.1016/j.bpsgos.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 02/01/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder diagnosed based on social impairment, restricted interests, and repetitive behaviors. Contemporary theories posit that cerebellar pathology contributes causally to ASD by disrupting error-based learning (EBL) during infancy. The present study represents the first test of this theory in a prospective infant sample, with potential implications for ASD detection. Methods Data from the Infant Brain Imaging Study (n = 94, 68 male) were used to examine 6-month cerebellar functional connectivity magnetic resonance imaging in relation to later (12/24-month) ASD-associated behaviors and outcomes. Hypothesis-driven univariate analyses and machine learning-based predictive tests examined cerebellar-frontoparietal network (FPN; subserves error signaling in support of EBL) and cerebellar-default mode network (DMN; broadly implicated in ASD) connections. Cerebellar-FPN functional connectivity was used as a proxy for EBL, and cerebellar-DMN functional connectivity provided a comparative foil. Data-driven functional connectivity magnetic resonance imaging enrichment examined brain-wide behavioral associations, with post hoc tests of cerebellar connections. Results Cerebellar-FPN and cerebellar-DMN connections did not demonstrate associations with ASD. Functional connectivity magnetic resonance imaging enrichment identified 6-month correlates of later ASD-associated behaviors in networks of a priori interest (FPN, DMN), as well as in cingulo-opercular (also implicated in error signaling) and medial visual networks. Post hoc tests did not suggest a role for cerebellar connections. Conclusions We failed to identify cerebellar functional connectivity-based contributions to ASD. However, we observed prospective correlates of ASD-associated behaviors in networks that support EBL. Future studies may replicate and extend network-level positive results, and tests of the cerebellum may investigate brain-behavior associations at different developmental stages and/or using different neuroimaging modalities.
Collapse
Affiliation(s)
- Zoë W. Hawks
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Alexandre Todorov
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mary Beth Nebel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica B. Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Savannah Davis
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Benjamin A. Seitzman
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Adam T. Eggebrecht
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jed Elison
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota
| | - Stephen Dager
- Departments of Radiology, University of Washington, Seattle, Washington
| | - Matthew W. Mosconi
- Life Span Institute and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas
| | - Lawrence Tychsen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Kelly Botteron
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Annette Estes
- Speech and Hearing Sciences, University of Washington, Seattle, Washington
| | - Alan Evans
- McConnell Brain Imaging Center, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Guido Gerig
- Department of Computer Science and Engineering, Tandon School of Engineering, New York University, New York, New York
| | - Heather C. Hazlett
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert C. McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Juhi Pandey
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert T. Schultz
- Center for Autism Research, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jason J. Wolff
- Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Lonnie Zwaigenbaum
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Lori Markson
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Steven E. Petersen
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Desirée A. White
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John R. Pruett
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
42
|
Wei L, Zhang Y, Zhai W, Wang H, Zhang J, Jin H, Feng J, Qin Q, Xu H, Li B, Liu J. Attenuated effective connectivity of large-scale brain networks in children with autism spectrum disorders. Front Neurosci 2022; 16:987248. [PMID: 36523439 PMCID: PMC9745118 DOI: 10.3389/fnins.2022.987248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2023] Open
Abstract
INTRODUCTION Understanding the neurological basis of autism spectrum disorder (ASD) is important for the diagnosis and treatment of this mental disorder. Emerging evidence has suggested aberrant functional connectivity of large-scale brain networks in individuals with ASD. However, whether the effective connectivity which measures the causal interactions of these networks is also impaired in these patients remains unclear. OBJECTS The main purpose of this study was to investigate the effective connectivity of large-scale brain networks in patients with ASD during resting state. MATERIALS AND METHODS The subjects were 42 autistic children and 127 age-matched normal children from the ABIDE II dataset. We investigated effective connectivity of 7 large-scale brain networks including visual network (VN), default mode network (DMN), cerebellum, sensorimotor network (SMN), auditory network (AN), salience network (SN), frontoparietal network (FPN), with spectral dynamic causality model (spDCM). Parametric empirical Bayesian (PEB) was used to perform second-level group analysis and furnished group commonalities and differences in effective connectivity. Furthermore, we analyzed the correlation between the strength of effective connectivity and patients' clinical characteristics. RESULTS For both groups, SMN acted like a hub network which demonstrated dense effective connectivity with other large-scale brain network. We also observed significant causal interactions within the "triple networks" system, including DMN, SN and FPN. Compared with healthy controls, children with ASD showed decreased effective connectivity among some large-scale brain networks. These brain networks included VN, DMN, cerebellum, SMN, and FPN. In addition, we also found significant negative correlation between the strength of the effective connectivity from right angular gyrus (ANG_R) of DMN to left precentral gyrus (PreCG_L) of SMN and ADOS-G or ADOS-2 module 4 stereotyped behaviors and restricted interest total (ADOS_G_STEREO_BEHAV) scores. CONCLUSION Our research provides new evidence for the pathogenesis of children with ASD from the perspective of effective connections within and between large-scale brain networks. The attenuated effective connectivity of brain networks may be a clinical neurobiological feature of ASD. Changes in effective connectivity of brain network in children with ASD may provide useful information for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Lei Wei
- Network Center, Air Force Medical University, Xi’an, China
| | - Yao Zhang
- Military Medical Center, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wensheng Zhai
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Junchao Zhang
- Network Center, Air Force Medical University, Xi’an, China
| | - Haojie Jin
- Network Center, Air Force Medical University, Xi’an, China
| | - Jianfei Feng
- Network Center, Air Force Medical University, Xi’an, China
| | - Qin Qin
- Network Center, Air Force Medical University, Xi’an, China
| | - Hao Xu
- Network Center, Air Force Medical University, Xi’an, China
| | - Baojuan Li
- School of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Jian Liu
- Network Center, Air Force Medical University, Xi’an, China
| |
Collapse
|
43
|
Wang P, Wang J, Jiang Y, Wang Z, Meng C, Castellanos FX, Biswal BB. Cerebro-cerebellar Dysconnectivity in Children and Adolescents With Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2022; 61:1372-1384. [PMID: 35661770 DOI: 10.1016/j.jaac.2022.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/16/2022] [Accepted: 03/30/2022] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Abnormal cerebellar development has been implicated in attention-deficit/hyperactivity disorder (ADHD), although cerebro-cerebellar functional connectivity (FC) has yet to be examined in ADHD. Our objective is to investigate the disturbed cerebro-cerebellar FC in children and adolescents with ADHD. METHOD We analyzed a dataset of 106 individuals with ADHD (68 children, 38 adolescents) and 62 healthy comparison individuals (34 children, 28 adolescents) from the publicly available ADHD-200 dataset. We identified 7 cerebellar subregions based on cerebro-cerebellar FC and subsequently obtained the FC maps of cerebro-cerebellar networks. The main effects of ADHD and age and their interaction were examined using 2-way analysis of variance. RESULTS Compared to comparisons, ADHD showed higher cerebro-cerebellar FC in the superior temporal gyrus within the somatomotor network. Interactions of diagnosis and age were identified in the supplementary motor area and postcentral gyrus within the somatomotor network and middle temporal gyrus within the ventral attention network. Follow-up Pearson correlation analysis revealed decreased cerebro-cerebellar FC in these regions with increasing age in comparisons, whereas the opposite pattern of increased cerebro-cerebellar FC occurred in ADHD. CONCLUSION Increased cerebro-cerebellar FC in the superior temporal gyrus within the somatomotor network could underlie impairments in cognitive control and somatic motor function in ADHD. In addition, increasing cerebro-cerebellar FC in older participants with ADHD suggests that enhanced cerebellar involvement may compensate for dysfunctions of the cerebral cortex in ADHD.
Collapse
Affiliation(s)
- Pan Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianlin Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuan Jiang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zedong Wang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - F Xavier Castellanos
- New York University School of Medicine, New York, and the Nathan Kline Institute for Psychiatric Research, Orangeburg, New York
| | - Bharat B Biswal
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; New Jersey Institute of Technology, Newark.
| |
Collapse
|
44
|
Yogi A, Hirata Y, Linetsky M, Ellingson BM, Salamon N. Cerebellar Tubers in Tuberous Sclerosis Complex Patients: New Imaging Characteristics and the Relationship with Cerebral Tubers. JOURNAL OF PEDIATRIC EPILEPSY 2022. [DOI: 10.1055/s-0042-1756717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Objective The imaging characteristics, evolution, and clinical features of cerebellar tubers in tuberous sclerosis complex (TSC) patients have not been well described. The purpose of this study is to investigate the imaging characteristics of cerebellar tubers, including their dynamic changes, and to evaluate the relationship with cerebral tubers in TSC patients.
Materials and Methods Two observers retrospectively reviewed 75 consecutive TSC patients to identify cerebellar tubers and to evaluate their imaging characteristics, including location, presence of retraction change, calcification, contrast enhancement, and the presence of an associated vascular anomaly, as well as dynamic changes in these characteristics. The number of cerebral tubers was compared between TSC patients with and without cerebellar tubers.
Results Twenty-five TSC patients with 28 cerebellar tubers were identified. All cerebellar tubers occurred within the lateral portions of the cerebellar hemispheres. Thirteen cerebellar tubers demonstrated calcification. Ten cerebellar tubers showed contrast enhancement, half of which demonstrated a zebra-like appearance. A vascular anomaly was associated with 12 tubers, one of which subsequently developed parenchymal hemorrhage. Fifteen cerebellar tubers demonstrated complex dynamic changes in size and contrast enhancement. Patients with cerebellar tubers had more cerebral tubers (p = 0.001).
Conclusion Cerebellar tubers demonstrate a specific distribution, suggesting a possible influence on higher brain function. The presence of an associated vascular anomaly may be an important imaging characteristic. Cerebellar tubers may be associated with a more severe manifestation of TSC, given their association with increased numbers of cerebral tubers. These findings may provide insights into the pathogenesis and clinical manifestations of cerebellar tubers in TSC patients.
Collapse
Affiliation(s)
- Akira Yogi
- Department of Radiology, University of the Ryukyus Hospital, Okinawa, Japan
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Yoko Hirata
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Michael Linetsky
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Benjamin M Ellingson
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| | - Noriko Salamon
- Department of Radiological Science, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
45
|
Jackson TB, Bernard JA. Cerebellar and basal ganglia motor network predicts trait depression and hyperactivity. Front Behav Neurosci 2022; 16:953303. [PMID: 36187378 PMCID: PMC9523104 DOI: 10.3389/fnbeh.2022.953303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
In the human brain, the cerebellum (CB) and basal ganglia (BG) are implicated in cognition-, emotion-, and motor-related cortical processes and are highly interconnected, both to cortical regions via separate, trans-thalamic pathways and to each other via subcortical disynaptic pathways. We previously demonstrated a distinction between cognitive and motor CB-BG networks (CCBN, MCBN, respectively) as it relates to cortical network integration in healthy young adults, suggesting the subcortical networks separately support cortical networks. The CB and BG are also implicated in the pathophysiology of schizophrenia, Parkinson's, and compulsive behavior; thus, integration within subcortical CB-BG networks may be related to transdiagnostic symptomology. Here, we asked whether CCBN or MCBN integration predicted Achenbach Self-Report scores for anxiety, depression, intrusive thoughts, hyperactivity and inactivity, and cognitive performance in a community sample of young adults. We computed global efficiency for each CB-BG network and 7 canonical resting-state networks for all right-handed participants in the Human Connectome Project 1200 release with a complete set of preprocessed resting-state functional MRI data (N = 783). We used multivariate regression to control for substance abuse and age, and permutation testing with exchangeability blocks to control for family relationships. MCBN integration negatively predicted depression and hyperactivity, and positively predicted cortical network integration. CCBN integration predicted cortical network integration (except for the emotional network) and marginally predicted a positive relationship with hyperactivity, indicating a potential dichotomy between cognitive and motor CB-BG networks and hyperactivity. These results highlight the importance of CB-BG interactions as they relate to motivation and symptoms of depression.
Collapse
Affiliation(s)
- T. Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: T. Bryan Jackson
| | - Jessica A. Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
46
|
Okada NJ, Liu J, Tsang T, Nosco E, McDonald N, Cummings KK, Jung J, Patterson G, Bookheimer SY, Green SA, Jeste SS, Dapretto M. Atypical cerebellar functional connectivity at 9 months of age predicts delayed socio-communicative profiles in infants at high and low risk for autism. J Child Psychol Psychiatry 2022; 63:1002-1016. [PMID: 34882790 PMCID: PMC9177892 DOI: 10.1111/jcpp.13555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND While the cerebellum is traditionally known for its role in sensorimotor control, emerging research shows that particular subregions, such as right Crus I (RCrusI), support language and social processing. Indeed, cerebellar atypicalities are commonly reported in autism spectrum disorder (ASD), a neurodevelopmental disorder characterized by socio-communicative impairments. However, the cerebellum's contribution to early socio-communicative development remains virtually unknown. METHODS Here, we characterized functional connectivity within cerebro-cerebellar networks implicated in language/social functions in 9-month-old infants who exhibit distinct 3-year socio-communicative developmental profiles. We employed a data-driven clustering approach to stratify our sample of infants at high (n = 82) and low (n = 37) familial risk for ASD into three cohorts-Delayed, Late-Blooming, and Typical-who showed unique socio-communicative trajectories. We then compared the cohorts on indices of language and social development. Seed-based functional connectivity analyses with RCrusI were conducted on infants with fMRI data (n = 66). Cohorts were compared on connectivity estimates from a-priori regions, selected on the basis of reported coactivation with RCrusI during language/social tasks. RESULTS The three trajectory-based cohorts broadly differed in social communication development, as evidenced by robust differences on numerous indices of language and social skills. Importantly, at 9 months, the cohorts showed striking differences in cerebro-cerebellar circuits implicated in language/social functions. For all regions examined, the Delayed cohort exhibited significantly weaker RCrusI connectivity compared to both the Late-Blooming and Typical cohorts, with no significant differences between the latter cohorts. CONCLUSIONS We show that hypoconnectivity within distinct cerebro-cerebellar networks in infancy predicts altered socio-communicative development before delays overtly manifest, which may be relevant for early detection and intervention. As the cerebellum is implicated in prediction, our findings point to probabilistic learning as a potential intermediary mechanism that may be disrupted in infancy, cascading into alterations in social communication.
Collapse
Affiliation(s)
- Nana J. Okada
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Janelle Liu
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Tawny Tsang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Erin Nosco
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Nicole McDonald
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Kaitlin K. Cummings
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Jiwon Jung
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Genevieve Patterson
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Shulamite A. Green
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| | - Shafali S. Jeste
- Children’s Hospital Los Angeles, USC Keck School of Medicine, Los Angeles
| | - Mirella Dapretto
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles
| |
Collapse
|
47
|
Bylemans T, Heleven E, Baetens K, Deroost N, Baeken C, Van Overwalle F. A narrative sequencing and mentalizing training for adults with autism: A pilot study. Front Behav Neurosci 2022; 16:941272. [PMID: 36062258 PMCID: PMC9433774 DOI: 10.3389/fnbeh.2022.941272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Adults diagnosed with autism experience difficulties with understanding the mental states of others, or themselves (mentalizing) and with adequately sequencing personal stories (narrative coherence). Given that the posterior cerebellum is implicated in both skills, as well as in the etiology of autism, we developed a narrative sequencing and mentalizing training for autistic adults. Participants with an official autism diagnosis were randomly assigned to a Training group (n = 17) or a waiting-list Control group (n = 15). The Training group took part in six weekly sessions in groups of three participants lasting each about 60 min. During training, participants had to (re)tell stories from the perspective of the original storyteller and answer questions that required mentalizing. We found significant improvements in mentalizing about others’ beliefs and in narrative coherence for the Training group compared to the Control group immediately after the training compared to before the training. Almost all participants from the Training group expressed beneficial effects of the training on their mood and half of the participants reported positive effects on their self-confidence in social situations. All participants recommended the current training to others. Results are discussed in light of cerebellar theories on sequencing of social actions during mentalizing. Further improvements to the program are suggested. Our results highlight the potential clinical utility of adopting a neuroscience-informed approach to developing novel therapeutic interventions for autistic populations.
Collapse
Affiliation(s)
- Tom Bylemans
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
- *Correspondence: Tom Bylemans,
| | - Elien Heleven
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| | - Kris Baetens
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| | - Natacha Deroost
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| | - Chris Baeken
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin (UZGent), Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Frank Van Overwalle
- Brain Body and Cognition, Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
48
|
Martínez-Álvarez R, Torres-Diaz C. Surgery of autism: Is it possible? PROGRESS IN BRAIN RESEARCH 2022; 272:73-84. [PMID: 35667807 DOI: 10.1016/bs.pbr.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disability of the brain that can be associated to severe conductual alterations, such as self or heteroaggression and obsessive and compulsive behavior. Many of these patients do not improve with any pharmacological or behavioral therapy and represent a major social problem. We describe the outcome of patients with ASD, treated with radiofrequency brain lesions combined with Gamma Knife radiosurgery for therapy-resistant aggressiveness, obsessive thoughts, and compulsions. The ASD adapted YBOCS, PCQ and EAE scales assessed the therapeutic effect on symptoms. All patients had a significant reduction of their symptoms (YBOCS:34 and 22 PCQ 42 and 35, EAE 11 and 5.5, respectively), although all needed more than one treatment to maintain this improvement. The treatments resulted very safe for the patients and their neurological status has not change. We conclude that in these patients after surgery, there is a marked improvement in behavior, quality of life and relationship with the environment, with no evidence of secondary damage. Changes in connectivity might mediate the clinical improvement, although it is necessary to confirm these results with further studies.
Collapse
Affiliation(s)
- Roberto Martínez-Álvarez
- Department of Functional Neurosurgery and Radiosurgery, Ruber International Hospital, Madrid, Spain.
| | - Cristina Torres-Diaz
- Department of Functional Neurosurgery and Radiosurgery, Ruber International Hospital, Madrid, Spain; Department of Neurosurgery, La Princesa Hospital, Madrid, Spain
| |
Collapse
|
49
|
Li H, Yuan Q, Luo YJ, Tao W. A new perspective for understanding the contributions of the cerebellum to reading: The cerebro-cerebellar mapping hypothesis. Neuropsychologia 2022; 170:108231. [DOI: 10.1016/j.neuropsychologia.2022.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
|
50
|
Extrastriatal dopamine D2/3 receptor binding, functional connectivity, and autism socio-communicational deficits: a PET and fMRI study. Mol Psychiatry 2022; 27:2106-2113. [PMID: 35181754 DOI: 10.1038/s41380-022-01464-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/08/2022]
Abstract
The social motivation hypothesis of autism proposes that social communication symptoms in autism-spectrum disorder (ASD) stem from atypical social attention and reward networks, where dopamine acts as a crucial mediator. However, despite evidence indicating that individuals with ASD show atypical activation in extrastriatal regions while processing reward and social stimuli, no previous studies have measured extrastriatal dopamine D2/3 receptor (D2/3R) availability in ASD. Here, we investigated extrastriatal D2/3R availability in individuals with ASD and its association with ASD social communication symptoms using positron emission tomography (PET). Moreover, we employed a whole-brain multivariate pattern analysis of resting-state functional magnetic resonance imaging (fMRI) to identify regions where functional connectivity atypically correlates with D2/3R availability depending on ASD diagnosis. Twenty-two psychotropic-free males with ASD and 24 age- and intelligence quotient-matched typically developing males underwent [11C]FLB457 PET, fMRI, and clinical symptom assessment. Participants with ASD showed lower D2/3R availability throughout the D2/3R-rich extrastriatal regions of the dopaminergic pathways. Among these, the posterior region of the thalamus, which primarily comprises the pulvinar, displayed the largest effect size for the lower D2/3R availability, which correlated with a higher score on the Social Affect domain of the Autism Diagnostic Observation Schedule-2 in participants with ASD. Moreover, lower D2/3R availability was correlated with lower functional connectivity of the thalamus-superior temporal sulcus and cerebellum-medial occipital cortex, specifically in individuals with ASD. The current findings provide novel molecular evidence for the social motivation theory of autism and offer a novel therapeutic target.
Collapse
|