1
|
Campbell HM, Guo JD, Kuhn CM. Applying the Research Domain Criteria to Rodent Studies of Sex Differences in Chronic Stress Susceptibility. Biol Psychiatry 2024; 96:848-857. [PMID: 38821193 DOI: 10.1016/j.biopsych.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
Women have a 2-fold increased rate of stress-associated psychiatric disorders such as depression and anxiety, but the mechanisms that underlie this increased susceptibility remain incompletely understood. Historically, female subjects were excluded from preclinical studies and clinical trials. Additionally, chronic stress paradigms used to study psychiatric pathology in animal models were developed for use in males. However, recent changes in National Institutes of Health policy encourage inclusion of female subjects, and considerable work has been performed in recent years to understand biological sex differences that may underlie differences in susceptibility to chronic stress-associated psychiatric conditions. Here, we review the utility as well as current challenges of using the framework of the National Institute of Mental Health's Research Domain Criteria as a transdiagnostic approach to study sex differences in rodent models of chronic stress including recent progress in the study of sex differences in the neurobehavioral domains of negative valence, positive valence, cognition, social processes, and arousal.
Collapse
Affiliation(s)
- Hannah M Campbell
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Jessica D Guo
- Duke University School of Medicine, Durham, North Carolina
| | - Cynthia M Kuhn
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
2
|
Procyshyn TL, Dupertuys J, Bartz JA. Neuroimaging and behavioral evidence of sex-specific effects of oxytocin on human sociality. Trends Cogn Sci 2024; 28:948-961. [PMID: 39054193 DOI: 10.1016/j.tics.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Although the social role of oxytocin came to light due to sex-specific interactions such as mother-offspring bonding, current understanding of sex differences in the effects of oxytocin on human sociality is limited because of the predominance of all-male samples. With the increasing inclusion of females in intranasal oxytocin research, it is now possible to explore such patterns. Neuroimaging studies reveal relatively consistent sex-differential effects of oxytocin on the activation of brain regions associated with processing social stimuli - particularly the amygdala. Findings from behavioral research are varied but suggest that oxytocin more often facilitates social cognition and positive social interactions in males, with context-dependent effects in each sex. We discuss potential biological and psychological mechanisms underlying the reported sex differences, and conclude with considerations for future research and clinical applications of oxytocin.
Collapse
Affiliation(s)
- Tanya L Procyshyn
- Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK.
| | - Juliette Dupertuys
- Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| | - Jennifer A Bartz
- Department of Psychology, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
Nerio-Morales LK, Boender AJ, Young LJ, Lamprea MR, Smith AS. Limbic oxytocin receptor expression alters molecular signaling and social avoidance behavior in female prairie voles ( Microtus ochrogaster). Front Neurosci 2024; 18:1409316. [PMID: 39081850 PMCID: PMC11286410 DOI: 10.3389/fnins.2024.1409316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The social defeat paradigm is the most representative animal model to study social anxiety disorder (SAD) and its underlying neuronal mechanisms. We have previously reported that defeat progressively reduces oxytocin receptors (OXTR) in limbic regions of the brain over an eight-week period in female prairie voles (Microtus ochrogaster). Oxytocin receptors activate the mitogen-activated protein kinase (MAPK) pathway, which has been previously associated with the anxiolytic effects of oxytocin. Here, we assessed the functional significance of OXTR in stress-induced social avoidance and the response of the MAPK signaling pathway in the nucleus accumbens (NAc), anterior cingulate cortex (ACC), and basolateral amygdala (BLA) of female prairie voles. Methods In experiment 1, Sexually naïve adult female prairie voles were defeated for three consecutive days and tested a week after for social preference/avoidance (SPA) test. Control subjects were similarly handled without defeat conditioning. In experiment 2, sexually and stress naïve adult female prairie voles were bilaterally injected into the NAc, ACC, or the BLA with a CRISPR/Cas9 virus targeting the Oxtr coding sequence to induce OXTR knockdown. Two weeks post-surgery, subjects were tested for SPA behavior. Viral control groups were similarly handled but injected with a control virus. A subgroup of animals from each condition in both experiments were similarly treated and euthanized without being tested for SPA behavior. Brains were harvested for OXTR autoradiography, western blot analysis of MAPK proteins and quantification of local oxytocin content in the NAc, BLA, ACC, and PVN through ELISA. Results Social defeat reduced OXTR binding in the NAc and affected MAPK pathway activity and oxytocin availability. These results were region-specific and sensitive to exposure to the SPA test. Additionally, OXTR knockdown in the NAc, ACC, and BLA induced social avoidance and decreased basal MAPK activity in the NAc. Finally, we found that OXTR knockdown in these regions was associated with less availability of oxytocin in the PVN. Conclusion Dysregulation of the oxytocin system and MAPK signaling pathway in the NAc, ACC, and BLA are important in social behavior disruptions in female voles. This dysregulation could, therefore, play an important role in the etiology of SAD in women.
Collapse
Affiliation(s)
- Lina K. Nerio-Morales
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Arjen J. Boender
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Larry J. Young
- Department of Psychiatry and Behavioral Sciences, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marisol R. Lamprea
- Department of Psychology, School of Human Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Program in Neuroscience, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
4
|
Kuske JX, Godoy AS, Ramirez AV, Trainor BC. Sex differences in responses to aggressive encounters among California mice. Horm Behav 2024; 162:105537. [PMID: 38582062 DOI: 10.1016/j.yhbeh.2024.105537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Despite how widespread female aggression is across the animal kingdom, there remains much unknown about its neuroendocrine mechanisms, especially in females that engage in aggression outside the peripartum period. Although the impact of aggressive experience on steroid hormone responses have been described, little is known about the impact of these experiences on female behavior or the subsequent neuropeptide responses to performing aggression. In this study, we compared behavioral responses in both male and female adult California mice based on if they had 0, 1, or 3 aggressive encounters using a resident intruder paradigm. We measured how arginine vasopressin and oxytocin cells in the paraventricular nucleus responded to aggression using c-fos immunohistochemistry. We saw that both sexes disengaged from intruders with repeated aggressive encounters, but that on the final day of testing females were more likely to freeze when they encountered intruders compared to no aggression controls - which was not significant in males. Finally, we saw that percent of arginine vasopressin and c-fos co-localizations in the posterior region of the paraventricular nucleus increased in males who fought compared to no aggression controls. No difference was observed in females. Overall, there is evidence that engaging in aggression induces stress responses in both sexes, and that females may be more sensitive to the effects of fighting.
Collapse
Affiliation(s)
- Jace X Kuske
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Alexandra Serna Godoy
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA 95616, United States of America
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
5
|
Rigney N, Campos-Lira E, Kirchner MK, Wei W, Belkasim S, Beaumont R, Singh S, Suarez SG, Hartswick D, Stern JE, de Vries GJ, Petrulis A. A vasopressin circuit that modulates mouse social investigation and anxiety-like behavior in a sex-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2319641121. [PMID: 38709918 PMCID: PMC11098102 DOI: 10.1073/pnas.2319641121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Elba Campos-Lira
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Selma Belkasim
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Rachael Beaumont
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Sumeet Singh
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Delenn Hartswick
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| |
Collapse
|
6
|
Viudez-Martínez A, Torregrosa AB, Navarrete F, García-Gutiérrez MS. Understanding the Biological Relationship between Migraine and Depression. Biomolecules 2024; 14:163. [PMID: 38397400 PMCID: PMC10886628 DOI: 10.3390/biom14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Migraine is a highly prevalent neurological disorder. Among the risk factors identified, psychiatric comorbidities, such as depression, seem to play an important role in its onset and clinical course. Patients with migraine are 2.5 times more likely to develop a depressive disorder; this risk becomes even higher in patients suffering from chronic migraine or migraine with aura. This relationship is bidirectional, since depression also predicts an earlier/worse onset of migraine, increasing the risk of migraine chronicity and, consequently, requiring a higher healthcare expenditure compared to migraine alone. All these data suggest that migraine and depression may share overlapping biological mechanisms. Herein, this review explores this topic in further detail: firstly, by introducing the common epidemiological and risk factors for this comorbidity; secondly, by focusing on providing the cumulative evidence of common biological aspects, with a particular emphasis on the serotoninergic system, neuropeptides such as calcitonin-gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), substance P, neuropeptide Y and orexins, sexual hormones, and the immune system; lastly, by remarking on the future challenges required to elucidate the etiopathological mechanisms of migraine and depression and providing updated information regarding new key targets for the pharmacological treatment of these clinical entities.
Collapse
Affiliation(s)
- Adrián Viudez-Martínez
- Hospital Pharmacy Service, Hospital General Dr. Balmis de Alicante, 03010 Alicante, Spain;
| | - Abraham B. Torregrosa
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain; (A.B.T.); (F.N.)
- Research Network on Primary Addictions, Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
7
|
Zhang S, Zhang YD, Shi DD, Wang Z. Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders. Cell Biosci 2023; 13:216. [PMID: 38017588 PMCID: PMC10683256 DOI: 10.1186/s13578-023-01173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
Oxytocin (OXT), produced and secreted in the paraventricular nucleus and supraoptic nucleus of magnocellular and parvocellular neurons. The diverse presence and activity of oxytocin suggests a potential for this neuropeptide in the pathogenesis and treatment of stress-related neuropsychiatric disorders (anxiety, depression and post-traumatic stress disorder (PTSD)). For a more comprehensive understanding of the mechanism of OXT's anti-stress action, the signaling cascade of OXT binding to targeting stress were summarized. Then the advance of OXT treatment in depression, anxiety, PTSD and the major projection region of OXT neuron were discussed. Further, the efficacy of endogenous and exogenous OXT in stress responses were highlighted in this review. To augment the level of OXT in stress-related neuropsychiatric disorders, current biological strategies were summarized to shed a light on the treatment of stress-induced psychiatric disorders. We also conclude some of the major puzzles in the therapeutic uses of OXT in stress-related neuropsychiatric disorders. Although some questions remain to be resolved, OXT has an enormous potential therapeutic use as a hormone that regulates stress responses.
Collapse
Affiliation(s)
- Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Monari PK, Herro ZJ, Bymers J, Marler CA. Chronic intranasal oxytocin increases acoustic eavesdropping and adult neurogenesis. Horm Behav 2023; 156:105443. [PMID: 37871536 DOI: 10.1016/j.yhbeh.2023.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Social information gathering is a complex process influenced by neuroendocrine-modulated neural plasticity. Oxytocin (OXT) is a key regulator of social decision-making processes such as information gathering, as it contextually modulates social salience and can induce long-term structural plasticity, including neurogenesis. Understanding the link between OXT-induced plasticity and communicative awareness is crucial, particularly because OXT is being considered for treatment of social pathologies. We investigated the role of chronic OXT-dependent plasticity in attention to novel social information by manipulating the duration of time following cessation of intranasal treatment to allow for the functional integration of adult-born neurons resulting from OXT treatment. Following a 3-week delay, chronic intranasal OXT (IN-OXT) increased approach behavior of both female and male mice towards aggressive vocal playbacks of two unseen novel conspecifics, while no effect was observed after a 3-day delay. Immature neurons increased in the ventral hippocampus of females and males treated with chronic IN-OXT after the 3-week delay, indicating a potential association between ventral hippocampal neurogenesis and approach/acoustic eavesdropping. The less the mouse approached, the higher the level of neurogenesis. Contrary to expectations, the correlation between ventral hippocampal neurogenesis and approach behavior was not affected by IN-OXT, suggesting that other plasticity mechanisms underlie the long-term effects of chronic OXT on social approach. Furthermore, we found a negative correlation between ventral hippocampal neurogenesis and freezing behavior. Overall, our results demonstrate that chronic IN-OXT-induced long-term plasticity can influence approach to vocal information and we further reinforced the link between neurogenesis and anxiety.
Collapse
Affiliation(s)
- Patrick K Monari
- Department of Psychology, University of Wisconsin-Madison, WI, USA.
| | - Zachary J Herro
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | - Jessica Bymers
- Department of Psychology, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
9
|
Wright EC, Luo PX, Zakharenkov HC, Serna Godoy A, Lake AA, Prince ZD, Sekar S, Culkin HI, Ramirez AV, Dwyer T, Kapoor A, Corbett C, Tian L, Fox AS, Trainor BC. Sexual differentiation of neural mechanisms of stress sensitivity during puberty. Proc Natl Acad Sci U S A 2023; 120:e2306475120. [PMID: 37847733 PMCID: PMC10614610 DOI: 10.1073/pnas.2306475120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Anxiety disorders are a major public health concern and current treatments are inadequate for many individuals. Anxiety is more common in women than men and this difference arises during puberty. Sex differences in physiological stress responses may contribute to this variability. During puberty, gonadal hormones shape brain structure and function, but the extent to which these changes affect stress sensitivity is unknown. We examined how pubertal androgens shape behavioral and neural responses to social stress in California mice (Peromyscus californicus), a model species for studying sex differences in stress responses. In adults, social defeat reduces social approach and increases social vigilance in females but not males. We show this sex difference is absent in juveniles, and that prepubertal castration sensitizes adult males to social defeat. Adult gonadectomy does not alter behavioral responses to defeat, indicating that gonadal hormones act during puberty to program behavioral responses to stress in adulthood. Calcium imaging in the medioventral bed nucleus of the stria terminalis (BNST) showed that social threats increased neural activity and that prepubertal castration generalized these responses to less threatening social contexts. These results support recent hypotheses that the BNST responds to immediate threats. Prepubertal treatment with the nonaromatizable androgen dihydrotestosterone acts in males and females to reduce the effects of defeat on social approach and vigilance in adults. These data indicate that activation of androgen receptors during puberty is critical for programming behavioral responses to stress in adulthood.
Collapse
Affiliation(s)
- Emily C. Wright
- Department of Psychology, University of California, Davis, CA95616
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA95616
| | - Pei X. Luo
- Department of Psychology, University of California, Davis, CA95616
| | | | | | - Alyssa A. Lake
- Department of Psychology, University of California, Davis, CA95616
| | - Zhana D. Prince
- Department of Psychology, University of California, Davis, CA95616
| | - Shwetha Sekar
- Department of Psychology, University of California, Davis, CA95616
| | - Hannah I. Culkin
- Department of Psychology, University of California, Davis, CA95616
| | | | - Tjien Dwyer
- Department of Psychology, University of California, Davis, CA95616
| | - Amita Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| | - Cody Corbett
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI53715
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA95616
| | - Andrew S. Fox
- Department of Psychology, University of California, Davis, CA95616
- California National Primate Research Center, University of California, Davis, CA95616
| | - Brian C. Trainor
- Department of Psychology, University of California, Davis, CA95616
| |
Collapse
|
10
|
Værøy H, Lahaye E, Dubessy C, Benard M, Nicol M, Cherifi Y, Takhlidjt S, do Rego JL, do Rego JC, Chartrel N, Fetissov SO. Immunoglobulin G is a natural oxytocin carrier which modulates oxytocin receptor signaling: relevance to aggressive behavior in humans. DISCOVER MENTAL HEALTH 2023; 3:21. [PMID: 37983005 PMCID: PMC10587035 DOI: 10.1007/s44192-023-00048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Oxytocin is a neuropeptide produced mainly in the hypothalamus and secreted in the CNS and blood. In the brain, it plays a major role in promoting social interactions. Here we show that in human plasma about 60% of oxytocin is naturally bound to IgG which modulates oxytocin receptor signaling. Further, we found that IgG of violent aggressive inmates were characterized by lower affinity for oxytocin, causing decreased oxytocin carrier capacity and reduced receptor activation as compared to men from the general population. Moreover, peripheral administration of oxytocin together with human oxytocin-reactive IgG to resident mice in a resident-intruder test, reduced c-fos activation in several brain regions involved in the regulation of aggressive/defensive behavior correlating with the attack number and duration. We conclude that IgG is a natural oxytocin carrier protein modulating oxytocin receptor signaling which can be relevant to the biological mechanisms of aggressive behavior.
Collapse
Affiliation(s)
- Henning Værøy
- Department of Psychiatric Research, Akershus University Hospital, 1478, Nordbyhagen, Norway.
| | - Emilie Lahaye
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Christophe Dubessy
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Magalie Benard
- INSERM US51, CNRS UAR 2026, Imagine Platform PRIMACEN- HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Marion Nicol
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Yamina Cherifi
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Saloua Takhlidjt
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Luc do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Jean-Claude do Rego
- INSERM US51, CNRS UAR 2026, Behavioral Analysis Platform SCAC-HeRacLeS, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen Normandie, 76000, Rouen, France
| | - Nicolas Chartrel
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France
| | - Sergueï O Fetissov
- INSERM 1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, University of Rouen Normandie, 76000, Rouen, France.
| |
Collapse
|
11
|
Nisbett KE, Gonzalez LA, Teruel M, Carter CS, Vendruscolo LF, Ragozzino ME, Koob GF. Sex and hormonal status influence the anxiolytic-like effect of oxytocin in mice. Neurobiol Stress 2023; 26:100567. [PMID: 37706061 PMCID: PMC10495655 DOI: 10.1016/j.ynstr.2023.100567] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023] Open
Abstract
Anxiety and depression are highly prevalent psychiatric disorders, affecting approximately 18% of the United States population. Evidence indicates that central oxytocin mediates social cognition, social bonding, and social anxiety. Although it is well-established that oxytocin ameliorates social deficits, less is known about the therapeutic effects of oxytocin in non-social contexts. We hypothesized that positive effects of oxytocin in social contexts are attributable to intrinsic effects of oxytocin on neural systems that are related to emotion regulation. The present study investigated the effect of intracerebroventricular (ICV) oxytocin administration (i.e., central action) on anxiety- and depression-like behavior in C57Bl/6J mice using non-social tests. Male and female mice received an ICV infusion of vehicle or oxytocin (100, 200, or 500 ng), then were tested in the elevated zero maze (for anxiety-like behavior) and the tail suspension test (for depression-like behavior). Oxytocin dose-dependently increased open zone occupancy and entries in the elevated zero maze and reduced immobility duration in the tail suspension test in both sexes. Oxytocin decreased anxiety and depression-like behavior in male and female mice. The observed effect of oxytocin on anxiolytic-like behavior appeared to be driven by the males. Given the smaller anxiolytic-like effect of oxytocin in the female mice and the established interaction between oxytocin and reproductive hormones (estrogen and progesterone), we also explored whether oxytocin sensitivity in females varies across estrous cycle phases and in ovariectomized females that were or were not supplemented with estrogen or progesterone. Oxytocin reduced anxiety-like behavior in female mice in proestrus/estrus, ovariectomized females (supplemented or not with estrogen or progesterone), but not females in metestrus/diestrus. Additionally, oxytocin reduced depression-like behavior in all groups tested with slight differences across the various hormonal statuses. These results suggest that the effect of oxytocin in depression- and anxiety-like behavior in mice can be influenced by sex and hormonal status.
Collapse
Affiliation(s)
- Khalin E. Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL 60607, USA
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
- Stress and Addiction Neuroscience Unit, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luis A. Gonzalez
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marina Teruel
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - C. Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22903, USA
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Leandro F. Vendruscolo
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael E. Ragozzino
- Department of Psychology, College of Liberal Arts and Sciences, University of Illinois Chicago, Chicago, IL 60607, USA
| | - George F. Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
12
|
Becker HC, Lopez MF, King CE, Griffin WC. Oxytocin Reduces Sensitized Stress-Induced Alcohol Relapse in a Model of Posttraumatic Stress Disorder and Alcohol Use Disorder Comorbidity. Biol Psychiatry 2023; 94:215-225. [PMID: 36822933 PMCID: PMC10247903 DOI: 10.1016/j.biopsych.2022.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is high comorbidity of posttraumatic stress disorder (PTSD) and alcohol use disorder with few effective treatment options. Animal models of PTSD have shown increases in alcohol drinking, but effects of stress history on subsequent vulnerability to alcohol relapse have not been examined. Here we present a mouse model of PTSD involving chronic multimodal stress exposure that resulted in long-lasting sensitization to stress-induced alcohol relapse, and this sensitized stress response was blocked by oxytocin (OT) administration. METHODS Male and female mice trained to self-administer alcohol were exposed to predator odor (TMT) + yohimbine over 5 consecutive days or left undisturbed. After reestablishing stable alcohol responding/intake, mice were tested under extinction conditions, and then all mice were exposed to TMT or context cues previously associated with TMT before a reinstatement test session. Separate studies examined messenger RNA expression of Oxt and Oxtr in hypothalamus following chronic stress exposure. A final study examined the effects of systemic administration of OT on stress-induced alcohol relapse in mice with and without a history of chronic stress experience. RESULTS Chronic stress exposure produced long-lasting sensitization to subsequent stress-induced alcohol relapse that also generalized to stress-related context cues and transcriptional changes in hypothalamic OT system. OT injected before the reinstatement test session completely blocked the sensitized stress-induced alcohol relapse effect. CONCLUSIONS Collectively, these results provide support for the therapeutic potential of OT, along with highlighting the value of utilizing this model in evaluating other pharmacological interventions for treatment of PTSD/alcohol use disorder comorbidity.
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina; Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, South Carolina.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Courtney E King
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
13
|
Guoynes CD, Marler CA. Acute intranasal oxytocin dose enhances social preference for parents over peers in male but not female peri-adolescent California mice (Peromyscus californicus). Gen Comp Endocrinol 2023; 335:114230. [PMID: 36781024 DOI: 10.1016/j.ygcen.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Peri-adolescence is a critical developmental stage marked by profound changes in the valence of social interactions with parents and peers. We hypothesized that the oxytocin (OXT) and vasopressin (AVP) systems, known for influencing social behavior, would be involved in the maintenance and breaking of bonding behavior expressed by very early peri-adolescent males and females. In rodents, OXT is associated with mother-pup bonding and may promote social attachment to members of the natal territory. AVP, on the other hand, can act in contrasting ways to OXT and has been associated with aggression and territoriality. Specifically, we predicted that in peri-adolescent male and female juveniles of the biparental and territorial California mouse (Peromyscus californicus), a) OXT would increase the social preferences for the parents over unfamiliar age-matched peers (one male and one female), and b) AVP would break the parent-offspring bond and either increase time in the neutral chamber and/or approach to their unfamiliar and novel peers. We examined anxiety and exploratory behavior using an elevated plus maze and a novel object task as a control. Peri-adolescent mice were administered an acute intranasal (IN) treatment of 0.5 IU/kg IN AVP, 0.5 IU/kg IN OXT, or saline control; five minutes later, the behavioral tests were conducted. As predicted, we found that IN OXT enhanced social preference for parents; however, this was only in male and not female peri-adolescent mice. IN AVP did not influence social preference in either sex. These effects appear specific to social behavior and not anxiety, as neither IN OXT nor AVP influenced behavior during the elevated plus maze or novel object tasks. To our knowledge, this is the first evidence indicating that OXT may play a role in promoting peri-adolescent social preferences for parents and delaying weaning in males.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Hou W, Huang S, Li L, Guo X, He Z, Shang S, Jia Z, Zhang L, Qu Y, Huang C, Li Y, Li Y, Lv Z, Tai F. Oxytocin treatments or activation of the paraventricular nucleus-the shell of nucleus accumbens pathway reduce adverse effects of chronic social defeat stress on emotional and social behaviors in Mandarin voles. Neuropharmacology 2023; 230:109482. [PMID: 36893984 DOI: 10.1016/j.neuropharm.2023.109482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Chronic social stress can cause psychological disease. Although oxytocin (OT) has been showed to modulate effects of chronic social defeat stress (CSDS) on emotional and social behaviors, however, how OT circuits mediate effects of CSDS on emotional and social abnormalities remains unclear. Here, we found that repeated intraperitoneal OT administration in the process of CSDS buffered adverse effects of CSDS on emotional and social behaviors in mandarin voles (Microtus mandarinus) of both sexes except no effect on depression-like behavior of males. Repeated OT treatments during CSDS prevented decrease of oxytocin receptors in nucleus accumbens (NAc) in females, but produced no effects on males. Furthermore, using designer receptors exclusively activated by designer drugs (DREADDs)-based chemogenetic tools, we determined that the activation of the paraventricular nucleus (PVN)-the shell of NAc (NAcs) projections before social defeat during CSDS process significantly prevented the increase of the anxiety-like behaviors and social avoidance induced by CSDS in both sexes, and reversed the depressive-like behaviors induced by CSDS only in females. Besides, optogenetic activation of PVN-NAcs projections after CSDS reduced anxiety-like behaviors and increased levels of sociality. Collectively, we suggest that PVN-NAcs projections modulate emotional and social behaviors during or after the process of CSDS sex-specifically, although AAV viruses did not specifically infect OT neurons. These findings offer potential targets for preventing or treating emotional and social disorders induced by chronic stress.
Collapse
Affiliation(s)
- Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shuying Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Shufeng Shang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; College of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Ziyan Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
15
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Sunahara CS, Wilson SJ, Rosenfield D, Alvi T, Szeto A, Mendez AJ, Tabak BA. Oxytocin reactivity to a lab-based stressor predicts support seeking after stress in daily life: Implications for the Tend-and-Befriend theory. Psychoneuroendocrinology 2022; 145:105897. [PMID: 36095915 DOI: 10.1016/j.psyneuen.2022.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Social relationships play an important role in mental and physical health, particularly during times of stress. However, little is known about the biological mechanisms underlying the tendency to seek support following stress. The Tend-and-Befriend theory suggests that oxytocin (OT) may enhance the desire for social contact in response to stress. Yet, no studies in humans have provided empirical support for the connection between stress-induced changes in endogenous OT and increased support seeking after stress. In the present study, 94 participants performed a standardized laboratory stressor and then completed two weeks of daily assessments of support seeking after stress. In line with preregistered hypotheses, stress-induced plasma OT reactivity to the laboratory stressor was associated with more frequent support seeking behaviors following stress in daily life (i.e., outside of the laboratory). Additional results suggested that attachment anxiety (but not avoidance) strengthened this association. Our findings implicate the OT system in affiliative behaviors following stress, providing empirical support for the Tend-and-Befriend theory.
Collapse
Affiliation(s)
- Cecile S Sunahara
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Stephanie J Wilson
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Talha Alvi
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Angela Szeto
- Department of Psychology, University of Miami, Miami, FL, United States
| | - Armando J Mendez
- Diabetes Research Institute, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Benjamin A Tabak
- Department of Psychology, Southern Methodist University, Dallas, TX, United States.
| |
Collapse
|
17
|
Guo L, Qi YJ, Tan H, Dai D, Balesar R, Sluiter A, van Heerikhuize J, Hu SH, Swaab DF, Bao AM. Different oxytocin and corticotropin-releasing hormone system changes in bipolar disorder and major depressive disorder patients. EBioMedicine 2022; 84:104266. [PMID: 36126617 PMCID: PMC9489957 DOI: 10.1016/j.ebiom.2022.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/11/2022] Open
Abstract
Background Oxytocin (OXT) and corticotropin-releasing hormone (CRH) are both produced in hypothalamic paraventricular nucleus (PVN). Central CRH may cause depression-like symptoms, while peripheral higher OXT plasma levels were proposed to be a trait marker for bipolar disorder (BD). We aimed to investigate differential OXT and CRH expression in the PVN and their receptors in prefrontal cortex of major depressive disorder (MDD) and BD patients. In addition, we investigated mood-related changes by stimulating PVN-OXT in mice. Methods Quantitative immunocytochemistry and in situ hybridization were performed in the PVN for OXT and CRH on 6 BD and 6 BD-controls, 9 MDD and 9 MDD-controls. mRNA expressions of their receptors (OXTR, CRHR1 and CRHR2) were determined in anterior cingulate cortex and dorsolateral prefrontal cortex (DLPFC) of 30 BD and 34 BD-controls, and 24 MDD and 12 MDD-controls. PVN of 41 OXT-cre mice was short- or long-term activated by chemogenetics, and mood-related behavior was compared with 26 controls. Findings Significantly increased OXT-immunoreactivity (ir), OXT-mRNA in PVN and increased OXTR-mRNA in DLPFC, together with increased ratios of OXT-ir/CRH-ir and OXTR-mRNA/CRHR-mRNA were observed in BD, at least in male BD patients, but not in MDD patients. PVN-OXT stimulation induced depression-like behaviors in male mice, and mixed depression/mania-like behaviors in female mice in a time-dependent way. Interpretation Increased PVN-OXT and DLPFC-OXTR expression are characteristic for BD, at least for male BD patients. Stimulation of PVN-OXT neurons induced mood changes in mice, in a pattern different from BD. Funding 10.13039/501100001809National Natural Science Foundation of China (81971268, 82101592).
Collapse
|
18
|
Rigney N, de Vries GJ, Petrulis A, Young LJ. Oxytocin, Vasopressin, and Social Behavior: From Neural Circuits to Clinical Opportunities. Endocrinology 2022; 163:bqac111. [PMID: 35863332 PMCID: PMC9337272 DOI: 10.1210/endocr/bqac111] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Indexed: 11/19/2022]
Abstract
Oxytocin and vasopressin are peptide hormones secreted from the pituitary that are well known for their peripheral endocrine effects on childbirth/nursing and blood pressure/urine concentration, respectively. However, both peptides are also released in the brain, where they modulate several aspects of social behaviors. Oxytocin promotes maternal nurturing and bonding, enhances social reward, and increases the salience of social stimuli. Vasopressin modulates social communication, social investigation, territorial behavior, and aggression, predominantly in males. Both peptides facilitate social memory and pair bonding behaviors in monogamous species. Here we review the latest research delineating the neural circuitry of the brain oxytocin and vasopressin systems and summarize recent investigations into the circuit-based mechanisms modulating social behaviors. We highlight research using modern molecular genetic technologies to map, monitor activity of, or manipulate neuropeptide circuits. Species diversity in oxytocin and vasopressin effects on social behaviors are also discussed. We conclude with a discussion of the translational implications of oxytocin and vasopressin for improving social functioning in disorders with social impairments, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
| | - Geert J de Vries
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | - Aras Petrulis
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30303, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30329, USA
- Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
19
|
Cantabella E, Camilleri V, Cavalie I, Dubourg N, Gagnaire B, Charlier TD, Adam-Guillermin C, Cousin X, Armant O. Revealing the Increased Stress Response Behavior through Transcriptomic Analysis of Adult Zebrafish Brain after Chronic Low to Moderate Dose Rates of Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14153793. [PMID: 35954455 PMCID: PMC9367516 DOI: 10.3390/cancers14153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The increasing use of radiopharmaceuticals for medical diagnostics and radiotherapy raises concerns regarding health risks for both humans and the environment. Additionally, in the context of major nuclear accidents like in Chernobyl and Fukushima, very little is known about the effects of chronic exposure to low and moderate dose rates of ionizing radiation (IR). Many studies demonstrated the sensibility of the developmental brain, but little data exists for IR at low dose rates and their impact on adults. In this study, we characterized the molecular mechanisms that orchestrate stress behavior caused by chronic exposure to low to moderate dose rates of IR using the adult zebrafish model. We observed the establishment of a congruent stress response at both the molecular and individual levels. Abstract High levels of ionizing radiation (IR) are known to induce neurogenesis defects with harmful consequences on brain morphogenesis and cognitive functions, but the effects of chronic low to moderate dose rates of IR remain largely unknown. In this study, we aim at defining the main molecular pathways impacted by IR and how these effects can translate to higher organizational levels such as behavior. Adult zebrafish were exposed to gamma radiation for 36 days at 0.05 mGy/h, 0.5 mGy/h and 5 mGy/h. RNA sequencing was performed on the telencephalon and completed by RNA in situ hybridization that confirmed the upregulation of oxytocin and cone rod homeobox in the parvocellular preoptic nucleus. A dose rate-dependent increase in differentially expressed genes (DEG) was observed with 27 DEG at 0.05 mGy/h, 200 DEG at 0.5 mGy/h and 530 DEG at 5 mGy/h. Genes involved in neurotransmission, neurohormones and hypothalamic-pituitary-interrenal axis functions were specifically affected, strongly suggesting their involvement in the stress response behavior observed after exposure to dose rates superior or equal to 0.5 mGy/h. At the individual scale, hypolocomotion, increased freezing and social stress were detected. Together, these data highlight the intricate interaction between neurohormones (and particularly oxytocin), neurotransmission and neurogenesis in response to chronic exposure to IR and the establishment of anxiety-like behavior.
Collapse
Affiliation(s)
- Elsa Cantabella
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Thierry D. Charlier
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, 35000 Rennes, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Santé (PSE-Santé)/Service de Recherche en Dosimétrie (SDOS)/Laboratoire de Micro-Irradiation, de Métrologie et de Dosimétrie des Neutrons (LMDN), Cadarache, 13115 Saint-Paul-lez-Durance, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250 Palavas Les Flots, France
| | - Oliver Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé Environnement-Environnement (PSE-ENV)/Service de Recherche sur les Transferts et les Effets des Radionucléides sur les Ecosystèmes (SRTE)/Laboratoire de Recherche sur les Effets des Radionucléides sur les Ecosystèmes (LECO), Cadarache, 13115 Saint-Paul-lez-Durance, France
- Correspondence: (E.C.); (O.A.)
| |
Collapse
|
20
|
Luo PX, Zakharenkov HC, Torres LY, Rios RA, Gegenhuber B, Black AM, Xu CK, Minie VA, Tran AM, Tollkuhn J, Trainor BC. Oxytocin receptor behavioral effects and cell types in the bed nucleus of the stria terminalis. Horm Behav 2022; 143:105203. [PMID: 35636023 PMCID: PMC9827713 DOI: 10.1016/j.yhbeh.2022.105203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/12/2023]
Abstract
Oxytocin is a neuropeptide that can produce anxiolytic effects and promote social approach. However, emerging evidence shows that under some conditions, oxytocin can instead induce anxiety-related behaviors. These diverse effects of oxytocin appear to be mediated by circuit-specific actions. Recent data showed that inhibition of oxytocin receptors (OTRs) in the bed nucleus of the stria terminalis (BNST) was sufficient to increase social approach and decrease social vigilance in female California mice (Peromyscus californicus) exposed to social defeat stress. As a member of the G-protein coupled receptor family, OTRs can induce distinct downstream pathways by coupling to different G-protein isoforms. We show that infusion of carbetocin, a biased OTR-Gq agonist, in the BNST reduced social approach in both female and male California mice. In both females and males, carbetocin also increased social vigilance. To gain insight into cell types that could be mediating this effect, we analyzed previously published single-cell RNAseq data from the BNST and nucleus accumbens (NAc). In the NAc, we and others showed that OTR activation promotes social approach behaviors. In the BNST, Oxtr was expressed in over 40 cell types, that span both posterior and anterior subregions of the BNST. The majority of Oxtr-expressing neurons were GABAergic. In the anterior regions of BNST targeted in our carbetocin experiments, Cyp26b1-expressing neurons had high average Oxtr expression. In the NAc, most Oxtr+ cells were D1 dopamine receptor-expressing neurons and interneurons. These differences in Oxtr cell type distribution may help explain how activation of OTR in BNST versus NAc can have different effects on social approach and social vigilance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | | | - Lisette Y Torres
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Roberto A Rios
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Bruno Gegenhuber
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Alexis M Black
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Christine K Xu
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Vanessa A Minie
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Amy M Tran
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA
| | - Jessica Tollkuhn
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Brian C Trainor
- Department of Psychology, University of California, 1 Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
21
|
Arias del Razo R, Velasco Vazquez MDL, Turcanu P, Legrand M, Lau AR, Weinstein TAR, Goetze LR, Bales KL. Effects of Chronic and Acute Intranasal Oxytocin Treatments on Temporary Social Separation in Adult Titi Monkeys (Plecturocebus cupreus). Front Behav Neurosci 2022; 16:877631. [PMID: 35813591 PMCID: PMC9257099 DOI: 10.3389/fnbeh.2022.877631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In socially monogamous titi monkeys, involuntary separation from a pair mate can produce behavioral distress and increased cortisol production. The neuropeptide oxytocin (OXT) is thought to play an important role in the separation response of pair-bonded species. Previous studies from our lab have shown that chronic intranasal oxytocin (IN OXT) during development can have long-term effects on adult social behavior. In the current study, we examined the chronic and acute effects of IN OXT or Saline (SAL) on the subjects’ response to a brief separation from their pair mates. Subjects with a history of chronic IN OXT or SAL treatment during development received a single dose of OXT or SAL as adults 30 min before being separated from their pair mate. Chronic treatment consisted of a daily dose of IN OXT (0.8 IU/kg) or SAL (control) from 12 to 18 months of age. Subjects (N = 29) were introduced to a pair mate at 30 months of age. After the pairs had cohabitated for 5 months, pairs underwent two “Brief Separation” (OXT and SAL) and two “Non-Separation” (OXT and SAL) test sessions. Vocalizations and locomotion were measured as behavioral indices of agitation or distress during the Brief Separation and Non-Separation periods (30 min each). We collected blood samples after the Brief Separation and Non-Separation periods to measure cortisol levels. Our results showed subjects treated with chronic OXT had a reduction in long call and peep vocalizations compared to subjects treated with chronic SAL. Subjects treated with chronic SAL and acute OXT produced more peeps and long calls compared to animals treated with acute SAL; however, patterns in this response depended on sex. Cortisol and locomotion were significantly higher during the Brief Separation period compared to the Non-Separation period; however, we did not find any treatment or sex effects. We conclude that chronic IN OXT given during development blunts the separation response, while acute OXT in chronic SAL subjects had sexually dimorphic effects, which could reflect increased partner seeking behaviors in males and increased anxiety in females.
Collapse
Affiliation(s)
- Rocío Arias del Razo
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
| | | | - Petru Turcanu
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Mathieu Legrand
- CNRS, LNCA UMR 7364, Strasbourg, France
- Centre de Primatologie de l’Université de Strasbourg, Niederhausbergen, France
| | - Allison R. Lau
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
- Animal Behavior Graduate Group, University of California, Davis, Davis, CA, United States
| | | | - Leana R. Goetze
- California National Primate Research Center, Davis, CA, United States
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, Davis, CA, United States
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, United States
- *Correspondence: Karen L. Bales
| |
Collapse
|
22
|
Social anxiety is associated with greater peripheral oxytocin reactivity to psychosocial stress. Psychoneuroendocrinology 2022; 140:105712. [PMID: 35306471 DOI: 10.1016/j.psyneuen.2022.105712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/24/2022]
Abstract
To date, it has been difficult to establish reliable biomarkers associated with specific forms of psychopathology. Social anxiety, for example, is associated with inconsistent biological responses to psychosocial stress on markers including cortisol and salivary alpha-amylase. Thus, it is critical that studies identify more reliable biomarkers that index patterns associated with social anxiety. Two potential candidates are the neuropeptides oxytocin and vasopressin, which have been implicated in stress responsivity across species. Studies have demonstrated a reliable increase in oxytocin, and a surrogate marker for vasopressin, following engagement in the most widely used lab-based psychosocial stress paradigm: the Trier Social Stress Test (TSST). However, no study has examined whether social anxiety moderates peripheral oxytocin or vasopressin reactivity to psychosocial stress. In 101 young adult participants, dimensionally assessed social anxiety was associated with greater plasma oxytocin, but not vasopressin, reactivity to the TSST. Results were maintained following the inclusion of depression as a covariate. Findings suggest that studying changes in peripheral oxytocin concentrations may be a method of differentiating individuals with higher levels of social anxiety.
Collapse
|
23
|
Trainor BC, Falkner AL. Quantifying Sex Differences in Behavior in the Era of "Big" Data. Cold Spring Harb Perspect Biol 2022; 14:a039164. [PMID: 34607831 PMCID: PMC9159265 DOI: 10.1101/cshperspect.a039164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sex differences are commonly observed in behaviors that are closely linked to adaptive function, but sex differences can also be observed in behavioral "building blocks" such as locomotor activity and reward processing. Modern neuroscientific inquiry, in pursuit of generalizable principles of functioning across sexes, has often ignored these more subtle sex differences in behavioral building blocks that may result from differences in these behavioral building blocks. A frequent assumption is that there is a default (often male) way to perform a behavior. This approach misses fundamental drivers of individual variability within and between sexes. Incomplete behavioral descriptions of both sexes can lead to an overreliance on reduced "single-variable" readouts of complex behaviors, the design of which may be based on male-biased samples. Here, we advocate that the incorporation of new machine-learning tools for collecting and analyzing multimodal "big behavior" data allows for a more holistic and richer approach to the quantification of behavior in both sexes. These new tools make behavioral description more robust and replicable across laboratories and species, and may open up new lines of neuroscientific inquiry by facilitating the discovery of novel behavioral states. Having more accurate measures of behavioral diversity in males and females could serve as a hypothesis generator for where and when we should look in the brain for meaningful neural differences.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
24
|
Guoynes CD, Marler CA. Intranasal oxytocin reduces pre-courtship aggression and increases paternal response in California mice (Peromyscus californicus). Physiol Behav 2022; 249:113773. [PMID: 35248556 DOI: 10.1016/j.physbeh.2022.113773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/22/2023]
Abstract
Oxytocin (OXT) is a neuropeptide that can facilitate prosocial behavior and decrease social stress and anxiety but can also increase aggression in some contexts. We investigated whether acute pulses of intranasal (IN) OXT influenced social behavior during social challenges that are likely to occur throughout the lifespan of a wild mouse. To test this, we examined the acute effects of IN OXT in the male California mouse (Peromyscus californicus), a monogamous, biparental, and territorial rodent, using a within-subjects longitudinal design. Social challenges included a pre-courtship male-female encounter conducted during the (1) initial aggressive and not the following affiliative phase of courtship, (2) same-sex resident intruder test, and (3) parental care test. Consecutive tests and doses were separated by at least two weeks. Males were treated with intranasal infusions of 0.8 IU/kg OXT or saline controls 5-min before each behavioral test, receiving a total of three treatments of either IN OXT or saline control. We predicted that IN OXT would 1) decrease aggression and increase affiliation during the pre-courtship aggression phase, 2) increase aggression during resident intruder paradigms, and 3) increase paternal care and vocalizations during a paternal care test. As predicted, during pre-courtship aggression with a novel female, IN OXT males displayed less contact aggression than control males, although with no change in affiliative behavior. However, post-pairing, during the resident intruder test, IN OXT males did not differ from control males in contact aggression. During the paternal care test, IN OXT males were quicker to approach their pups than control males but did not differ in vocalizations produced, unlike our previous research demonstrating an effect on vocalizations in females. In summary, during pre-courtship aggression and the paternal care test, IN OXT reduced antisocial behavior; however, during the resident intruder test, IN OXT did not alter antisocial behavior. These data suggest that IN OXT promotes prosocial behavior specifically in social contexts that can lead to affiliation.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison - Madison, 1202 W Johnson Street, Madison, WI, 53703 USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison - Madison, 1202 W Johnson Street, Madison, WI, 53703 USA
| |
Collapse
|
25
|
Flanigan ME, Kash TL. Coordination of social behaviors by the bed nucleus of the stria terminalis. Eur J Neurosci 2022; 55:2404-2420. [PMID: 33006806 PMCID: PMC9906816 DOI: 10.1111/ejn.14991] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic, neuropeptide-rich node of the extended amygdala that has been implicated in responses to stress, drugs of abuse, and natural rewards. Its function is dysregulated in neuropsychiatric disorders that are characterized by stress- or drug-induced alterations in mood, arousal, motivation, and social behavior. However, compared to the BNST's role in mood, arousal, and motivation, its role in social behavior has remained relatively understudied. Moreover, the precise cell types and circuits underlying the BNST's role in social behavior have only recently begun to be explored using modern neuroscience techniques. Here, we systematically review the existing literature investigating the neurobiological substrates within the BNST that contribute to the coordination of various sex-dependent and sex-independent social behavioral repertoires, focusing largely on pharmacological and circuit-based behavioral studies in rodents. We suggest that the BNST coordinates social behavior by promoting appropriate assessment of social contexts to select relevant behavioral outputs and that disruption of socially relevant BNST systems by stress and drugs of abuse may be an important factor in the development of social dysfunction in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Meghan E. Flanigan
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC,Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC,Correspondence: Thomas L. Kash, John R. Andrews Distinguished Professor, Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA, , (919) 843-7867
| |
Collapse
|
26
|
Abstract
Social stressors are known to have strong negative impacts on mental health. There is a long history of preclinical social defeat stress studies in rodents focusing on males that has produced important insights into the neural mechanisms that modulate depression- and anxiety-related behavior. Despite these impressive results, a historical weakness of rodent social stress models has been an under-representation of studies in females. This is problematic because rates of depression and anxiety are higher in women versus men. Recently there has been a surge of interest in adapting social stress methods for female rodents. Here we review new rodent models that have investigated numerous facets of social stress in females. The different models have different strengths and weaknesses, with some model systems having stronger ethological validity with other models having better access to molecular tools to manipulate neural circuits. Continued use and refinement of these complementary models will be critical for addressing gaps in understanding the function of neural circuits modulating depression- and anxiety-related behavior in females.
Collapse
Affiliation(s)
- Jace X Kuske
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
27
|
Noorjahan N, Cattini PA. Neurogenesis in the Maternal Rodent Brain: Impacts of Gestation-Related Hormonal Regulation, Stress, and Obesity. Neuroendocrinology 2022; 112:702-722. [PMID: 34510034 DOI: 10.1159/000519415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
In order to maintain maternal behavior, it is important that the maternal rodent brain promotes neurogenesis. Maternal neurogenesis is altered by the dynamic shifts in reproductive hormone levels during pregnancy. Thus, lifestyle events such as gestational stress and obesity that can affect hormone production will affect neuroendocrine control of maternal neurogenesis. However, there is a lack of information about the regulation of maternal neurogenesis by placental hormones, which are key components of the reproductive hormonal profile during pregnancy. There is also little known about how maternal neurogenesis can be affected by health concerns such as gestational stress and obesity, and its relationship to peripartum mental health disorders. This review summarizes the changing levels of neurogenesis in mice and rats during gestation and postpartum as well as regulation of neurogenesis by pregnancy-related hormones. The influence of neurogenesis on maternal behavior is also discussed while bringing attention to the effect of health-related concerns during gestation, such as stress and obesity on neuroendocrine control of maternal neurogenesis. In doing so, this review identifies the gaps in the literature and specifically emphasizes the importance of further research on maternal brain physiology to address them.
Collapse
Affiliation(s)
- Noshin Noorjahan
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Kirson D, Steinman MQ, Wolfe SA, Bagsic SRS, Bajo M, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, Roberto M. Sex and context differences in the effects of trauma on comorbid alcohol use and post-traumatic stress phenotypes in actively drinking rats. J Neurosci Res 2021; 99:3354-3372. [PMID: 34687080 PMCID: PMC8712392 DOI: 10.1002/jnr.24972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 02/06/2023]
Abstract
Alcohol use disorder (AUD) and affective disorders are frequently comorbid and share underlying mechanisms that could be targets for comprehensive treatment. Post-traumatic stress disorder (PTSD) has high comorbidity with AUD, but comprehensive models of this overlap are nascent. We recently characterized a model of comorbid AUD and PTSD-like symptoms, wherein stressed rats receive an inhibitory avoidance (IA)-related footshock on two occasions followed by two-bottle choice (2BC) voluntary alcohol drinking. Stressed rats received the second footshock in a familiar (FAM, same IA box as the first footshock) or novel context (NOV, single-chambered apparatus); the FAM paradigm more effectively increased alcohol drinking in males and the NOV paradigm in females. During abstinence, stressed males displayed avoidance-like PTSD symptoms, and females showed hyperarousal-like PTSD symptoms. Rats in the model had altered spontaneous action potential-independent GABAergic transmission in the central amygdala (CeA), a brain region key in alcohol dependence and stress-related signaling. However, PTSD sufferers may have alcohol experience prior to their trauma. Here, we therefore modified our AUD/PTSD comorbidity model to provide 3 weeks of intermittent extended alcohol access before footshock and then studied the effects of NOV and FAM stress on drinking and PTSD phenotypes. NOV stress suppressed the escalation of alcohol intake and preference seen in male controls, but no stress effects were seen on drinking in females. Additionally, NOV males had decreased action potential-independent presynaptic GABA release and delayed postsynaptic GABAA receptor kinetics in the CeA compared to control and FAM males. Despite these changes to alcohol intake and CeA GABA signaling, stressed rats showed broadly similar anxiogenic-like behaviors to our previous comorbid model, suggesting decoupling of the PTSD symptoms from the AUD vulnerability for some of these animals. The collective results show the importance of alcohol history and trauma context in vulnerability to comorbid AUD/PTSD-like symptoms.
Collapse
Affiliation(s)
- Dean Kirson
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Michael Q. Steinman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Sarah A. Wolfe
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | | | - Michal Bajo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Suhas Sureshchandra
- University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA 92697, USA
| | - Christopher S. Oleata
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Ilhem Messaoudi
- University of California Irvine, Department of Molecular Biology and Biochemistry, Irvine, CA 92697, USA
| | - Eric P. Zorrilla
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Vanderhasselt MA, Ottaviani C. Combining top-down and bottom-up interventions targeting the vagus nerve to increase resilience. Neurosci Biobehav Rev 2021; 132:725-729. [PMID: 34801258 DOI: 10.1016/j.neubiorev.2021.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/14/2021] [Indexed: 12/27/2022]
Abstract
Chronic stress has dramatically increased over the last years and is one of the major health concerns of the 21st century. Targeted interventions are traditionally based on inducing cognitive changes and enhancing control with the aim to promote adaptive emotion regulation, ultimately enhancing stress resilience. Crucially, bodily functions have received little attention in this quest, despite increasing evidence on the impact of mind-body interactions on resilience. An exemplary model is constituted by accumulating empirical support on the vagus nerve, which enables two-way communication between heart and brain, allowing to engage in an adaptive stress response in a context-appropriate manner. Yet, research on such bidirectional communication is mainly correlational. We propose to consider resonance breathing (bottom-up approach, heart > brain), and neuromodulation (top-down approach, brain > heart) as evidence-based ways to increase vagal nerve inhibitory control and hence increase stress resilience. These promising, likely cost-effective and easily employable techniques can be used alone or in combination, harnessing neurobiological scientific advances to select treatment options with the greatest likelihood of success.
Collapse
Affiliation(s)
- Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent University, Ghent, Belgium; Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
30
|
Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 2021; 22:674-684. [PMID: 34545241 DOI: 10.1038/s41583-021-00513-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Collapse
|
31
|
De Longis E, Ottaviani C, Alessandri G. Personal Resources and Organizational Outcomes: Sex as a Moderator of the Complex Relationships Between Self-Esteem, Heart Rate Variability, and Work-Related Exhaustion. Front Neurosci 2021; 15:615363. [PMID: 34675761 PMCID: PMC8523779 DOI: 10.3389/fnins.2021.615363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Global self-esteem represents a protective personal resource lowering the risk of psychological distress. Research conducted in the work setting has confirmed the psychosocial benefits of high self-esteem. However, research linking self-esteem to neurobiological adaptability appears quite scarce. In this study, we propose a theoretical model in which self-esteem predicts work-related exhaustion indirectly, through the mediation of heart rate variability (HRV) and negative affect at work. Moreover, we explore the relationship between self-esteem and HRV. From one side, one would expect a positive link between self-esteem and HRV, signaling higher autonomic adaptability. However, recent studies have shown that in women, such associations become more complex, with even reversed patterns as compared with that in men. Thus, we included sex as a moderator of the relationship between HRV and self-esteem. The model was tested on a sample of 110 individuals working in the relational professions (54% males; M age = 42.6, SD = 13.73), observed for an entire workday. Results confirmed the protective role of self-esteem against the experience of negative affect and (indirectly) work-related exhaustion. Symptoms of exhaustion at work were also negatively predicted by HRV, and both HRV and negative affect acted as mediators of the relationship between self-esteem and work-related exhaustion. Notably, sex differences emerged in the association between global self-esteem and cardiac vagal tone at work: in women, self-esteem was negatively related to HRV, which in turn led to higher work-related exhaustion, whereas in men, no evidence of this indirect effect appeared. Burnout prevention programs should not ignore important sex differences in how individuals respond to work-related stress.
Collapse
Affiliation(s)
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Guido Alessandri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Hale LH, Tickerhoof MC, Smith AS. Chronic intranasal oxytocin reverses stress-induced social avoidance in female prairie voles. Neuropharmacology 2021; 198:108770. [PMID: 34461067 DOI: 10.1016/j.neuropharm.2021.108770] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Social anxiety disorder (SAD) is a prevalent mental illness in both men and women, but current treatment approaches with selective serotonin reuptake inhibitors (SSRI) have limited success. The neuropeptide oxytocin (OXT) has become a therapeutic target due to its prosocial and anxiolytic effects. Nevertheless, no research has focused on the impact of chronic OXT treatment in animal models of SAD. Social defeat stress is an animal model of social conflict that reliably induces a social avoidance phenotype, reflecting symptoms observed in individuals suffering from SAD. Here, we used the socially monogamous prairie vole, which exhibits aggressive behavior in both sexes, to examine the effects of OXT and SSRI treatment following social defeat stress in males and females. Defeated voles became avoidant in unfamiliar social situations as early as one day after defeat experience, and this phenotype persisted for at least eight weeks. OXT receptor (OXTR) binding in mesocorticolimbic and paralimbic regions was reduced in defeated females during the eight-week recovery period. In males, serotonin 1A receptor binding was decreased in the basolateral amygdala and dorsal raphe nucleus starting at one week and four weeks post-defeat, respectively. Chronic intranasal treatment with OXT had a negative effect on sociability and mesolimbic OXTR binding in non-defeated females. However, chronic intranasal OXT promoted social engagement and increased mesolimbic OXTR binding in defeated females but not males. SSRI treatment led to only modest effects. This study identifies a sex-specific and stress-dependent function of intranasal OXT on mesolimbic OXTR and social behaviors.
Collapse
Affiliation(s)
- Luanne H Hale
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Maria C Tickerhoof
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
33
|
Cherki BR, Winter E, Mankuta D, Israel S. Intranasal oxytocin, testosterone reactivity, and human competitiveness. Psychoneuroendocrinology 2021; 132:105352. [PMID: 34298279 DOI: 10.1016/j.psyneuen.2021.105352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Competitiveness is an essential feature of human social interactions. Despite an extensive body of research on the underlying psychological and cultural factors regulating competitive behavior, the role of biological factors remains poorly understood. Extant research has focused primarily on sex hormones, with equivocal findings. Here, we examined if intranasal administration of the neuropeptide oxytocin (OT) - a key regulator of human social behavior and cognition - interacts with changes in endogenous testosterone (T) levels in regulating the willingness to engage in competition. In a double-blind placebo-control design, 204 subjects (102 females) self-administrated OT or placebo and were assessed for their willingness to compete via an extensively-validated economic laboratory competition paradigm, in which, before completing a set of incentivized arithmetic tasks, subjects are asked to decide what percentage of their payoffs will be based on tournament paying-scheme. Salivary T concentrations (n = 197) were measured throughout the task to assess endogenous reactivity. Under both OT and placebo, T-reactivity during competition was not associated with competitiveness in females. However, in males, the association between T-reactivity and competitiveness was OT-dependent. That is, males under placebo demonstrated a positive correlation between T-reactivity and the willingness to engage in competition, while no association was observed in males receiving OT. The interaction between OT, T-reactivity, and sex on competitive preferences remained significant even after controlling for potential mediators such as performance, self-confidence, and risk-aversion, suggesting that this three-way interaction effect was specific to competitive motivation rather than to other generalized processes. These findings deepen our understanding of the biological processes underlying human preferences for competition and extend the evidence base for the interplay between hormones in affecting human social behavior.
Collapse
Affiliation(s)
- Boaz R Cherki
- Psychology Department, The Hebrew University of Jerusalem, Mount Scopus Campus, Mt. Scopus, Jerusalem 9190501, Israel; The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Eyal Winter
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Economics Department, The Hebrew University of Jerusalem, Mount Scopus Campus, Mt. Scopus, Jerusalem 9190501, Israel; Management School, University of Lancaster, Lancaster LA1 4YX, United Kingdom
| | - David Mankuta
- Hadassah Medical Center, Department of Labor and Delivery, Kiryat Hadassah, Jerusalem 9112001, Israel
| | - Salomon Israel
- Psychology Department, The Hebrew University of Jerusalem, Mount Scopus Campus, Mt. Scopus, Jerusalem 9190501, Israel.
| |
Collapse
|
34
|
Abstract
Coordinated responses to challenge are essential to survival for bonded monogamous animals and may depend on behavioral compatibility. Oxytocin (OT) context-dependently regulates social affiliation and vocal communication, but its role in pair members' decision to jointly respond to challenge is unclear. To test for OT effects, California mouse females received an intranasal dose of OT (IN-OT) or saline after bonding with males either matched or mismatched in their approach response to an aggressive vocal challenge. Pair mates were re-tested jointly for approach response, time spent together, and vocalizations. Females and males converged in their approach after pairing, but mismatched pairs with females given a single dose of IN-OT displayed a greater convergence that resulted from behavioral changes by both pair members. Unpaired females given IN-OT did not change their approach, indicating a social partner was necessary for effects to emerge. Moreover, IN-OT increased time spent approaching together, suggesting behavioral coordination beyond a further increase in bonding. This OT-induced increase in joint approach was associated with a decrease in the proportion of sustained vocalizations, a type of vocalization that can be associated with intra-pair conflict. Our results expand OT's effects on behavioral coordination and underscore the importance of emergent social context.
Collapse
|
35
|
Chong A, Tolomeo S, Xiong Y, Angeles D, Cheung M, Becker B, Lai PS, Lei Z, Malavasi F, Tang Q, Chew SH, Ebstein RP. Blending oxytocin and dopamine with everyday creativity. Sci Rep 2021; 11:16185. [PMID: 34376746 PMCID: PMC8355306 DOI: 10.1038/s41598-021-95724-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
Converging evidence suggests that oxytocin (OT) is associated with creative thinking (CT) and that release of OT depends on ADP ribosyl-cyclases (CD38 and CD157). Neural mechanisms of CT and OT show a strong association with dopaminergic (DA) pathways, yet the link between CT and CD38, CD157, dopamine receptor D2 (DRD2) and catechol-O-methyltransferase (COMT) peripheral gene expression remain inconclusive, thus limiting our understanding of the neurobiology of CT. To address this issue, two principal domains of CT, divergent thinking (AUT), were assessed. In men, both AUT is associated with gene expression of CD38, CD157, and their interaction CD38 × CD157. There were no significant associations for DA expression (DRD2, COMT, DRD2 × COMT) on both CT measures. However, analysis of the interactions of OT and DA systems reveal significant interactions for AUT in men. The full model explained a sizable 39% of the variance in females for the total CT score. The current findings suggest that OT and DA gene expression contributed significantly to cognition and CT phenotype. This provides the first empirical foundation of a more refined understanding of the molecular landscape of CT.
Collapse
Affiliation(s)
- Anne Chong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Yue Xiong
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Dario Angeles
- Laboratory of Human Genetics, Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Mike Cheung
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Benjamin Becker
- MOE Key Laboratory for Neuroinformation, The Clinical Hospital of the Chengdu Brain Science Institute, University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Poh San Lai
- Laboratory of Human Genetics, Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Zhen Lei
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China
| | - Fabio Malavasi
- Department of Medical Science, University of Torino, Turin, Italy
- Fondazione Ricerca Molinette, Turin, Italy
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, China
| | - Soo Hong Chew
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China
- Department of Economics, National University of Singapore, Singapore, Singapore
| | - Richard P Ebstein
- CCBEF (China Center for Behavior Economics and Finance), Southwestern University of Finance and Economics (SWUFE), Chengdu, China.
- College of Economics and Management, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
36
|
Henningsson S, Leknes S, Asperholm M, Eikemo M, Westberg L. A randomized placebo-controlled intranasal oxytocin study on first impressions and reactions to social rejection. Biol Psychol 2021; 164:108164. [PMID: 34331996 DOI: 10.1016/j.biopsycho.2021.108164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/21/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
Oxytocin is central to pair-bonding in non-human animals. We assessed effects of intranasal oxytocin on bond formation between two opposite-sex strangers. In a double-blind placebo-controlled design, 50 pairs of one man and one woman received oxytocin or placebo spray intranasally. After treatment, they played a social interaction game, followed by tasks designed to measure first impressions of the opposite-sex co-participant, and a virtual ball-tossing game (cyberball), designed to measure reactions to rejection by the co-participant. We found no evidence that intranasal oxytocin can improve first impressions of an opposite-sex stranger, and some Bayesian support against this hypothesis. For rejection sensitivity, we observed a sex-and-context-dependent drug effect on post-ostracism mood ratings, consistent with recent studies indicating that interindividual variation and social context can interact with intranasal oxytocin effects. Further research is needed to determine the generalisability of these findings, i.e. if oxytocin can improve first impressions in humans under different conditions.
Collapse
Affiliation(s)
- Susanne Henningsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30 Gothenburg, Sweden
| | - Siri Leknes
- Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
| | - Martin Asperholm
- Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, POB 1094, 0317 Oslo, Norway
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30 Gothenburg, Sweden.
| |
Collapse
|
37
|
Chuang HJ, Chang CY, Ho HP, Chou MY. Oxytocin Signaling Acts as a Marker for Environmental Stressors in Zebrafish. Int J Mol Sci 2021; 22:7459. [PMID: 34299078 PMCID: PMC8303627 DOI: 10.3390/ijms22147459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/24/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022] Open
Abstract
The oxytocin system plays a role in stress responses and behavior modulation. However, the effects of oxytocin signaling on stress adaptation remain unclear. Here, we demonstrated the roles of oxytocin signaling as a biomarker under stress conditions in the peripheral tissues (the gills) and central nervous system (the brain). All the environmental stressors downregulated the expression of oxytocin receptors in the gills, and the alteration of the expression of oxytocin receptors was also found in the brain after the acidic (AC) and high-ammonia (HA) treatments. The number of oxytocin neurons was increased after double-deionized (DI) treatment. By transgenic line, Tg(oxtl:EGFP), we also investigated the projections of oxytocin neurons and found oxytocin axon innervations in various nuclei that might regulate the anxiety levels and aggressiveness of adult zebrafish under different environmental stresses. The oxytocin system integrates physiological responses and behavioral outcomes to ensure environmental adaptation in adult zebrafish. Our study provides insight into oxytocin signaling as a stress indicator upon environmental stressors.
Collapse
Affiliation(s)
| | | | | | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-J.C.); (C.-Y.C.); (H.-P.H.)
| |
Collapse
|
38
|
Houghton B, Kouimtsidis C, Duka T, Paloyelis Y, Bailey A. Can intranasal oxytocin reduce craving in automated addictive behaviours? A systematic review. Br J Pharmacol 2021; 178:4316-4334. [PMID: 34235724 DOI: 10.1111/bph.15617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Existing pharmacotherapies for managing craving, a strong predictor of relapse to automated addictive behaviours, are limited in efficacy and characterised by increased health risks associated with their pharmacological profile. Preclinical studies have identified oxytocin as a promising pharmacotherapy with anticraving properties for addictive behaviours. Here, we provide the first systematic review of 17 human studies (n = 722; 30% female) investigating the efficacy of intranasal oxytocin to reduce craving or consumption in addictive behaviours. We identify intranasal oxytocin as a method that warrants further investigation regarding its capacity to decrease cue-induced, acute stress-induced or withdrawal-related craving and relapse related to alcohol, cannabis, opioids, cocaine or nicotine, including a potential role as ad hoc medication following exposure to drug-related cues. Future studies should investigate the role of factors such as treatment regimens and sample characteristics, including the role of the amygdala, which we propose as a distinct mechanism mediating oxytocin's anticraving properties.
Collapse
Affiliation(s)
- Ben Houghton
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | | | - Theodora Duka
- Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexis Bailey
- Pharmacology Section, Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
39
|
Steinman MQ, Kirson D, Wolfe SA, Khom S, D'Ambrosio SR, Spierling Bagsic SR, Bajo M, Vlkolinský R, Hoang NK, Singhal A, Sureshchandra S, Oleata CS, Messaoudi I, Zorrilla EP, Roberto M. Importance of sex and trauma context on circulating cytokines and amygdalar GABAergic signaling in a comorbid model of posttraumatic stress and alcohol use disorders. Mol Psychiatry 2021; 26:3093-3107. [PMID: 33087855 PMCID: PMC8058115 DOI: 10.1038/s41380-020-00920-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023]
Abstract
Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based "2-hit" rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.
Collapse
Affiliation(s)
- Michael Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sarah A Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Shannon R D'Ambrosio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Roman Vlkolinský
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Noah K Hoang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Anshita Singhal
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Christopher S Oleata
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
40
|
Bülbül M, Sinen O. Sexual dimorphism in maternally separated rats: effects of repeated homotypic stress on gastrointestinal motor functions. Exp Brain Res 2021; 239:2551-2560. [PMID: 34160630 DOI: 10.1007/s00221-021-06151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Experiencing stressful events during early life has been considered as a risk factor for development of functional gastrointestinal disorders in adulthood. This study aimed to investigate the sex-related differences in stress-induced gastrointestinal (GI) dysmotility in rats exposed to neonatal maternal separation (MS). Newborn pups were removed from mothers for 180 min from postnatal day-1 to day-14. Experiments were performed in male and female offsprings at adulthood. Elevated plus maze (EPM) test was used to assess MS-induced anxiety-like behaviors. Ninety minute of restraint stress was applied for once or 5 consecutive days for acute stress (AS) or repeated homotypic stress (RHS), respectively. Measurement of fecal output (FO) and gastric emptying (GE), and hypothalamic microdialysis were performed. Both in males and females, MS produced anxiety-like behaviors. AS delayed GE and increased FO in all groups. In RHS-loaded MS females, AS-induced alterations in GE and FO were restored, however, no adaptation was observed in male counterparts. Regardless of sex and neonatal stress experience, AS significantly increased corticotropin-releasing factor (CRF) release from paraventricular nucleus of hypothalamus, whereas females were found more susceptible than males. Following RHS, AS-induced elevations in CRF release were attenuated only in MS females, but not in males. Both females and males seem to be prone to AS-induced alterations in hypothalamic CRF system and in GI motor functions. Neonatal MS disturbs chronic stress coping mechanisms in males. Conversely, females are likely to circumvent the deleterious effects of neonatal MS on GI functions through developing a habituation to prolonged stressed conditions.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey.
| | - Osman Sinen
- Department of Physiology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| |
Collapse
|
41
|
Zilkha N, Sofer Y, Kashash Y, Kimchi T. The social network: Neural control of sex differences in reproductive behaviors, motivation, and response to social isolation. Curr Opin Neurobiol 2021; 68:137-151. [PMID: 33910083 PMCID: PMC8528716 DOI: 10.1016/j.conb.2021.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/30/2022]
Abstract
Social animal species present a vast repertoire of social interactions when encountering conspecifics. Reproduction-related behaviors, such as mating, parental care, and aggression, are some of the most rewarding types of social interactions and are also the most sexually dimorphic ones. This review focuses on rodent species and summarizes recent advances in neuroscience research that link sexually dimorphic reproductive behaviors to sexual dimorphism in their underlying neuronal circuits. Specifically, we present a few possible mechanisms governing sexually-dimorphic behaviors, by hypothalamic and reward-related brain regions. Sex differences in the neural response to social isolation in adulthood are also discussed, as well as future directions for comparative studies with naturally solitary species.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yizhak Sofer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yael Kashash
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
42
|
Hou W, Ma H, Xun Y, Zhang X, Cai W, Huang S, He Z, Tai F, Jia R. Sex-Dependent Effects of Chronic Social Defeat on Emotional and Social Behaviors, and Parameters of Oxytocin and Vasopressin Systems in Mandarin Voles ( Microtus mandarinus). Front Neurosci 2021; 15:625116. [PMID: 34045941 PMCID: PMC8144301 DOI: 10.3389/fnins.2021.625116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
In the regulation of emotional and social behaviors, both oxytocin (OT) and vasopressin (AVP) are sex specific. Although significant sex differences have been reported in the context of behavioral and hormonal responses to social stress, such differences in response to chronic social defeat stress (CSDS) and the underlying neural mechanisms remain largely unknown. By investigating monogamous mandarin voles (Microtus mandarinus), CSDS was found to decrease the percentages of time spent in the central area of the open field, in the open arms of the elevated plus maze, as well as in the light area of the light and dark boxes in both male and female voles. CSDS also increased the observed level of social withdrawal in both sex groups. However, CSDS exposure increased the percentages of immobile time in both the tail suspension test and the forced swim test and reduced the locomotor activity in the open field (in females only). Along with these behavioral changes, the oxytocin receptor (OTR) levels in the nucleus accumbens (NAc) were significantly lower in CSDS-exposed voles of both sexes; however, in males, the levels of OTR in the paraventricular nucleus (PVN) were reduced. CSDS-exposed males showed lower levels of V1aR in the NAc than CSDS-exposed females. Furthermore, induced by a single social defeat event, CSDS reduced c-Fos and OT double labeling in the PVN of females but increased c-Fos and AVP double-labeled neurons in the PVN of males exposed to a single social defeat event. Collectively, the present study indicates that OT and AVP systems may play important regulatory roles in the sex differences of behavioral performances in response to CSDS. These findings suggest mandarin voles as a useful animal model for studying sex-specific behavioral performance and the underlying neurobiological mechanisms of stress-related mental disorders in preclinical studies.
Collapse
Affiliation(s)
- Wenjuan Hou
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Huan Ma
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Yufeng Xun
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Xin Zhang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Wenqi Cai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Shuying Huang
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Zhixiong He
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Fadao Tai
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| | - Rui Jia
- Laboratory for Brain and Behavioral Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
43
|
Harshaw C, Lanzkowsky J, Tran AQD, Bradley AR, Jaime M. Oxytocin and 'social hyperthermia': Interaction with β 3-adrenergic receptor-mediated thermogenesis and significance for the expression of social behavior in male and female mice. Horm Behav 2021; 131:104981. [PMID: 33878523 DOI: 10.1016/j.yhbeh.2021.104981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a critical regulator of multiple facets of energy homeostasis, including brown adipose tissue (BAT) thermogenesis. Nevertheless, it is unclear what, if any, consequence the thermoregulatory and metabolic effects of OT have for the display of social behavior in adult rodents. Here, we examine the contribution of the OT receptor (OTR) and β3 adrenergic receptor (β3AR) to the increase in body temperature that typically accompanies social interaction (i.e., social hyperthermia; SH) and whether SH relates to the expression of social behavior in adult mice. Specifically, we examined how OTR antagonism via peripheral injection of L-368,899 (10 mg/kg) affects the expression of social behavior in C57BL/6J mice, in the presence of active/agonized versus antagonized β3AR, the receptor known to mediate stress-induced BAT thermogenesis. After drug treatment and a 30 min delay, mice were provided a 10 min social interaction test with an unfamiliar, same-sex conspecific. We hypothesized that OTR and β3AR/BAT interact to influence behavior during social interaction, with at least some effects of OT on social behavior dependent upon OT's thermal effects via β3AR/BAT. We found that OTR-mediated temperature elevation is largely responsible for SH during social interaction in mice-albeit not substantially via β3AR-dependent BAT thermogenesis. Further, our results reveal a complex relationship between OTR, β3AR, social hyperthermia and the display of specific social behaviors, with SH most closely associated with anxiety and/or vigilance-related behaviors-that is, behaviors that antagonize or interfere with the initiation of close, non-agonistic social behavior.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America.
| | - Jessica Lanzkowsky
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | | | - Alana Rose Bradley
- Department of Psychology, University of New Orleans, New Orleans, LA, United States of America
| | - Mark Jaime
- Division of Science, Indiana University-Purdue University, Columbus, Columbus, IN, United States of America
| |
Collapse
|
44
|
Guoynes CD, Marler CA. An acute dose of intranasal oxytocin rapidly increases maternal communication and maintains maternal care in primiparous postpartum California mice. PLoS One 2021; 16:e0244033. [PMID: 33886559 PMCID: PMC8061985 DOI: 10.1371/journal.pone.0244033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal-offspring communication and care are essential for offspring survival. Oxytocin (OXT) is known for its role in initiation of maternal care, but whether OXT can rapidly influence maternal behavior or ultrasonic vocalizations (USVs; above 50 kHz) has not been examined. To test for rapid effects of OXT, California mouse mothers were administered an acute intranasal (IN) dose of OXT (0.8 IU/kg) or saline followed by a separation test with three phases: habituation with pups in a new testing chamber, separation via a wire mesh, and finally reunion with pups. We measured maternal care, maternal USVs, and pup USVs. In mothers, we primarily observed simple sweep USVs, a short downward sweeping call around 50 kHz, and in pups we only observed pup whines, a long call with multiple harmonics ranging from 20 kHz to 50 kHz. We found that IN OXT rapidly and selectively enhanced the normal increase in maternal simple sweep USVs when mothers had physical access to pups (habituation and reunion), but not when mothers were physically separated from pups. Frequency of mothers' and pups' USVs were correlated upon reunion, but IN OXT did not influence this correlation. Finally, mothers given IN OXT showed more efficient pup retrieval/carrying and greater total maternal care upon reunion. Behavioral changes were specific to maternal behaviors (e.g. retrievals) as mothers given IN OXT did not differ from controls in stress-related behaviors (e.g. freezing). Overall, these findings highlight the rapid effects and context-dependent effect a single treatment with IN OXT has on both maternal USV production and offspring care.
Collapse
Affiliation(s)
- Caleigh D. Guoynes
- Department of Psychology, University of Wisconsin, Madison, WI, United States America
| | - Catherine A. Marler
- Department of Psychology, University of Wisconsin, Madison, WI, United States America
| |
Collapse
|
45
|
Martins D, Paduraru M, Paloyelis Y. Heterogeneity in response to repeated intranasal oxytocin in schizophrenia and autism spectrum disorders: A meta-analysis of variance. Br J Pharmacol 2021; 179:1525-1543. [PMID: 33739447 DOI: 10.1111/bph.15451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Intranasal oxytocin (OT) has been suggested as a putative adjunctive treatment for patients with schizophrenia and autism spectrum disorders (ASD). Here, we examine available evidence from trials investigating the effects of repeated administrations of intranasal OT on the core symptoms of patients with schizophrenia and ASD, focusing on its therapeutic efficacy and heterogeneity of response (meta-ANOVA). Repeated administration of intranasal OT does not improve most of the core symptoms of schizophrenia and ASD, beyond a small tentative effect on schizophrenia general symptoms. However, we found significant moderator effects for dose in schizophrenia total psychopathology and positive symptoms, and percentage of included men and duration of treatment in schizophrenia general symptoms. We found evidence of heterogeneity (increased variance) in the response of schizophrenia negative symptoms to intranasal OT compared with placebo, suggesting that subgroups of responsive and non-responsive patients might coexist. For other core symptoms of schizophrenia, or any of the core symptom dimensions in ASD, the response to repeated treatment with intranasal OT did not show evidence of heterogeneity.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Maria Paduraru
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
46
|
Peen NF, Duque-Wilckens N, Trainor BC. Convergent neuroendocrine mechanisms of social buffering and stress contagion. Horm Behav 2021; 129:104933. [PMID: 33465346 PMCID: PMC7965339 DOI: 10.1016/j.yhbeh.2021.104933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/07/2023]
Abstract
Social interactions play a key role in modulating the impact of stressful experiences. In some cases, social interactions can result in social buffering, the process in which the presence of one individual reduces the physiological and behavioral impact of stress in another individual. On the other hand, there is growing evidence that a key initiating factor of social buffering behaviors is the initiation of an anxiogenic state in the individual that was not directly exposed to the stress. This is referred to as stress contagion (a form of emotion contagion). Both processes involve the transmission of social information, suggesting that contagion and buffering could share similar neural mechanisms. In general, mechanistic studies of contagion and buffering are considered separately, even though behavioral studies show that a degree of contagion is usually necessary for social buffering behaviors to occur. Here we consider the extent to which the neuropeptides corticotropin releasing hormone and oxytocin are involved in contagion and stress buffering. We also assess the importance that frontal cortical areas such as the anterior cingulate cortex and infralimbic cortex play in these behavioral processes. We suggest that further work that directly compares neural mechanisms during stress contagion and stress buffering will be important for identifying what appear to be distinct but overlapping circuits mediating these processes.
Collapse
Affiliation(s)
- Natanja F Peen
- Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychology, University of California, Davis, CA. USA
| | - Natalia Duque-Wilckens
- Department of Psychology, University of California, Davis, CA. USA; Departments of Physiology and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI. USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA. USA.
| |
Collapse
|
47
|
Ferrer-Pérez C, Reguilón MD, Miñarro J, Rodríguez-Arias M. Oxytocin Signaling as a Target to Block Social Defeat-Induced Increases in Drug Abuse Reward. Int J Mol Sci 2021; 22:ijms22052372. [PMID: 33673448 PMCID: PMC7956822 DOI: 10.3390/ijms22052372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
There is huge scientific interest in the neuropeptide oxytocin (OXT) due to its putative capacity to modulate a wide spectrum of physiological and cognitive processes including motivation, learning, emotion, and the stress response. The present review seeks to increase the understanding of the role of OXT in an individual’s vulnerability or resilience with regard to developing a substance use disorder. It places specific attention on the role of social stress as a risk factor of addiction, and explores the hypothesis that OXT constitutes a homeostatic response to stress that buffers against its negative impact. For this purpose, the review summarizes preclinical and clinical literature regarding the effects of OXT in different stages of the addiction cycle. The current literature affirms that a well-functioning oxytocinergic system has protective effects such as the modulation of the initial response to drugs of abuse, the attenuation of the development of dependence, the blunting of drug reinstatement and a general anti-stress effect. However, this system is dysregulated if there is continuous drug use or chronic exposure to stress. In this context, OXT is emerging as a promising pharmacotherapy to restore its natural beneficial effects in the organism and to help rebalance the functions of the addicted brain.
Collapse
Affiliation(s)
- Carmen Ferrer-Pérez
- Department of Psychology and Sociology, University of Zaragoza, C/Ciudad Escolar s/n, 44003 Teruel, Spain;
| | - Marina D. Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (M.D.R.); (J.M.)
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (M.D.R.); (J.M.)
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (M.D.R.); (J.M.)
- Correspondence:
| |
Collapse
|
48
|
Reguilón MD, Ferrer-Pérez C, Miñarro J, Rodríguez-Arias M. Oxytocin reverses ethanol consumption and neuroinflammation induced by social defeat in male mice. Horm Behav 2021; 127:104875. [PMID: 33069753 DOI: 10.1016/j.yhbeh.2020.104875] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Oxytocin (OXT) modulates social interactions, attenuates stressful responses and can decrease drug-seeking and taking behaviors. In previous studies, we observed that social defeat (SD) induced a long-lasting increase in ethanol intake and neuroinflammation in male mice. We also know that OXT blocks the increase in cocaine reward induced by SD. Therefore, in the present study we aimed to evaluate the effect of 1 mg/kg of OXT administered 30 min before each episode of SD on ethanol consumption and the neuroinflammatory response in adult male mice. Three weeks after the last SD, mice underwent oral ethanol self-administration (SA) procedure, and striatal levels of the two chemokines CX3CL1 and CXCL12 were measured after the last SD and at the end of the ethanol SA. OXT administration blocked the increase in voluntary ethanol consumption observed in defeated mice, although it did not affect motivation for ethanol. An increase in the striatal levels of CX3CL1 and CXCL12 was observed in defeated animals immediately after the last defeat and after the ethanol SA. However, defeated mice treated with OXT did not show this increase in the neuroinflammatory response. In conclusion, OXT treatment can be a powerful therapeutic target to reduce the negative effects of social stress on ethanol consumption and the neuroinflammatory process.
Collapse
Affiliation(s)
- M D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - C Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - J Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - M Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain.
| |
Collapse
|
49
|
Duque-Wilckens N, Torres LY, Yokoyama S, Minie VA, Tran AM, Petkova SP, Hao R, Ramos-Maciel S, Rios RA, Jackson K, Flores-Ramirez FJ, Garcia-Carachure I, Pesavento PA, Iñiguez SD, Grinevich V, Trainor BC. Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc Natl Acad Sci U S A 2020. [PMID: 33020267 DOI: 10.1073/pnas.2011890117/suppl_file/pnas.2011890117.sm01.mp4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.
Collapse
Affiliation(s)
- Natalia Duque-Wilckens
- Department of Psychology, University of California, Davis, CA 95616
- Department of Physiology, Michigan State University, East Lansing, MI 48824
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Lisette Y Torres
- Department of Psychology, University of California, Davis, CA 95616
| | - Sae Yokoyama
- Department of Psychology, University of California, Davis, CA 95616
| | - Vanessa A Minie
- Department of Psychology, University of California, Davis, CA 95616
| | - Amy M Tran
- Department of Psychology, University of California, Davis, CA 95616
| | - Stela P Petkova
- Neuroscience Graduate Group, University of California, Davis, CA 95616
| | - Rebecca Hao
- Department of Psychology, University of California, Davis, CA 95616
| | | | - Roberto A Rios
- Department of Psychology, University of California, Davis, CA 95616
| | - Kenneth Jackson
- Department of Pathobiology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | | | | | - Patricia A Pesavento
- Department of Pathobiology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, TX 79902
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159 Mannheim, Germany
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616;
| |
Collapse
|
50
|
Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proc Natl Acad Sci U S A 2020; 117:26406-26413. [PMID: 33020267 DOI: 10.1073/pnas.2011890117] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxytocin increases the salience of both positive and negative social contexts and it is thought that these diverse actions on behavior are mediated in part through circuit-specific action. This hypothesis is based primarily on manipulations of oxytocin receptor function, leaving open the question of whether different populations of oxytocin neurons mediate different effects on behavior. Here we inhibited oxytocin synthesis in a stress-sensitive population of oxytocin neurons specifically within the medioventral bed nucleus of the stria terminalis (BNSTmv). Oxytocin knockdown prevented social stress-induced increases in social vigilance and decreases in social approach. Viral tracing of BNSTmv oxytocin neurons revealed fibers in regions controlling defensive behaviors, including lateral hypothalamus, anterior hypothalamus, and anteromedial BNST (BNSTam). Oxytocin infusion into BNSTam in stress naïve mice increased social vigilance and reduced social approach. These results show that a population of extrahypothalamic oxytocin neurons plays a key role in controlling stress-induced social anxiety behaviors.
Collapse
|