1
|
López-Otín C, Kroemer G. The missing hallmark of health: psychosocial adaptation. Cell Stress 2024; 8:21-50. [PMID: 38476764 PMCID: PMC10928495 DOI: 10.15698/cst2024.03.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
The eight biological hallmarks of health that we initially postulated (Cell. 2021 Jan 7;184(1):33-63) include features of spatial compartmentalization (integrity of barriers, containment of local perturbations), maintenance of homeostasis over time (recycling & turnover, integration of circuitries, rhythmic oscillations) and an array of adequate responses to stress (homeostatic resilience, hormetic regulation, repair & regeneration). These hallmarks affect all eight somatic strata of the human body (molecules, organelles, cells, supracellular units, organs, organ systems, systemic circuitries and meta-organism). Here we postulate that mental and socioeconomic factors must be added to this 8×8 matrix as an additional hallmark of health ("psychosocial adaptation") and as an additional stratum ("psychosocial interactions"), hence building a 9×9 matrix. Potentially, perturbation of each of the somatic hallmarks and strata affects psychosocial factors and vice versa. Finally, we discuss the (patho)physiological bases of these interactions and their implications for mental health improvement.
Collapse
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| |
Collapse
|
2
|
Shah S, Sarasua SM, Boccuto L, Dean BC, Wang L. Brain Gene Co-Expression Network Analysis Identifies 22q13 Region Genes Associated with Autism, Intellectual Disability, Seizures, Language Impairment, and Hypotonia. Genes (Basel) 2023; 14:1998. [PMID: 38002941 PMCID: PMC10671420 DOI: 10.3390/genes14111998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), developmental delays, seizures, speech delay, hypotonia, and minor dysmorphic features. It is challenging to determine individual gene contributions due to variability in deletion sizes and clinical features. We implemented a genomic data mining approach for identifying and prioritizing the candidate genes in the 22q13 region for five phenotypes: ASD, ID, seizures, language impairment, and hypotonia. Weighted gene co-expression networks were constructed using the BrainSpan transcriptome dataset of a human brain. Bioinformatic analyses of the co-expression modules allowed us to select specific candidate genes, including EP300, TCF20, RBX1, XPNPEP3, PMM1, SCO2, BRD1, and SHANK3, for the common neurological phenotypes of PMS. The findings help understand the disease mechanisms and may provide novel therapeutic targets for the precise treatment of PMS.
Collapse
Affiliation(s)
- Snehal Shah
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Sara M. Sarasua
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
| | - Brian C. Dean
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
3
|
Khodosevich K, Sellgren CM. Neurodevelopmental disorders-high-resolution rethinking of disease modeling. Mol Psychiatry 2023; 28:34-43. [PMID: 36434058 PMCID: PMC9812768 DOI: 10.1038/s41380-022-01876-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Neurodevelopmental disorders arise due to various risk factors that can perturb different stages of brain development, and a combinatorial impact of these risk factors programs the phenotype in adulthood. While modeling the complete phenotype of a neurodevelopmental disorder is challenging, individual developmental perturbations can be successfully modeled in vivo in animals and in vitro in human cellular models. Nevertheless, our limited knowledge of human brain development restricts modeling strategies and has raised questions of how well a model corresponds to human in vivo brain development. Recent progress in high-resolution analysis of human tissue with single-cell and spatial omics techniques has enhanced our understanding of the complex events that govern the development of the human brain in health and disease. This new knowledge can be utilized to improve modeling of neurodevelopmental disorders and pave the way to more accurately portraying the relevant developmental perturbations in disease models.
Collapse
Affiliation(s)
- Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Carl M Sellgren
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Stockholm Health Care Services, Stockholm County Council, Karolinska Institutet, Stockholm, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
The psychiatric risk gene BRD1 modulates mitochondrial bioenergetics by transcriptional regulation. Transl Psychiatry 2022; 12:319. [PMID: 35941107 PMCID: PMC9359996 DOI: 10.1038/s41398-022-02053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bromodomain containing 1 (BRD1) encodes an epigenetic regulator that controls the expression of genetic networks linked to mental illness. BRD1 is essential for normal brain development and its role in psychopathology has been demonstrated in genetic and preclinical studies. However, the neurobiology that bridges its molecular and neuropathological effects remains poorly explored. Here, using publicly available datasets, we find that BRD1 targets nuclear genes encoding mitochondrial proteins in cell lines and that modulation of BRD1 expression, irrespective of whether it is downregulation or upregulation of one or the other existing BRD1 isoforms (BRD1-L and BRD1-S), leads to distinct shifts in the expression profile of these genes. We further show that the expression of nuclear genes encoding mitochondrial proteins is negatively correlated with the expression of BRD1 mRNA during human brain development. In accordance, we identify the key gate-keeper of mitochondrial metabolism, Peroxisome proliferator-activated receptor (PPAR) among BRD1's co-transcription factors and provide evidence that BRD1 acts as a co-repressor of PPAR-mediated transcription. Lastly, when using quantitative PCR, mitochondria-targeted fluorescent probes, and the Seahorse XFe96 Analyzer, we demonstrate that modulation of BRD1 expression in cell lines alters mitochondrial physiology (mtDNA content and mitochondrial mass), metabolism (reducing power), and bioenergetics (among others, basal, maximal, and spare respiration) in an expression level- and isoform-dependent manner. Collectively, our data suggest that BRD1 is a transcriptional regulator of nuclear-encoded mitochondrial proteins and that disruption of BRD1's genomic actions alters mitochondrial functions. This may be the mechanism underlying the cellular and atrophic changes of neurons previously associated with BRD1 deficiency and suggests that mitochondrial dysfunction may be a possible link between genetic variation in BRD1 and psychopathology in humans.
Collapse
|
5
|
Kuwik J, Wagner S, Sudhamalla B, Debiec R, Islam K. Hydrophobic cavity-directed azide-acetyllysine photochemistry for profiling non-histone interacting partners of bromodomain protein 1. RSC Chem Biol 2022; 3:1061-1068. [PMID: 35975005 PMCID: PMC9347360 DOI: 10.1039/d2cb00043a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023] Open
Abstract
Bromodomain containing protein 1 (BRD1) plays critical roles in chromatin acetylation, gene transcription, erythropoiesis, and brain development. BRD1 is also implicated in several human conditions and is a therapeutic target for cancer. Although, the bromodomain is known to bind acetylated histones, how the function of BRD1 is regulated via non-histone acetylation is unexplored. To identify the non-histone acetylome of BRD1, we develop an R585AzF variant carrying photo responsive 4-azido phenylalanine (AzF) via amber suppressor mutagenesis. We demonstrate biochemical integrity of the AzF-containing analogue and its ability to crosslink non-histone interacting partners present in human cells. Subsequent proteomic experiments led to the identification of the novel BRD1 interactome representing diverse signaling pathways. As a proof-of-concept demonstration, we validated acetylated PDIA1 protein as a bona fide binding partner of BRD1. Our work suggests that BRD1 interacts with additional acetyllysine motifs, beyond those characterized in histone proteins.
Collapse
Affiliation(s)
- Jordan Kuwik
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Shana Wagner
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Babu Sudhamalla
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
- Current address: Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur 741246 India
| | - Ronald Debiec
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh Pittsburgh, PA 15260 USA
| |
Collapse
|
6
|
Boccuto L, Mitz A, Abenavoli L, Sarasua SM, Bennett W, Rogers C, DuPont B, Phelan K. Phenotypic Variability in Phelan–McDermid Syndrome and Its Putative Link to Environmental Factors. Genes (Basel) 2022; 13:genes13030528. [PMID: 35328081 PMCID: PMC8950073 DOI: 10.3390/genes13030528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Phelan–McDermid syndrome (PMS) is a multi-systemic disorder characterized by both genetic and phenotypic variability. Genetic abnormalities causing PMS span from pathogenic variants of the SHANK3 gene to chromosomal rearrangements affecting the 22q13 region and leading to the loss of up to over nine megabases. The clinical presentation of individuals with PMS includes intellectual disability, neonatal hypotonia, delayed or absent speech, developmental delay, and minor dysmorphic facial features. Several other features may present with differences in age of onset and/or severity: seizures, autism, regression, sleep disorders, gastrointestinal problems, renal disorders, dysplastic toenails, and disrupted thermoregulation. Among the causes of this phenotypic variability, the size of the 22q13 deletion has effects that may be influenced by environmental factors interacting with haploinsufficiency or hemizygous variants of certain genes. Another mechanism linking environmental factors and phenotypic variability in PMS involves the loss of one copy of genes like BRD1 or CYP2D6, located at 22q13 and involved in the regulation of genomic methylation or pharmacokinetics, which are also influenced by external agents, such as diet and drugs. Overall, several non-mutually exclusive genetic and epigenetic mechanisms interact with environmental factors and may contribute to the clinical variability observed in individuals with PMS. Characterization of such factors will help to better manage this disorder.
Collapse
Affiliation(s)
- Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
- Correspondence: ; Tel.: +1-864-6561437
| | - Andrew Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Sara M. Sarasua
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC 29634, USA;
| | - William Bennett
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Indiana University School of Medicine/Riley Hospital for Children, Indianapolis, IN 46202, USA;
| | - Curtis Rogers
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (C.R.); (B.D.)
| | - Barbara DuPont
- Greenwood Genetic Center, Greenwood, SC 29646, USA; (C.R.); (B.D.)
| | - Katy Phelan
- Genetics Laboratory, Florida Cancer Specialists &Research Institute, Fort Myers, FL 33916, USA;
| |
Collapse
|
7
|
Xian W, Cao J, Yuan X, Wang G, Jin Q, Zhang H, Zhou G, You L. Deficiency of Intellectual Disability-Related Gene Brpf1 Attenuated Hippocampal Excitatory Synaptic Transmission and Impaired Spatial Learning and Memory Ability. Front Cell Dev Biol 2021; 9:711792. [PMID: 34485298 PMCID: PMC8415984 DOI: 10.3389/fcell.2021.711792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with monoallelic bromodomain and PHD finger-containing protein 1 (BRPF1) mutations showed intellectual disability. The hippocampus has essential roles in learning and memory. Our previous work indicated that Brpf1 was specifically and strongly expressed in the hippocampus from the perinatal period to adulthood. We hypothesized that mouse Brpf1 plays critical roles in the morphology and function of hippocampal neurons, and its deficiency leads to learning and memory deficits. To test this, we performed immunofluorescence, whole-cell patch clamp, and mRNA-Seq on shBrpf1-infected primary cultured hippocampal neurons to study the effect of Brpf1 knockdown on neuronal morphology, electrophysiological characteristics, and gene regulation. In addition, we performed stereotactic injection into adult mouse hippocampus to knock down Brpf1 in vivo and examined the learning and memory ability by Morris water maze. We found that mild knockdown of Brpf1 reduced mEPSC frequency of cultured hippocampal neurons, before any significant changes of dendritic morphology showed. We also found that Brpf1 mild knockdown in the hippocampus showed a decreasing trend on the spatial learning and memory ability of mice. Finally, mRNA-Seq analyses showed that genes related to learning, memory, and synaptic transmission (such as C1ql1, Gpr17, Htr1d, Glra1, Cxcl10, and Grin2a) were dysregulated upon Brpf1 knockdown. Our results showed that Brpf1 mild knockdown attenuated hippocampal excitatory synaptic transmission and reduced spatial learning and memory ability, which helps explain the symptoms of patients with BRPF1 mutations.
Collapse
Affiliation(s)
- Weiwei Xian
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingli Cao
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiangshan Yuan
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoxiang Wang
- Institutes of Brain Sciences, Fudan University, Shanghai, China
| | - Qiuyan Jin
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guomin Zhou
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Linya You
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| |
Collapse
|
8
|
Paternoster V, Edhager AV, Qvist P, Donskov JG, Shliaha P, Jensen ON, Mors O, Nielsen AL, Børglum AD, Palmfeldt J, Christensen JH. Inactivation of the Schizophrenia-associated BRD1 gene in Brain Causes Failure-to-thrive, Seizure Susceptibility and Abnormal Histone H3 Acetylation and N-tail Clipping. Mol Neurobiol 2021; 58:4495-4505. [PMID: 34056693 DOI: 10.1007/s12035-021-02432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Genetic studies have repeatedly shown that the Bromodomain containing 1 gene, BRD1, is involved in determining mental health, and the importance of the BRD1 protein for normal brain function has been studied in both cell models and constitutive haploinsufficient Brd1+/- mice. Homozygosity for inactivated Brd1 alleles is lethal during embryonic development in mice. In order to further characterize the molecular functions of BRD1 in the brain, we have developed a novel Brd1 knockout mouse model (Brd1-/-) with bi-allelic conditional inactivation of Brd1 in the central nervous system. Brd1-/- mice were viable but smaller and with reduced muscle strength. They showed reduced exploratory behavior and increased sensitivity to pentylenetetrazole-induced seizures supporting the previously described GABAergic dysfunction in constitutive Brd1+/- mice. Because BRD1 takes part in protein complexes with histone binding and modifying functions, we investigated the effect of BRD1 depletion on the global histone modification pattern in mouse brain by mass spectrometry. We found decreased levels of histone H3 acetylation (H3K9ac, H3K14ac, and H3K18ac) and increased N-tail clipping in consequence of BRD1 depletion. Collectively, the presented results support that BRD1 controls gene expression at the epigenetic level by regulating histone H3 proteoforms in the brain.
Collapse
Affiliation(s)
- Veerle Paternoster
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Anders Valdemar Edhager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Julie Grinderslev Donskov
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Pavel Shliaha
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole Nørregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Anders Dupont Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jane Hvarregaard Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark. .,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Markunas CA, Hancock DB, Xu Z, Quach BC, Fang F, Sandler DP, Johnson EO, Taylor JA. Epigenome-wide analysis uncovers a blood-based DNA methylation biomarker of lifetime cannabis use. Am J Med Genet B Neuropsychiatr Genet 2021; 186:173-182. [PMID: 32803843 PMCID: PMC8296847 DOI: 10.1002/ajmg.b.32813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Cannabis use is highly prevalent and is associated with adverse and beneficial effects. To better understand the full spectrum of health consequences, biomarkers that accurately classify cannabis use are needed. DNA methylation (DNAm) is an excellent candidate, yet no blood-based epigenome-wide association studies (EWAS) in humans exist. We conducted an EWAS of lifetime cannabis use (ever vs. never) using blood-based DNAm data from a case-cohort study within Sister Study, a prospective cohort of women at risk of developing breast cancer (Discovery N = 1,730 [855 ever users]; Replication N = 853 [392 ever users]). We identified and replicated an association with lifetime cannabis use at cg15973234 (CEMIP): combined p = 3.3 × 10-8 . We found no overlap between published blood-based cis-meQTLs of cg15973234 and reported lifetime cannabis use-associated single nucleotide polymorphism (SNPs; p < .05), suggesting that the observed DNAm difference was driven by cannabis exposure. We also developed a multi-CpG classifier of lifetime cannabis use using penalized regression of top EWAS CpGs. The resulting 50-CpG classifier produced an area under the curve (AUC) = 0.74 (95% CI [0.72, 0.76], p = 2.00 × 10-5 ) in the discovery sample and AUC = 0.54 ([0.51, 0.57], p = 2.87 × 10-2 ) in the replication sample. Our EWAS findings provide evidence that blood-based DNAm is associated with lifetime cannabis use.
Collapse
Affiliation(s)
- Christina A. Markunas
- Center for Omics Discovery and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Dana B. Hancock
- Center for Omics Discovery and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Bryan C. Quach
- Center for Omics Discovery and Epidemiology, RTI International, Research Triangle Park, NC, USA
| | - Fang Fang
- Center for Genomics in Public Health and Medicine, RTI International, Research Triangle Park, NC, USA
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Eric O. Johnson
- Center for Omics Discovery and Epidemiology, RTI International, Research Triangle Park, NC, USA,Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Jack A. Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA,Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA,Corresponding author: Jack A. Taylor, PhD, A303 Rall Building, 111 T W Alexander Dr, Research Triangle Park, NC 27709, , Telephone: 1- 984-287-3684
| |
Collapse
|
10
|
Cao J, Xian W, Palihati M, Zhu Y, Wang G, Xie Y, Zhou G, You L. Deficiency of intellectual disability-related gene Brpf1 reduced inhibitory neurotransmission in MGE-derived GABAergic interneurons. G3-GENES GENOMES GENETICS 2021; 11:6179329. [PMID: 33744924 PMCID: PMC8496217 DOI: 10.1093/g3journal/jkab090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
Intellectual disability is closely related to impaired GABA neurotransmission. Brpf1 was specifically expressed in medial ganglionic eminence (MGE), a developmental niche of GABAergic interneurons, and patients with BRPF1 mutations showed intellectual disability. To test its role in the development and function of MGE-derived GABAergic interneurons, we performed immunofluorescence staining, whole-cell patch-clamp, MGE transplantation, and mRNA-Seq to understand its effect on neuronal differentiation, dendritic morphology, electrophysiology, migration, and gene regulation, using mouse MGE-derived GABAergic interneurons infected with AAV-shBrpf1. The results showed that Brpf1 knockdown had a decreasing trend, although not significant, on the differentiation of GABAergic interneurons into parvalbumin+ interneurons. Moreover, increased firing threshold, decreased number of evoked action potentials, and a reduced amplitude of miniature inhibitory postsynaptic currents were observed before any significant change of MAP2+ dendritic morphology and in vivo migration ability appeared. Finally, mRNA-Seq analysis revealed that genes related to neurodevelopment and synaptic transmission such as Map2k7 were dysregulated. Our results demonstrated a key role of Brpf1 in inhibitory neurotransmission and related gene expression of GABAergic interneurons.
Collapse
Affiliation(s)
- Jingli Cao
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Weiwei Xian
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Maierdan Palihati
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yu Zhu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Guoxiang Wang
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Yunli Xie
- Institutes of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Guomin Zhou
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200032, China
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200032, China
| |
Collapse
|
11
|
Olsen D, Wellner N, Kaas M, de Jong IEM, Sotty F, Didriksen M, Glerup S, Nykjaer A. Altered dopaminergic firing pattern and novelty response underlie ADHD-like behavior of SorCS2-deficient mice. Transl Psychiatry 2021; 11:74. [PMID: 33495438 PMCID: PMC7835366 DOI: 10.1038/s41398-021-01199-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder worldwide. Affected individuals present with hyperactivity, inattention, and cognitive deficits and display a characteristic paradoxical response to drugs affecting the dopaminergic system. However, the underlying pathophysiology of ADHD and how this relates to dopaminergic transmission remains to be fully understood. Sorcs2-/- mice uniquely recapitulate symptoms reminiscent of ADHD in humans. Here, we show that lack of SorCS2 in mice results in lower sucrose intake, indicating general reward deficits. Using in-vivo recordings, we further find that dopaminergic transmission in the ventral tegmental area (VTA) is shifted towards a more regular firing pattern with marked reductions in the relative occurrence of irregular firing in Sorcs2-/- mice. This was paralleled by abnormal acute behavioral responses to dopamine receptor agonists, suggesting fundamental differences in dopaminergic circuits and indicating a perturbation in the balance between the activities of the postsynaptic dopamine receptor DRD1 and the presynaptic inhibitory autoreceptor DRD2. Interestingly, the hyperactivity and drug response of Sorcs2-/- mice were markedly affected by novelty. Taken together, our findings show how loss of a candidate ADHD-risk gene has marked effects on dopaminergic circuit function and the behavioral response to the environment.
Collapse
Affiliation(s)
- Ditte Olsen
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark ,grid.7048.b0000 0001 1956 2722Present Address: Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Niels Wellner
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark ,grid.7048.b0000 0001 1956 2722Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Mathias Kaas
- grid.7048.b0000 0001 1956 2722Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000 Aarhus C, Denmark
| | - Inge E. M. de Jong
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Florence Sotty
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Michael Didriksen
- grid.424580.f0000 0004 0476 7612Neurodegeneration and Biologics, H. Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark.
| | - Anders Nykjaer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Danish Research Institute of Translational Neuroscience DANDRITE Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,The Danish National Research Foundation Center PROMEMO, Aarhus University, Hoegh-Guldbergsgade 10, DK-8000, Aarhus C, Denmark. .,Department of Neurosurgery, Skejby University Hospital, Palle Juul-Jensens Blvd. 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
12
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
13
|
Rajkumar AP, Qvist P, Donskov JG, Lazarus R, Pallesen J, Nava N, Winther G, Liebenberg N, Cour SHL, Paternoster V, Fryland T, Palmfeldt J, Fejgin K, Mørk A, Nyegaard M, Pakkenberg B, Didriksen M, Nyengaard JR, Wegener G, Mors O, Christensen JH, Børglum AD. Reduced Brd1 expression leads to reversible depression-like behaviors and gene-expression changes in female mice. Transl Psychiatry 2020; 10:239. [PMID: 32681022 PMCID: PMC7367888 DOI: 10.1038/s41398-020-00914-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
The schizophrenia-associated gene, BRD1, encodes an epigenetic regulator in which chromatin interactome is enriched with genes implicated in mental health. Alterations in histone modifications and epigenetic regulation contribute to brain transcriptomic changes in affective disorders and preclinical data supports a role for BRD1 in psychopathology. However, the implication of BRD1 on affective pathology remains poorly understood. In this study, we assess affective behaviors and associated neurobiology in Brd1+/- mice along with their responses to Fluoxetine and Imipramine. This involves behavioral, neurostructural, and neurochemical characterizations along with regional cerebral gene expression profiling combined with integrative functional genomic analyses. We report behavioral changes in female Brd1+/- mice with translational value to depressive symptomatology that can be alleviated by the administration of antidepressant medications. Behavioral changes are accompanied by altered brain morphometry and imbalances in monoaminergic systems. In accordance, gene expression changes across brain tissues reveal altered neurotransmitter signaling and cluster in functional pathways associated with depression including 'Adrenergic-, GPCR-, cAMP-, and CREB/CREM-signaling'. Integrative gene expression analysis specifically links changes in amygdaloid intracellular signaling activity to the behavioral treatment response in Brd1+/- mice. Collectively, our study highlights the importance of BRD1 as a modulator of affective pathology and adds to our understanding of the molecular mechanisms underlying affective disorders and their treatment response.
Collapse
Affiliation(s)
- Anto P. Rajkumar
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark ,grid.4563.40000 0004 1936 8868Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK ,grid.13097.3c0000 0001 2322 6764Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, London, UK
| | - Per Qvist
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark. .,Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark. .,Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark.
| | - Julie G. Donskov
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Ross Lazarus
- grid.1051.50000 0000 9760 5620Computational Biology, Baker IDI Heart and Diabetes institute, Melbourne, VIC Australia
| | - Jonatan Pallesen
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Nicoletta Nava
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gudrun Winther
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nico Liebenberg
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sanne H. la Cour
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Veerle Paternoster
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Tue Fryland
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- grid.154185.c0000 0004 0512 597XResearch Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Fejgin
- grid.424580.f0000 0004 0476 7612Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark
| | - Arne Mørk
- grid.424580.f0000 0004 0476 7612Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark
| | - Mette Nyegaard
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Bente Pakkenberg
- grid.411702.10000 0000 9350 8874Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Michael Didriksen
- grid.424580.f0000 0004 0476 7612Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark
| | - Jens R. Nyengaard
- grid.7048.b0000 0001 1956 2722Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Mors
- grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark ,grid.154185.c0000 0004 0512 597XPsychosis Research Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jane H. Christensen
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Qvist P, Eskildsen SF, Hansen B, Baragji M, Ringgaard S, Roovers J, Paternoster V, Molgaard S, Corydon TJ, Stødkilde-Jørgensen H, Glerup S, Mors O, Wegener G, Nyengaard JR, Børglum AD, Christensen JH. Brain volumetric alterations accompanied with loss of striatal medium-sized spiny neurons and cortical parvalbumin expressing interneurons in Brd1 +/- mice. Sci Rep 2018; 8:16486. [PMID: 30405140 PMCID: PMC6220279 DOI: 10.1038/s41598-018-34729-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a common and severe mental disorder arising from complex gene-environment interactions affecting brain development and functioning. While a consensus on the neuroanatomical correlates of schizophrenia is emerging, much of its fundamental pathobiology remains unknown. In this study, we explore brain morphometry in mice with genetic susceptibility and phenotypic relevance to schizophrenia (Brd1+/− mice) using postmortem 3D MR imaging coupled with histology, immunostaining and regional mRNA marker analysis. In agreement with recent large-scale schizophrenia neuroimaging studies, Brd1+/− mice displayed subcortical abnormalities, including volumetric reductions of amygdala and striatum. Interestingly, we demonstrate that structural alteration in striatum correlates with a general loss of striatal neurons, differentially impacting subpopulations of medium-sized spiny neurons and thus potentially striatal output. Akin to parvalbumin interneuron dysfunction in patients, a decline in parvalbumin expression was noted in the developing cortex of Brd1+/− mice, mainly driven by neuronal loss within or near cortical layer V, which is rich in corticostriatal projection neurons. Collectively, our study highlights the translational value of the Brd1+/− mouse as a pre-clinical tool for schizophrenia research and provides novel insight into its developmental, structural, and cellular pathology.
Collapse
Affiliation(s)
- Per Qvist
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Steffen Ringgaard
- The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jolien Roovers
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Veerle Paternoster
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| | - Simon Molgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas Juhl Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark. .,Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Simon Glerup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ole Mors
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders D Børglum
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Jane H Christensen
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Identification of 22q13 genes most likely to contribute to Phelan McDermid syndrome. Eur J Hum Genet 2018; 26:293-302. [PMID: 29358616 PMCID: PMC5838980 DOI: 10.1038/s41431-017-0042-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/04/2017] [Accepted: 10/31/2017] [Indexed: 01/02/2023] Open
Abstract
Chromosome 22q13.3 deletion (Phelan McDermid) syndrome (PMS) is a rare genetic neurodevelopmental disorder resulting from deletions or other genetic variants on distal 22q. Pathological variants of the SHANK3 gene have been identified, but terminal chromosomal deletions including SHANK3 are most common. Terminal deletions disrupt up to 108 protein-coding genes. The impact of these losses is highly variable and includes both significantly impairing neurodevelopmental and somatic manifestations. The current review combines two metrics, prevalence of gene loss and predicted loss pathogenicity, to identify likely contributors to phenotypic expression. These genes are grouped according to function as follows: molecular signaling at glutamate synapses, phenotypes involving neuropsychiatric disorders, involvement in multicellular organization, cerebellar development and functioning, and mitochondrial. The likely most impactful genes are reviewed to provide information for future clinical and translational investigations.
Collapse
|
16
|
Dyrvig M, Qvist P, Lichota J, Larsen K, Nyegaard M, Børglum AD, Christensen JH. DNA Methylation Analysis of BRD1 Promoter Regions and the Schizophrenia rs138880 Risk Allele. PLoS One 2017; 12:e0170121. [PMID: 28095495 PMCID: PMC5240986 DOI: 10.1371/journal.pone.0170121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/29/2016] [Indexed: 01/19/2023] Open
Abstract
The bromodomain containing 1 gene, BRD1 is essential for embryogenesis and CNS development. It encodes a protein that participates in histone modifying complexes and thereby regulates the expression of a large number of genes. Genetic variants in the BRD1 locus show association with schizophrenia and bipolar disorder and risk alleles in the promoter region correlate with reduced BRD1 expression. Insights into the transcriptional regulation of BRD1 and the pathogenic mechanisms associated with BRD1 risk variants, however, remain sparse. By studying transcripts in human HeLa and SH-SY5Y cells we provide evidence for differences in relative expression of BRD1 transcripts with three alternative 5’ UTRs (exon 1C, 1B, and 1A). We further show that expression of these transcript variants covaries negatively with DNA methylation proportions in their upstream promoter regions suggesting that promoter usage might be regulated by DNA methylation. In line with findings that the risk allele of the rs138880 SNP in the BRD1 promoter region correlates with reduced BRD1 expression, we find that it is also associated with moderate regional BRD1 promoter hypermethylation in both adipose tissue and blood. Importantly, we demonstrate by inspecting available DNA methylation and expression data that these regions undergo changes in methylation during fetal brain development and that differences in their methylation proportions in fetal compared to postnatal frontal cortex correlate significantly with BRD1 expression. These findings suggest that BRD1 may be dysregulated in both the developing and mature brain of risk allele carriers. Finally, we demonstrate that commonly used mood stabilizers Lithium, Valproate, and Carbamazepine affect the expression of BRD1 in SH-SY5Y cells. Altogether this study indicates a link between genetic risk and epigenetic dysregulation of BRD1 which raises interesting perspectives for targeting the mechanisms pharmacologically.
Collapse
Affiliation(s)
- Mads Dyrvig
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Jacek Lichota
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Knud Larsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Jane H. Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|