1
|
Sun S, Yan C, Qu S, Luo G, Liu X, Tian F, Dong Q, Li X, Hu B. Resting-state dynamic functional connectivity in major depressive disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111076. [PMID: 38972502 DOI: 10.1016/j.pnpbp.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
As a novel measure, dynamic functional connectivity (dFC) provides insight into the dynamic nature of brain networks and their interactions in resting-state, surpassing traditional static functional connectivity in pathological conditions such as depression. Since a comprehensive review is still lacking, we then reviewed forty-five eligible papers to explore pathological mechanisms of major depressive disorder (MDD) from perspectives including abnormal brain regions and functional networks, brain state, topological properties, relevant recognition, along with longitudinal studies. Though inconsistencies could be found, common findings are: (1) From different perspectives based on dFC, default-mode network (DMN) with its subregions exhibited a close relation to the pathological mechanism of MDD. (2) With a corrupted integrity within large-scale functional networks and imbalance between them, longer fraction time in a relatively weakly-connected state may be a possible property of MDD concerning its relation with DMN. Abnormal transition frequencies between states were correlated to the severity of MDD. (3) Including dynamic properties in topological network metrics enhanced recognition effect. In all, this review summarized its use for clinical diagnosis and treatment, elucidating the non-stationary of MDD patients' aberrant brain activity in the absence of stimuli and bringing new views into its underlying neuro mechanism.
Collapse
Affiliation(s)
- Shuting Sun
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Chang Yan
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Shanshan Qu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Gang Luo
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xuesong Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Fuze Tian
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| |
Collapse
|
2
|
Wang X, Nie X, Zhang F, Wei Y, Zeng W, Zhang Y, Lin H. Functional magnetic resonance imaging of depression: a bibliometrics and meta-analysis. Ann Gen Psychiatry 2024; 23:39. [PMID: 39449080 PMCID: PMC11520125 DOI: 10.1186/s12991-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVES This study aims to reveal the current knowledge map, research hotspots of functional magnetic resonance imaging (fMRI) studies on depression, as well as identify the brain regions associated with depression. METHODS CiteSpace was conducted to analyze the publication outputs, country, institution, cited journals, author and cited author, references, keyword cocurrence and burst keywords of fMRI studies in depression from 2010 to 2024. And a meta-analysis of fMRI was used to identify brain regions associated with depression using Neurosynth. RESULTS A total of 4,049 publications were included, and Gong Qiyong was the most prolific authors. Neuroimage, Biological Psychiatry, and Human Brain Mapping were prominent journals. Default mode network (DMN), prefrontal cortex, amygdala, and anterior cingulate cortex were the popular keywords. The fMRI studies on depression have mainly focused on major depression, especially the DMN. Functional connectivity and regional homogeneity of brain regions were research hotspots. The meta-analysis revealed significant differences in brain regions between patients with depression and healthy controls, including the Amygdala_L, Insula_R, Frontal_Inf_Oper_R, Cingulum_Post_L, Putamen_L, Thalamus_R, Angular_L, Precuneus_R, Frontal_Sup_R, Occipital_Inf_L. CONCLUSIONS This study sheds light on key issues and future directions in fMRI research on depression, elucidating the brain regions related to depression.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xi Nie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Feng Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuhan Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Weiting Zeng
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yuchuan Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Haixiong Lin
- Center for Neuromusculoskeletal Restorative Medicine & Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, 999077, Hong Kong SAR, People's Republic of China.
- Department of Orthopedics, Ningxia Hui Autonomous Region Chinese Medicine Hospital and Research Institute of Chinese Medicine, Ningxia Medical University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
3
|
Tu PC, Chang WC, Su TP, Lin WC, Li CT, Bai YM, Tsai SJ, Chen MH. Thalamocortical functional connectivity and rapid antidepressant and antisuicidal effects of low-dose ketamine infusion among patients with treatment-resistant depression. Mol Psychiatry 2024:10.1038/s41380-024-02640-3. [PMID: 38971895 DOI: 10.1038/s41380-024-02640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Previous studies have shown an association between the thalamocortical dysconnectivity and treatment-resistant depression (TRD). Whether a single subanesthetic dose of ketamine may change thalamocortical connectivity among patients with TRD is unclear. Whether these changes in thalamocortical connectivity is associated with the antidepressant and antisuicidal effects of ketamine treatment is also unclear. Two resting-state functional MRIs were collected in two clinical trials of 48 patients with TRD (clinical trial 1; 32 receiving ketamine, 16 receiving a normal saline placebo) and 48 patients with TRD and strong suicidal ideation (clinical trial 2; 24 receiving ketamine, 24 receiving midazolam), respectively. All participants underwent rs-fMRI before and 3 days after infusion. Seed-based functional connectivity (FC) was analyzed in the left/right thalamus. FCs between the bilateral thalamus and right middle frontal cortex (BA46) and between the left thalamus and left anterior paracingulate gyrus (BA8) increased among patients in the ketamine group in clinical trials 1 and 2, respectively. FCs between the right thalamus and bilateral frontal pole (BA9) and between the right thalamus and left rostral paracingulate gyrus (BA10) decreased among patients in the ketamine group in clinical trials 1 and 2, respectively. However, the associations between those FC changes and clinical symptom changes did not survive statistical significance after multiple comparison corrections. Whether ketamine-related changes in thalamocortical connectivity may be associated with ketamine's antidepressant and antisuicidal effects would need further investigation. Clinical trials registration: UMIN Clinical Trials Registry (UMIN-CTR): Registration number: UMIN000016985 and UMIN000033916.
Collapse
Affiliation(s)
- Pei-Chi Tu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Chen Chang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of biomedical engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, General Cheng Hsin Hospital, Taipei, Taiwan
| | - Wei-Chen Lin
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.
- Division of Psychiatry, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
4
|
Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, Hertrampf R, Beckmann C, Mennes M, Wunder A, Grimm S. Negative emotionality shapes the modulatory effects of ketamine and lamotrigine in subregions of the anterior cingulate cortex. Transl Psychiatry 2024; 14:258. [PMID: 38890270 PMCID: PMC11189565 DOI: 10.1038/s41398-024-02977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Neuroimaging studies have identified the anterior cingulate cortex (ACC) as one of the major targets of ketamine in the human brain, which may be related to ketamine's antidepressant (AD) mechanisms of action. However, due to different methodological approaches, different investigated populations, and varying measurement timepoints, results are not consistent, and the functional significance of the observed brain changes remains a matter of open debate. Inhibition of glutamate release during acute ketamine administration by lamotrigine provides the opportunity to gain additional insight into the functional significance of ketamine-induced brain changes. Furthermore, the assessment of trait negative emotionality holds promise to link findings in healthy participants to potential AD mechanisms of ketamine. In this double-blind, placebo-controlled, randomized, single dose, parallel-group study, we collected resting-state fMRI data before, during, and 24 h after ketamine administration in a sample of 75 healthy male and female participants who were randomly allocated to one of three treatment conditions (ketamine, ketamine with lamotrigine pre- treatment, placebo). Spontaneous brain activity was extracted from two ventral and one dorsal subregions of the ACC. Our results showed activity decreases during the administration of ketamine in all three ACC subregions. However, only in the ventral subregions of the ACC this effect was attenuated by lamotrigine. 24 h after administration, ACC activity returned to baseline levels, but group differences were observed between the lamotrigine and the ketamine group. Trait negative emotionality was closely linked to activity changes in the subgenual ACC after ketamine administration. These results contribute to an understanding of the functional significance of ketamine effects in different subregions of the ACC by combining an approach to modulate glutamate release with the assessment of multiple timepoints and associations with trait negative emotionality in healthy participants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Yokoyama R, Ago Y, Igarashi H, Higuchi M, Tanuma M, Shimazaki Y, Kawai T, Seiriki K, Hayashida M, Yamaguchi S, Tanaka H, Nakazawa T, Okamura Y, Hashimoto K, Kasai A, Hashimoto H. (R)-ketamine restores anterior insular cortex activity and cognitive deficits in social isolation-reared mice. Mol Psychiatry 2024; 29:1406-1416. [PMID: 38388704 PMCID: PMC11189812 DOI: 10.1038/s41380-024-02419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.
Collapse
Affiliation(s)
- Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hisato Igarashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoko Higuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuto Shimazaki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Misuzu Hayashida
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Setagaya, Tokyo, 158-8557, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chuo, Chiba, 260-8670, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Systems Brain Science Project, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, 565-0871, Japan.
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.
- Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
6
|
Więdłocha M, Marcinowicz P, Komarnicki J, Tobiaszewska M, Dębowska W, Dębowska M, Szulc A. Depression with comorbid borderline personality disorder - could ketamine be a treatment catalyst? Front Psychiatry 2024; 15:1398859. [PMID: 38742125 PMCID: PMC11089186 DOI: 10.3389/fpsyt.2024.1398859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Borderline personality disorder (BPD) is diagnosed in 10-30% of patients with major depressive disorder (MDD), and the frequency of MDD among individuals with BPD reaches over 80%. The comorbidity of MDD and BPD is associated with more severe depressive symptoms and functional impairment, higher risk of treatment resistance and increased suicidality. The effectiveness of ketamine usage in treatment resistant depression (TRD) has been demonstrated in numerous studies. In most of these studies, individuals with BPD were not excluded, thus given the high co-occurrence of these disorders, it is possible that the beneficial effects of ketamine also extend to the subpopulation with comorbid TRD and BPD. However, no protocols were developed that would account for comorbidity. Moreover, psychotherapeutic interventions, which may be crucial for achieving a lasting therapeutic effect in TRD and BPD comorbidity, were not included. In the article, we discuss the results of a small number of existing studies and case reports on the use of ketamine in depressive disorders with comorbid BPD. We elucidate how, at the molecular and brain network levels, ketamine can impact the neurobiology and symptoms of BPD. Furthermore, we explore whether ketamine-induced neuroplasticity, augmented by psychotherapy, could be of use in alleviating core BPD-related symptoms such as emotional dysregulation, self-identity disturbances and self-harming behaviors. We also discuss the potential of ketamine-assisted psychotherapy (KAP) in BPD treatment. As there is no standard approach to the application of ketamine or KAP in individuals with comorbid TRD and BPD, we consider further research in the field as imperative. The priorities should include development of dedicated protocols, distinguishing subpopulations that may benefit most from such treatment and investigating factors that may influence its effectiveness and safety.
Collapse
Affiliation(s)
- Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Pruszkow, Masovian, Poland
- KeyClinic, Warsaw, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Pruszkow, Masovian, Poland
- KeyClinic, Warsaw, Poland
| | - Jan Komarnicki
- Leszek Giec Upper-Silesian Medical Centre of the Medical University of Silesia, Katowice, Poland
| | | | - Weronika Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Pruszkow, Masovian, Poland
| | - Marta Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Pruszkow, Masovian, Poland
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Pruszkow, Masovian, Poland
- MindHealth, Warsaw, Poland
| |
Collapse
|
7
|
Danyeli LV, Sen ZD, Colic L, Opel N, Refisch A, Blekic N, Macharadze T, Kretzschmar M, Munk MJ, Gaser C, Speck O, Walter M, Li M. Cortical thickness of the posterior cingulate cortex is associated with the ketamine-induced altered sense of self: An ultra-high field MRI study. J Psychiatr Res 2024; 172:136-143. [PMID: 38382237 DOI: 10.1016/j.jpsychires.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Subanesthetic doses of ketamine induce an antidepressant effect within hours in individuals with treatment-resistant depression while it furthermore induces immediate but transient psychotomimetic effects. Among these psychotomimetic effects, an altered sense of self has specifically been associated with the antidepressant response to ketamine as well as psychedelics. However, there is plenty of variation in the extent of the drug-induced altered sense of self experience that might be explained by differences in basal morphological characteristics, such as cortical thickness. Regions that have been previously associated with a psychedelics-induced sense of self and with ketamine's mechanism of action, are the posterior cingulate cortex (PCC) and the pregenual anterior cingulate cortex (pgACC). In this randomized, placebo-controlled, double-blind cross-over magnetic resonance imaging study, thirty-five healthy male participants (mean age ± standard deviation (SD) = 25.1 ± 4.2 years) were scanned at 7 T. We investigated whether the cortical thickness of two DMN regions, the PCC and the pgACC, are associated with disembodiment and experience of unity scores, which were used to index the ketamine-induced altered sense of self. We observed a negative correlation between the PCC cortical thickness and the disembodiment scores (R = -0.54, p < 0.001). In contrast, no significant association was found between the pgACC cortical thickness and the ketamine-induced altered sense of self. In the context of the existing literature, our findings highlight the importance of the PCC as a structure involved in the mechanism of ketamine-induced altered sense of self that seems to be shared with different antidepressant agents with psychotomimetic effects operating on different classes of transmitter systems.
Collapse
Affiliation(s)
- Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
| | - Alexander Refisch
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Nikolai Blekic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Tamar Macharadze
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Moritz Kretzschmar
- Department of Anesthesiology and Intensive Care Medicine, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - MatthiasH J Munk
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany; Systems Neurophysiology, Department of Biology, Darmstadt University of Technology, Darmstadt, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Department of Neurology, Jena University Hospital, Jena, Germany
| | - Oliver Speck
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany; German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
| |
Collapse
|
8
|
Evans VD, Arenas A, Shinozuka K, Tabaac BJ, Beutler BD, Cherian K, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-Ketamine. Am J Ther 2024; 31:e155-e177. [PMID: 38518272 DOI: 10.1097/mjt.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Ketamine, an arylcyclohexylamine dissociative anesthetic agent, has evolved into a versatile therapeutic. It has a rapid-onset, well-understood cardiovascular effects and a favorable safety profile in clinical use. Its enantiomeric compound, esketamine, was approved by the Food and Drug Administration in 2019 for both treatment-resistant depression and major depressive disorder with suicidal ideation. AREAS OF UNCERTAINTY Research indicates dose-dependent impacts on cognition, particularly affecting episodic and working memory following both acute administration and chronic use, albeit temporarily for the former and potentially persistent for the latter. Alongside acute risks to cardiovascular stability, ketamine use poses potential liver toxicity concerns, especially with prolonged or repeated exposure within short time frames. The drug's association with "ketamine cystitis," characterized by bladder inflammation, adds to its profile of physiological risks. THERAPEUTIC ADVANCES Data demonstrate a single intravenous infusion of ketamine exhibits antidepressant effects within hours (weighted effect size averages of depression scores (N = 518) following a single 0.5 mg/kg infusion of ketamine is d = 0.96 at 24 hours). Ketamine is also effective at reducing posttraumatic stress disorder (PTSD) symptom severity following repeated infusions (Clinician-Administered PTSD Scale scores: -11.88 points compared with midazolam control). Ketamine also decreased suicidal ideation in emergency settings (Scale for Suicidal Ideation scores: -4.96 compared with midazolam control). Through its opioid-sparing effect, ketamine has revolutionized postoperative pain management by reducing analgesic consumption and enhancing recovery. LIMITATIONS Many studies indicate that ketamine's therapeutic effects may subside within weeks. Repeated administrations, given multiple times per week, are often required to sustain decreases in suicidality and depressive symptoms. CONCLUSIONS Ketamine's comprehensive clinical profile, combined with its robust effects on depression, suicidal ideation, PTSD, chronic pain, and other psychiatric conditions, positions it as a substantial contender for transformative therapeutic application.
Collapse
Affiliation(s)
- Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Burton J Tabaac
- University of Nevada, Reno School of Medicine, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Bryce D Beutler
- University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Kirsten Cherian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA
| | | | - Owen S Muir
- Fermata Health, Brooklyn, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
9
|
Ali DN, Ali HM, Lopez MR, Kang S, Choi DS. Astrocytic GABAergic Regulation in Alcohol Use and Major Depressive Disorders. Cells 2024; 13:318. [PMID: 38391931 PMCID: PMC10887002 DOI: 10.3390/cells13040318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central nervous system (CNS). Most GABAergic neurons synthesize GABA from glutamate and release it in the synaptic cleft in the CNS. However, astrocytes can also synthesize and release GABA, activating GABA receptors in the neighboring neurons in physiological and pathological conditions. As the primary homeostatic glial cells in the brain, astrocytes play a crucial role in regulating GABA homeostasis and synaptic neurotransmission. Accumulating evidence demonstrates that astrocytic GABA dysregulation is implicated in psychiatric disorders, including alcohol use disorder (AUD) and major depressive disorder (MDD), the most prevalent co-occurring psychiatric disorders. Several current medications and emerging pharmacological agents targeting GABA levels are in clinical trials for treating AUD and MDD. This review offers a concise summary of the role of astrocytic GABA regulation in AUD and MDD. We also provide an overview of the current understanding and areas of debate regarding the mechanisms by which astrocytes regulate GABA in the CNS and their potential significance in the molecular basis of AUD and MDD, paving the way toward future research directions and potential therapeutic target areas within this field.
Collapse
Affiliation(s)
- Dina N. Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Hossam M. Ali
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Matthew R. Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Shinwoo Kang
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Rochester, MN 55905, USA; (D.N.A.); (H.M.A.); (M.R.L.); (S.K.)
- Neuroscience Program, Rochester, MN 55905, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
10
|
Ning B, Wang Z, He J, Wu Q, Deng Q, Yang Q, Gao J, Fu W, Deng Y, Wu B, Huang X, Mei J, Jiang F, Fu W. The rapid antidepressant effect of acupuncture on two animal models of depression by inhibiting M1-Ach receptors regulates synaptic plasticity in the prefrontal cortex. Brain Res 2024; 1822:148609. [PMID: 37783259 DOI: 10.1016/j.brainres.2023.148609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND It is unclear whether acupuncture has a rapid antidepressant effect and what is the main mechanism. METHODS In this study, forced swimming stress test (FST) in mice were divided into five groups: control group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Chronic unpredictable mild stress (CUMS) model rats were divided into six groups: naïve (non-CUMS) group, CUMS group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Twenty-four hours after the end of treatment, FST was conducted in mice and rats. The expression of M1-AchR, AMPA receptors (GluR1 and GluR2), BDNF, mTOR, p-mTOR, synapsin I, and PSD95 in the prefrontal cortex was determined by western blot. The spine density of neurons in the prefrontal cortex was detected by golgi staining. RESULTS The results showed that acupuncture reduced the immobility time of FST in two depression models. Acupuncture inhibited the expression of M1-AchR and promoted the expression of GluR1, GluR2, BDNF, p-mTOR, synapsin I, PSD95, and increased the density of neuron dendritic spine in the prefrontal cortex. CONCLUSIONS The rapid antidepressant effect of acupuncture may be activating the "glutamate tide" - AMPA receptor activation - BDNF release - mTORC1 pathway activation through inhibiting the expression of M1-AchR in the prefrontal cortex, thereby increasing the expression of synaptic proteins and regulating synaptic plasticity.
Collapse
Affiliation(s)
- Baile Ning
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifang Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangshan He
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyue Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wen Fu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingxin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xichang Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jilin Mei
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan Jiang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Wenbin Fu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
11
|
Costi S. Ketamine for Major Depressive Disorder. Curr Top Behav Neurosci 2024; 66:131-147. [PMID: 37922100 DOI: 10.1007/7854_2023_453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Major Depressive Disorder (MDD) is a leading cause of disability worldwide. Conventional antidepressant treatment is characterised by a significant time to onset of therapeutic action (approximately 2 weeks) and fails to achieve a stable remission of symptoms in one-third of subjects with MDD. In the last 20 years the discovery of antidepressant effects of the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine as a rapid acting (within hours) and sustained (up to 7 days) antidepressant has represented a major paradigm shift in the field.The present chapter reviews the pharmacology, safety, and efficacy of ketamine as a novel therapeutic agent for MDD and specifically for subjects who did not respond to conventional antidepressant (treatment resistant depression). The impact of ketamine on suicidal ideation, the availability of brain biomarkers of ketamine treatment response and the association of ketamine and psychotherapy are considered.
Collapse
Affiliation(s)
- Sara Costi
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
- Oxford Health Foundation Trust, Warneford Hospital, Oxford, UK.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Alexander L, Hawkins PCT, Evans JW, Mehta MA, Zarate CA. Preliminary evidence that ketamine alters anterior cingulate resting-state functional connectivity in depressed individuals. Transl Psychiatry 2023; 13:371. [PMID: 38040678 PMCID: PMC10692230 DOI: 10.1038/s41398-023-02674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023] Open
Abstract
Activity changes within the anterior cingulate cortex (ACC) are implicated in the antidepressant effects of ketamine, but the ACC is cytoarchitectonically and functionally heterogeneous and ketamine's effects may be subregion specific. In the context of a double-blind randomized placebo-controlled crossover trial investigating the clinical and resting-state fMRI effects of intravenous ketamine vs. placebo in patients with treatment resistant depression (TRD) vs. healthy volunteers (HV), we used seed-based resting-state functional connectivity (rsFC) analyses to determine differential changes in subgenual ACC (sgACC), perigenual ACC (pgACC) and dorsal ACC (dACC) rsFC two days post-infusion. Across cingulate subregions, ketamine differentially modulated rsFC to the right insula and anterior ventromedial prefrontal cortex, compared to placebo, in TRD vs. HV; changes to pgACC-insula connectivity correlated with improvements in depression scores. Post-hoc analysis of each cingulate subregion separately revealed differential modulation of sgACC-hippocampal, sgACC-vmPFC, pgACC-posterior cingulate, and dACC-supramarginal gyrus connectivity. By comparing rsFC changes following ketamine vs. placebo in the TRD group alone, we found that sgACC rsFC was most substantially modulated by ketamine vs. placebo. Changes to sgACC-pgACC, sgACC-ventral striatal, and sgACC-dACC connectivity correlated with improvements in anhedonia symptoms. This preliminary evidence suggests that accurate segmentation of the ACC is needed to understand the precise effects of ketamine's antidepressant and anti-anhedonic action.
Collapse
Affiliation(s)
- Laith Alexander
- Institute of Psychiatry, Psychology and Neuroscience, King's College London & Centre for Neuroimaging Sciences, King's College London, London, UK.
| | - Peter C T Hawkins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London & Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London & Centre for Neuroimaging Sciences, King's College London, London, UK
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Olié E, Lengvenyte A, Courtet P. [How can ketamine be used to manage suicidal risk?]. Biol Aujourdhui 2023; 217:157-160. [PMID: 38018943 DOI: 10.1051/jbio/2023029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Indexed: 11/30/2023]
Abstract
In France, suicidal behaviors remain a major public health issue. Depressed patients with suicidal ideation have more severe depressive symptoms, a more unfavorable disease course, and a greater number of suicide attempts than patients without suicidal ideation. Unfortunately, conventional antidepressants tend to be less effective in patients with suicidal tendencies than in those without. Nevertheless, promising advancements have emerged with the use of ketamine, which has shown significant and rapid efficacy in reducing the intensity of suicidal ideation in depressed patients within the first 72 h after its administration. Several mechanisms are potentially involved: (1) reduction of anhedonia. It has been demonstrated that ketamine reduces both anhedonia and suicidal ideation. In depressed patients, the reduction of anhedonia observed 2 h after ketamine administration is associated with metabolic changes in the anterior cingulate cortex involved in suicidal ideation; (2) activation of neuroplasticity cascades. The reduction in suicidal ideation within 24 h following ketamine administration is correlated with changes in plasma BDNF levels and is modulated by the Val66Met functional polymorphism of the BDNF gene. Moreover, preclinical and clinical studies have shown that ketamine induces functional and connectivity changes in the prefrontal and anterior cingulate regions, which are strongly implicated in suicidal behaviors; (3) reduction of inflammation. It is now widely accepted that suicidal behaviors are associated with low-grade inflammation, and with elevated quinolinic acid and reduced kynurenic acid levels. Interestingly, predictors of a reduction in suicidal ideation after ketamine infusion include initial severity of suicidal thoughts and depression, as well as baseline blood levels of kynurenic acid; (4) involvement of the opioidergic system. Post-mortem studies have indicated alterations in the opioidergic system related to suicidal behaviors. A recent study suggested that the antisuicidal effect of ketamine may depend on this system because naltrexone, an antagonist of mu opioid receptors, abolished the typical antidepressant effect and reduction in suicidal ideation observed following ketamine administration. In conclusion, ketamine exhibits promising potential in mitigating suicidal ideation - its effects are specific, rapid, albeit temporary. The suggested mechanisms driving its efficacy are multifaceted. Nevertheless, it is yet to be determined whether ketamine administration can effectively prevent suicidal behaviors.
Collapse
Affiliation(s)
- Emilie Olié
- Département Urgences et Post-Urgences Psychiatriques, CHU Lapeyronie, Hôpital Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Aisté Lengvenyte
- Département Urgences et Post-Urgences Psychiatriques, CHU Lapeyronie, Hôpital Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| | - Philippe Courtet
- Département Urgences et Post-Urgences Psychiatriques, CHU Lapeyronie, Hôpital Lapeyronie, 371 avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France
| |
Collapse
|
14
|
Vecera CM, C. Courtes A, Jones G, Soares JC, Machado-Vieira R. Pharmacotherapies Targeting GABA-Glutamate Neurotransmission for Treatment-Resistant Depression. Pharmaceuticals (Basel) 2023; 16:1572. [PMID: 38004437 PMCID: PMC10675154 DOI: 10.3390/ph16111572] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Treatment-resistant depression (TRD) is a term used to describe a particular type of major depressive disorder (MDD). There is no consensus about what defines TRD, with various studies describing between 1 and 4 failures of antidepressant therapies, with or without electroconvulsive therapy (ECT). That is why TRD is such a growing concern among clinicians and researchers, and it explains the necessity for investigating novel therapeutic targets beyond conventional monoamine pathways. An imbalance between two primary central nervous system (CNS) neurotransmitters, L-glutamate and γ-aminobutyric acid (GABA), has emerged as having a key role in the pathophysiology of TRD. In this review, we provide an evaluation and comprehensive review of investigational antidepressants targeting these two systems, accessing their levels of available evidence, mechanisms of action, and safety profiles. N-methyl-D-aspartate (NMDA) receptor antagonism has shown the most promise amongst the glutamatergic targets, with ketamine and esketamine (Spravato) robustly generating responses across trials. Two specific NMDA-glycine site modulators, D-cycloserine (DCS) and apimostinel, have also generated promising initial safety and efficacy profiles, warranting further investigation. Combination dextromethorphan-bupropion (AXS-05/Auvelity) displays a unique mechanism of action and demonstrated positive results in particular applicability in subpopulations with cognitive dysfunction. Currently, the most promising GABA modulators appear to be synthetic neurosteroid analogs with positive GABAA receptor modulation (such as brexanolone). Overall, advances in the last decade provide exciting perspectives for those who do not improve with conventional therapies. Of the compounds reviewed here, three are approved by the Food and Drug Administration (FDA): esketamine (Spravato) for TRD, Auvelity (dextromethorphan-bupropion) for major depressive disorder (MDD), and brexanolone (Zulresso) for post-partum depression (PPD). Notably, some concerns have arisen with esketamine and brexanolone, which will be detailed in this study.
Collapse
Affiliation(s)
- Courtney M. Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Alan C. Courtes
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Gregory Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Rodrigo Machado-Vieira
- John S. Dunn Behavioral Sciences Center at UTHealth Houston, 5615 H.Mark Crosswell Jr St, Houston, TX 77021, USA
| |
Collapse
|
15
|
Wang J, Liu G, Xu K, Ai K, Huang W, Zhang J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum Brain Mapp 2023; 44:5357-5371. [PMID: 37530546 PMCID: PMC10543356 DOI: 10.1002/hbm.26439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Guangyao Liu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kun Xu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kai Ai
- Deparment of Clinical and Technical Support, Philips HealthcareXi'anChina
| | - Wenjing Huang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
16
|
Dębowska W, Więdłocha M, Dębowska M, Kownacka Z, Marcinowicz P, Szulc A. Transcranial magnetic stimulation and ketamine: implications for combined treatment in depression. Front Neurosci 2023; 17:1267647. [PMID: 37954877 PMCID: PMC10637948 DOI: 10.3389/fnins.2023.1267647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Drug-resistant mental disorders, particularly treatment-resistant depression, pose a significant medical and social problem. To address this challenge, modern psychiatry is constantly exploring the use of novel treatment methods, including biological treatments, such as transcranial magnetic stimulation (TMS), and novel rapid-acting antidepressants, such as ketamine. While both TMS and ketamine demonstrate high effectiveness in reducing the severity of depressive symptoms, some patients still do not achieve the desired improvement. Recent literature suggests that combining these two methods may yield even stronger and longer-lasting results. This review aims to consolidate knowledge in this area and elucidate the potential mechanisms of action underlying the increased efficacy of combined treatment, which would provide a foundation for the development and optimization of future treatment protocols.
Collapse
Affiliation(s)
- Weronika Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Marta Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Kownacka
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- MindHealth, Warsaw, Poland
| |
Collapse
|
17
|
Hack LM, Zhang X, Heifets BD, Suppes T, van Roessel PJ, Yesavage JA, Gray NJ, Hilton R, Bertrand C, Rodriguez CI, Deisseroth K, Knutson B, Williams LM. Ketamine's acute effects on negative brain states are mediated through distinct altered states of consciousness in humans. Nat Commun 2023; 14:6631. [PMID: 37857620 PMCID: PMC10587184 DOI: 10.1038/s41467-023-42141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Ketamine commonly and rapidly induces dissociative and other altered states of consciousness (ASCs) in humans. However, the neural mechanisms that contribute to these experiences remain unknown. We used functional neuroimaging to engage key regions of the brain's affective circuits during acute ketamine-induced ASCs within a randomized, multi-modal, placebo-controlled design examining placebo, 0.05 mg/kg ketamine, and 0.5 mg/kg ketamine in nonclinical adult participants (NCT03475277). Licensed clinicians monitored infusions for safety. Linear mixed effects models, analysis of variance, t-tests, and mediation models were used for statistical analyses. Our design enabled us to test our pre-specified primary and secondary endpoints, which were met: effects of ketamine across dose conditions on (1) emotional task-evoked brain activity, and (2) sub-components of dissociation and other ASCs. With this design, we also could disentangle which ketamine-induced affective brain states are dependent upon specific aspects of ASCs. Differently valenced ketamine-induced ASCs mediated opposing effects on right anterior insula activity. Participants experiencing relatively higher depersonalization induced by 0.5 mg/kg of ketamine showed relief from negative brain states (reduced task-evoked right anterior insula activity, 0.39 SD). In contrast, participants experiencing dissociative amnesia showed an exacerbation of insula activity (0.32 SD). These results in nonclinical participants may shed light on the mechanisms by which specific dissociative states predict response to ketamine in depressed individuals.
Collapse
Affiliation(s)
- Laura M Hack
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Boris D Heifets
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Trisha Suppes
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Peter J van Roessel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jerome A Yesavage
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nancy J Gray
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Hilton
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Claire Bertrand
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Carolyn I Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Sierra-Pacific Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
18
|
Medeiros GC, Matheson M, Demo I, Reid MJ, Matheson S, Twose C, Smith GS, Gould TD, Zarate CA, Barrett FS, Goes FS. Brain-based correlates of antidepressant response to ketamine: a comprehensive systematic review of neuroimaging studies. Lancet Psychiatry 2023; 10:790-800. [PMID: 37625426 PMCID: PMC11534374 DOI: 10.1016/s2215-0366(23)00183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 08/27/2023]
Abstract
Ketamine is an effective antidepressant, but there is substantial variability in patient response and the precise mechanism of action is unclear. Neuroimaging can provide predictive and mechanistic insights, but findings are limited by small sample sizes. This systematic review covers neuroimaging studies investigating baseline (pre-treatment) and longitudinal (post-treatment) biomarkers of responses to ketamine. All modalities were included. We performed searches of five electronic databases (from inception to April 26, 2022). 69 studies were included (with 1751 participants). There was substantial methodological heterogeneity and no well replicated biomarker. However, we found convergence across some significant results, particularly in longitudinal biomarkers. Response to ketamine was associated with post-treatment increases in gamma power in frontoparietal regions in electrophysiological studies, post-treatment increases in functional connectivity within the prefrontal cortex, and post-treatment increases in the functional activation of the striatum. Although a well replicated neuroimaging biomarker of ketamine response was not identified, there are biomarkers that warrant further investigation.
Collapse
Affiliation(s)
- Gustavo C Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Malcolm Matheson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Isabella Demo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Claire Twose
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gwenn S Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, NIMH-NIH, Bethesda, MD, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Department of Psychological and Brain Sciences, and Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fernando S Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Garel N, Drury J, Thibault Lévesque J, Goyette N, Lehmann A, Looper K, Erritzoe D, Dames S, Turecki G, Rej S, Richard-Devantoy S, Greenway KT. The Montreal model: an integrative biomedical-psychedelic approach to ketamine for severe treatment-resistant depression. Front Psychiatry 2023; 14:1268832. [PMID: 37795512 PMCID: PMC10546328 DOI: 10.3389/fpsyt.2023.1268832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
Background Subanesthetic ketamine has accumulated meta-analytic evidence for rapid antidepressant effects in treatment-resistant depression (TRD), resulting in both excitement and debate. Many unanswered questions surround ketamine's mechanisms of action and its integration into real-world psychiatric care, resulting in diverse utilizations that variously resemble electroconvulsive therapy, conventional antidepressants, or serotonergic psychedelics. There is thus an unmet need for clinical approaches to ketamine that are tailored to its unique therapeutic properties. Methods This article presents the Montreal model, a comprehensive biopsychosocial approach to ketamine for severe TRD refined over 6 years in public healthcare settings. To contextualize its development, we review the evidence for ketamine as a biomedical and as a psychedelic treatment of depression, emphasizing each perspectives' strengths, weaknesses, and distinct methods of utilization. We then describe the key clinical experiences and research findings that shaped the model's various components, which are presented in detail. Results The Montreal model, as implemented in a recent randomized clinical trial, aims to synergistically pair ketamine infusions with conventional and psychedelic biopsychosocial care. Ketamine is broadly conceptualized as a brief intervention that can produce windows of opportunity for enhanced psychiatric care, as well as powerful occasions for psychological growth. The model combines structured psychiatric care and concomitant psychotherapy with six ketamine infusions, administered with psychedelic-inspired nonpharmacological adjuncts including rolling preparative and integrative psychological support. Discussion Our integrative model aims to bridge the biomedical-psychedelic divide to offer a feasible, flexible, and standardized approach to ketamine for TRD. Our learnings from developing and implementing this psychedelic-inspired model for severe, real-world patients in two academic hospitals may offer valuable insights for the ongoing roll-out of a range of psychedelic therapies. Further research is needed to assess the Montreal model's effectiveness and hypothesized psychological mechanisms.
Collapse
Affiliation(s)
- Nicolas Garel
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Jessica Drury
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | | | - Nathalie Goyette
- McGill Group for Suicide Studies, Douglas Mental Health Research Institute, Montreal, QC, Canada
| | - Alexandre Lehmann
- International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
- Department of Otolaryngology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Karl Looper
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, QC, Canada
| | - David Erritzoe
- Division of Psychiatry, Department of Brain Sciences, Centres for Neuropsychopharmacology and Psychedelic Research, Imperial College London, London, United Kingdom
| | - Shannon Dames
- Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC, Canada
| | - Gustavo Turecki
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health Research Institute, Montreal, QC, Canada
| | - Soham Rej
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Geri-PARTy Research Group, Jewish General Hospital, Montreal, QC, Canada
| | - Stephane Richard-Devantoy
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health Research Institute, Montreal, QC, Canada
| | - Kyle T. Greenway
- Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Jewish General Hospital, Lady Davis Institute for Medical Research, Montreal, QC, Canada
- Division of Psychiatry, Department of Brain Sciences, Centres for Neuropsychopharmacology and Psychedelic Research, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Tsuchiyagaito A, Sánchez SM, Misaki M, Kuplicki R, Park H, Paulus MP, Guinjoan SM. Intensity of repetitive negative thinking in depression is associated with greater functional connectivity between semantic processing and emotion regulation areas. Psychol Med 2023; 53:5488-5499. [PMID: 36043367 PMCID: PMC9973538 DOI: 10.1017/s0033291722002677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Repetitive negative thinking (RNT), a cognitive process that encompasses past (rumination) and future (worry) directed thoughts focusing on negative experiences and the self, is a transdiagnostic construct that is especially relevant for major depressive disorder (MDD). Severe RNT often occurs in individuals with severe levels of MDD, which makes it challenging to disambiguate the neural circuitry underlying RNT from depression severity. METHODS We used a propensity score, i.e., a conditional probability of having high RNT given observed covariates to match high and low RNT individuals who are similar in the severity of depression, anxiety, and demographic characteristics. Of 148 MDD individuals, we matched high and low RNT groups (n = 50/group) and used a data-driven whole-brain voxel-to-voxel connectivity pattern analysis to investigate the resting-state functional connectivity differences between the groups. RESULTS There was an association between RNT and connectivity in the bilateral superior temporal sulcus (STS), an important region for speech processing including inner speech. High relative to low RNT individuals showed greater connectivity between right STS and bilateral anterior insular cortex (AI), and between bilateral STS and left dorsolateral prefrontal cortex (DLPFC). Greater connectivity in those regions was specifically related to RNT but not to depression severity. CONCLUSIONS RNT intensity is directly related to connectivity between STS and AI/DLPFC. This might be a mechanism underlying the role of RNT in perceptive, cognitive, speech, and emotional processing. Future investigations will need to determine whether modifying these connectivities could be a treatment target to reduce RNT.
Collapse
Affiliation(s)
- Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, OK, USA
- The University of Tulsa, Tulsa, OK, USA
- Chiba University, Chiba, Japan
| | | | - Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | | | - Heekyong Park
- Laureate Institute for Brain Research, Tulsa, OK, USA
- University of North Texas at Dallas, Dallas, TX, USA
| | | | | |
Collapse
|
21
|
Burrows M, Kotoula V, Dipasquale O, Stringaris A, Mehta MA. Ketamine-induced changes in resting state connectivity, 2 h after the drug administration in patients with remitted depression. J Psychopharmacol 2023; 37:784-794. [PMID: 37491833 DOI: 10.1177/02698811231189432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND Resting state connectivity studies link ketamine's antidepressant effects with normalisation of the brain connectivity changes that are observed in depression. These changes, however, usually co-occur with improvement in depressive symptoms, making it difficult to attribute these changes to ketamine's effects per se. AIMS Our aim is to examine the effects of ketamine in brain connectivity, 2 h after its administration in a cohort of volunteers with remitted depression. Any significant changes observed in this study could provide insight of ketamine's antidepressant mechanism as they are not accompanied by symptom changes. METHODS In total, 35 participants with remitted depression (21 females, mean age = 28.5 years) participated in a double-blind, placebo-controlled study of ketamine (0.5 mg/kg) or saline. Resting state scans were acquired approximately 2 h after the ketamine infusion. Brain connectivity was examined using a seed-based approach (ventral striatum, amygdala, hippocampus, posterior cingulate cortex and subgenual anterior cingulate cortex (sgACC)) and a brain network analysis (independent component analysis). RESULTS Decreased connectivity between the sgACC and the amygdala was observed approximately 2 h after the ketamine infusion, compared to placebo (pFWE < 0.05). The executive network presented with altered connectivity with different cortical and subcortical regions. Within the network, the left hippocampus and right amygdala had decreased connectivity (pFWE < 0.05). CONCLUSIONS Our findings support a model whereby ketamine would change the connectivity of brain areas and networks that are important for cognitive processing and emotional regulation. These changes could also be an indirect indicator of the plasticity changes induced by the drug.
Collapse
Affiliation(s)
- Matthew Burrows
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| | - Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, NIMH, Bethesda, MA, USA
| | - Ottavia Dipasquale
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| | - Argyris Stringaris
- Division of Psychiatry and Department of Clinical, Educational & Health Psychology, UCL, London, UK
- First Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - Mitul A Mehta
- Centre for Neuroimaging Sciences, IoPPN, King's College London, London, UK
| |
Collapse
|
22
|
Sikes-Keilp C, Rubinow DR. GABA-ergic Modulators: New Therapeutic Approaches to Premenstrual Dysphoric Disorder. CNS Drugs 2023; 37:679-693. [PMID: 37542704 DOI: 10.1007/s40263-023-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Premenstrual dysphoric disorder (PMDD) is characterized by the predictable onset of mood and physical symptoms secondary to gonadal steroid fluctuation during the luteal phase of the menstrual cycle. Although menstrual-related affective dysfunction is responsible for considerable functional impairment and reduction in quality of life worldwide, currently approved treatments for PMDD are suboptimal in their effectiveness. Research over the past two decades has suggested that the interaction between allopregnanolone, a neurosteroid derivative of progesterone, and the gamma-aminobutyric acid (GABA) system represents an important relationship underlying symptom genesis in reproductive-related mood disorders, including PMDD. The objective of this narrative review is to discuss the plausible link between changes in GABAergic transmission secondary to the fluctuation of allopregnanolone during the luteal phase and mood impairment in susceptible individuals. As part of this discussion, we explore promising findings from early clinical trials of several compounds that stabilize allopregnanolone signaling during the luteal phase, including dutasteride, a 5-alpha reductase inhibitor; isoallopregnanolone, a GABA-A modulating steroid antagonist; and ulipristal acetate, a selective progesterone receptor modulator. We then reflect on the implications of these therapeutic advances, including how they may promote our knowledge of affective regulation more generally. We conclude that these and other studies of PMDD may yield critical insight into the etiopathogenesis of affective disorders, considering that (1) symptoms in PMDD have a predictable onset and offset, allowing for examination of affective state kinetics, and (2) GABAergic interventions in PMDD can be used to better understand the relationship between mood states, network regulation, and the balance between excitatory and inhibitory signaling in the brain.
Collapse
Affiliation(s)
- Christopher Sikes-Keilp
- Department of Psychiatry, University of North Carolina Hospitals, 101 Manning Drive, Chapel Hill, NC, 27514, USA.
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina Hospitals, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| |
Collapse
|
23
|
Batail JM, Xiao X, Azeez A, Tischler C, Kratter IH, Bishop JH, Saggar M, Williams NR. Network effects of Stanford Neuromodulation Therapy (SNT) in treatment-resistant major depressive disorder: a randomized, controlled trial. Transl Psychiatry 2023; 13:240. [PMID: 37400432 DOI: 10.1038/s41398-023-02537-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Here, we investigated the brain functional connectivity (FC) changes following a novel accelerated theta burst stimulation protocol known as Stanford Neuromodulation Therapy (SNT) which demonstrated significant antidepressant efficacy in treatment-resistant depression (TRD). In a sample of 24 patients (12 active and 12 sham), active stimulation was associated with significant pre- and post-treatment modulation of three FC pairs, involving the default mode network (DMN), amygdala, salience network (SN) and striatum. The most robust finding was the SNT effect on amygdala-DMN FC (group*time interaction F(1,22) = 14.89, p < 0.001). This FC change correlated with improvement in depressive symptoms (rho (Spearman) = -0.45, df = 22, p = 0.026). The post-treatment FC pattern showed a change in the direction of the healthy control group and was sustained at the one-month follow-up. These results are consistent with amygdala-DMN connectivity dysfunction as an underlying mechanism of TRD and bring us closer to the goal of developing imaging biomarkers for TMS treatment optimization.Trial registration: ClinicalTrials.gov NCT03068715.
Collapse
Affiliation(s)
- Jean-Marie Batail
- Stanford Brain Stimulation Lab, Stanford, CA, USA
- Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Centre Hospitalier Guillaume Régnier, Rennes, France
| | | | | | | | - Ian H Kratter
- Stanford Brain Stimulation Lab, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan R Williams
- Stanford Brain Stimulation Lab, Stanford, CA, USA.
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Feder A, Costi S, Rutter SB, Collins AB, Govindarajulu U, Jha MK, Horn SR, Kautz M, Corniquel M, Collins KA, Bevilacqua L, Glasgow AM, Brallier J, Pietrzak RH, Murrough JW, Charney DS. A Randomized Controlled Trial of Repeated Ketamine Administration for Chronic Posttraumatic Stress Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:296-305. [PMID: 37404970 PMCID: PMC10316213 DOI: 10.1176/appi.focus.23021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Objective Posttraumatic stress disorder (PTSD) is a chronic and disabling disorder, for which available pharmacotherapies have limited efficacy. The authors' previous proof-of-concept randomized controlled trial of single-dose intravenous ketamine infusion in individuals with PTSD showed significant and rapid PTSD symptom reduction 24 hours postinfusion. The present study is the first randomized controlled trial to test the efficacy and safety of repeated intravenous ketamine infusions for the treatment of chronic PTSD. Methods Individuals with chronic PTSD (N=30) were randomly assigned (1:1) to receive six infusions of ketamine (0.5 mg/kg) or midazolam (0.045 mg/kg) (psychoactive placebo control) over 2 consecutive weeks. Clinician-rated and self-report assessments were administered 24 hours after the first infusion and at weekly visits. The primary outcome measure was change in PTSD symptom severity, as assessed with the Clinician-Administered PTSD Scale for DSM-5 (CAPS-5), from baseline to 2 weeks (after completion of all infusions). Secondary outcome measures included the Impact of Event Scale-Revised, the Montgomery-Åsberg Depression Rating Scale (MADRS), and side effect measures. Results The ketamine group showed a significantly greater improvement in CAPS-5 and MADRS total scores than the midazolam group from baseline to week 2. At week 2, the mean CAPS-5 total score was 11.88 points (SE=3.96) lower in the ketamine group than in the midazolam group (d=1.13, 95% CI=0.36, 1.91). Sixty-seven percent of participants in the ketamine group were treatment responders, compared with 20% in the midazolam group. Among ketamine responders, the median time to loss of response was 27.5 days following the 2-week course of infusions. Ketamine infusions were well tolerated overall, without serious adverse events. Conclusions This randomized controlled trial provides the first evidence of efficacy of repeated ketamine infusions in reducing symptom severity in individuals with chronic PTSD. Further studies are warranted to understand ketamine's full potential as a treatment for chronic PTSD.Reprinted from Am J Psychiatry 2021; 178:193-202, with permission from American Psychiatric Association Publishing. Copyright © 2021.
Collapse
|
25
|
Kotoula V, Evans JW, Punturieri CE, Zarate CA. Review: The use of functional magnetic resonance imaging (fMRI) in clinical trials and experimental research studies for depression. FRONTIERS IN NEUROIMAGING 2023; 2:1110258. [PMID: 37554642 PMCID: PMC10406217 DOI: 10.3389/fnimg.2023.1110258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/12/2023] [Indexed: 08/10/2023]
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that can be used to examine neural responses with and without the use of a functional task. Indeed, fMRI has been used in clinical trials and pharmacological research studies. In mental health, it has been used to identify brain areas linked to specific symptoms but also has the potential to help identify possible treatment targets. Despite fMRI's many advantages, such findings are rarely the primary outcome measure in clinical trials or research studies. This article reviews fMRI studies in depression that sought to assess the efficacy and mechanism of action of compounds with antidepressant effects. Our search results focused on selective serotonin reuptake inhibitors (SSRIs), the most commonly prescribed treatments for depression and ketamine, a fast-acting antidepressant treatment. Normalization of amygdala hyperactivity in response to negative emotional stimuli was found to underlie successful treatment response to SSRIs as well as ketamine, indicating a potential common pathway for both conventional and fast-acting antidepressants. Ketamine's rapid antidepressant effects make it a particularly useful compound for studying depression with fMRI; its effects on brain activity and connectivity trended toward normalizing the increases and decreases in brain activity and connectivity associated with depression. These findings highlight the considerable promise of fMRI as a tool for identifying treatment targets in depression. However, additional studies with improved methodology and study design are needed before fMRI findings can be translated into meaningful clinical trial outcomes.
Collapse
|
26
|
Cutler AJ, Mattingly GW, Maletic V. Understanding the mechanism of action and clinical effects of neuroactive steroids and GABAergic compounds in major depressive disorder. Transl Psychiatry 2023; 13:228. [PMID: 37365161 PMCID: PMC10293235 DOI: 10.1038/s41398-023-02514-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The pathophysiology of major depressive disorder (MDD) is thought to result from impaired connectivity between key brain networks. Gamma-aminobutyric acid (GABA) is the key inhibitory neurotransmitter in the brain, working primarily via GABAA receptors, with an important role in virtually all physiologic functions in the brain. Some neuroactive steroids (NASs) are positive allosteric modulators (PAMs) of GABAA receptors and potentiate phasic and tonic inhibitory responses via activation of synaptic and extrasynaptic GABAA receptors, respectively. This review first discusses preclinical and clinical data that support the association of depression with diverse defects in the GABAergic system of neurotransmission. Decreased levels of GABA and NASs have been observed in adults with depression compared with healthy controls, while treatment with antidepressants normalized the altered levels of GABA and NASs. Second, as there has been intense interest in treatment approaches for depression that target dysregulated GABAergic neurotransmission, we discuss NASs approved or currently in clinical development for the treatment of depression. Brexanolone, an intravenous NAS and a GABAA receptor PAM, is approved by the U.S. Food and Drug Administration for the treatment of postpartum depression (PPD) in patients 15 years and older. Other NASs include zuranolone, an investigational oral GABAA receptor PAM, and PH10, which acts on nasal chemosensory receptors; clinical data to date have shown improvement in depressive symptoms with these investigational NASs in adults with MDD or PPD. Finally, the review discusses how NAS GABAA receptor PAMs may potentially address the unmet need for novel and effective treatments with rapid and sustained antidepressant effects in patients with MDD.
Collapse
|
27
|
Kotoula V, Evans JW, Punturieri C, Johnson SC, Zarate CA. Functional MRI markers for treatment-resistant depression: Insights and challenges. PROGRESS IN BRAIN RESEARCH 2023; 278:117-148. [PMID: 37414490 PMCID: PMC10501192 DOI: 10.1016/bs.pbr.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Imaging studies of treatment-resistant depression (TRD) have examined brain activity, structure, and metabolite concentrations to identify critical areas of investigation in TRD as well as potential targets for treatment interventions. This chapter provides an overview of the main findings of studies using three imaging modalities: structural magnetic resonance imaging (MRI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS). Decreased connectivity and metabolite concentrations in frontal brain areas appear to characterize TRD, although results are not consistent across studies. Treatment interventions, including rapid-acting antidepressants and transcranial magnetic stimulation (TMS), have shown some efficacy in reversing these changes while alleviating depressive symptoms. However, comparatively few TRD imaging studies have been conducted, and these studies often have relatively small sample sizes or employ different methods to examine a variety of brain areas, making it difficult to draw firm conclusions from imaging studies about the pathophysiology of TRD. Larger studies with more unified hypotheses, as well as data sharing, could help TRD research and spur better characterization of the illness, providing critical new targets for treatment intervention.
Collapse
Affiliation(s)
- Vasileia Kotoula
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States.
| | - Jennifer W Evans
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Claire Punturieri
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Sara C Johnson
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
29
|
Ionescu TM, Grohs-Metz G, Hengerer B. Functional ultrasound detects frequency-specific acute and delayed S-ketamine effects in the healthy mouse brain. Front Neurosci 2023; 17:1177428. [PMID: 37266546 PMCID: PMC10229773 DOI: 10.3389/fnins.2023.1177428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction S-ketamine has received great interest due to both its antidepressant effects and its potential to induce psychosis when administered subchronically. However, no studies have investigated both its acute and delayed effects using in vivo small-animal imaging. Recently, functional ultrasound (fUS) has emerged as a powerful alternative to functional magnetic resonance imaging (fMRI), outperforming it in sensitivity and in spatiotemporal resolution. In this study, we employed fUS to thoroughly characterize acute and delayed S-ketamine effects on functional connectivity (FC) within the same cohort at slow frequency bands ranging from 0.01 to 1.25 Hz, previously reported to exhibit FC. Methods We acquired fUS in a total of 16 healthy C57/Bl6 mice split in two cohorts (n = 8 received saline, n = 8 S-ketamine). One day after the first scans, performed at rest, the mice received the first dose of S-ketamine during the second measurement, followed by four further doses administered every 2 days. First, we assessed FC reproducibility and reliability at baseline in six frequency bands. Then, we investigated the acute and delayed effects at day 1 after the first dose and at day 9, 1 day after the last dose, for all bands, resulting in a total of four fUS measurements for every mouse. Results We found reproducible (r > 0.9) and reliable (r > 0.9) group-average readouts in all frequency bands, only the 0.01-0.27 Hz band performing slightly worse. Acutely, S-ketamine induced strong FC increases in five of the six bands, peaking in the 0.073-0.2 Hz band. These increases comprised both cortical and subcortical brain areas, yet were of a transient nature, FC almost returning to baseline levels towards the end of the scan. Intriguingly, we observed robust corticostriatal FC decreases in the fastest band acquired (0.75 Hz-1.25 Hz). These changes persisted to a weaker extent after 1 day and at this timepoint they were accompanied by decreases in the other five bands as well. After 9 days, the decreases in the 0.75-1.25 Hz band were maintained, however no changes between cohorts could be detected in any other bands. Discussion In summary, the study reports that acute and delayed ketamine effects in mice are not only dissimilar but have different directionalities in most frequency bands. The complementary readouts of the employed frequency bands recommend the use of fUS for frequency-specific investigation of pharmacological effects on FC.
Collapse
|
30
|
Kopelman J, Keller TA, Panny B, Griffo A, Degutis M, Spotts C, Cruz N, Bell E, Do-Nguyen K, Wallace ML, Mathew SJ, Howland RH, Price RB. Rapid neuroplasticity changes and response to intravenous ketamine: a randomized controlled trial in treatment-resistant depression. Transl Psychiatry 2023; 13:159. [PMID: 37160885 PMCID: PMC10170140 DOI: 10.1038/s41398-023-02451-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Intravenous ketamine is posited to rapidly reverse depression by rapidly enhancing neuroplasticity. In human patients, we quantified gray matter microstructural changes on a rapid (24-h) timescale within key regions where neuroplasticity enhancements post-ketamine have been implicated in animal models. In this study, 98 unipolar depressed adults who failed at least one antidepressant medication were randomized 2:1 to a single infusion of intravenous ketamine (0.5 mg/kg) or vehicle (saline) and completed diffusion tensor imaging (DTI) assessments at pre-infusion baseline and 24-h post-infusion. DTI mean diffusivity (DTI-MD), a putative marker of microstructural neuroplasticity in gray matter, was calculated for 7 regions of interest (left and right BA10, amygdala, and hippocampus; and ventral Anterior Cingulate Cortex) and compared to clinical response measured with the Montgomery-Asberg Depression Rating Scale (MADRS) and the Quick Inventory of Depressive Symptoms-Self-Report (QIDS-SR). Individual differences in DTI-MD change (greater decrease from baseline to 24-h post-infusion, indicative of more neuroplasticity enhancement) were associated with larger improvements in depression scores across several regions. In the left BA10 and left amygdala, these relationships were driven primarily by the ketamine group (group * DTI-MD interaction effects: p = 0.016-0.082). In the right BA10, these associations generalized to both infusion arms (p = 0.007). In the left and right hippocampus, on the MADRS only, interaction effects were observed in the opposite direction, such that DTI-MD change was inversely associated with depression change in the ketamine arm specifically (group * DTI-MD interaction effects: p = 0.032-0.06). The acute effects of ketamine on depression may be mediated, in part, by acute changes in neuroplasticity quantifiable with DTI.
Collapse
Affiliation(s)
- Jared Kopelman
- University of California San Diego School of Medicine, San Diego, CA, USA
| | | | - Benjamin Panny
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angela Griffo
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Degutis
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal Spotts
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nicolas Cruz
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Bell
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin Do-Nguyen
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Sanjay J Mathew
- Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Robert H Howland
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca B Price
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Brain function changes reveal rapid antidepressant effects of nitrous oxide for treatment-resistant depression:Evidence from task-state EEG. Psychiatry Res 2023; 322:115072. [PMID: 36791487 DOI: 10.1016/j.psychres.2023.115072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Nitrous oxide has rapid antidepressant effects in patients with treatment-resistant depression (TRD), but its underlying mechanisms of therapeutic actions are not well understood. Moreover, most of the current studies lack objective biological indicators to evaluate the changes of nitrous oxide-induced brain function for TRD. Therefore, this study assessed the effect of nitrous oxide on brain function for TRD based on event-related potential (ERP) components and functional connectivity networks (FCNs) methods. In this randomized, longitudinal, placebo-controlled trial, all TRD participants were divided into two groups to receive either a 1-hour inhalation of nitrous oxide or a placebo treatment, and they took part in the same task-state electroencephalogram (EEG) experiment before and after treatment. The experimental results showed that nitrous oxide improved depressive symptoms better than placebo in terms of 17-Hamilton Depression Rating Scale score (HAMD-17). Statistical analysis based on ERP components showed that nitrous oxide-induced significant differences in amplitude and latency of N1, P1, N2, P2. In addition, increased brain functional connectivity was found after nitrous oxide treatment. And the change of network metrics has a significant correlation with decreased depressive symptoms. These findings may suggest that nitrous oxide improves depression symptoms for TRD by modifying brain function.
Collapse
|
32
|
Zavaliangos-Petropulu A, Al-Sharif NB, Taraku B, Leaver AM, Sahib AK, Espinoza RT, Narr KL. Neuroimaging-Derived Biomarkers of the Antidepressant Effects of Ketamine. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:361-386. [PMID: 36775711 PMCID: PMC11483103 DOI: 10.1016/j.bpsc.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022]
Abstract
Major depressive disorder is a highly prevalent psychiatric disorder. Despite an extensive range of treatment options, about a third of patients still struggle to respond to available therapies. In the last 20 years, ketamine has gained considerable attention in the psychiatric field as a promising treatment of depression, particularly in patients who are treatment resistant or at high risk for suicide. At a subanesthetic dose, ketamine produces a rapid and pronounced reduction in depressive symptoms and suicidal ideation, and serial treatment appears to produce a greater and more sustained therapeutic response. However, the mechanism driving ketamine's antidepressant effects is not yet well understood. Biomarker discovery may advance knowledge of ketamine's antidepressant action, which could in turn translate to more personalized and effective treatment strategies. At the brain systems level, neuroimaging can be used to identify functional pathways and networks contributing to ketamine's therapeutic effects by studying how it alters brain structure, function, connectivity, and metabolism. In this review, we summarize and appraise recent work in this area, including 51 articles that use resting-state and task-based functional magnetic resonance imaging, arterial spin labeling, positron emission tomography, structural magnetic resonance imaging, diffusion magnetic resonance imaging, or magnetic resonance spectroscopy to study brain and clinical changes 24 hours or longer after ketamine treatment in populations with unipolar or bipolar depression. Though individual studies have included relatively small samples, used different methodological approaches, and reported disparate regional findings, converging evidence supports that ketamine leads to neuroplasticity in structural and functional brain networks that contribute to or are relevant to its antidepressant effects.
Collapse
Affiliation(s)
- Artemis Zavaliangos-Petropulu
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Noor B Al-Sharif
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Brandon Taraku
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Amber M Leaver
- Department of Radiology, Northwestern University, Chicago, Illinois
| | - Ashish K Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Randall T Espinoza
- Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
33
|
Johnston JN, Kadriu B, Allen J, Gilbert JR, Henter ID, Zarate CA. Ketamine and serotonergic psychedelics: An update on the mechanisms and biosignatures underlying rapid-acting antidepressant treatment. Neuropharmacology 2023; 226:109422. [PMID: 36646310 PMCID: PMC9983360 DOI: 10.1016/j.neuropharm.2023.109422] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The discovery of ketamine as a rapid-acting antidepressant spurred significant research to understand its underlying mechanisms of action and to identify other novel compounds that may act similarly. Serotonergic psychedelics (SPs) have shown initial promise in treating depression, though the challenge of conducting randomized controlled trials with SPs and the necessity of long-term clinical observation are important limitations. This review summarizes the similarities and differences between the psychoactive effects associated with both ketamine and SPs and the mechanisms of action of these compounds, with a focus on the monoaminergic, glutamatergic, gamma-aminobutyric acid (GABA)-ergic, opioid, and inflammatory systems. Both molecular and neuroimaging aspects are considered. While their main mechanisms of action differ-SPs increase serotonergic signaling while ketamine is a glutamatergic modulator-evidence suggests that the downstream mechanisms of action of both ketamine and SPs include mechanistic target of rapamycin complex 1 (mTORC1) signaling and downstream GABAA receptor activity. The similarities in downstream mechanisms may explain why ketamine, and potentially SPs, exert rapid-acting antidepressant effects. However, research on SPs is still in its infancy compared to the ongoing research that has been conducted with ketamine. For both therapeutics, issues with regulation and proper controls should be addressed before more widespread implementation. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Josh Allen
- The Alfred Centre, Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.
| | - Jessica R Gilbert
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
34
|
Marguilho M, Figueiredo I, Castro-Rodrigues P. A unified model of ketamine's dissociative and psychedelic properties. J Psychopharmacol 2023; 37:14-32. [PMID: 36527355 PMCID: PMC9834329 DOI: 10.1177/02698811221140011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ketamine is an N-methyl-d-aspartate antagonist which is increasingly being researched and used as a treatment for depression. In low doses, it can cause a transitory modification in consciousness which was classically labelled as 'dissociation'. However, ketamine is also commonly classified as an atypical psychedelic and it has been recently reported that ego dissolution experiences during ketamine administration are associated with greater antidepressant response. Neuroimaging studies have highlighted several similarities between the effects of ketamine and those of serotonergic psychedelics in the brain; however, no unified account has been proposed for ketamine's multi-level effects - from molecular to network and psychological levels. Here, we propose that the fast, albeit transient, antidepressant effects observed after ketamine infusions are mainly driven by its acute modulation of reward circuits and sub-acute increase in neuroplasticity, while its dissociative and psychedelic properties are driven by dose- and context-dependent disruption of large-scale functional networks. Computationally, as nodes of the salience network (SN) represent high-level priors about the body ('minimal' self) and nodes of the default-mode network (DMN) represent the highest-level priors about narrative self-experience ('biographical' self), we propose that transitory SN desegregation and disintegration accounts for ketamine's 'dissociative' state, while transitory DMN desegregation and disintegration accounts for ketamine's 'psychedelic' state. In psychedelic-assisted psychotherapy, a relaxation of the highest-level beliefs with psychotherapeutic support may allow a revision of pathological self-representation models, for which neuroplasticity plays a permissive role. Our account provides a multi-level rationale for using the psychedelic properties of ketamine to increase its long-term benefits.
Collapse
Affiliation(s)
| | | | - Pedro Castro-Rodrigues
- Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal,NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal,Pedro Castro-Rodrigues, Centro Hospitalar Psiquiátrico de Lisboa, Avenida do Brasil, 53, Lisbon, 1749-002, Portugal.
| |
Collapse
|
35
|
Kim WSH, Dimick MK, Omrin D, Mitchell RHB, Riegert D, Levitt A, Schaffer A, Belo S, Iazzetta J, Detzler G, Choi M, Choi S, Herrmann N, McIntyre RS, MacIntosh BJ, Orser BA, Goldstein BI. Proof-of-concept randomized controlled trial of single-session nitrous oxide treatment for refractory bipolar depression: Focus on cerebrovascular target engagement. Bipolar Disord 2022; 25:221-232. [PMID: 36579458 DOI: 10.1111/bdi.13288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND There remain few efficacious treatments for bipolar depression, which dominates the course of bipolar disorder (BD). Despite multiple studies reporting associations between depression and cerebral blood flow (CBF), little is known regarding CBF as a treatment target, or predictor and/or indicator of treatment response, in BD. Nitrous oxide, an anesthetic gas with vasoactive and putative antidepressant properties, has a long history as a neuroimaging probe. We undertook an experimental medicine paradigm, coupling in-scanner single-session nitrous oxide treatment of bipolar depression with repeated measures of CBF. METHODS In this double-blind randomized controlled trial, 25 adults with BD I/II and current treatment-refractory depression received either: (1) nitrous oxide (20 min at 25% concentration) plus intravenous saline (n = 12), or (2) medical air plus intravenous midazolam (2 mg total; n = 13). Study outcomes included changes in depression severity (Montgomery-Asberg Depression Rating Scale scores, primary) and changes in CBF (via arterial spin labeling magnetic resonance imaging). RESULTS There were no significant between-group differences in 24-h post-treatment MADRS change or treatment response. However, the nitrous oxide group had significantly greater same-day reductions in depression severity. Lower baseline regional CBF predicted greater 24-h post-treatment MADRS reductions with nitrous oxide but not midazolam. In region-of-interest and voxel-wise analyses, there was a pattern of regional CBF reductions following treatment with midazolam versus nitrous oxide. CONCLUSIONS Present findings, while tentative and based on secondary endpoints, suggest differential associations of nitrous oxide versus midazolam with bipolar depression severity and cerebral hemodynamics. Larger studies integrating neuroimaging targets and repeated nitrous oxide treatment sessions are warranted.
Collapse
Affiliation(s)
- William S H Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle Omrin
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rachel H B Mitchell
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Riegert
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Levitt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ayal Schaffer
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Susan Belo
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John Iazzetta
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | - Mabel Choi
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Choi
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Beverley A Orser
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Sahib AK, Loureiro JR, Vasavada M, Anderson C, Kubicki A, Wade B, Joshi SH, Woods RP, Congdon E, Espinoza R, Narr KL. Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychol Med 2022; 52:2596-2605. [PMID: 33267926 PMCID: PMC9647551 DOI: 10.1017/s0033291720004560] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Subanesthetic ketamine infusion therapy can produce fast-acting antidepressant effects in patients with major depression. How single and repeated ketamine treatment modulates the whole-brain functional connectome to affect clinical outcomes remains uncharacterized. METHODS Data-driven whole brain functional connectivity (FC) analysis was used to identify the functional connections modified by ketamine treatment in patients with major depressive disorder (MDD). MDD patients (N = 61, mean age = 38, 19 women) completed baseline resting-state (RS) functional magnetic resonance imaging and depression symptom scales. Of these patients, n = 48 and n = 51, completed the same assessments 24 h after receiving one and four 0.5 mg/kg intravenous ketamine infusions. Healthy controls (HC) (n = 40, 24 women) completed baseline assessments with no intervention. Analysis of RS FC addressed effects of diagnosis, time, and remitter status. RESULTS Significant differences (p < 0.05, corrected) in RS FC were observed between HC and MDD at baseline in the somatomotor network and between association and default mode networks. These disruptions in FC in MDD patients trended toward control patterns with ketamine treatment. Furthermore, following serial ketamine infusions, significant decreases in FC were observed between the cerebellum and salience network (SN) (p < 0.05, corrected). Patient remitters showed increased FC between the cerebellum and the striatum prior to treatment that decreased following treatment, whereas non-remitters showed the opposite pattern. CONCLUSION Results support that ketamine treatment leads to neurofunctional plasticity between distinct neural networks that are shown as disrupted in MDD patients. Cortico-striatal-cerebellar loops that encompass the SN could be a potential biomarker for ketamine treatment.
Collapse
Affiliation(s)
- Ashish K. Sahib
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Joana R. Loureiro
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Megha Vasavada
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Cole Anderson
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Antoni Kubicki
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin Wade
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Shantanu H. Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Roger P. Woods
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
37
|
Gärtner M, de Rover M, Václavů L, Scheidegger M, van Osch MJP, Grimm S. Increase in thalamic cerebral blood flow is associated with antidepressant effects of ketamine in major depressive disorder. World J Biol Psychiatry 2022; 23:643-652. [PMID: 34985394 DOI: 10.1080/15622975.2021.2020900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ketamine is a promising treatment option for patients with Major Depressive Disorder (MDD) and has become an important research tool to investigate antidepressant mechanisms of action. However, imaging studies attempting to characterise ketamine's mechanism of action using blood oxygen level-dependent signal (BOLD) imaging have yielded inconsistent results- at least partly due to intrinsic properties of the BOLD contrast, which measures a complex signal related to neural activity. To circumvent the limitations associated with the BOLD signal, we used arterial spin labelling (ASL) as an unambiguous marker of neuronal activity-related changes in cerebral blood flow (CBF). We measured CBF in 21 MDD patients at baseline and 24 h after receiving a single intravenous infusion of subanesthetic ketamine and examined relationships with clinical outcomes. Our findings demonstrate that increase in thalamus perfusion 24 h after ketamine administration is associated with greater improvement of depressive symptoms. Furthermore, lower thalamus perfusion at baseline is associated both with larger increases in perfusion 24 h after ketamine administration and with stronger reduction of depressive symptoms. These findings indicate that ASL is not only a useful tool to broaden our understanding of ketamine's mechanism of action but might also have the potential to inform treatment decisions based on CBF-defined regional disruptions.
Collapse
Affiliation(s)
- Matti Gärtner
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mischa de Rover
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, Netherlands
| | - Lena Václavů
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Matthias J P van Osch
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Simone Grimm
- MSB-Medical School Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
39
|
Wade BSC, Loureiro J, Sahib A, Kubicki A, Joshi SH, Hellemann G, Espinoza RT, Woods RP, Congdon E, Narr KL. Anterior default mode network and posterior insular connectivity is predictive of depressive symptom reduction following serial ketamine infusion. Psychol Med 2022; 52:2376-2386. [PMID: 35578581 PMCID: PMC9527672 DOI: 10.1017/s0033291722001313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Ketamine is a rapidly-acting antidepressant treatment with robust response rates. Previous studies have reported that serial ketamine therapy modulates resting state functional connectivity in several large-scale networks, though it remains unknown whether variations in brain structure, function, and connectivity impact subsequent treatment success. We used a data-driven approach to determine whether pretreatment multimodal neuroimaging measures predict changes along symptom dimensions of depression following serial ketamine infusion. METHODS Patients with depression (n = 60) received structural, resting state functional, and diffusion MRI scans before treatment. Depressive symptoms were assessed using the 17-item Hamilton Depression Rating Scale (HDRS-17), the Inventory of Depressive Symptomatology (IDS-C), and the Rumination Response Scale (RRS) before and 24 h after patients received four (0.5 mg/kg) infusions of racemic ketamine over 2 weeks. Nineteen unaffected controls were assessed at similar timepoints. Random forest regression models predicted symptom changes using pretreatment multimodal neuroimaging and demographic measures. RESULTS Two HDRS-17 subscales, the HDRS-6 and core mood and anhedonia (CMA) symptoms, and the RRS: reflection (RRSR) scale were predicted significantly with 19, 27, and 1% variance explained, respectively. Increased right medial prefrontal cortex/anterior cingulate and posterior insula (PoI) and lower kurtosis of the superior longitudinal fasciculus predicted reduced HDRS-6 and CMA symptoms following treatment. RRSR change was predicted by global connectivity of the left posterior cingulate, left insula, and right superior parietal lobule. CONCLUSIONS Our findings support that connectivity of the anterior default mode network and PoI may serve as potential biomarkers of antidepressant outcomes for core depressive symptoms.
Collapse
Affiliation(s)
- Benjamin S. C. Wade
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Joana Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Ashish Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Randall T. Espinoza
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Roger P. Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| |
Collapse
|
40
|
Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the Network Mechanisms of Electroconvulsive Therapy. Biol Psychiatry 2022; 92:193-203. [PMID: 35120710 PMCID: PMC9196257 DOI: 10.1016/j.biopsych.2021.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the oldest and most effective forms of neurostimulation, wherein electrical current is used to elicit brief, generalized seizures under general anesthesia. When electrodes are positioned to target frontotemporal cortex, ECT is arguably the most effective treatment for severe major depression, with response rates and times superior to other available antidepressant therapies. Neuroimaging research has been pivotal in improving the field's mechanistic understanding of ECT, with a growing number of magnetic resonance imaging studies demonstrating hippocampal plasticity after ECT, in line with evidence of upregulated neurotrophic processes in the hippocampus in animal models. However, the precise roles of the hippocampus and other brain regions in antidepressant response to ECT remain unclear. Seizure physiology may also play a role in antidepressant response to ECT, as indicated by early positron emission tomography, single-photon emission computed tomography, and electroencephalography research and corroborated by recent magnetic resonance imaging studies. In this review, we discuss the evidence supporting neuroplasticity in the hippocampus and other brain regions during and after ECT, and their associations with antidepressant response. We also offer a mechanistic, circuit-level model that proposes that core mechanisms of antidepressant response to ECT involve thalamocortical and cerebellar networks that are active during seizure generalization and termination over repeated ECT sessions, and their interactions with corticolimbic circuits that are dysfunctional prior to treatment and targeted with the electrical stimulus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Randall Espinoza
- Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Wade
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
41
|
Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, Yang W. Uncovering the Underlying Mechanisms of Ketamine as a Novel Antidepressant. Front Pharmacol 2022; 12:740996. [PMID: 35872836 PMCID: PMC9301111 DOI: 10.3389/fphar.2021.740996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Major depressive disorder (MDD) is a devastating psychiatric disorder which exacts enormous personal and social-economic burdens. Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been discovered to exert rapid and sustained antidepressant-like actions on MDD patients and animal models. However, the dissociation and psychotomimetic propensities of ketamine have limited its use for psychiatric indications. Here, we review recently proposed mechanistic hypotheses regarding how ketamine exerts antidepressant-like actions. Ketamine may potentiate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR)-mediated transmission in pyramidal neurons by disinhibition and/or blockade of spontaneous NMDAR-mediated neurotransmission. Ketamine may also activate neuroplasticity- and synaptogenesis-relevant signaling pathways, which may converge on key components like brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) and mechanistic target of rapamycin (mTOR). These processes may subsequently rebalance the excitatory/inhibitory transmission and restore neural network integrity that is compromised in depression. Understanding the mechanisms underpinning ketamine’s antidepressant-like actions at cellular and neural circuit level will drive the development of safe and effective pharmacological interventions for the treatment of MDD.
Collapse
Affiliation(s)
- Songbai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Cuilin Zhu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Yao Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Cuilin Zhu, ; Yao Wang, ; Wei Yang,
| |
Collapse
|
42
|
Chaudry S, Vasudevan N. mTOR-Dependent Spine Dynamics in Autism. Front Mol Neurosci 2022; 15:877609. [PMID: 35782388 PMCID: PMC9241970 DOI: 10.3389/fnmol.2022.877609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Conditions (ASC) are a group of neurodevelopmental disorders characterized by deficits in social communication and interaction as well as repetitive behaviors and restricted range of interests. ASC are complex genetic disorders with moderate to high heritability, and associated with atypical patterns of neural connectivity. Many of the genes implicated in ASC are involved in dendritic spine pruning and spine development, both of which can be mediated by the mammalian target of rapamycin (mTOR) signaling pathway. Consistent with this idea, human postmortem studies have shown increased spine density in ASC compared to controls suggesting that the balance between autophagy and spinogenesis is altered in ASC. However, murine models of ASC have shown inconsistent results for spine morphology, which may underlie functional connectivity. This review seeks to establish the relevance of changes in dendritic spines in ASC using data gathered from rodent models. Using a literature survey, we identify 20 genes that are linked to dendritic spine pruning or development in rodents that are also strongly implicated in ASC in humans. Furthermore, we show that all 20 genes are linked to the mTOR pathway and propose that the mTOR pathway regulating spine dynamics is a potential mechanism underlying the ASC signaling pathway in ASC. We show here that the direction of change in spine density was mostly correlated to the upstream positive or negative regulation of the mTOR pathway and most rodent models of mutant mTOR regulators show increases in immature spines, based on morphological analyses. We further explore the idea that these mutations in these genes result in aberrant social behavior in rodent models that is due to these altered spine dynamics. This review should therefore pave the way for further research on the specific genes outlined, their effect on spine morphology or density with an emphasis on understanding the functional role of these changes in ASC.
Collapse
|
43
|
Abstract
BACKGROUND Patients unsuccessfully treated by neurostimulation may represent a highly intractable subgroup of depression. While the efficacy of intravenous (IV) ketamine has been established in patients with treatment-resistant depression (TRD), there is an interest to evaluate its effectiveness in a subpopulation with a history of neurostimulation. METHODS This retrospective, posthoc analysis compared the effects of four infusions of IV ketamine in 135 (x̄ = 44 ± 15.4 years of age) neurostimulation-naïve patients to 103 (x̄ = 47 ± 13.9 years of age) patients with a history of neurostimulation. The primary outcome evaluated changes in depression severity, measured by the Quick Inventory for Depression Symptomatology-Self Report 16-Item (QIDS-SR16). Secondary outcomes evaluated suicidal ideation (SI), anxiety severity, measured by the Generalized Anxiety Disorder 7-Item (GAD-7), and consummatory anhedonia, measured by the Snaith-Hamilton Pleasure Scale (SHAPS). RESULTS Following four infusions, both cohorts reported a significant reduction in QIDS-SR16 Total Score (F (4, 648) = 73.4, P < .001), SI (F (4, 642) = 28.6, P < .001), GAD-7 (F (2, 265) = 53.8, P < .001), and SHAPS (F (2, 302) = 45.9, P < .001). No between-group differences emerged. Overall, the neurostimulation-naïve group had a mean reduction in QIDS-SR16 Total Score of 6.4 (standard deviation [SD] = 5.3), whereas the history of neurostimulation patients reported a 4.3 (SD = 5.3) point reduction. CONCLUSION IV ketamine was effective in reducing symptoms of depression, SI, anxiety, and anhedonia in both cohorts in this large, well-characterized community-based sample of adults with TRD.
Collapse
|
44
|
Bahji A, Zarate CA, Vazquez GH. Efficacy and safety of racemic ketamine and esketamine for depression: a systematic review and meta-analysis. Expert Opin Drug Saf 2022; 21:853-866. [PMID: 35231204 PMCID: PMC9949988 DOI: 10.1080/14740338.2022.2047928] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Racemic ketamine and esketamine have demonstrated rapid antidepressant effects. We aimed to review the efficacy and safety of racemic and esketamine for depression. RESEARCH DESIGN AND METHODS We conducted a PRISMA-guided review for relevant randomized controlled trials of racemic or esketamine for unipolar or bipolar major depression from database inception through 2021. We conducted random-effects meta-analyses using pooled rate ratios (RRs) and Cohen's standardized mean differences (d) with their 95% confidence intervals (CI). RESULTS We found 36 studies (2903 participants, 57% female, 45.1 +/- 7.0 years). Nine trials used esketamine, while the rest used racemic ketamine. The overall study quality was high. Treatment with any form of ketamine was associated with improved response (RR=2.14; 95% CI, 1.72-2.66; I2=65%), remission (RR=1.64; 95% CI, 1.33-2.02; I2=39%), and depression severity (d=-0.63; 95% CI, -0.80 to -0.45; I2=78%) against placebo. Overall, there was no association between treatment with any form of ketamine and retention in treatment (RR=1.00; 95% CI, 0.99-1.01; I2<1%), dropouts due to adverse events (RR=1.56; 95% CI, 1.00-2.45; I2<1%), or the overall number of adverse events reported per participant (OR=2.14; 95% CI, 0.82-5.60; I2=62%) against placebo. CONCLUSIONS Ketamine and esketamine are effective, safe, and acceptable treatments for individuals living with depression.
Collapse
Affiliation(s)
- Anees Bahji
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada;,British Columbia Centre on Substance Use, Vancouver, British Columbia, Canada
| | - Carlos A. Zarate
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Gustavo H. Vazquez
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Wang M, Chen X, Hu Y, Zhou Y, Wang C, Zheng W, Liu W, Lan X, Ning Y, Zhang B. Functional connectivity between the habenula and default mode network and its association with the antidepressant effect of ketamine. Depress Anxiety 2022; 39:352-362. [PMID: 34964207 DOI: 10.1002/da.23238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Recently, an animal model for depression has shown that ketamine, an N-methyl- d-aspartate receptor (NMDAR) antagonist, elicits a rapid-acting antidepressant effect by blocking NMDAR-dependent bursting in the lateral habenula (Hb). However, evidence from human studies remains scarce. METHODS This study explored the changes of resting-state functional connectivity (FC) of the Hb in responders and nonresponders who was diagnosed with unipolar or bipolar depression before and after ketamine treatment. The response was defined as a ≥50% reduction in the total MADRS score at Day 13 (24 h following the sixth infusion) in comparison with the baseline score. Correlation analyses were performed to identify an association between symptom improvement and the signals of the significantly different brain regions detected in the above imaging analysis. RESULTS In the post-hoc region-of-interest analysis, an enhanced baseline FC between Hb and several hubs of the default mode network (including angulate cortex, precuneus, medial prefrontal cortex, and middle temporal cortex) was observed in responders (≥50% decrease in the Montgomery-Asberg Scale at 2 weeks) compared with nonresponders. CONCLUSIONS These pilot findings may suggest a potential neural mechanism by which ketamine exerts its robust antidepressant efficacy via downregulation of aberrant habenular FC with parts of the default mode network.
Collapse
Affiliation(s)
- Mingqia Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyu Chen
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiru Hu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yangling Zhou
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| | - Chengyu Wang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Zheng
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijian Liu
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Lan
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuping Ning
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- PsyNI Lab, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, Guangdong, China
| |
Collapse
|
46
|
Piani MC, Maggioni E, Delvecchio G, Brambilla P. Sustained attention alterations in major depressive disorder: A review of fMRI studies employing Go/No-Go and CPT tasks. J Affect Disord 2022; 303:98-113. [PMID: 35139418 DOI: 10.1016/j.jad.2022.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe psychiatric condition characterized by selective cognitive dysfunctions. In this regard, functional Magnetic Resonance Imaging (fMRI) studies showed, both at resting state and during tasks, alterations in the brain functional networks involved in cognitive processes in MDD patients compared to controls. Among those, it seems that the attention network may have a role in the disease pathophysiology. Therefore, in this review we aim at summarizing the current fMRI evidence investigating sustained attention in MDD patients. METHODS We conducted a search on PubMed on case-control studies on MDD employing fMRI acquisitions during Go/No-Go and continuous performance tasks. A total of 12 studies have been included in the review. RESULTS Overall, the majority of fMRI studies reported quantitative alterations in the response to attentive tasks in selective brain regions, including the prefrontal cortex, the cingulate cortex, the temporal and parietal lobes, the insula and the precuneus, which are key nodes of the attention, the executive, and the default mode networks. LIMITATIONS The heterogeneity in the study designs, fMRI acquisition techniques and processing methods have limited the generalizability of the results. CONCLUSIONS The results from the included studies showed the presence of alterations in the activation patterns of regions involved in sustained attention in MDD, which are in line with current evidence and seemed to explain some of the key symptoms of depression. However, given the paucity and heterogeneity of studies available, it may be worthwhile to continue investigating the attentional domain in MDD with ad-hoc study designs to retrieve more robust evidence.
Collapse
Affiliation(s)
- Maria Chiara Piani
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy.
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Italy
| |
Collapse
|
47
|
Optimized Clinical Strategies for Treatment-Resistant Depression: Integrating Ketamine Protocols with Trauma- and Attachment-Informed Psychotherapy. PSYCH 2022. [DOI: 10.3390/psych4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Strategically timed trauma- and attachment-informed psychotherapy to address underlying emotional wounds, paired with ketamine administered in precision-calibrated doses to ensure high-entropy brain states, may be key to improving the quality and duration of ketamine’s therapeutic efficacy for treatment-resistant depression. This approach optimizes the opportunities for change created by ketamine’s known effects as a rapid antidepressant that stimulates synaptogenesis, normalizes neural connectivity and coherence, enhances neuroplasticity, reduces inflammation, and induces high-entropy brain states with associated subjective psychedelic experiences. Ketamine, a non-selective N-methyl-D-aspartate (NMDA) receptor antagonist is a safe, effective, fast-acting dissociative anesthetic that, as a standalone treatment, also exhibits rapid sustained antidepressant effects, even in many patients with treatment-resistant depression. A prior history of developmental trauma and attachment injuries are known primary factors in the etiology of treatment resistance in depression and other mental disorders. Thus, the adjunct of targeted psychotherapy attuned to trauma and attachment injuries may enhance and prolong ketamine efficacy and provide an opportunity for lasting therapeutic change. Psychotherapy engagement during repeated ketamine sessions for patient safety and integration of altered states, paired with separate individualized psychotherapy-only sessions timed 24–48 h post ketamine induction, takes advantage of peak ketamine-induced dendritic spine growth in the prefrontal cortex and limbic system, and normalized network connectivity across brain structures. This strategically timed paired-session approach also exploits the therapeutic potential created by precision-calibrated ketamine-linked high-entropy brain states and associated psychedelic experiences that are posited to disrupt overly rigid maladaptive thoughts, behaviors, and disturbing memories associated with treatment-resistant depression; paired sessions also support integration of the felt sense of happiness and connectivity associated with psychedelic experiences.
Collapse
|
48
|
Elkrief L, Payette O, Foucault JN, Longpré-Poirier C, Richard M, Desbeaumes Jodoin V, Lespérance P, Miron JP. Transcranial magnetic stimulation and intravenous ketamine combination therapy for treatment-resistant bipolar depression: A case report. Front Psychiatry 2022; 13:986378. [PMID: 36213934 PMCID: PMC9532540 DOI: 10.3389/fpsyt.2022.986378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
About a third of patients suffering from major depression develop treatment-resistant depression (TRD). Although repetitive transcranial magnetic stimulation (rTMS) and intravenous ketamine have proven effective for the management of TRD, many patients remain refractory to treatment. We present the case of a patient suffering from bipolar TRD. The patient was referred to us after failure to respond to first-and second-line pharmacotherapy and psychotherapy. After minimal response to both rTMS and ketamine alone, we attempted a combination rTMS and ketamine protocol, which led to complete and sustained remission. Various comparable and complimentary mechanisms of antidepressant action of ketamine and rTMS are discussed, which support further study of this combination therapy. Future research should focus on the feasibility, tolerability, and efficacy of this novel approach.
Collapse
Affiliation(s)
- Laurent Elkrief
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Olivier Payette
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Jean-Nicolas Foucault
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Christophe Longpré-Poirier
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Maxime Richard
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Véronique Desbeaumes Jodoin
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Paul Lespérance
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Philippe Miron
- Centre Hospitalier de l'Université de Montréal et Centre de Recherche du CHUM, Université de Montréal, Montreal, QC, Canada.,Département de Psychiatrie et d'Addictologie, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
49
|
Khoodoruth MAS, Estudillo-Guerra MA, Pacheco-Barrios K, Nyundo A, Chapa-Koloffon G, Ouanes S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front Psychiatry 2022; 13:886918. [PMID: 35492692 PMCID: PMC9047946 DOI: 10.3389/fpsyt.2022.886918] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders are among the most common psychiatric conditions and contribute to significant morbidity. Even though the use of antidepressants revolutionized the management of depression and had a tremendous positive impact on the patient's outcome, a significant proportion of patients with major depressive disorder (MDD) show no or partial or response even with adequate treatment. Given the limitations of the prevailing monoamine hypothesis-based pharmacotherapy, glutamate and glutamatergic related pathways may offer an alternative and a complementary option for designing novel intervention strategies. Over the past few decades, there has been a growing interest in understanding the neurobiological underpinnings of glutamatergic dysfunctions in the pathogenesis of depressive disorders and the development of new pharmacological and non-pharmacological treatment options. There is a growing body of evidence for the efficacy of neuromodulation techniques, including transcranial magnetic stimulation, transcutaneous direct current stimulation, transcranial alternating current stimulation, and photo-biomodulation on improving connectivity and neuroplasticity associated with depression. This review attempts to revisit the role of glutamatergic neurotransmission in the etiopathogenesis of depressive disorders and review the current neuroimaging, neurophysiological and clinical evidence of these neuromodulation techniques in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
| | - Maria Anayali Estudillo-Guerra
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Azan Nyundo
- Department of Psychiatry and Mental Health, School of Medicine and Dental Health, The University of Dodoma, Dodoma, Tanzania
| | | | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
50
|
Li J, Chen J, Kong W, Li X, Hu B. Abnormal core functional connectivity on the pathology of MDD and antidepressant treatment: A systematic review. J Affect Disord 2022; 296:622-634. [PMID: 34688026 DOI: 10.1016/j.jad.2021.09.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE/IMPORTANCE Researches have highlighted communication deficits between resting-state brain networks in major depressive disorder (MDD), as reflected in abnormal functional connectivity (FC). However, it is unclear whether impaired FC is associated with MDD pathology or is simply incidental to MDD symptoms. Moreover, there is no generalized theory to analyze the impact of treatment modalities on MDD. OBJECTIVES To address the issues, we conducted a systematic review of 49 eligible papers to provide insight into the pathological mechanisms of MDD patients by summarizing resting-state FC alterations involving mood and cognitive abnormalities and the effects of medications on them. RESULTS Mood disorders in MDD were characterized by abnormal FC between the amygdala, insula, anterior cingulate cortex (ACC), and prefrontal cortex (PFC). Cognitive impairment manifests as deficits in executive function, attention, memory, and rumination, primarily modulated by dysfunction between the fronto-parietal network and default mode network. Especially, we proposed the set of core abnormal FC (CA-FC) contributing to mood and cognitive impairment in MDD, currently including ACC-left precuneus/amygdala, rostral ACC-left dorsolateral PFC, left subgenual ACC-left cerebellar, left PFC- anterior subcallosal, and left precuneus-left pulvinar. After treatment, patients with normalized CA-FC showed remission of depressive symptoms. CONCLUSIONS We propose a CA-FC set for possible causative principle of MDD, which unifies the FC results from specific, difficult-to-analyze conditions into one outcome set for screening. Furthermore, CA-FC varies from person to person, and the low success rate of a single treatment may be due to the inability to cover too many CA-FC.
Collapse
Affiliation(s)
- Jianxiu Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| | - Junhao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| | - Wenwen Kong
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China; Shandong Academy of Intelligent Computing Technoloy, China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China.
| |
Collapse
|