1
|
Ni HC, Chen YL, Hsieh MY, Wu CT, Chen RS, Juan CH, Li CT, Gau SSF, Lin HY. Improving social cognition following theta burst stimulation over the right inferior frontal gyrus in autism spectrum: an 8-week double-blind sham-controlled trial. Psychol Med 2024:1-12. [PMID: 39238103 DOI: 10.1017/s0033291724001387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND The right inferior frontal gyrus (RIFG) is a potential beneficial brain stimulation target for autism. This randomized, double-blind, two-arm, parallel-group, sham-controlled clinical trial assessed the efficacy of intermittent theta burst stimulation (iTBS) over the RIFG in reducing autistic symptoms (NCT04987749). METHODS Conducted at a single medical center, the trial enrolled 60 intellectually able autistic individuals (aged 8-30 years; 30 active iTBS). The intervention comprised 16 sessions (two stimulations per week for eight weeks) of neuro-navigated iTBS or sham over the RIFG. Fifty-seven participants (28 active) completed the intervention and assessments at Week 8 (the primary endpoint) and follow-up at Week 12. RESULTS Autistic symptoms (primary outcome) based on the Social Responsiveness Scale decreased in both groups (significant time effect), but there was no significant difference between groups (null time-by-treatment interaction). Likewise, there was no significant between-group difference in changes in repetitive behaviors and exploratory outcomes of adaptive function and emotion dysregulation. Changes in social cognition (secondary outcome) differed between groups in feeling scores on the Frith-Happe Animations (Week 8, p = 0.026; Week 12, p = 0.025). Post-hoc analysis showed that the active group improved better on this social cognition than the sham group. Dropout rates did not vary between groups; the most common adverse event in both groups was local pain. Notably, our findings would not survive stringent multiple comparison corrections. CONCLUSIONS Our findings suggest that iTBS over the RIFG is not different from sham in reducing autistic symptoms and emotion dysregulation. Nonetheless, RIFG iTBS may improve social cognition of mentalizing others' feelings in autistic individuals.
Collapse
Affiliation(s)
- Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Lung Chen
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- Department of Psychology, Asia University, Taichung, Taiwan
| | - Meng-Ying Hsieh
- Deparment of Pediatrics, Chang Gung Memorial Hospital at Taipei, Taipei, Taiwan
- Department of Pediatric Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institue of Cognitive Neuroscience, National Central University, Jhongli, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Ni HC, Chen YL, Lin HY. Feasibility and Tolerability of Daily Theta Burst Stimulation in Autistic Youth with Intellectual Disabilities and Minimally Speaking Status: A Pilot Double-Blind Randomized Sham-Controlled Trial. J Autism Dev Disord 2024:10.1007/s10803-024-06477-1. [PMID: 39153149 DOI: 10.1007/s10803-024-06477-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 08/19/2024]
Abstract
Scarce clinical trials involving autistic people with intellectual disability (ID) and minimally speaking (MS) status have been a substantial unmet research need in the field. Although earlier studies have demonstrated the feasibility and beneficial potentials of repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) in intellectually able autistic people, the feasibility and tolerability of applying rTMS in autistic people with ID/MS has never been studied. We conducted the world-first 4-week randomized, double-blind, sham-controlled pilot trial to investigate the feasibility, tolerability, and safety of intermittent theta burst stimulation (iTBS, a variant of excitatory rTMS) over the left DLPFC in autistic youth with ID/MS. 25 autistic youth with ID/MS (aged 8-30 years) were randomized to a 20-session 4-week daily iTBS (n = 13) vs. sham stimulation (n = 12) with follow-up 4 and 8 weeks, respectively, after the last stimulation. A retention rate was 100% in our study. Adverse events of local pain (38%) and dizziness (8%) were only noted in the active group. All adverse events were mild and transient. There were no seizures, new behavioral problems, or other severe/serious adverse events noted. No participants dropped out due to adverse events. With a small sample size, we did not find any beneficial signal of DLPFC iTBS. Our pilot data suggest regular daily TBS treatment for four weeks is feasible, well tolerated and safe in autistic youth with ID/MS. Future randomized controlled trials with sufficiently powered samples are needed to investigate the beneficial potential of rTMS/TBS for autistic people with ID/MS.
Collapse
Affiliation(s)
- Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Yi-Lung Chen
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- Department of Psychology, Asia University, Taichung, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Yeh CH, Lin PC, Tseng RY, Chao YP, Wu CT, Chou TL, Chen RS, Gau SSF, Ni HC, Lin HY. Lack of effects of eight-week left dorsolateral prefrontal theta burst stimulation on white matter macro/microstructure and connection in autism. Brain Imaging Behav 2024; 18:794-807. [PMID: 38492129 DOI: 10.1007/s11682-024-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Whether brain stimulation could modulate brain structure in autism remains unknown. This study explored the impact of continuous theta burst stimulation (cTBS) over the left dorsolateral prefrontal cortex (DLPFC) on white matter macro/microstructure in intellectually able children and emerging adults with autism. Sixty autistic participants were randomized (30 active) and received active or sham cTBS for eight weeks twice per week, 16 total sessions using a double-blind (participant-, rater-, analyst-blinded) design. All participants received high-angular resolution diffusion MR imaging at baseline and week 8. Twenty-eight participants in the active group and twenty-seven in the sham group with good imaging quality entered the final analysis. With longitudinal fixel-based analysis and network-based statistics, we found no significant difference between the active and sham groups in changes of white matter macro/microstructure and connections following cTBS. In addition, we found no association between baseline white matter macro/microstructure and autistic symptom changes from baseline to week 8 in the active group. In conclusion, we did not find a significant impact of left DLPFC cTBS on white matter macro/microstructure and connections in children and emerging adults with autism. These findings need to be interpreted in the context that the current intellectually able cohort in a single university hospital site limits the generalizability. Future studies are required to investigate if higher stimulation intensities and/or doses, other personal factors, or rTMS parameters might confer significant brain structural changes visible on MRI in ASD.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Po-Chun Lin
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Rung-Yu Tseng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Yuan LX, Wang XK, Yang C, Zhang QR, Ma SZ, Zang YF, Dong WQ. A systematic review of transcranial magnetic stimulation treatment for autism spectrum disorder. Heliyon 2024; 10:e32251. [PMID: 38933955 PMCID: PMC11200348 DOI: 10.1016/j.heliyon.2024.e32251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined complex neurodevelopmental syndrome characterized by persistent social communication and interaction deficit. Transcranial magnetic stimulation (TMS) is a promising and emerging tool for the intervention of ASD by reducing both core and associate symptoms. Several reviews have been published regarding TMS-based ASD treatment, however, a systematic review on study characteristics, specific stimulating parameters, localization techniques, stimulated targets, behavioral outcomes, and neuroimage biomarker changes is lagged behind since 2018. Here, we performed a systematic search on literatures published after 2018 in PubMed, Web of Science, and Science Direct. After screening, the final systematic review included 17 articles, composing seven randomized controlled trial studies and ten open-label studies. Two studies are double-blind, while the other studies have a moderate to high risk of bias attributing to inadequate subject- and evaluator-blinding to treatment allocation. Five studies utilize theta-burst stimulation mode, and the others apply repetitive TMS with low frequency (five studies), high frequency (six studies), and combined low and high frequency stimulation (one study). Most researchers prioritize the bilateral dorsolateral prefrontal lobe as stimulation target, while parietal lobule, inferior parietal lobule, and posterior superior temporal sulci have also emerged as new targets of attention. One third of the studies use neuronavigation based on anatomical magnetic resonance imaging to locate the stimulation target. After TMS intervention, discernible enhancements across a spectrum of scales are evident in stereotyped behavior, repetitive behavior, and verbal social domains. A comprehensive review of literature spanning the last five years demonstrates the potential of TMS treatment for ASD in ameliorating the clinical core symptoms.
Collapse
Affiliation(s)
- Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China
| | - Xing-Ke Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Qiu-Rong Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Sheng-Zhi Ma
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
- TMS Center, Deqing Hospital of Hangzhou Normal University, Deqing, Zhejiang, China
| | - Wen-Qiang Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Hensel L, Lüdtke J, Brouzou KO, Eickhoff SB, Kamp D, Schilbach L. Noninvasive brain stimulation in autism: review and outlook for personalized interventions in adult patients. Cereb Cortex 2024; 34:8-18. [PMID: 38696602 DOI: 10.1093/cercor/bhae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 05/04/2024] Open
Abstract
Noninvasive brain stimulation (NIBS) has been increasingly investigated during the last decade as a treatment option for persons with autism spectrum disorder (ASD). Yet, previous studies did not reach a consensus on a superior treatment protocol or stimulation target. Persons with ASD often suffer from social isolation and high rates of unemployment, arising from difficulties in social interaction. ASD involves multiple neural systems involved in perception, language, and cognition, and the underlying brain networks of these functional domains have been well documented. Aiming to provide an overview of NIBS effects when targeting these neural systems in late adolescent and adult ASD, we conducted a systematic search of the literature starting at 631 non-duplicate publications, leading to six studies corresponding with inclusion and exclusion criteria. We discuss these studies regarding their treatment rationale and the accordingly chosen methodological setup. The results of these studies vary, while methodological advances may allow to explain some of the variability. Based on these insights, we discuss strategies for future clinical trials to personalize the selection of brain stimulation targets taking into account intersubject variability of brain anatomy as well as function.
Collapse
Affiliation(s)
- Lukas Hensel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
| | - Jana Lüdtke
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
| | - Katia O Brouzou
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Wilhelm-Johnen-Straße 1, 52428 Jülich, Germany
| | - Daniel Kamp
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
| | - Leonhard Schilbach
- Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians University Munich, Nußbaumstraße 7, 80336 Munich, Germany
| |
Collapse
|
6
|
Oberman LM, Francis SM, Lisanby SH. The use of noninvasive brain stimulation techniques in autism spectrum disorder. Autism Res 2024; 17:17-26. [PMID: 37873560 PMCID: PMC10841888 DOI: 10.1002/aur.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Noninvasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have recently emerged as alternative, nonpharmacological interventions for a variety of psychiatric, neurological, and neurodevelopmental conditions. NIBS is beginning to be applied in both research and clinical settings for the treatment of core and associated symptoms of autism spectrum disorder (ASD) including social communication deficits, restricted and repetitive behaviors, irritability, hyperactivity, depression and impairments in executive functioning and sensorimotor integration. Though there is much promise for these targeted device-based interventions, in other disorders (including adult major depressive disorder (MDD) and obsessive compulsive disorder (OCD) where rTMS is FDA cleared), data on the safety and efficacy of these interventions in individuals with ASD is limited especially in younger children when neurodevelopmental interventions typically begin. Most studies are open-label, small scale, and/or focused on a restricted subgroup of individuals with ASD. There is a need for larger, randomized controlled trials that incorporate neuroimaging in order to develop predictive biomarkers of treatment response and optimize treatment parameters. We contend that until such studies are conducted, we do not have adequate estimates of the safety and efficacy of NIBS interventions in children across the spectrum. Thus, broad off-label use of these techniques in this population is not supported by currently available evidence. Here we discuss the existing data on the use of NIBS to treat symptoms related to ASD and discuss future directions for the field.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Smith JR, DiSalvo M, Green A, Ceranoglu TA, Anteraper SA, Croarkin P, Joshi G. Treatment Response of Transcranial Magnetic Stimulation in Intellectually Capable Youth and Young Adults with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2023; 33:834-855. [PMID: 36161554 PMCID: PMC10039963 DOI: 10.1007/s11065-022-09564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/31/2022] [Indexed: 11/26/2022]
Abstract
To examine current clinical research on the use of transcranial magnetic stimulation (TMS) in the treatment of pediatric and young adult autism spectrum disorder in intellectually capable persons (IC-ASD). We searched peer-reviewed international literature to identify clinical trials investigating TMS as a treatment for behavioral and cognitive symptoms of IC-ASD. We identified sixteen studies and were able to conduct a meta-analysis on twelve of these studies. Seven were open-label or used neurotypical controls for baseline cognitive data, and nine were controlled trials. In the latter, waitlist control groups were often used over sham TMS. Only one study conducted a randomized, parallel, double-blind, and sham controlled trial. Favorable safety data was reported in low frequency repetitive TMS, high frequency repetitive TMS, and intermittent theta burst studies. Compared to TMS research of other neuropsychiatric conditions, significantly lower total TMS pulses were delivered in treatment and neuronavigation was not regularly utilized. Quantitatively, our multivariate meta-analysis results report improvement in cognitive outcomes (pooled Hedges' g = 0.735, 95% CI = 0.242, 1.228; p = 0.009) and primarily Criterion B symptomology of IC-ASD (pooled Hedges' g = 0.435, 95% CI = 0.359, 0.511; p < 0.001) with low frequency repetitive TMS to the dorsolateral prefrontal cortex. The results of our systematic review and meta-analysis data indicate that TMS may offer a promising and safe treatment option for pediatric and young adult patients with IC-ASD. However, future work should include use of neuronavigation software, theta burst protocols, targeting of various brain regions, and robust study design before clinical recommendations can be made.
Collapse
Affiliation(s)
- Joshua R Smith
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center at Village of Vanderbilt, 1500 21st Avenue South, Suite 2200, Nashville, TN, 37212, USA.
- Vanderbilt Kennedy Center, 110 Magnolia Circle, Nashville, TN, 37203, USA.
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA.
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Maura DiSalvo
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Allison Green
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN, 47405, USA
| | - Tolga Atilla Ceranoglu
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | | | - Paul Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, 1216 2nd Street Southwest, Rochester, MN, 55902, USA
| | - Gagan Joshi
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
- Clinical and Research Programs in Pediatric Psychopharmacology, and Adult ADHD, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
8
|
Liu A, Gong C, Wang B, Sun J, Jiang Z. Non-invasive brain stimulation for patient with autism: a systematic review and meta-analysis. Front Psychiatry 2023; 14:1147327. [PMID: 37457781 PMCID: PMC10338880 DOI: 10.3389/fpsyt.2023.1147327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To comprehensively evaluate the efficacy of non-invasive brain stimulation (NIBS) in patients with autism spectrum disorder (ASD) in randomized controlled trials (RCT), providing a reference for future research on the same topic. Methods Five databases were searched (Pubmed, Web of Science, Medline, Embase, and Cochrane library) and tracked relevant references, Meta-analysis was performed using RevMan 5.3 software. Results Twenty-two references (829 participants) were included. The results of the meta-analysis showed that NIBS had positive effects on repetitive and stereotypical behaviors, cognitive function, and executive function in autistic patients. Most of the included studies had a moderate to high risk of bias, Mainly because of the lack of blinding of subjects and assessors to treatment assignment, as well as the lack of continuous observation of treatment effects. Conclusion Available evidence supports an improvement in some aspects of NIBS in patients with ASD. However, due to the quality of the original studies and significant publication bias, this evidence must be treated with caution. Further large multicenter randomized double-blind controlled trials and appropriate follow-up observations are needed to further evaluate the specific efficacy of NIBS in patients with ASD.
Collapse
Affiliation(s)
- Annan Liu
- Jiamusi University Affiliated No.3 Hospital, Jiamusi, China
| | - Chao Gong
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Bobo Wang
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Jiaxing Sun
- Jiamusi Medical College, Jiamusi, Heilongjiang, China
| | - Zhimei Jiang
- Jiamusi University College of Rehabilitation Medicine, Jiamusi, Heilongjiang, China
| |
Collapse
|
9
|
Xiao L, Huo X, Wang Y, Li W, Li M, Wang C, Wang F, Sun T. A bibliometric analysis of global research status and trends in neuromodulation techniques in the treatment of autism spectrum disorder. BMC Psychiatry 2023; 23:183. [PMID: 36941549 PMCID: PMC10026211 DOI: 10.1186/s12888-023-04666-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disease which has risen to become the main cause of childhood disability, placing a heavy burden on families and society. To date, the treatment of patients with ASD remains a complicated problem, for which neuromodulation techniques are a promising solution. This study analyzed the global research situation of neuromodulation techniques in the treatment of ASD from 1992 to 2022, aiming to explore the global research status and frontier trends in this field. METHODS The Web of Science (WoS) was searched for literature related to neuromodulation techniques for ASD from 1992 to October 2022. A knowledge atlas to analyze collaboration among countries, institutions, authors, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and burst keywords was constructed using Rstudio software, CiteSpace, and VOSviewer. RESULTS In total, 392 publications related to the treatment of ASD using neuromodulation techniques were included. Despite some fluctuations, the number of publications in this field has shown a growing trend in recent years. The United States and Deakin University are the leading country and institution in this field, respectively. The greatest contributing authors are Peter G Enticott, Manuel F Casanova, and Paul B Fitzgerald et al. The most prolific and cited journal is Brain Stimulation and the most commonly co-cited journal is The Journal of Autism and Developmental Disorders. The most frequently cited article was that of Simone Rossi (Safety, ethical considerations, and application guidelines for the use of transverse magnetic stimulation in clinical practice and research, 2009). "Obsessive-compulsive disorder," "transcranial direct current stimulation," "working memory," "double blind" and "adolescent" were identified as hotspots and frontier trends of neuromodulation techniques in the treatment of ASD. CONCLUSION The application of neuromodulation techniques for ASD has attracted the attention of researchers worldwide. Restoring the social ability and improving the comorbid symptoms in autistic children and adults have always been the focus of research. Neuromodulation techniques have demonstrated significant advantages and effects on these issues. Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are new therapeutic methods introduced in recent years, and are also directions for further exploration.
Collapse
Affiliation(s)
- Lifei Xiao
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Xianhao Huo
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Yangyang Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Wenchao Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Mei Li
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Chaofan Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China
| | - Feng Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tao Sun
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750000, China.
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, 750000, China.
| |
Collapse
|
10
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
11
|
Ni HC, Chao YP, Tseng RY, Wu CT, Cocchi L, Chou TL, Chen RS, Gau SSF, Yeh CH, Lin HY. Lack of effects of four-week theta burst stimulation on white matter macro/microstructure in children and adolescents with autism. Neuroimage Clin 2023; 37:103324. [PMID: 36638598 PMCID: PMC9852693 DOI: 10.1016/j.nicl.2023.103324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Following the published behavioral and cognitive results of this single-blind parallel sham-controlled randomized clinical trial, the current study aimed to explore the impact of intermittent theta burst stimulation (iTBS), a variant of excitatory transcranial magnetic stimulation, over the bilateral posterior superior temporal sulci (pSTS) on white matter macro/microstructure in intellectually able children and adolescents with autism. Participants were randomized and blindly received active or sham iTBS for 4 weeks (the single-blind sham-controlled phase). Then, all participants continued to receive active iTBS for another 4 weeks (the open-label phase). The clinical results were published elsewhere. Here, we present diffusion magnetic resonance imaging data on potential changes in white matter measures after iTBS. Twenty-two participants in Active-Active group and 27 participants in Sham-Active group underwent multi-shell high angular resolution diffusion imaging (64-direction for b = 2000 & 1000 s/mm2, respectively) at baseline, week 4, and week 8. With longitudinal fixel-based analysis, we found no white matter changes following iTBS from baseline to week 4 (a null treatment by time interaction and a null within-group paired comparison in the Active-Active group), nor from baseline to week 8 (null within-group paired comparisons in both Active-Active and Sham-Active groups). As for the brain-symptoms relationship, we did not find baseline white matter metrics associated with symptom changes at week 4 in either group. Our results raise the question of what the minimal cumulative stimulation dose required to induce the white matter plasticity is.
Collapse
Affiliation(s)
- Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Rung-Yu Tseng
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Chun-Hung Yeh
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Wang Z, Liu J, Zhang W, Nie W, Liu H. Diagnosis and Intervention for Children With Autism Spectrum Disorder: A Survey. IEEE Trans Cogn Dev Syst 2022. [DOI: 10.1109/tcds.2021.3093040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhiyong Wang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Liu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Nie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology Shenzhen, Shenzhen, China
| | - Honghai Liu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology Shenzhen, Shenzhen, China
| |
Collapse
|
13
|
Tian J, Gao X, Yang L. Repetitive Restricted Behaviors in Autism Spectrum Disorder: From Mechanism to Development of Therapeutics. Front Neurosci 2022; 16:780407. [PMID: 35310097 PMCID: PMC8924045 DOI: 10.3389/fnins.2022.780407] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/09/2022] [Indexed: 01/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social communication, social interaction, and repetitive restricted behaviors (RRBs). It is usually detected in early childhood. RRBs are behavioral patterns characterized by repetition, inflexibility, invariance, inappropriateness, and frequent lack of obvious function or specific purpose. To date, the classification of RRBs is contentious. Understanding the potential mechanisms of RRBs in children with ASD, such as neural connectivity disorders and abnormal immune functions, will contribute to finding new therapeutic targets. Although behavioral intervention remains the most effective and safe strategy for RRBs treatment, some promising drugs and new treatment options (e.g., supplementary and cell therapy) have shown positive effects on RRBs in recent studies. In this review, we summarize the latest advances of RRBs from mechanistic to therapeutic approaches and propose potential future directions in research on RRBs.
Collapse
Affiliation(s)
| | | | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Beijing, China
| |
Collapse
|
14
|
Jannati A, Ryan MA, Kaye HL, Tsuboyama M, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders. J Clin Neurophysiol 2022; 39:135-148. [PMID: 34366399 PMCID: PMC8810902 DOI: 10.1097/wnp.0000000000000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Harper Lee Kaye
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
McPartland JC, Lerner MD, Bhat A, Clarkson T, Jack A, Koohsari S, Matuskey D, McQuaid GA, Su WC, Trevisan DA. Looking Back at the Next 40 Years of ASD Neuroscience Research. J Autism Dev Disord 2021; 51:4333-4353. [PMID: 34043128 PMCID: PMC8542594 DOI: 10.1007/s10803-021-05095-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
During the last 40 years, neuroscience has become one of the most central and most productive approaches to investigating autism. In this commentary, we assemble a group of established investigators and trainees to review key advances and anticipated developments in neuroscience research across five modalities most commonly employed in autism research: magnetic resonance imaging, functional near infrared spectroscopy, positron emission tomography, electroencephalography, and transcranial magnetic stimulation. Broadly, neuroscience research has provided important insights into brain systems involved in autism but not yet mechanistic understanding. Methodological advancements are expected to proffer deeper understanding of neural circuitry associated with function and dysfunction during the next 40 years.
Collapse
Affiliation(s)
| | - Matthew D Lerner
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Tessa Clarkson
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Goldie A McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
16
|
Ni HC, Lin HY, Chen YL, Hung J, Wu CT, Wu YY, Liang HY, Chen RS, Shur-Fen Gau S, Huang YZ. 5-day Multi-Session Intermittent Theta Burst Stimulation over Bilateral Posterior Superior Temporal Sulci in Adults with Autism-a Pilot Study. Biomed J 2021; 45:696-707. [PMID: 34358713 PMCID: PMC9486126 DOI: 10.1016/j.bj.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Theta burst stimulation (TBS), a patterned repetitive transcranial magnetic stimulation (rTMS) protocol with shorter simulation duration and lower stimulus intensity, could be a better protocol for individuals with autism spectrum disorder (ASD). Our study aimed to explore the impacts of intermittent TBS (iTBS) over the bilateral posterior superior temporal sulcus (pSTS) on intellectually able adults with ASD. Methods In this randomized, single-blinded, sham-controlled crossover trial, 13 adults with ASD completed iTBS for 5 consecutive days over the bilateral pSTS and inion (as a sham control) in a 16-weeks interval and in a randomly assigned order. The neuropsychological function was measured with the Wisconsin Card Sorting Test (WCST) for cognitive flexibility while the clinical outcomes were measured with both self-rate and parents-rate Autism Spectrum Quotient (AQ) before and after 5-day iTBS interventions. Results The results revealed significantly immediate effects of multi-session iTBS over the bilateral pSTS on parent-rate autistic symptoms in adults with ASD. The post-hoc analysis revealed the impacts of multi-session iTBS on cognitive flexibility were affected by baseline social-communicative impairment and baseline cognitive performance. Besides, the impacts of multi-session iTBS on clinical symptoms was affected by the concurrent psychotropic medication use and baseline autistic symptoms. Conclusions Given the caveat of the small sample size and discrepancy of multiple informants, this pilot study suggests the therapeutic potential of 5-day multi-session iTBS over the pSTS in adults with ASD. Individual factors modulating the response to rTMS should be explicitly considered in the future trial.
Collapse
Affiliation(s)
- Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre & Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yi-Lung Chen
- Department of Healthcare Administration, Asia University, Taichung, Taiwan; Department of Psychology, Asia University, Taichung, Taiwan
| | - June Hung
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Yu-Yu Wu
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Hsin-Yi Liang
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taiwan
| | - Susan Shur-Fen Gau
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ying-Zu Huang
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taiwan; Medical School, Chang Gung University, Taoyuan, Taiwan; Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Enticott PG, Barlow K, Guastella AJ, Licari MK, Rogasch NC, Middeldorp CM, Clark SR, Vallence AM, Boulton KA, Hickie IB, Whitehouse AJO, Galletly C, Alvares GA, Fujiyama H, Heussler H, Craig JM, Kirkovski M, Mills NT, Rinehart NJ, Donaldson PH, Ford TC, Caeyenberghs K, Albein-Urios N, Bekkali S, Fitzgerald PB. Repetitive transcranial magnetic stimulation (rTMS) in autism spectrum disorder: protocol for a multicentre randomised controlled clinical trial. BMJ Open 2021; 11:e046830. [PMID: 34233985 PMCID: PMC8264904 DOI: 10.1136/bmjopen-2020-046830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION There are no well-established biomedical treatments for the core symptoms of autism spectrum disorder (ASD). A small number of studies suggest that repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, may improve clinical and cognitive outcomes in ASD. We describe here the protocol for a funded multicentre randomised controlled clinical trial to investigate whether a course of rTMS to the right temporoparietal junction (rTPJ), which has demonstrated abnormal brain activation in ASD, can improve social communication in adolescents and young adults with ASD. METHODS AND ANALYSIS This study will evaluate the safety and efficacy of a 4-week course of intermittent theta burst stimulation (iTBS, a variant of rTMS) in ASD. Participants meeting criteria for Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition ASD (n=150, aged 14-40 years) will receive 20 sessions of either active iTBS (600 pulses) or sham iTBS (in which a sham coil mimics the sensation of iTBS, but no active stimulation is delivered) to the rTPJ. Participants will undergo a range of clinical, cognitive, epi/genetic, and neurophysiological assessments before and at multiple time points up to 6 months after iTBS. Safety will be assessed via a structured questionnaire and adverse event reporting. The study will be conducted from November 2020 to October 2024. ETHICS AND DISSEMINATION The study was approved by the Human Research Ethics Committee of Monash Health (Melbourne, Australia) under Australia's National Mutual Acceptance scheme. The trial will be conducted according to Good Clinical Practice, and findings will be written up for scholarly publication. TRIAL REGISTRATION NUMBER Australian New Zealand Clinical Trials Registry (ACTRN12620000890932).
Collapse
Affiliation(s)
- Peter G Enticott
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karen Barlow
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
| | - Adam J Guastella
- Autism Clinic for Translational Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Melissa K Licari
- Telethon Kids Institute, Perth, Western Australia, Australia
- University of Western Australia, Crawley, Western Australia, Australia
| | - Nigel C Rogasch
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Christel M Middeldorp
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
| | - Scott R Clark
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ann-Maree Vallence
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
- Discipline of Psychology, Murdoch University, Murdoch, Western Australia, Australia
| | - Kelsie A Boulton
- Autism Clinic for Translational Research, Brain and Mind Centre, Children's Hospital Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Ian B Hickie
- Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, Perth, Western Australia, Australia
- University of Western Australia, Crawley, Western Australia, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Gail A Alvares
- Telethon Kids Institute, Perth, Western Australia, Australia
- University of Western Australia, Crawley, Western Australia, Australia
| | - Hakuei Fujiyama
- Discipline of Psychology, Murdoch University, Murdoch, Western Australia, Australia
| | - Helen Heussler
- Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
- Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
| | - Jeffrey M Craig
- IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Melissa Kirkovski
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Natalie T Mills
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole J Rinehart
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- Krongold Clinic, Monash Education, Monash University, Clayton, Victoria, Australia
| | - Peter H Donaldson
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Talitha C Ford
- School of Psychology, Deakin University, Geelong, Victoria, Australia
- Centre for Human Psychopharmacology, Faculty of Heath, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| | | | | | - Soukayna Bekkali
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Paul B Fitzgerald
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare, Camperwell, Victoria, Australia
| |
Collapse
|
18
|
Jannati A, Ryan MA, Block G, Kayarian FB, Oberman LM, Rotenberg A, Pascual-Leone A. Modulation of motor cortical excitability by continuous theta-burst stimulation in adults with autism spectrum disorder. Clin Neurophysiol 2021; 132:1647-1662. [PMID: 34030059 PMCID: PMC8197744 DOI: 10.1016/j.clinph.2021.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To test whether change in motor evoked potential (ΔMEP) induced by continuous theta-burst stimulation (cTBS) of motor cortex (M1) distinguishes adults with autism spectrum disorder (ASD) from neurotypicals, and to explore the contribution of two common polymorphisms related to neuroplasticity. METHODS 44 adult neurotypical (NT) participants (age 21-65, 34 males) and 19 adults with ASD (age 21-58, 17 males) prospectively underwent M1 cTBS. Their data were combined with previously obtained results from 35 NT and 35 ASD adults. RESULTS ΔMEP at 15 minutes post-cTBS (T15) was a significant predictor of diagnosis (p = 0.04) in the present sample (n=63). T15 remained a significant predictor in a larger sample (n=91) and when partially imputed based on T10-T20 from a yet-greater sample (N=133). T15 also remained a significant predictor of diagnosis among brain-derived neurotrophic factor (BDNF) Met+ and apolipoprotein E (APOE) ε4- subjects (p's < 0.05), but not among Met- or ε4+ subjects (p's > 0.19). CONCLUSIONS ΔMEP at T15 post-cTBS is a significant biomarker for adults with ASD, and its utility is modulated by BDNF and APOE polymorphisms. SIGNIFICANCE M1 cTBS response is a physiologic biomarker for adults with ASD in large samples, and controlling for BDNF and APOE polymorphisms can improve its diagnostic utility.
Collapse
Affiliation(s)
- Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mary A Ryan
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Fae B Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lindsay M Oberman
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA; Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Guttman Brain Health Institute, Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
19
|
Block G, Jannati A, Maynard TR, Pascual-Leone A, O’Connor MG. Personality in Autism Spectrum Disorder: Associations With Face Memory Deficit and Theory of Mind. Cogn Behav Neurol 2021; 34:117-128. [PMID: 34074866 PMCID: PMC8186733 DOI: 10.1097/wnn.0000000000000271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To examine the personality profiles of adults with autism spectrum disorder (ASD) using a standard personality assessment and to investigate the association between personality, ASD-related face memory deficit (FMD), and theory of mind (ToM). In a broader context, to examine whether there are distinct clinical phenotypes in the ASD population that have implications for personality development and treatment. METHOD Fifty-five adults with ASD and 22 neurotypical (NT) adults underwent a battery of neuropsychological tests, including measures of personality, face memory, and ToM. We compared ASD and NT groups in terms of their Personality Assessment Inventory (PAI) profiles. Additional analyses focused on the association between specific PAI scales and FMD. Performance on the Eyes Test was compared across groups and was examined in relation to FMD. RESULTS Adults with ASD demonstrated significant elevations on several PAI scales compared with NT adults. The presence of FMD was associated with differing PAI profiles among the ASD adults. The ASD adults with FMD scored significantly higher on scales that are sensitive to positive impression management and treatment rejection and significantly lower on scales that are sensitive to borderline personality, anxiety, depression, schizophrenia, and stress. There was a significant association between performance on the Eyes Test and FMD in the ASD group. CONCLUSION Adults with ASD have a unique personality profile. Further, ASD adults with FMD have reduced insight into their difficulties with emotional processing and may not be as sensitive as ASD adults without FMD to the emotions of others.
Collapse
Affiliation(s)
- Gabrielle Block
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Taylor R. Maynard
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Barcelona, Spain
| | - Margaret G. O’Connor
- Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Desarkar P, Rajji TK, Ameis SH, Blumberger DM, Lai MC, Lunsky Y, Daskalakis ZJ. Assessing and stabilizing atypical plasticity in autism spectrum disorder using rTMS: Results from a proof-of-principle study. Clin Neurophysiol 2021; 141:109-118. [PMID: 34011467 DOI: 10.1016/j.clinph.2021.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Emerging evidence implicates atypical plasticity in the neurophysiology of autism spectrum disorder (ASD). Specifically, autistic people demonstrated hyperplasticity in response to theta-burst stimulation (TBS). We hypothesized that autistic adults would display hyperplasticity to TBS and that repetitive transcranial magnetic stimulation (rTMS) - which potentiates brain inhibitory mechanisms - would 'stabilize' hyperplasticity. METHODS Using a randomized, cross-over design, plasticity was assessed using TBS in the left motor cortex (M1) in 31 autistic adults and 30 sex-, intelligence quotient-, and age-matched controls. Autistic adults (n = 29) were further randomized (1:1) to receive a single session of active (n = 14) or sham (n = 15) rTMS (6000 pulses at 20 Hz) over left M1 and plasticity was reassessed on the next day following rTMS. RESULTS Both long-term potentiation (LTP) and long-term depression (LTD) were significantly increased in the ASD group, indicating hyperplasticity. Active, but not sham rTMS, attenuated LTD in autistic adults. CONCLUSIONS We provided further evidence for the presence of brain hyperplasticity in ASD. To our knowledge, this is the first study to show preliminary evidence that an excessive LTD in ASD can be 'stabilized' using rTMS. Such 'stabilizing' effect of rTMS on LTP was not observed, likely due to small sample size or a more specific 'attenuating' effect of rTMS on LTD, compared to LTP. SIGNIFICANCE These findings indicate atypical brain inhibitory mechanisms behind hyperplasticity in ASD. Utilizing a larger sample, future replication studies could investigate therapeutic opportunities of 'mechanism-driven' rTMS.
Collapse
Affiliation(s)
- Pushpal Desarkar
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Tarek K Rajji
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Stephanie H Ameis
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yona Lunsky
- Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
21
|
Casanova MF, Shaban M, Ghazal M, El-Baz AS, Casanova EL, Sokhadze EM. Ringing Decay of Gamma Oscillations and Transcranial Magnetic Stimulation Therapy in Autism Spectrum Disorder. Appl Psychophysiol Biofeedback 2021; 46:161-173. [PMID: 33877491 DOI: 10.1007/s10484-021-09509-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research suggest that in autism spectrum disorder (ASD) a disturbance in the coordinated interactions of neurons within local networks gives rise to abnormal patterns of brainwave activity in the gamma bandwidth. Low frequency transcranial magnetic stimulation (TMS) over the dorsolateral prefrontal cortex (DLPFC) has been proven to normalize gamma oscillation abnormalities, executive functions, and repetitive behaviors in high functioning ASD individuals. In this study, gamma frequency oscillations in response to a visual classification task (Kanizsa figures) were analyzed and compared in 19 ASD (ADI-R diagnosed, 14.2 ± 3.61 years old, 5 girls) and 19 (14.8 ± 3.67 years old, 5 girls) age/gender matched neurotypical individuals. The ASD group was treated with low frequency TMS (1.0 Hz, 90% motor threshold, 18 weekly sessions) targeting the DLPFC. In autistic subjects, as compared to neurotypicals, significant differences in event-related gamma oscillations were evident in amplitude (higher) pre-TMS. In addition, recordings after TMS treatment in our autistic subjects revealed a significant reduction in the time period to reach peak amplitude and an increase in the decay phase (settling time). The use of a novel metric for gamma oscillations. i.e., envelope analysis, and measurements of its ringing decay allowed us to characterize the impedance of the originating neuronal circuit. The ringing decay or dampening of gamma oscillations is dependent on the inhibitory tone generated by networks of interneurons. The results suggest that the ringing decay of gamma oscillations may provide a biomarker reflective of the excitatory/inhibitory balance of the cortex and a putative outcome measure for interventions in autism.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Mohamed Shaban
- Electrical and Computer Engineering, University of South Alabama, Mobile, AL, USA
| | - Mohammed Ghazal
- Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ayman S El-Baz
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, USA
| | - Emily L Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA
| | - Estate M Sokhadze
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, 701 Grove Rd, Greenville, SC, 29605, USA.
| |
Collapse
|
22
|
Lu MH, Hsueh YP. Protein synthesis as a modifiable target for autism-related dendritic spine pathophysiologies. FEBS J 2021; 289:2282-2300. [PMID: 33511762 DOI: 10.1111/febs.15733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is increasingly recognized as a condition of altered brain connectivity. As synapses are fundamental subcellular structures for neuronal connectivity, synaptic pathophysiology has become one of central themes in autism research. Reports disagree upon whether the density of dendritic spines, namely excitatory synapses, is increased or decreased in ASD and whether the protein synthesis that is critical for dendritic spine formation and function is upregulated or downregulated. Here, we review recent evidence supporting a subgroup of ASD models with decreased dendritic spine density (hereafter ASD-DSD), including Nf1 and Vcp mutant mice. We discuss the relevance of branched-chain amino acid (BCAA) insufficiency in relation to unmet protein synthesis demand in ASD-DSD. In contrast to ASD-DSD, ASD models with hyperactive mammalian target of rapamycin (mTOR) may represent the opposite end of the disease spectrum, often characterized by increases in protein synthesis and dendritic spine density (denoted ASD-ISD). Finally, we propose personalized dietary leucine as a strategy tailored to balancing protein synthesis demand, thereby ameliorating dendritic spine pathophysiologies and autism-related phenotypes in susceptible patients, especially those with ASD-DSD.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Department of Medical Education, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
23
|
Noda Y. Use of repetitive transcranial magnetic stimulation in neurodevelopment. DIAGNOSIS, MANAGEMENT AND MODELING OF NEURODEVELOPMENTAL DISORDERS 2021:429-436. [DOI: 10.1016/b978-0-12-817988-8.00038-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Casanova MF, Sokhadze EM, Casanova EL, Li X. Transcranial Magnetic Stimulation in Autism Spectrum Disorders: Neuropathological Underpinnings and Clinical Correlations. Semin Pediatr Neurol 2020; 35:100832. [PMID: 32892959 PMCID: PMC7477302 DOI: 10.1016/j.spen.2020.100832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite growing knowledge about autism spectrum disorder (ASD), research findings have not been translated into curative treatment. At present, most therapeutic interventions provide for symptomatic treatment. Outcomes of interventions are judged by subjective endpoints (eg, behavioral assessments) which alongside the highly heterogeneous nature of ASD account for wide variability in the effectiveness of treatments. Transcranial magnetic stimulation (TMS) is one of the first treatments that targets a putative core pathologic feature of autism, specifically the cortical inhibitory imbalance that alters gamma frequency synchronization. Studies show that low frequency TMS over the dorsolateral prefrontal cortex of individuals with ASD decreases the power of gamma activity and increases the difference between gamma responses to target and nontarget stimuli. TMS improves executive function skills related to self-monitoring behaviors and the ability to apply corrective actions. These improvements manifest themselves as a reduction of stimulus bound behaviors and diminished sympathetic arousal. Results become more significant with increasing number of sessions and bear synergism when used along with neurofeedback. When applied at low frequencies in individuals with ASD, TMS appears to be safe and to improve multiple patient-oriented outcomes. Future studies should be conducted in large populations to establish predictors of outcomes (eg, genetic profiling), length of persistence of benefits, and utility of booster sessions.
Collapse
Affiliation(s)
- Manuel F. Casanova
- Director of Childhood Neurotherapeutics, Greenville Health System, Departments of Pediatrics, Division of Developmental Behavioral Pediatrics, Greenville, SC, USA and Professor of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Estate M. Sokhadze
- Research Professor, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Emily L. Casanova
- Research Assistant Professor, University of South Carolina School of Medicine Greenville, Greenville, SC, USA
| | - Xiaoli Li
- Director, State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
25
|
Casanova MF, Sokhadze EM, Casanova EL, Opris I, Abujadi C, Marcolin MA, Li X. Translational Neuroscience in Autism: From Neuropathology to Transcranial Magnetic Stimulation Therapies. Psychiatr Clin North Am 2020; 43:229-248. [PMID: 32439019 PMCID: PMC7245584 DOI: 10.1016/j.psc.2020.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The presence of heterotopias, increased regional density of neurons at the gray-white matter junction, and focal cortical dysplasias all suggest an abnormality of neuronal migration in autism spectrum disorder (ASD). The abnormality is borne from a dissonance in timing between radial and tangentially migrating neuroblasts to the developing cortical plate. The uncoupling of excitatory and inhibitory cortical cells disturbs the coordinated interactions of neurons within local networks, thus providing abnormal patterns of brainwave activity in the gamma bandwidth. In ASD, gamma oscillation abnormalities and autonomic markers offer measures of therapeutic progress and help in the identification of subgroups.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Pediatrics, Division of Developmental Behavioral Pediatrics, Greenville Health System, 200 Patewood Drive, Suite A200, Greenville, SC 29615, USA.
| | - Estate M Sokhadze
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA
| | - Emily L Casanova
- University of South Carolina School of Medicine Greenville, 200 Patewood Drive, Greenville, SC 29615, USA. https://twitter.com/EmLyWill
| | - Ioan Opris
- University of Miami, Miller School of Medicine, Department Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Caio Abujadi
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marco Antonio Marcolin
- Department of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
26
|
Huang Y, Zhang B, Cao J, Yu S, Wilson G, Park J, Kong J. Potential Locations for Noninvasive Brain Stimulation in Treating Autism Spectrum Disorders-A Functional Connectivity Study. Front Psychiatry 2020; 11:388. [PMID: 32457666 PMCID: PMC7221195 DOI: 10.3389/fpsyt.2020.00388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Noninvasive brain stimulation (NIBS) is an emerging tool for treating autism spectrum disorder (ASD). Exploring new stimulation targets may improve the efficacy of NIBS for ASD. MATERIALS AND METHODS We first conducted a meta-analysis on 170 functional magnetic resonance imaging studies to identify ASD-associated brain regions. We then performed resting state functional connectivity analysis on 70 individuals with ASD to investigate brain surface regions correlated with these ASD-associated regions and identify potential NIBS targets for ASD. RESULTS We found that the medial prefrontal cortex, angular gyrus, dorsal lateral prefrontal cortex, inferior frontal gyrus, superior parietal lobe, postcentral gyrus, precentral gyrus, middle temporal gyrus, superior temporal sulcus, lateral occipital cortex, and supplementary motor area/paracentral gyrus are potential locations for NIBS in ASD. CONCLUSION Our findings may shed light on the development of new NIBS targets for ASD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Jannati A, Block G, Ryan MA, Kaye HL, Kayarian FB, Bashir S, Oberman LM, Pascual-Leone A, Rotenberg A. Continuous Theta-Burst Stimulation in Children With High-Functioning Autism Spectrum Disorder and Typically Developing Children. Front Integr Neurosci 2020; 14:13. [PMID: 32231523 PMCID: PMC7083078 DOI: 10.3389/fnint.2020.00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/25/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives: A neurophysiologic biomarker for autism spectrum disorder (ASD) is highly desirable and can improve diagnosis, monitoring, and assessment of therapeutic response among children with ASD. We investigated the utility of continuous theta-burst stimulation (cTBS) applied to the motor cortex (M1) as a biomarker for children and adolescents with high-functioning (HF) ASD compared to their age- and gender-matched typically developing (TD) controls. We also compared the developmental trajectory of long-term depression- (LTD-) like plasticity in the two groups. Finally, we explored the influence of a common brain-derived neurotrophic factor (BDNF) polymorphism on cTBS aftereffects in a subset of the ASD group. Methods: Twenty-nine children and adolescents (age range 10-16) in ASD (n = 11) and TD (n = 18) groups underwent M1 cTBS. Changes in MEP amplitude at 5-60 min post-cTBS and their cumulative measures in each group were calculated. We also assessed the relationship between age and maximum cTBS-induced MEP suppression (ΔMEPMax) in each group. Finally, we compared cTBS aftereffects in BDNF Val/Val (n = 4) and Val/Met (n = 4) ASD participants. Results: Cumulative cTBS aftereffects were significantly more facilitatory in the ASD group than in the TD group (P FDR's < 0.03). ΔMEPMax was negatively correlated with age in the ASD group (r = -0.67, P = 0.025), but not in the TD group (r = -0.12, P = 0.65). Cumulative cTBS aftereffects were not significantly different between the two BDNF subgroups (P-values > 0.18). Conclusions: The results support the utility of cTBS measures of cortical plasticity as a biomarker for children and adolescents with HF-ASD and an aberrant developmental trajectory of LTD-like plasticity in ASD.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gabrielle Block
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Harper L. Kaye
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| | - Lindsay M. Oberman
- Neuroplasticity and Autism Spectrum Disorder Program, Department of Psychiatry and Human Behavior, E. P. Bradley Hospital, Warren Alpert Medical School, Brown University, East Providence, RI, United States
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Institut Guttman de Neurorehabilitació, Universitat Autónoma de Barcelona, Badalona, Spain
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, Jääskeläinen SK, Langguth B, Leocani L, Londero A, Nardone R, Nguyen JP, Nyffeler T, Oliveira-Maia AJ, Oliviero A, Padberg F, Palm U, Paulus W, Poulet E, Quartarone A, Rachid F, Rektorová I, Rossi S, Sahlsten H, Schecklmann M, Szekely D, Ziemann U. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018). Clin Neurophysiol 2020; 131:474-528. [PMID: 31901449 DOI: 10.1016/j.clinph.2019.11.002] [Citation(s) in RCA: 1082] [Impact Index Per Article: 216.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
A group of European experts reappraised the guidelines on the therapeutic efficacy of repetitive transcranial magnetic stimulation (rTMS) previously published in 2014 [Lefaucheur et al., Clin Neurophysiol 2014;125:2150-206]. These updated recommendations take into account all rTMS publications, including data prior to 2014, as well as currently reviewed literature until the end of 2018. Level A evidence (definite efficacy) was reached for: high-frequency (HF) rTMS of the primary motor cortex (M1) contralateral to the painful side for neuropathic pain; HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) using a figure-of-8 or a H1-coil for depression; low-frequency (LF) rTMS of contralesional M1 for hand motor recovery in the post-acute stage of stroke. Level B evidence (probable efficacy) was reached for: HF-rTMS of the left M1 or DLPFC for improving quality of life or pain, respectively, in fibromyalgia; HF-rTMS of bilateral M1 regions or the left DLPFC for improving motor impairment or depression, respectively, in Parkinson's disease; HF-rTMS of ipsilesional M1 for promoting motor recovery at the post-acute stage of stroke; intermittent theta burst stimulation targeted to the leg motor cortex for lower limb spasticity in multiple sclerosis; HF-rTMS of the right DLPFC in posttraumatic stress disorder; LF-rTMS of the right inferior frontal gyrus in chronic post-stroke non-fluent aphasia; LF-rTMS of the right DLPFC in depression; and bihemispheric stimulation of the DLPFC combining right-sided LF-rTMS (or continuous theta burst stimulation) and left-sided HF-rTMS (or intermittent theta burst stimulation) in depression. Level A/B evidence is not reached concerning efficacy of rTMS in any other condition. The current recommendations are based on the differences reached in therapeutic efficacy of real vs. sham rTMS protocols, replicated in a sufficient number of independent studies. This does not mean that the benefit produced by rTMS inevitably reaches a level of clinical relevance.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- ENT Team, EA4391, Faculty of Medicine, Paris Est Créteil University, Créteil, France; Clinical Neurophysiology Unit, Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France.
| | - André Aleman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - David H Benninger
- Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Jérôme Brunelin
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Saša R Filipović
- Department of Human Neuroscience, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, Cologne, Germany; Institute of Neurosciences and Medicine (INM3), Jülich Research Centre, Jülich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Friedhelm C Hummel
- Defitech Chair in Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Defitech Chair in Clinical Neuroengineering, Swiss Federal Institute of Technology (EPFL) Valais and Clinique Romande de Réadaptation, Sion, Switzerland; Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Satu K Jääskeläinen
- Department of Clinical Neurophysiology, Turku University Hospital and University of Turku, Turku, Finland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Letizia Leocani
- Department of Neurorehabilitation and Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele, University Vita-Salute San Raffaele, Milan, Italy
| | - Alain Londero
- Department of Otorhinolaryngology - Head and Neck Surgery, Université Paris Descartes Sorbonne Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Jean-Paul Nguyen
- Multidisciplinary Pain Center, Clinique Bretéché, ELSAN, Nantes, France; Multidisciplinary Pain, Palliative and Supportive Care Center, UIC22-CAT2-EA3826, University Hospital, CHU Nord-Laënnec, Nantes, France
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland; Perception and Eye Movement Laboratory, Department of Neurology, University of Bern, Bern, Switzerland; Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Albino J Oliveira-Maia
- Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal; NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Emmanuel Poulet
- PsyR2 Team, U1028, INSERM and UMR5292, CNRS, Center for Neuroscience Research of Lyon (CRNL), Centre Hospitalier Le Vinatier, Lyon-1 University, Bron, France; Department of Emergency Psychiatry, Edouard Herriot Hospital, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Irena Rektorová
- Applied Neuroscience Research Group, Central European Institute of Technology, CEITEC MU, Masaryk University, Brno, Czech Republic; First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Simone Rossi
- Department of Medicine, Surgery and Neuroscience, Si-BIN Lab Human Physiology Section, Neurology and Clinical Neurophysiology Unit, University of Siena, Siena, Italy
| | - Hanna Sahlsten
- ENT Clinic, Mehiläinen and University of Turku, Turku, Finland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - David Szekely
- Department of Psychiatry, Princess Grace Hospital, Monaco
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|