1
|
Do AD, Portet C, Goutagny R, Jackson J. The claustrum and synchronized brain states. Trends Neurosci 2024:S0166-2236(24)00200-5. [PMID: 39488479 DOI: 10.1016/j.tins.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Cortical activity is constantly fluctuating between distinct spatiotemporal activity patterns denoted by changes in brain state. States of cortical desynchronization arise during motor generation, increased attention, and high cognitive load. Synchronized brain states comprise spatially widespread, coordinated low-frequency neural activity during rest and sleep when disengaged from the external environment or 'offline'. The claustrum is a small subcortical structure with dense reciprocal connections with the cortex suggesting modulation by, or participation in, brain state regulation. Here, we highlight recent work suggesting that neural activity in the claustrum supports cognitive processes associated with synchronized brain states characterized by increased low-frequency network activity. As an example, we outline how claustrum activity could support episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Medina C, Ojea Ramos S, Depino AM, Romano AG, Krawczyk MC, Boccia MM. The role of the claustrum in the acquisition, consolidation and reconsolidation of memories in mice. Sci Rep 2024; 14:24409. [PMID: 39420041 PMCID: PMC11487015 DOI: 10.1038/s41598-024-74419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The claustrum is a brain structure that remains shrouded in mystery due to the limited understanding of its cellular structure, neural pathways, functionality and physiological aspects. Significant research has unveiled connections spanning from the claustrum to the entire cortex as well as subcortical areas. This widespread connectivity has led to speculations of its role in integrating information from different brain regions, possibly contributing to processes such as attention, consciousness, learning and memory. Our working hypothesis posits that claustrum neural activity contributes to the acquisition, consolidation and reconsolidation of long-term memories in mice. We found evidence in CF-1 mice of a decline in behavioral performance in an inhibitory avoidance task due to intra-claustral administration of 2% lidocaine immediately after a training session or memory recall. Nevertheless, this does not seem to be the case for the acquisition or retrieval of this type of memory, although its neural activity is significantly increased after training, evaluated through c-Fos expression. Moreover, inhibition of the claustrum's synaptic activity appears to impair the consolidation but not acquisition or retrieval of an unconditioned memory formed in a nose-poke habituation task.
Collapse
Affiliation(s)
- Candela Medina
- Facultad de Farmacia y Bioquímica (FFyB), Cátedra de Farmacología, Laboratorio de Neurofarmacología de los Procesos de Memoria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Departamento de Fisiologia, Biologia Molecular y Celular (DFBMC), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Santiago Ojea Ramos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - Amaicha M Depino
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Departamento de Biodiversidad y Biología Experimental (DBBE), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Arturo G Romano
- Facultad de Ciencias Exactas y Naturales (FCEyN), Departamento de Fisiologia, Biologia Molecular y Celular (DFBMC), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina
| | - María C Krawczyk
- Facultad de Farmacia y Bioquímica (FFyB), Cátedra de Farmacología, Laboratorio de Neurofarmacología de los Procesos de Memoria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Mariano M Boccia
- Facultad de Farmacia y Bioquímica (FFyB), Cátedra de Farmacología, Laboratorio de Neurofarmacología de los Procesos de Memoria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Wendt J, Neubauer A, Hedderich DM, Schmitz‐Koep B, Ayyildiz S, Schinz D, Hippen R, Daamen M, Boecker H, Zimmer C, Wolke D, Bartmann P, Sorg C, Menegaux A. Human Claustrum Connections: Robust In Vivo Detection by DWI-Based Tractography in Two Large Samples. Hum Brain Mapp 2024; 45:e70042. [PMID: 39397271 PMCID: PMC11471578 DOI: 10.1002/hbm.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Despite substantial neuroscience research in the last decade revealing the claustrum's prominent role in mammalian forebrain organization, as evidenced by its extraordinarily widespread connectivity pattern, claustrum studies in humans are rare. This is particularly true for studies focusing on claustrum connections. Two primary reasons may account for this situation: First, the intricate anatomy of the human claustrum located between the external and extreme capsule hinders straightforward and reliable structural delineation. In addition, the few studies that used diffusion-weighted-imaging (DWI)-based tractography could not clarify whether in vivo tractography consistently and reliably identifies claustrum connections in humans across different subjects, cohorts, imaging methods, and connectivity metrics. To address these issues, we combined a recently developed deep-learning-based claustrum segmentation tool with DWI-based tractography in two large adult cohorts: 81 healthy young adults from the human connectome project and 81 further healthy young participants from the Bavarian longitudinal study. Tracts between the claustrum and 13 cortical and 9 subcortical regions were reconstructed in each subject using probabilistic tractography. Probabilistic group average maps and different connectivity metrics were generated to assess the claustrum's connectivity profile as well as consistency and replicability of tractography. We found, across individuals, cohorts, DWI-protocols, and measures, consistent and replicable cortical and subcortical ipsi- and contralateral claustrum connections. This result demonstrates robust in vivo tractography of claustrum connections in humans, providing a base for further examinations of claustrum connectivity in health and disease.
Collapse
Affiliation(s)
- Jil Wendt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Antonia Neubauer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Dennis M. Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Benita Schmitz‐Koep
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Sevilay Ayyildiz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - David Schinz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Rebecca Hippen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Marcel Daamen
- Department of Diagnostic and Interventional Radiology, Clinical Functional Imaging GroupUniversity Hospital BonnBonnGermany
| | - Henning Boecker
- Department of Diagnostic and Interventional Radiology, Clinical Functional Imaging GroupUniversity Hospital BonnBonnGermany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Dieter Wolke
- Department of PsychologyUniversity of WarwickCoventryUK
- Warwick Medical SchoolUniversity of WarwickCoventryUK
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive CareUniversity Hospital BonnBonnGermany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
- Department of Psychiatry, School of Medicine and HealthTechnical University of MunichMunichGermany
| | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and HealthTechnical University of MunichMunichGermany
- School of Medicine and Health, TUM‐NIC Neuroimaging CenterTechnical University of MunichMunichGermany
| |
Collapse
|
4
|
Mantas I, Flais I, Masarapu Y, Ionescu T, Frapard S, Jung F, Le Merre P, Saarinen M, Tiklova K, Salmani BY, Gillberg L, Zhang X, Chergui K, Carlén M, Giacomello S, Hengerer B, Perlmann T, Svenningsson P. Claustrum and dorsal endopiriform cortex complex cell-identity is determined by Nurr1 and regulates hallucinogenic-like states in mice. Nat Commun 2024; 15:8176. [PMID: 39289358 PMCID: PMC11408527 DOI: 10.1038/s41467-024-52429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The Claustrum/dorsal endopiriform cortex complex (CLA) is an enigmatic brain region with extensive glutamatergic projections to multiple cortical areas. The transcription factor Nurr1 is highly expressed in the CLA, but its role in this region is not understood. By using conditional gene-targeted mice, we show that Nurr1 is a crucial regulator of CLA neuron identity. Although CLA neurons remain intact in the absence of Nurr1, the distinctive gene expression pattern in the CLA is abolished. CLA has been hypothesized to control hallucinations, but little is known of how the CLA responds to hallucinogens. After the deletion of Nurr1 in the CLA, both hallucinogen receptor expression and signaling are lost. Furthermore, functional ultrasound and Neuropixel electrophysiological recordings revealed that the hallucinogenic-receptor agonists' effects on functional connectivity between prefrontal and sensorimotor cortices are altered in Nurr1-ablated mice. Our findings suggest that Nurr1-targeted strategies provide additional avenues for functional studies of the CLA.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Ivana Flais
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Department of Neuroimaging King's College London, London, UK
| | - Yuvarani Masarapu
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tudor Ionescu
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Solène Frapard
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Felix Jung
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Le Merre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Tiklova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Gillberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoqun Zhang
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Karima Chergui
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Carlén
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Bastian Hengerer
- CNSDR, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Atlan G, Matosevich N, Peretz-Rivlin N, Marsh-Yvgi I, Zelinger N, Chen E, Kleinman T, Bleistein N, Sheinbach E, Groysman M, Nir Y, Citri A. Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior. Nat Commun 2024; 15:5415. [PMID: 38926345 PMCID: PMC11208603 DOI: 10.1038/s41467-024-48829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.
Collapse
Affiliation(s)
- Gal Atlan
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Matosevich
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Peretz-Rivlin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noam Zelinger
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eden Chen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Timna Kleinman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Bleistein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Efrat Sheinbach
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, Toronto, ON, Canada.
| |
Collapse
|
6
|
Mandino F, Horien C, Shen X, Desrosiers-Gregoire G, Luo W, Markicevic M, Constable RX, Papademetris X, Chakravarty MM, Betzel RF, Lake EMR. Multimodal identification of the mouse brain using simultaneous Ca 2+ imaging and fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.594620. [PMID: 38826324 PMCID: PMC11142213 DOI: 10.1101/2024.05.24.594620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Individual differences in neuroimaging are of interest to clinical and cognitive neuroscientists based on their potential for guiding the personalized treatment of various heterogeneous neurological conditions and diseases. Despite many advantages, the workhorse in this arena, BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI) suffers from low spatiotemporal resolution and specificity as well as a propensity for noise and spurious signal corruption. To better understand individual differences in BOLD-fMRI data, we can use animal models where fMRI, alongside complementary but more invasive contrasts, can be accessed. Here, we apply simultaneous wide-field fluorescence calcium imaging and BOLD-fMRI in mice to interrogate individual differences using a connectome-based identification framework adopted from the human fMRI literature. This approach yields high spatiotemporal resolution cell-type specific signals (here, from glia, excitatory, as well as inhibitory interneurons) from the whole cortex. We found mouse multimodal connectome- based identification to be successful and explored various features of these data.
Collapse
|
7
|
Andrés-Camazón P, Diaz-Caneja CM, Ballem R, Chen J, Calhoun VD, Iraji A. Neurobiology-based Cognitive Biotypes Using Multi-scale Intrinsic Connectivity Networks in Psychotic Disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.14.24307341. [PMID: 38798576 PMCID: PMC11118619 DOI: 10.1101/2024.05.14.24307341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective Understanding the neurobiology of cognitive dysfunction in psychotic disorders remains elusive, as does developing effective interventions. Limited knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. This study aimed to identify subgroups of patients with psychosis with distinct patterns of functional brain alterations related to cognition (cognitive biotypes). Methods B-SNIP consortium data (2,270 participants including participants with psychotic disorders, relatives, and controls) was analyzed. Researchers used reference-informed independent component analysis and the NeuroMark 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain functional network connectivity (FNC). FNC features associated with cognitive performance were identified through multivariate joint analysis. K-means clustering identified subgroups of patients based on these features in a discovery set. Subgroups were further evaluated in a replication set and in relatives. Results Two biotypes with different functional brain alteration patterns were identified. Biotype 1 exhibited brain-wide alterations, involving hypoconnectivity in cerebellar-subcortical and somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical networks and hypoconnectivity in somatomotor-high cognitive processing networks, and better preserved cognitive performance. Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets, and in relatives. 70.12% of relatives belonged to the same biotype as their affected family members. Conclusions These findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns shared with their relatives. Patient stratification based on these biotypes instead of traditional diagnosis may help to optimize future research and clinical trials addressing cognitive dysfunction in psychotic disorders.
Collapse
Affiliation(s)
- Pablo Andrés-Camazón
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Covadonga Martínez Diaz-Caneja
- Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, ISCIII, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Ram Ballem
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (Georgia State University, Georgia Institute of Technology, Emory University), Atlanta, Georgia, United States
| |
Collapse
|
8
|
Stewart BW, Keaser ML, Lee H, Margerison SM, Cormie MA, Moayedi M, Lindquist MA, Chen S, Mathur BN, Seminowicz DA. Pathological claustrum activity drives aberrant cognitive network processing in human chronic pain. Curr Biol 2024; 34:1953-1966.e6. [PMID: 38614082 DOI: 10.1016/j.cub.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Aberrant cognitive network activity and cognitive deficits are established features of chronic pain. However, the nature of cognitive network alterations associated with chronic pain and their underlying mechanisms require elucidation. Here, we report that the claustrum, a subcortical nucleus implicated in cognitive network modulation, is activated by acute painful stimulation and pain-predictive cues in healthy participants. Moreover, we discover pathological activity of the claustrum and a region near the posterior inferior frontal sulcus of the right dorsolateral prefrontal cortex (piDLPFC) in migraine patients during acute pain and cognitive task performance. Dynamic causal modeling suggests a directional influence of the claustrum on activity in this piDLPFC region, and diffusion weighted imaging verifies their structural connectivity. These findings advance understanding of claustrum function during acute pain and provide evidence of a possible circuit mechanism driving cognitive impairments in chronic pain.
Collapse
Affiliation(s)
- Brent W Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, W Baltimore Street, Baltimore, MD 21201, USA
| | - Michael L Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, W Baltimore Street, Baltimore, MD 21201, USA
| | - Hwiyoung Lee
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Wade Avenue, Catonsville, MD 21228, USA
| | - Sarah M Margerison
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, W Baltimore Street, Baltimore, MD 21201, USA; Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Penn Street, Baltimore, MD 21201, USA
| | - Matthew A Cormie
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Edward Street, Toronto, ON M5G 1E2, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Edward Street, Toronto, ON M5G 1E2, Canada; Department of Dentistry, Mount Sinai Hospital, University Avenue, Toronto, ON M5G 1X5, Canada; Division of Clinical & Computational Neuroscience, Krembil Brain Institute, University Health Network, Nassau Street, Toronto, ON M5T 1M8, Canada
| | - Martin A Lindquist
- Department of Biostatistics, Johns Hopkins University, N Wolfe Street, Baltimore, MD 21205, USA
| | - Shuo Chen
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Wade Avenue, Catonsville, MD 21228, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland School of Medicine, W Baltimore Street, Baltimore, MD 21201, USA; Department of Psychiatry, University of Maryland School of Medicine, W Baltimore Street, Baltimore, MD 21201, USA.
| | - David A Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, W Baltimore Street, Baltimore, MD 21201, USA; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, Richmond Street, London, ON N6A 5C1, Canada.
| |
Collapse
|
9
|
Li J, Qin Y, Zhong Z, Meng L, Huang L, Li B. Pain experience reduces social avoidance to others in pain: a c-Fos-based functional connectivity network study in mice. Cereb Cortex 2024; 34:bhae207. [PMID: 38798004 DOI: 10.1093/cercor/bhae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Pain experience increases individuals' perception and contagion of others' pain, but whether pain experience affects individuals' affiliative or antagonistic responses to others' pain is largely unknown. Additionally, the neural mechanisms underlying how pain experience modulates individuals' responses to others' pain remain unclear. In this study, we explored the effects of pain experience on individuals' responses to others' pain and the underlying neural mechanisms. By comparing locomotion, social, exploration, stereotyped, and anxiety-like behaviors of mice without any pain experience (naïve observers) and mice with a similar pain experience (experienced observers) when they observed the pain-free demonstrator with intraperitoneal injection of normal saline and the painful demonstrator with intraperitoneal injection of acetic acid, we found that pain experience of the observers led to decreased social avoidance to the painful demonstrator. Through whole-brain c-Fos quantification, we discovered that pain experience altered neuronal activity and enhanced functional connectivity in the mouse brain. The analysis of complex network and graph theory exhibited that functional connectivity networks and activated hub regions were altered by pain experience. Together, these findings reveal that neuronal activity and functional connectivity networks are involved in the modulation of individuals' responses to others' pain by pain experience.
Collapse
Affiliation(s)
- Jiali Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Yuxin Qin
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Zifeng Zhong
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Linjie Meng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Lianyan Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| | - Boxing Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Neuroscience Program, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Second Road, Yuexiu District, 510080 Guangzhou, China
| |
Collapse
|
10
|
Gu T, Dong J, Ge J, Feng J, Liu X, Chen Y, Liu J. Neurotoxic lesions of the anterior claustrum influence cued fear memory in rats. Front Psychiatry 2024; 15:1387507. [PMID: 38707622 PMCID: PMC11066318 DOI: 10.3389/fpsyt.2024.1387507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Background The claustrum (CLA), a subcortical area between the insular cortex and striatum, innervates almost all cortical regions of the mammalian brain. There is growing evidence that CLA participates in many brain functions, including memory, cognition, and stress response. It is proposed that dysfunction or malfunction of the CLA might be the pathology of some brain diseases, including stress-induced depression and anxiety. However, the role of the CLA in fear memory and anxiety disorders remains largely understudied. Methods We evaluated the influences of neurotoxic lesions of the CLA using auditory-cued fear memory and anxiety-like behaviors in rats. Results We found that lesions of anterior CLA (aCLA) but not posterior CLA (pCLA) before fear conditioning attenuated fear retrieval, facilitated extinction, and reduced freezing levels during the extinction retention test. Post-learning lesions of aCLA but not pCLA facilitated fear extinction and attenuated freezing behavior during the extinction retention test. Lesions of aCLA or pCLA did not affect anxiety-like behaviors evaluated by the open field test and elevated plus-maze test. Conclusion These data suggested that aCLA but not pCLA was involved in fear memory and extinction. Future studies are needed to further investigate the anatomical and functional connections of aCLA subareas that are involved in fear conditioning, which will deepen our understanding of CLA functions.
Collapse
Affiliation(s)
- Tengyu Gu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jing Dong
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jing Ge
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jialu Feng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoliu Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yun Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jianfeng Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Tuballa A, Connell D, Smith M, Dowsett C, O'Neill H, Albarqouni L. Introduction of allergenic food to infants and allergic and autoimmune conditions: a systematic review and meta-analysis. BMJ Evid Based Med 2024; 29:104-113. [PMID: 38123975 DOI: 10.1136/bmjebm-2023-112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES To evaluate the effects of early introduction to allergenic foods compared with late introduction and its impact on food allergy, food sensitisation and autoimmune disease risk. DESIGN AND SETTING The systematic review was reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines. Four electronic databases (MEDLINE, CENTRAL, EMBASE and CINAHL) were searched from inception till 24 October 2022 using keywords and MeSH without limitations on publication's language or date. A forward and backwards citation analysis was also conducted. Risk of bias was assessed by three authors independently, in pairs using the Cochrane Risk of Bias Tool 2. Findings were narratively and quantitatively synthesised. Certainty of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. PARTICIPANTS Randomised controlled trials (RCTs) on allergenic food introduction prior to 12 months of age that evaluated its effect on the development of allergic and autoimmune conditions. INTERVENTION Early introduction to allergenic foods to infants diet. MAIN OUTCOME MEASURES (1) Food allergy and sensitisation with main measures including oral food challenge, specific-IgE, skin prick testing, physician assessment and parental reporting. (2) Allergic and autoimmune conditions such as asthma and eczema. RESULTS Of the 9060 identified records, we included 12 RCTs. We found high to moderate certainty evidence suggested that early introduction of allergen-containing foods reduces the risk of multiple food allergies (4 RCTs, 3854 participants, RR 0.49, 95% CI 0.33 to 0.74), egg (8 RCTs, 5193 participants, RR 0.58, 95% CI 0.44 to 0.78), peanut (3 RCTs, 4183 participants, RR 0.31, 95% CI 0.17 to 0.54) and atopic dermatitis or eczema (4 RCTs, 3579 participants, RR 0.88, 95% CI 0.78 to 1.00). Effects on other food allergies including milk, wheat, fish; autoimmune conditions, and food sensitisation are very uncertain and informed by low and very-low certainty evidence. No important subgroup differences were observed related to baseline risk of allergy and age at introduction. Sensitivity analyses limited to low risk of bias RCTs showed similar results. CONCLUSIONS This systematic review and meta-analysis shows that early introduction of allergen-containing food from 4 to 12 months of age, was associated with lower risk of multiple food allergy and eczema. Further research on other allergenic foods, and their long-term impact on food allergy and autoimmune risk is essential for enhancing our understanding on development of these conditions and guiding future clinical recommendations. PROSPERO REGISTRATION NUMBER CRD42022375679.
Collapse
Affiliation(s)
- Alana Tuballa
- Nutrition and Dietetics, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Danique Connell
- Nutrition and Dietetics, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Mary Smith
- Nutrition and Dietetics, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Caroline Dowsett
- Institute of Evidence Based Health Care (IEBH), Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Hayley O'Neill
- Nutrition and Dietetics, Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Loai Albarqouni
- Institute of Evidence Based Health Care (IEBH), Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| |
Collapse
|
12
|
DeRosa J, Friedman NP, Calhoun V, Banich MT. Neurodevelopmental Subtypes of Functional Brain Organization in the ABCD Study Using a Rigorous Analytic Framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585343. [PMID: 38559171 PMCID: PMC10979961 DOI: 10.1101/2024.03.16.585343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The current study demonstrates that an individual's resting-state functional connectivity (RSFC) is a dependable biomarker for identifying differential patterns of cognitive and emotional functioning during late childhood. Using baseline RSFC data from the Adolescent Brain Cognitive Development (ABCD) study, which includes children aged 9-11, we identified four distinct RSFC subtypes We introduce an integrated methodological pipeline for testing the reliability and importance of these subtypes. In the Identification phase, Leiden Community Detection defined RSFC subtypes, with their reproducibility confirmed through a split-sample technique in the Validation stage. The Evaluation phase showed that distinct cognitive and mental health profiles are associated with each subtype, with the Predictive phase indicating that subtypes better predict various cognitive and mental health characteristics than individual RSFC connections. The Replication stage employed bootstrapping and down-sampling methods to substantiate the reproducibility of these subtypes further. This work allows future explorations of developmental trajectories of these RSFC subtypes.
Collapse
Affiliation(s)
- Jacob DeRosa
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| | - Naomi P. Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute for Behavioral Genetics, University of Colorado Boulder
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University
| | - Marie T. Banich
- Department of Psychology and Neuroscience, University of Colorado Boulder
- Institute of Cognitive Science, University of Colorado Boulder
| |
Collapse
|
13
|
Koga K, Kobayashi K, Tsuda M, Pickering AE, Furue H. Anterior cingulate cross-hemispheric inhibition via the claustrum resolves painful sensory conflict. Commun Biol 2024; 7:330. [PMID: 38491200 PMCID: PMC10943010 DOI: 10.1038/s42003-024-06008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
The anterior cingulate cortex (ACC) responds to noxious and innocuous sensory inputs, and integrates them to coordinate appropriate behavioral reactions. However, the role of the projections of ACC neurons to subcortical areas and their influence on sensory processing are not fully investigated. Here, we identified that ACC neurons projecting to the contralateral claustrum (ACC→contraCLA) preferentially respond to contralateral mechanical sensory stimulation. These sensory responses were enhanced during attending behavior. Optogenetic activation of ACC→contraCLA neurons silenced pyramidal neurons in the contralateral ACC by recruiting local circuit fast-spiking interneuron activation via an excitatory relay in the CLA. This circuit activation suppressed withdrawal behavior to mechanical stimuli ipsilateral to the ACC→contraCLA neurons. Chemogenetic silencing showed that the cross-hemispheric circuit has an important role in the suppression of contralateral nociceptive behavior during sensory-driven attending behavior. Our findings identify a cross-hemispheric cortical-subcortical-cortical arc allowing the brain to give attentional priority to competing innocuous and noxious inputs.
Collapse
Affiliation(s)
- Keisuke Koga
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya, Japan.
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Anthony E Pickering
- Anesthesia, Pain and Critical Care Research, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo Medical University, Nishinomiya, Japan.
| |
Collapse
|
14
|
Fanelli G, Franke B, Fabbri C, Werme J, Erdogan I, De Witte W, Poelmans G, Ruisch IH, Reus LM, van Gils V, Jansen WJ, Vos SJ, Alam KA, Martinez A, Haavik J, Wimberley T, Dalsgaard S, Fóthi Á, Barta C, Fernandez-Aranda F, Jimenez-Murcia S, Berkel S, Matura S, Salas-Salvadó J, Arenella M, Serretti A, Mota NR, Bralten J. Local patterns of genetic sharing challenge the boundaries between neuropsychiatric and insulin resistance-related conditions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.07.24303921. [PMID: 38496672 PMCID: PMC10942494 DOI: 10.1101/2024.03.07.24303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The co-occurrence of insulin resistance (IR)-related metabolic conditions with neuropsychiatric disorders is a complex public health challenge. Evidence of the genetic links between these phenotypes is emerging, but little is currently known about the genomic regions and biological functions that are involved. To address this, we performed Local Analysis of [co]Variant Association (LAVA) using large-scale (N=9,725-933,970) genome-wide association studies (GWASs) results for three IR-related conditions (type 2 diabetes mellitus, obesity, and metabolic syndrome) and nine neuropsychiatric disorders. Subsequently, positional and expression quantitative trait locus (eQTL)-based gene mapping and downstream functional genomic analyses were performed on the significant loci. Patterns of negative and positive local genetic correlations (|rg|=0.21-1, pFDR<0.05) were identified at 109 unique genomic regions across all phenotype pairs. Local correlations emerged even in the absence of global genetic correlations between IR-related conditions and Alzheimer's disease, bipolar disorder, and Tourette's syndrome. Genes mapped to the correlated regions showed enrichment in biological pathways integral to immune-inflammatory function, vesicle trafficking, insulin signalling, oxygen transport, and lipid metabolism. Colocalisation analyses further prioritised 10 genetically correlated regions for likely harbouring shared causal variants, displaying high deleterious or regulatory potential. These variants were found within or in close proximity to genes, such as SLC39A8 and HLA-DRB1, that can be targeted by supplements and already known drugs, including omega-3/6 fatty acids, immunomodulatory, antihypertensive, and cholesterol-lowering drugs. Overall, our findings underscore the complex genetic landscape of IR-neuropsychiatric multimorbidity, advocating for an integrated disease model and offering novel insights for research and treatment strategies in this domain.
Collapse
Affiliation(s)
- Giuseppe Fanelli
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Josefin Werme
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Izel Erdogan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert Poelmans
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I. Hyun Ruisch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lianne Maria Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California, United States
| | - Veerle van Gils
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Willemijn J. Jansen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | | | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson’s Disease, University of Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Norway
| | - Theresa Wimberley
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- iPSYCH - The Lundbeck Foundation Initiative for Integrated Psychiatric Research, Aarhus, Denmark
| | - Søren Dalsgaard
- National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University, Aarhus, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Child and Adolescent Psychiatry Glostrup, Mental Health Services of the Capital Region, Hellerup, Denmark
| | - Ábel Fóthi
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Csaba Barta
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Fernando Fernandez-Aranda
- Clinical Psychology Department, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Susana Jimenez-Murcia
- Clinical Psychology Department, University Hospital of Bellvitge, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Psychological Services, University of Barcelona, Spain
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jordi Salas-Salvadó
- Universitat Rovira i Virgili, Biochemistry and biotechnology Department, Grup Alimentació, Nutrició, Desenvolupament i Salut Mental, Unitat de Nutrició Humana, Reus, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Martina Arenella
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | | | - Nina Roth Mota
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janita Bralten
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Mooney MA, Hermosillo RJM, Feczko E, Miranda-Dominguez O, Moore LA, Perrone A, Byington N, Grimsrud G, Rueter A, Nousen E, Antovich D, Feldstein Ewing SW, Nagel BJ, Nigg JT, Fair DA. Cumulative Effects of Resting-State Connectivity Across All Brain Networks Significantly Correlate with Attention-Deficit Hyperactivity Disorder Symptoms. J Neurosci 2024; 44:e1202232023. [PMID: 38286629 PMCID: PMC10919250 DOI: 10.1523/jneurosci.1202-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024] Open
Abstract
Identification of replicable neuroimaging correlates of attention-deficit hyperactivity disorder (ADHD) has been hindered by small sample sizes, small effects, and heterogeneity of methods. Given evidence that ADHD is associated with alterations in widely distributed brain networks and the small effects of individual brain features, a whole-brain perspective focusing on cumulative effects is warranted. The use of large, multisite samples is crucial for improving reproducibility and clinical utility of brain-wide MRI association studies. To address this, a polyneuro risk score (PNRS) representing cumulative, brain-wide, ADHD-associated resting-state functional connectivity was constructed and validated using data from the Adolescent Brain Cognitive Development (ABCD, N = 5,543, 51.5% female) study, and was further tested in the independent Oregon-ADHD-1000 case-control cohort (N = 553, 37.4% female). The ADHD PNRS was significantly associated with ADHD symptoms in both cohorts after accounting for relevant covariates (p < 0.001). The most predictive PNRS involved all brain networks, though the strongest effects were concentrated among the default mode and cingulo-opercular networks. In the longitudinal Oregon-ADHD-1000, non-ADHD youth had significantly lower PNRS (Cohen's d = -0.318, robust p = 5.5 × 10-4) than those with persistent ADHD (age 7-19). The PNRS, however, did not mediate polygenic risk for ADHD. Brain-wide connectivity was robustly associated with ADHD symptoms in two independent cohorts, providing further evidence of widespread dysconnectivity in ADHD. Evaluation in enriched samples demonstrates the promise of the PNRS approach for improving reproducibility in neuroimaging studies and unraveling the complex relationships between brain connectivity and behavioral disorders.
Collapse
Affiliation(s)
- Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon 97239
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
| | - Robert J M Hermosillo
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Oscar Miranda-Dominguez
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lucille A Moore
- Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239
| | - Anders Perrone
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Nora Byington
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Amanda Rueter
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
| | - Elizabeth Nousen
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
| | - Dylan Antovich
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
| | | | - Bonnie J Nagel
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Joel T Nigg
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, Oregon 97239
- Division of Psychology, Department of Psychiatry, Oregon Health & Science University, Portland, Oregon 97239
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55454
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota 55414
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
16
|
Han Y, Sohn K, Yoon D, Park S, Lee J, Choi S. Delayed escape behavior requires claustral activity. Cell Rep 2024; 43:113748. [PMID: 38324450 DOI: 10.1016/j.celrep.2024.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/05/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Animals are known to exhibit innate and learned forms of defensive behaviors, but it is unclear whether animals can escape through methods other than these forms. In this study, we develop the delayed escape task, in which male rats temporarily hold the information required for future escape, and we demonstrate that this task, in which the subject extrapolates from past experience without direct experience of its behavioral outcome, does not fall into either of the two forms of behavior. During the holding period, a subset of neurons in the rostral-to-striatum claustrum (rsCla), only when pooled together, sustain enhanced population activity without ongoing sensory stimuli. Transient inhibition of rsCla neurons during the initial part of the holding period produces prolonged inhibition of the enhanced activity. The transient inhibition also attenuates the delayed escape behavior. Our data suggest that the rsCla activity bridges escape-inducing stimuli to the delayed onset of escape.
Collapse
Affiliation(s)
- Yujin Han
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Kuenbae Sohn
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Donghyeon Yoon
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Sewon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Junghwa Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
17
|
Marriott BA, Do AD, Portet C, Thellier F, Goutagny R, Jackson J. Brain-state-dependent constraints on claustrocortical communication and function. Cell Rep 2024; 43:113620. [PMID: 38159273 DOI: 10.1016/j.celrep.2023.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Neural activity in the claustrum has been associated with a range of vigilance states, yet the activity patterns and efficacy of synaptic communication of identified claustrum neurons have not been thoroughly determined. Here, we show that claustrum neurons projecting to the retrosplenial cortex are most active during synchronized cortical states such as non-rapid eye movement (NREM) sleep and are suppressed during increased cortical desynchronization associated with arousal, movement, and REM sleep. The efficacy of claustrocortical signaling is increased during NREM and diminished during movement due in part to increased cholinergic tone. Finally, claustrum activation during NREM sleep enhances memory consolidation through the phase resetting of cortical delta waves. Therefore, claustrocortical communication is constrained to function most effectively during cognitive processes associated with synchronized cortical states, such as memory consolidation.
Collapse
Affiliation(s)
- Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Flora Thellier
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France.
| | - Jesse Jackson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G2H7, Canada; Department of Physiology, University of Alberta, Edmonton, AB T6G2H7, Canada.
| |
Collapse
|
18
|
Jiang S, Ma Y, Shi Y, Zou Y, Yang Z, Zhi W, Zhao Z, Shen W, Chen L, Wu Y, Wang L, Hu X, Wu H. Acute exposure of microwave impairs attention process by activating microglial inflammation. Cell Biosci 2024; 14:2. [PMID: 38178181 PMCID: PMC10768366 DOI: 10.1186/s13578-023-01162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Attention provides the foundation for cognitions, which was shown to be affected by microwave (MW) radiation. With the ubiquitous of microwaves, public concerns regarding the impact of MW radiation on attention has hence been increased. Our study aims to investigate the potential effect and mechanism of acute microwave exposure on attention. RESULTS We identified obvious impairment of attention in mice by the five-choice serial reaction time (5-CSRT) task. Proteomic analysis of the cerebrospinal fluid (CSF) revealed neuroinflammation and microglial activation potentially due to acute MW exposure. Moreover, biochemical analysis further confirmed microglial activation in the prefrontal cortex (PFC) of mice subjected to acute MW exposure. Finally, minocycline, a commercially available anti-inflammatory compound, attenuated neuroinflammation, inhibited the upregulation of N-methyl-D-aspartic acid receptor (NMDAR) including NR2A and NR2B, and also accelerated the attentional recovery after MW exposure. CONCLUSIONS We believe that microglial activation and NMDAR upregulation likely contribute to inattention induced by acute MW exposure, and we found that minocycline may be effective in preventing such process.
Collapse
Affiliation(s)
- Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingping Ma
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, China
| | - Yuan Shi
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhenqi Yang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China.
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, China.
- Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
19
|
Stewart BW, Keaser ML, Lee H, Margerison SM, Cormie MA, Moayedi M, Lindquist MA, Chen S, Mathur BN, Seminowicz DA. Pathological claustrum activity drives aberrant cognitive network processing in human chronic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.564054. [PMID: 37961503 PMCID: PMC10635040 DOI: 10.1101/2023.11.01.564054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Aberrant cognitive network activity and cognitive deficits are established features of chronic pain. However, the nature of cognitive network alterations associated with chronic pain and their underlying mechanisms require elucidation. Here, we report that the claustrum, a subcortical nucleus implicated in cognitive network modulation, is activated by acute painful stimulation and pain-predictive cues in healthy participants. Moreover, we discover pathological activity of the claustrum and a lateral aspect of the right dorsolateral prefrontal cortex (latDLPFC) in migraine patients. Dynamic causal modeling suggests a directional influence of the claustrum on activity in this latDLPFC region, and diffusion weighted imaging (DWI) verifies their structural connectivity. These findings advance understanding of claustrum function during acute pain and provide evidence of a possible circuit mechanism driving cognitive impairments in chronic pain.
Collapse
Affiliation(s)
- Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Michael L. Keaser
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Hwiyoung Lee
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Sarah M. Margerison
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew A. Cormie
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, ON, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Clinical & Computational Neuroscience, Krembil Brain Institute, University Health Network
| | | | - Shuo Chen
- Department of Epidemiology & Public Health, Maryland Psychiatric Research Center, Catonsville, MD, USA
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Li H, Duque A, Rakic P. Origin and development of the claustrum in rhesus macaque. Proc Natl Acad Sci U S A 2023; 120:e2220918120. [PMID: 37406098 PMCID: PMC10334778 DOI: 10.1073/pnas.2220918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
Understanding the claustrum's functions has recently progressed thanks to new anatomical and behavioral studies in rodents, which suggest that it plays an important role in attention, salience detection, slow-wave generation, and neocortical network synchronization. Nevertheless, knowledge about the origin and development of the claustrum, especially in primates, is still limited. Here, we show that neurons of rhesus macaque claustrum primordium are generated between embryonic day E48 and E55 and express some neocortical molecular markers, such as NR4A2, SATB2, and SOX5. However, in the early stages, it lacks TBR1 expression, which separates it from other surrounding telencephalic structures. We also found that two waves of neurogenesis (E48 and E55) in the claustrum, corresponding to the birthdates of layers 6 and 5 of the insular cortex, establish a "core" and "shell" cytoarchitecture, which is potentially a basis for differential circuit formation and could influence information processing underlying higher cognitive functions of the claustrum. In addition, parvalbumin-positive interneurons are the dominant interneuron type in the claustrum in fetal macaque, and their maturation is independent of that in the overlaying neocortex. Finally, our study reveals that the claustrum is likely not a continuance of subplate neurons of the insular cortex, but an independent pallial region, suggesting its potentially unique role in cognitive control.
Collapse
Affiliation(s)
- Hong Li
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
| | - Alvaro Duque
- MacBrain Resource Center, Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- MacBrain Resource Center, Department of Neuroscience, Yale University School of Medicine, New Haven, CT06510
- Kavli Institute for Neuroscience, Yale University, New Haven, CT06510
| |
Collapse
|
21
|
Chen L, Liu Z, Zhao Z, Du D, Pan W, Wei X, Nie J, Ge F, Ding J, Fan Y, Kim HY, Guan X. Dopamine receptor 1 on CaMKII-positive neurons within claustrum mediates adolescent cocaine exposure-induced anxiety-like behaviors and electro-acupuncture therapy. Theranostics 2023; 13:3149-3164. [PMID: 37351159 PMCID: PMC10283049 DOI: 10.7150/thno.83079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Adolescent cocaine exposure (ACE) increases risk of developing psychiatric problems such as anxiety, which may drive relapse in later life, however, its underlying molecular mechanism remains poorly understood. Methods: ACE male mice model were established by exposing to cocaine during adolescent period. Elevated plus maze (EPM) were used to assess anxiety-like behaviors in mice. Within claustrum, local injection of SCH-23390, a specific antagonist for dopamine receptor 1 (D1R), or D1R knocking-down virus were used to regulate D1R function or expression on CaMKII-positive neurons (D1RCaMKII) in vivo. Electro-acupuncture (EA) treatment was performed at acupoints of Baihui and Yintang during withdrawal period. Results: We found that ACE mice exhibited anxiety-like behaviors, along with more activated CaMKII-positive neurons and increased D1RCaMKII levels in claustrum during adulthood. Inhibiting D1R function or knocking-down D1RCaMKII levels in claustrum efficiently reduced claustrum activation, and ultimately suppressed anxiety-like behaviors in ACE mice during adulthood. EA treatment alleviated ACE-evoked claustrum activation and anxiety-like behaviors by suppressing claustrum D1RCaMKII. Conclusion: Our findings identified a novel role of claustrum in ACE-induced anxiety-like behaviors, and put new insight into the D1RCaMKII in the claustrum. The claustrum D1RCaMKII might be a promising pharmacological target, such as EA treatment, to treat drug-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Liying Chen
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Critical Care Medicine, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, China
| | - Zhaoyu Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziheng Zhao
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Demin Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoyan Wei
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxun Nie
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianhua Ding
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
22
|
Ayyildiz S, Velioglu HA, Ayyildiz B, Sutcubasi B, Hanoglu L, Bayraktaroglu Z, Yildirim S, Atasever A, Yulug B. Differentiation of claustrum resting-state functional connectivity in healthy aging, Alzheimer's disease, and Parkinson's disease. Hum Brain Mapp 2023; 44:1741-1750. [PMID: 36515182 PMCID: PMC9921234 DOI: 10.1002/hbm.26171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
The claustrum is a sheet-like of telencephalic gray matter structure whose function is poorly understood. The claustrum is considered a multimodal computing network due to its reciprocal connections with almost all cortical areas as well as subcortical structures. Although the claustrum has been involved in several neurodegenerative diseases, specific changes in connections of the claustrum remain unclear in Alzheimer's disease (AD), and Parkinson's disease (PD). Resting-state fMRI and T1-weighted structural 3D images from healthy elderly (n = 15), AD (n = 16), and PD (n = 12) subjects were analyzed. Seed-based FC analysis was performed using CONN FC toolbox and T1-weighted images were analyzed with the Computational Anatomy Toolbox for voxel-based morphometry analysis. While we observed a decreased FC between the left claustrum and sensorimotor cortex, auditory association cortex, and cortical regions associated with social cognition in PD compared with the healthy control group (HC), no significant difference was found in alterations in the FC of both claustrum comparing the HC and AD groups. In the AD group, high FC of claustrum with regions of sensorimotor cortex and cortical regions related to cognitive control, including cingulate gyrus, supramarginal gyrus, and insular cortex were demonstrated. In addition, the structural results show significantly decreased volume in bilateral claustrum in AD and PD compared with HC. There were no significant differences in the claustrum volumes between PD and AD groups so the FC may offer more precise findings in distinguishing changes for claustrum in AD and PD.
Collapse
Affiliation(s)
- Sevilay Ayyildiz
- Anatomy PhD Program, Graduate School of Health SciencesKocaeli UniversityKocaeliTurkey
- Department of Anatomy, School of MedicineIstinye UniversityIstanbulTurkey
| | - Halil Aziz Velioglu
- Science for Life Laboratory, Department of Women's and Children's HealthKarolinska InstituteStockholmSweden
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN)Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol UniversityIstanbulTurkey
| | - Behcet Ayyildiz
- Anatomy PhD Program, Graduate School of Health SciencesKocaeli UniversityKocaeliTurkey
- Department of Anatomy, School of MedicineIstinye UniversityIstanbulTurkey
| | - Bernis Sutcubasi
- Department of Psychology, Faculty of Arts and SciencesAcibadem UniversityIstanbulTurkey
| | - Lutfu Hanoglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN)Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol UniversityIstanbulTurkey
- Department of Neurology, School of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive‐Affective Neuroscience Lab (fINCAN)Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol UniversityIstanbulTurkey
- Istanbul Medipol UniversityInternational School of Medicine, Department of PhysiologyIstanbulTurkey
| | - Suleyman Yildirim
- Department of Medical MicrobiologyInternational School of Medicine, Istanbul Medipol UniversityIstanbulTurkey
| | - Alper Atasever
- Istanbul Medipol UniversityInternational School of Medicine, Department of AnatomyIstanbulTurkey
| | - Burak Yulug
- Department of Neurology, School of MedicineAlanya Alaaddin Keykubat UniversityAntalyaTurkey
| |
Collapse
|
23
|
Wang Q, Wang Y, Kuo HC, Xie P, Kuang X, Hirokawa KE, Naeemi M, Yao S, Mallory M, Ouellette B, Lesnar P, Li Y, Ye M, Chen C, Xiong W, Ahmadinia L, El-Hifnawi L, Cetin A, Sorensen SA, Harris JA, Zeng H, Koch C. Regional and cell-type-specific afferent and efferent projections of the mouse claustrum. Cell Rep 2023; 42:112118. [PMID: 36774552 PMCID: PMC10415534 DOI: 10.1016/j.celrep.2023.112118] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.
Collapse
Affiliation(s)
- Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hsien-Chi Kuo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Peng Xie
- Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Xiuli Kuang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | - Maitham Naeemi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Matt Mallory
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ben Ouellette
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yaoyao Li
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min Ye
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chao Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wei Xiong
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | | | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
24
|
Influence of claustrum on cortex varies by area, layer, and cell type. Neuron 2023; 111:275-290.e5. [PMID: 36368317 DOI: 10.1016/j.neuron.2022.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.
Collapse
|
25
|
Chen CY, Yang GY, Tu HX, Weng XC, Hu C, Geng HY. The cognitive dysfunction of claustrum on Alzheimer's disease: A mini-review. Front Aging Neurosci 2023; 15:1109256. [PMID: 37122376 PMCID: PMC10140374 DOI: 10.3389/fnagi.2023.1109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases characterized by cognitive deficits and dementia. AD entails predominant pathological characteristics including amyloid beta (Aβ) plaque formation, neurofibrillary entanglements, and brain atrophy, which gradually result in cognitive dysfunctions. Studies showed that these pathological changes are found in a myriad of brain structures, including the claustrum (CLA), a nucleus that penetrates deeply into the brain and is extensively interconnected to various brain structures. The CLA modulates many aspects of cognitive functions, with attention, executive function, visuospatial ability, language, and memory in particular. It is also implicated in multiple neuropsychiatric disorders, of which one worthy of particular attention is AD-related cognitive impairments. To inspire novel AD treatment strategies, this review has summarized the CLA functionality in discriminative cognitive dysfunctions in AD. And then propose an array of potential mechanisms that might contribute to the cognitive impairments caused by an abnormal CLA physiology. We advocate that the CLA might be a new promising therapeutic target in combination with existing anti-AD drugs and brain stimulation approaches for future AD treatment.
Collapse
Affiliation(s)
- Chun-Yan Chen
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Guang-Yi Yang
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Hai-Xia Tu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xu-Chu Weng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- *Correspondence: Chun Hu,
| | - Hong-Yan Geng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
- Hong-Yan Geng,
| |
Collapse
|
26
|
Qadir H, Stewart BW, VanRyzin JW, Wu Q, Chen S, Seminowicz DA, Mathur BN. The mouse claustrum synaptically connects cortical network motifs. Cell Rep 2022; 41:111860. [PMID: 36543121 PMCID: PMC9838879 DOI: 10.1016/j.celrep.2022.111860] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially distant areas of the cerebral cortex coordinate their activity into networks that are integral to cognitive processing. A common structural motif of cortical networks is co-activation of frontal and posterior cortical regions. The neural circuit mechanisms underlying such widespread inter-areal cortical coordination are unclear. Using a discovery based functional magnetic resonance imaging (fMRI) approach in mouse, we observe frontal and posterior cortical regions that demonstrate significant functional connectivity with the subcortical nucleus, the claustrum. Examining whether the claustrum synaptically supports such frontoposterior cortical network architecture, we observe cortico-claustro-cortical circuits reflecting the fMRI data: significant trans-claustral synaptic connectivity from frontal cortices to posteriorly lying sensory and sensory association cortices contralaterally. These data reveal discrete cortical pathways through the claustrum that are positioned to support cortical network motifs central to cognitive control functions and add to the canon of major extended cortico-subcortico-cortical systems in the mammalian brain.
Collapse
Affiliation(s)
- Houman Qadir
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Brent W. Stewart
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA
| | - Qiong Wu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuo Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA,Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Brian N. Mathur
- Department of Pharmacology, University of Maryland School of Medicine, HSF III 9179, Baltimore, MD 21201, USA,Lead contact,Correspondence:
| |
Collapse
|
27
|
Madden MB, Stewart BW, White MG, Krimmel SR, Qadir H, Barrett FS, Seminowicz DA, Mathur BN. A role for the claustrum in cognitive control. Trends Cogn Sci 2022; 26:1133-1152. [PMID: 36192309 PMCID: PMC9669149 DOI: 10.1016/j.tics.2022.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Early hypotheses of claustrum function were fueled by neuroanatomical data and yielded suggestions that the claustrum is involved in processes ranging from salience detection to multisensory integration for perceptual binding. While these hypotheses spurred useful investigations, incompatibilities inherent in these views must be reconciled to further conceptualize claustrum function amid a wealth of new data. Here, we review the varied models of claustrum function and synthesize them with developments in the field to produce a novel functional model: network instantiation in cognitive control (NICC). This model proposes that frontal cortices direct the claustrum to flexibly instantiate cortical networks to subserve cognitive control. We present literature support for this model and provide testable predictions arising from this conceptual framework.
Collapse
Affiliation(s)
- Maxwell B Madden
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brent W Stewart
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Michael G White
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Houman Qadir
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
HUANG W, QIN J, ZHANG C, QIN H, XIE P. Footshock-induced activation of the claustrum-entorhinal cortical pathway in freely moving mice. Physiol Res 2022; 71:695-701. [PMID: 36047724 PMCID: PMC9841810 DOI: 10.33549/physiolres.934899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Footshock is frequently used as an unconditioned stimulus in fear conditioning behavior studies. The medial entorhinal cortex (MEC) contributes to fear learning and receives neuronal inputs from the claustrum. However, whether footshocks can induce a neuronal response in claustrum-MEC (CLA-MEC) projection remains unknown. Here, we combined fiber-based Ca2+ recordings with a retrograde AAV labeling method to investigate neuronal responses of MEC-projecting claustral neurons to footshock stimulation in freely moving mice. We achieved successful Ca2+ recordings in both anesthetized and freely exploring mice. We found that footshock stimulation reliably induced neuronal responses to MEC-projecting claustral neurons. Therefore, the footshock-induced response detected in the CLA-MEC projection suggests its potential role in fear processin.
Collapse
Affiliation(s)
- Wushuang HUANG
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Jing QIN
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Chunqing ZHANG
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Han QIN
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Peng XIE
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Qin J, Huang WS, DU HR, Zhang CQ, Xie P, Qin H. Ca 2+-based neural activity recording for rapidly screening behavioral correlates of the claustrum in freely behaving mice. Biomed Res 2022; 43:81-89. [PMID: 35718448 DOI: 10.2220/biomedres.43.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The claustrum has been hypothesized to participate in high-order brain functions, but experimental studies to demonstrate these functions are currently lacking. Neural activity recording of the claustrum in freely-behaving animals allows for correlating claustral activities with specific behaviors. However, previously utilized methods for studying the claustrum make it difficult to monitor neural activity patterns of freely-behaving animals in real time. Here we applied fiber photometry to monitor Ca2+ activity in the claustrum of freely-behaving mice. Using this method, we were able to achieve Ca2+ activity recording in both anesthetized and freely-behaving mice. We found that the dynamics of Ca2+ activity depended on anesthesia levels. As compared to the use of genetically encoded Ca2+ indicators that requires a few weeks of virus-dependent expression, we used a synthetic fluorescent Ca2+-sensitive dye, Oregon green 488 BAPTA-1, that allows for rapidly screening neural activity of interest within a few hours that relates to certain behaviors. In this way, we found the correlation between Ca2+ activity and specific behaviors, such as approaching an object. Our work offers an effective method for recording neural activity in the claustrum and thus for rapidly screening any behavioral relevance of the claustrum in freely-behaving mice.
Collapse
Affiliation(s)
- Jing Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Wu-Shuang Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Hao-Ran DU
- Center for Neurointelligence, School of Medicine, Chongqing University
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University
| |
Collapse
|
30
|
Niu M, Kasai A, Tanuma M, Seiriki K, Igarashi H, Kuwaki T, Nagayasu K, Miyaji K, Ueno H, Tanabe W, Seo K, Yokoyama R, Ohkubo J, Ago Y, Hayashida M, Inoue KI, Takada M, Yamaguchi S, Nakazawa T, Kaneko S, Okuno H, Yamanaka A, Hashimoto H. Claustrum mediates bidirectional and reversible control of stress-induced anxiety responses. SCIENCE ADVANCES 2022; 8:eabi6375. [PMID: 35302853 PMCID: PMC8932664 DOI: 10.1126/sciadv.abi6375] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The processing of stress responses involves brain-wide communication among cortical and subcortical regions; however, the underlying mechanisms remain elusive. Here, we show that the claustrum (CLA) is crucial for the control of stress-induced anxiety-related behaviors. A combined approach using brain activation mapping and machine learning showed that the CLA activation serves as a reliable marker of exposure to acute stressors. In TRAP2 mice, which allow activity-dependent genetic labeling, chemogenetic activation of the CLA neuronal ensemble tagged by acute social defeat stress (DS) elicited anxiety-related behaviors, whereas silencing of the CLA ensemble attenuated DS-induced anxiety-related behaviors. Moreover, the CLA received strong input from DS-activated basolateral amygdala neurons, and its circuit-selective optogenetic photostimulation temporarily elicited anxiety-related behaviors. Last, silencing of the CLA ensemble during stress exposure increased resistance to chronic DS. The CLA thus bidirectionally controls stress-induced emotional responses, and its inactivation can serve as a preventative strategy to increase stress resilience.
Collapse
Affiliation(s)
- Misaki Niu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Osaka, Japan
| | - Hisato Igarashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Kuwaki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keita Miyaji
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroki Ueno
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Wataru Tanabe
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kei Seo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Jin Ohkubo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Misuzu Hayashida
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu University, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Okuno
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
31
|
Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022; 110:486-501.e7. [PMID: 34863367 PMCID: PMC8829966 DOI: 10.1016/j.neuron.2021.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.
Collapse
Affiliation(s)
- Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eric A. Finkel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Daniel H. O’Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Lead contact,Correspondence:
| |
Collapse
|
32
|
Yaden DB, Johnson MW, Griffiths RR, Doss MK, Garcia-Romeu A, Nayak S, Gukasyan N, Mathur BN, Barrett FS. Psychedelics and Consciousness: Distinctions, Demarcations, and Opportunities. Int J Neuropsychopharmacol 2021; 24:615-623. [PMID: 33987652 PMCID: PMC8378075 DOI: 10.1093/ijnp/pyab026] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Psychedelic substances produce unusual and compelling changes in conscious experience that have prompted some to propose that psychedelics may provide unique insights explaining the nature of consciousness. At present, psychedelics, like other current scientific tools and methods, seem unlikely to provide information relevant to the so-called "hard problem of consciousness," which involves explaining how first-person experience can emerge. However, psychedelics bear on multiple "easy problems of consciousness," which involve relations between subjectivity, brain function, and behavior. In this review, we discuss common meanings of the term "consciousness" when used with regard to psychedelics and consider some models of the effects of psychedelics on the brain that have also been associated with explanatory claims about consciousness. We conclude by calling for epistemic humility regarding the potential for psychedelic research to aid in explaining the hard problem of consciousness while pointing to ways in which psychedelics may advance the study of many specific aspects of consciousness.
Collapse
Affiliation(s)
- David B Yaden
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Matthew W Johnson
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Roland R Griffiths
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
- Department of Neuroscience
| | - Manoj K Doss
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Sandeep Nayak
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Natalie Gukasyan
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| | - Brian N Mathur
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences
- Center for Psychedelic and Consciousness Research
| |
Collapse
|
33
|
Wong KLL, Nair A, Augustine GJ. Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Front Neural Circuits 2021; 15:658228. [PMID: 34054437 PMCID: PMC8155375 DOI: 10.3389/fncir.2021.658228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The claustrum is a thin sheet of neurons that is densely connected to many cortical regions and has been implicated in numerous high-order brain functions. Such brain functions arise from brain states that are influenced by neuromodulatory pathways from the cholinergic basal forebrain, dopaminergic substantia nigra and ventral tegmental area, and serotonergic raphe. Recent revelations that the claustrum receives dense input from these structures have inspired investigation of state-dependent control of the claustrum. Here, we review neuromodulation in the claustrum-from anatomical connectivity to behavioral manipulations-to inform future analyses of claustral function.
Collapse
Affiliation(s)
- Kelly L. L. Wong
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aditya Nair
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, United States
| | - George J. Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
34
|
Graf M, Wong KLL, Augustine GJ. Neuroscience: A Role for the Claustrum in Drug Reward. Curr Biol 2021; 30:R1038-R1040. [PMID: 32961157 DOI: 10.1016/j.cub.2020.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The claustrum is a poorly understood but intriguing part of the brain: a new study has found that it plays an important role in drug reward by providing incentive salience to the location where the drug is administered.
Collapse
Affiliation(s)
- Martin Graf
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - Kelly L L Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
35
|
Gamberini M, Passarelli L, Impieri D, Montanari G, Diomedi S, Worthy KH, Burman KJ, Reser DH, Fattori P, Galletti C, Bakola S, Rosa MGP. Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and Adjacent Areas). Cereb Cortex 2021; 31:4595-4611. [PMID: 33939798 DOI: 10.1093/cercor/bhab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Montanari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David H Reser
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, Victoria 3842, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| |
Collapse
|
36
|
Marriott BA, Do AD, Zahacy R, Jackson J. Topographic gradients define the projection patterns of the claustrum core and shell in mice. J Comp Neurol 2021; 529:1607-1627. [PMID: 32975316 PMCID: PMC8048916 DOI: 10.1002/cne.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co-projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal-midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Collapse
Affiliation(s)
- Brian A. Marriott
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison D. Do
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Ryan Zahacy
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Jesse Jackson
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
37
|
Zhang L, Hernandez VS, Gerfen CR, Jiang SZ, Zavala L, Barrio RA, Eiden LE. Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. eLife 2021; 10:61718. [PMID: 33463524 PMCID: PMC7875564 DOI: 10.7554/elife.61718] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/18/2021] [Indexed: 01/25/2023] Open
Abstract
The neuropeptide PACAP, acting as a co-transmitter, increases neuronal excitability, which may enhance anxiety and arousal associated with threat conveyed by multiple sensory modalities. The distribution of neurons expressing PACAP and its receptor, PAC1, throughout the mouse nervous system was determined, in register with expression of glutamatergic and GABAergic neuronal markers, to develop a coherent chemoanatomical picture of PACAP role in brain motor responses to sensory input. A circuit role for PACAP was tested by observing Fos activation of brain neurons after olfactory threat cue in wild-type and PACAP knockout mice. Neuronal activation and behavioral response, were blunted in PACAP knock-out mice, accompanied by sharply downregulated vesicular transporter expression in both GABAergic and glutamatergic neurons expressing PACAP and its receptor. This report signals a new perspective on the role of neuropeptide signaling in supporting excitatory and inhibitory neurotransmission in the nervous system within functionally coherent polysynaptic circuits.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.,Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Vito S Hernandez
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Sunny Z Jiang
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| | - Lilian Zavala
- Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Rafael A Barrio
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States.,Department of Complex Systems, Institute of Physics, National Autonomous University of Mexico (UNAM), Mexico, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, Bethesda, United States
| |
Collapse
|
38
|
Sinitsyn DO, Bakulin IS, Poydasheva AG, Legostaeva LA, Kremneva EI, Lagoda DY, Chernyavskiy AY, Medyntsev AA, Suponeva NA, Piradov MA. Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving. Behav Sci (Basel) 2020; 10:E170. [PMID: 33171616 PMCID: PMC7695184 DOI: 10.3390/bs10110170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Insight is one of the most mysterious problem-solving phenomena involving the sudden emergence of a solution, often preceded by long unproductive attempts to find it. This seemingly unexplainable generation of the answer, together with the role attributed to insight in the advancement of science, technology and culture, stimulate active research interest in discovering its neuronal underpinnings. The present study employs functional Magnetic resonance imaging (fMRI) to probe and compare the brain activations occurring in the course of solving anagrams by insight or analytically, as judged by the subjects. A number of regions were activated in both strategies, including the left premotor cortex, left claustrum, and bilateral clusters in the precuneus and middle temporal gyrus. The activated areas span the majority of the clusters reported in a recent meta-analysis of insight-related fMRI studies. At the same time, the activation patterns were very similar between the insight and analytical solutions, with the only difference in the right sensorimotor region probably explainable by subject motion related to the study design. Additionally, we applied resting-state fMRI to study functional connectivity patterns correlated with the individual frequency of insight anagram solutions. Significant correlations were found for the seed-based connectivity of areas in the left premotor cortex, left claustrum, and left frontal eye field. The results stress the need for optimizing insight paradigms with respect to the accuracy and reliability of the subjective insight/analytical solution classification. Furthermore, the short-lived nature of the insight phenomenon makes it difficult to capture the associated neural events with the current experimental techniques and motivates complementing such studies by the investigation of the structural and functional brain features related to the individual differences in the frequency of insight-based decisions.
Collapse
Affiliation(s)
- Dmitry O. Sinitsyn
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Ilya S. Bakulin
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Alexandra G. Poydasheva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Liudmila A. Legostaeva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Elena I. Kremneva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Dmitry Yu. Lagoda
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Andrey Yu. Chernyavskiy
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
- Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow, Russia
| | - Alexey A. Medyntsev
- Institute of Psychology, Russian Academy of Sciences, 129366 Moscow, Russia;
| | - Natalia A. Suponeva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Michael A. Piradov
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| |
Collapse
|