1
|
Hourani S, Pouladi MA. Oligodendroglia and myelin pathology in fragile X syndrome. J Neurochem 2024; 168:2214-2226. [PMID: 38898700 DOI: 10.1111/jnc.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Studies of the pathophysiology of fragile X syndrome (FXS) have predominantly focused on synaptic and neuronal disruptions in the disease. However, emerging studies highlight the consistency of white matter abnormalities in the disorder. Recent investigations using animal models of FXS have suggested a role for the fragile X translational regulator 1 protein (FMRP) in the development and function of oligodendrocytes, the myelinating cells of the central nervous system. These studies are starting to uncover FMRP's involvement in the regulation of myelin-related genes, such as myelin basic protein, and its influence on the maturation and functionality of oligodendrocyte precursor cells and oligodendrocytes. Here, we consider evidence of white matter abnormalities in FXS, review our current understanding of FMRP's role in oligodendrocyte development and function, and highlight gaps in our knowledge of the pathogenic mechanisms that may contribute to white matter abnormalities in FXS. Addressing these gaps may help identify new therapeutic strategies aimed at enhancing outcomes for individuals affected by FXS.
Collapse
Affiliation(s)
- Shaima Hourani
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Vancouver, British Columbia, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Edwin S.H. Leong Centre for Healthy Aging, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Abbasi DA, Berry-Kravis E, Zhao X, Cologna SM. Proteomics insights into fragile X syndrome: Unraveling molecular mechanisms and therapeutic avenues. Neurobiol Dis 2024; 194:106486. [PMID: 38548140 DOI: 10.1016/j.nbd.2024.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopment disorder characterized by cognitive impairment, behavioral challenges, and synaptic abnormalities, with a genetic basis linked to a mutation in the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene that results in a deficiency or absence of its protein product, Fragile X Messenger Ribonucleoprotein (FMRP). In recent years, mass spectrometry (MS) - based proteomics has emerged as a powerful tool to uncover the complex molecular landscape underlying FXS. This review provides a comprehensive overview of the proteomics studies focused on FXS, summarizing key findings with an emphasis on dysregulated proteins associated with FXS. These proteins span a wide range of cellular functions including, but not limited to, synaptic plasticity, RNA translation, and mitochondrial function. The work conducted in these proteomic studies provides a more holistic understanding to the molecular pathways involved in FXS and considerably enhances our knowledge into the synaptic dysfunction seen in FXS.
Collapse
Affiliation(s)
- Diana A Abbasi
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Elizabeth Berry-Kravis
- Departments of Pediatrics and Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Xinyu Zhao
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States of America
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, United States of America.
| |
Collapse
|
3
|
Talvio K, Castrén ML. Astrocytes in fragile X syndrome. Front Cell Neurosci 2024; 17:1322541. [PMID: 38259499 PMCID: PMC10800791 DOI: 10.3389/fncel.2023.1322541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Astrocytes have an important role in neuronal maturation and synapse function in the brain. The interplay between astrocytes and neurons is found to be altered in many neurodevelopmental disorders, including fragile X syndrome (FXS) that is the most common inherited cause of intellectual disability and autism spectrum disorder. Transcriptional, functional, and metabolic alterations in Fmr1 knockout mouse astrocytes, human FXS stem cell-derived astrocytes as well as in in vivo models suggest autonomous effects of astrocytes in the neurobiology of FXS. Abnormalities associated with FXS astrocytes include differentiation of central nervous system cell populations, maturation and regulation of synapses, and synaptic glutamate balance. Recently, FXS-specific changes were found more widely in astrocyte functioning, such as regulation of inflammatory pathways and maintenance of lipid homeostasis. Changes of FXS astrocytes impact the brain homeostasis and function both during development and in the adult brain and offer opportunities for novel types of approaches for intervention.
Collapse
Affiliation(s)
| | - Maija L. Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Utami KH, Yusof NABM, Garcia-Miralles M, Skotte NH, Nama S, Sampath P, Langley SR, Pouladi MA. Dysregulated COMT Expression in Fragile X Syndrome. Neuromolecular Med 2023; 25:644-649. [PMID: 37684514 DOI: 10.1007/s12017-023-08754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
Transcriptional and proteomics analyses in human fragile X syndrome (FXS) neurons identified markedly reduced expression of COMT, a key enzyme involved in the metabolism of catecholamines, including dopamine, epinephrine and norepinephrine. FXS is the most common genetic cause of intellectual disability and autism spectrum disorders. COMT encodes for catechol-o-methyltransferase and its association with neuropsychiatric disorders and cognitive function has been extensively studied. We observed a significantly reduced level of COMT in in FXS human neural progenitors and neurons, as well as hippocampal neurons from Fmr1 null mice. We show that deficits in COMT were associated with an altered response in an assay of dopaminergic activity in Fmr1 null mice. These findings demonstrate that loss of FMRP downregulates COMT expression and affects dopamine signaling in FXS, and supports the notion that targeting catecholamine metabolism may be useful in regulating certain neuropsychiatric aspects of FXS.
Collapse
Affiliation(s)
- Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nur Amirah Binte Muhammed Yusof
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Marta Garcia-Miralles
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | - Niels Henning Skotte
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Srikanth Nama
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Prabha Sampath
- Agency for Science, Technology and Research, Genome Institute of Singapore, 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore.
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
5
|
Yu J, Woo Y, Kim H, An S, Park SK, Jang SK. FMRP Enhances the Translation of 4EBP2 mRNA during Neuronal Differentiation. Int J Mol Sci 2023; 24:16319. [PMID: 38003508 PMCID: PMC10671300 DOI: 10.3390/ijms242216319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
FMRP is a multifunctional protein encoded by the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1). The inactivation of the FMR1 gene results in fragile X syndrome (FXS), a serious neurodevelopmental disorder. FMRP deficiency causes abnormal neurite outgrowth, which is likely to lead to abnormal learning and memory capabilities. However, the mechanism of FMRP in modulating neuronal development remains unknown. We found that FMRP enhances the translation of 4EBP2, a neuron-specific form of 4EBPs that inactivates eIF4E by inhibiting the interaction between eIF4E and eIF4G. Depletion of 4EBP2 results in abnormal neurite outgrowth. Moreover, the impairment of neurite outgrowth upon FMRP depletion was overcome by the ectopic expression of 4EBP2. These results suggest that FMRP controls neuronal development by enhancing 4EBP2 expression at the translational level. In addition, treatment with 4EGI-1, a chemical that blocks eIF4E activity, restored neurite length in FMRP-depleted and 4EBP2-depleted cells. In conclusion, we discovered that 4EBP2 functions as a key downstream regulator of FMRP activity in neuronal development and that FMRP represses eIF4E activity by enhancing 4EBP2 translation.
Collapse
Affiliation(s)
| | | | | | | | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongsangbuk, Republic of Korea; (J.Y.); (Y.W.); (H.K.); (S.A.)
| |
Collapse
|
6
|
Porter RS, Nagai M, An S, Gavilan MC, Murata-Nakamura Y, Bonefas KM, Zhou B, Dionne O, Manuel JM, St-Germain J, Browning L, Laurent B, Cho US, Iwase S. A neuron-specific microexon ablates the novel DNA-binding function of a histone H3K4me0 reader PHF21A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563357. [PMID: 37904995 PMCID: PMC10614952 DOI: 10.1101/2023.10.20.563357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
How cell-type-specific chromatin landscapes emerge and progress during metazoan ontogenesis remains an important question. Transcription factors are expressed in a cell-type-specific manner and recruit chromatin-regulatory machinery to specific genomic loci. In contrast, chromatin-regulatory proteins are expressed broadly and are assumed to exert the same intrinsic function across cell types. However, human genetics studies have revealed an unexpected vulnerability of neurodevelopment to chromatin factor mutations with unknown mechanisms. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Of the 14 chromatin regulators, two are integral components of a histone H3K4 demethylase complex; the catalytic subunit LSD1 and an H3K4me0-reader protein PHF21A adopt neuron-specific forms. We found that canonical PHF21A (PHF21A-c) binds to DNA by AT-hook motif, and the neuronal counterpart PHF21A-n lacks this DNA-binding function yet maintains H3K4me0 recognition intact. In-vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes identified the neuronal complex as a hypomorphic H3K4 demethylating machinery with reduced nucleosome engagement. Furthermore, an autism-associated PHF21A missense mutation, 1285 G>A, at the last nucleotide of the common exon immediately upstream of the neuronal microexon led to impaired splicing of PHF21A -n. Thus, ubiquitous chromatin regulatory complexes exert unique intrinsic functions in neurons via alternative splicing of their subunits and potentially contribute to faithful human brain development.
Collapse
|
7
|
Réthelyi JM, Vincze K, Schall D, Glennon J, Berkel S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders - Evidence from human neuronal cell models. Neurosci Biobehav Rev 2023; 153:105330. [PMID: 37516219 DOI: 10.1016/j.neubiorev.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signalling play a central role in the development and maintenance of neurons in the brain, and human neurodevelopmental as well as neuropsychiatric disorders have been linked to impaired insulin and IGF1 signalling. This review focuses on the impairments of the insulin and IGF1 signalling cascade in the context of neurodevelopmental and neuropsychiatric disorders, based on evidence from human neuronal cell models. Clear evidence was obtained for impaired insulin and IGF1 receptor downstream signalling in neurodevelopmental disorders, while the evidence for its role in neuropsychiatric disorders was less substantial. Human neuronal model systems can greatly add to our knowledge about insulin/IGF1 signalling in the brain, its role in restoring dendritic maturity, and complement results from clinical studies and animal models. Moreover, they represent a useful model for the development of new therapeutic strategies. Further research is needed to systematically investigate the exact role of the insulin/IGF1 signalling cascades in neurodevelopmental and neuropsychiatric disorders, and to elucidate the respective therapeutic implications.
Collapse
Affiliation(s)
- János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Katalin Vincze
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dorothea Schall
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Neurosciences (IZN), Heidelberg University, Germany.
| |
Collapse
|
8
|
Edwards N, Combrinck C, McCaughey-Chapman A, Connor B. Directly reprogrammed fragile X syndrome dorsal forebrain precursor cells generate cortical neurons exhibiting impaired neuronal maturation. Front Cell Neurosci 2023; 17:1254412. [PMID: 37810261 PMCID: PMC10552551 DOI: 10.3389/fncel.2023.1254412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The neurodevelopmental disorder fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability associated with autism spectrum disorder. Inaccessibility to developing human brain cells is a major barrier to studying FXS. Direct-to-neural precursor reprogramming provides a unique platform to investigate the developmental profile of FXS-associated phenotypes throughout neural precursor and neuron generation, at a temporal resolution not afforded by post-mortem tissue and in a patient-specific context not represented in rodent models. Direct reprogramming also circumvents the protracted culture times and low efficiency of current induced pluripotent stem cell strategies. Methods We have developed a chemically modified mRNA (cmRNA) -based direct reprogramming protocol to generate dorsal forebrain precursors (hiDFPs) from FXS patient-derived fibroblasts, with subsequent differentiation to glutamatergic cortical neurons and astrocytes. Results We observed differential expression of mature neuronal markers suggesting impaired neuronal development and maturation in FXS- hiDFP-derived neurons compared to controls. FXS- hiDFP-derived cortical neurons exhibited dendritic growth and arborization deficits characterized by reduced neurite length and branching consistent with impaired neuronal maturation. Furthermore, FXS- hiDFP-derived neurons exhibited a significant decrease in the density of pre- and post- synaptic proteins and reduced glutamate-induced calcium activity, suggesting impaired excitatory synapse development and functional maturation. We also observed a reduced yield of FXS- hiDFP-derived neurons with a significant increase in FXS-affected astrocytes. Discussion This study represents the first reported derivation of FXS-affected cortical neurons following direct reprogramming of patient fibroblasts to dorsal forebrain precursors and subsequently neurons that recapitulate the key molecular hallmarks of FXS as it occurs in human tissue. We propose that direct to hiDFP reprogramming provides a unique platform for further study into the pathogenesis of FXS as well as the identification and screening of new drug targets for the treatment of FXS.
Collapse
Affiliation(s)
| | | | | | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Filandrova R, Douglas P, Zhan X, Verhey TB, Morrissy S, Turner RW, Schriemer DC. Mouse Model of Fragile X Syndrome Analyzed by Quantitative Proteomics: A Comparison of Methods. J Proteome Res 2023; 22:3054-3067. [PMID: 37595185 DOI: 10.1021/acs.jproteome.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Multiple methods for quantitative proteomics are available for proteome profiling. It is unclear which methods are most useful in situations involving deep proteome profiling and the detection of subtle distortions in the proteome. Here, we compared the performance of seven different strategies in the analysis of a mouse model of Fragile X Syndrome, involving the knockout of the fmr1 gene that is the leading cause of autism spectrum disorder. Focusing on the cerebellum, we show that data-independent acquisition (DIA) and the tandem mass tag (TMT)-based real-time search method (RTS) generated the most informative profiles, generating 334 and 329 significantly altered proteins, respectively, although the latter still suffered from ratio compression. Label-free methods such as BoxCar and a conventional data-dependent acquisition were too noisy to generate a reliable profile, while TMT methods that do not invoke RTS showed a suppressed dynamic range. The TMT method using the TMTpro reagents together with complementary ion quantification (ProC) overcomes ratio compression, but current limitations in ion detection reduce sensitivity. Overall, both DIA and RTS uncovered known regulators of the syndrome and detected alterations in calcium signaling pathways that are consistent with calcium deregulation recently observed in imaging studies. Data are available via ProteomeXchange with the identifier PXD039885.
Collapse
Affiliation(s)
- Ruzena Filandrova
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Pauline Douglas
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiaoqin Zhan
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Theodore B Verhey
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Sorana Morrissy
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Raymond W Turner
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
10
|
Talvio K, Wagner VA, Minkeviciene R, Kirkwood JS, Kulinich AO, Umemori J, Bhatia A, Hur M, Käkelä R, Ethell IM, Castrén ML. An iPSC-derived astrocyte model of fragile X syndrome exhibits dysregulated cholesterol homeostasis. Commun Biol 2023; 6:789. [PMID: 37516746 PMCID: PMC10387075 DOI: 10.1038/s42003-023-05147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Cholesterol is an essential membrane structural component and steroid hormone precursor, and is involved in numerous signaling processes. Astrocytes regulate brain cholesterol homeostasis and they supply cholesterol to the needs of neurons. ATP-binding cassette transporter A1 (ABCA1) is the main cholesterol efflux transporter in astrocytes. Here we show dysregulated cholesterol homeostasis in astrocytes generated from human induced pluripotent stem cells (iPSCs) derived from males with fragile X syndrome (FXS), which is the most common cause of inherited intellectual disability. ABCA1 levels are reduced in FXS human and mouse astrocytes when compared with controls. Accumulation of cholesterol associates with increased desmosterol and polyunsaturated phospholipids in the lipidome of FXS mouse astrocytes. Abnormal astrocytic responses to cytokine exposure together with altered anti-inflammatory and cytokine profiles of human FXS astrocyte secretome suggest contribution of inflammatory factors to altered cholesterol homeostasis. Our results demonstrate changes of astrocytic lipid metabolism, which can critically regulate membrane properties and affect cholesterol transport in FXS astrocytes, providing target for therapy in FXS.
Collapse
Affiliation(s)
- Karo Talvio
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victoria A Wagner
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Rimante Minkeviciene
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Anna O Kulinich
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Juzoh Umemori
- Gene and Cell Technology, A.I.Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Anil Bhatia
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA, USA
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, HiLIPID, Helsinki Institute of Life Science, HiLIFE, Biocenter Finland (Metabolomics), and Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Iryna M Ethell
- Division of Biomedical Sciences, and Neuroscience Graduate Program, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
D'Antoni C, Mautone L, Sanchini C, Tondo L, Grassmann G, Cidonio G, Bezzi P, Cordella F, Di Angelantonio S. Unlocking Neural Function with 3D In Vitro Models: A Technical Review of Self-Assembled, Guided, and Bioprinted Brain Organoids and Their Applications in the Study of Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2023; 24:10762. [PMID: 37445940 DOI: 10.3390/ijms241310762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara D'Antoni
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lorenza Mautone
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Caterina Sanchini
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Lucrezia Tondo
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Greta Grassmann
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, 1011 Lausanne, Switzerland
| | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
- Center for Life Nano- and Neuro-Science of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- D-Tails s.r.l., 00165 Rome, Italy
| |
Collapse
|
12
|
Ren B, Burkovetskaya M, Jung Y, Bergdolt L, Totusek S, Martinez-Cerdeno V, Stauch K, Korade Z, Dunaevsky A. Dysregulated cholesterol metabolism, aberrant excitability and altered cell cycle of astrocytes in fragile X syndrome. Glia 2023; 71:1176-1196. [PMID: 36594399 PMCID: PMC10023374 DOI: 10.1002/glia.24331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Fragile X syndrome (FXS), the most prevalent heritable form of intellectual disability, is caused by the transcriptional silencing of the FMR1 gene. While neuronal contribution to FXS has been extensively studied in both animal and human-based models of FXS, the roles of astrocytes, a type of glial cells in the brain, are largely unknown. Here, we generated a human-based FXS model via differentiation of astrocytes from human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) and characterized their development, function, and proteomic profiles. We identified shortened cell cycle, enhanced Ca2+ signaling, impaired sterol biosynthesis, and pervasive alterations in the proteome of FXS astrocytes. Our work identified astrocytic impairments that could contribute to the pathogenesis of FXS and highlight astrocytes as a novel therapeutic target for FXS treatment.
Collapse
Affiliation(s)
- Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maria Burkovetskaya
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yoosun Jung
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lara Bergdolt
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steven Totusek
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Veronica Martinez-Cerdeno
- Department of Pathology and Laboratory Medicine, MIND Institute, and Institute for Pediatric Regenerative Medicine at UC Davis School of Medicine, and Shriners Hospitals for Children of Northern California, Sacramento, California, USA
| | - Kelly Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Zeljka Korade
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pediatrics, CHRI, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anna Dunaevsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
13
|
Gao MM, Shi H, Yan HJ, Long YS. Proteome profiling of the prefrontal cortex of Fmr1 knockout mouse reveals enhancement of complement and coagulation cascades. J Proteomics 2023; 274:104822. [PMID: 36646274 DOI: 10.1016/j.jprot.2023.104822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Fragile X mental retardation protein (FMRP) deficit resulted from mutations in its encoded fragile X mental retardation 1 (Fmr1) gene is a common inherited cause of Fragile X syndrome (FXS) characterized by intellectual disability and autism spectrum disorder (ASD). The FMRP absence-induced altered gene expression in prefrontal cortex (PFC) are associated with autistic behaviors. However, there lacks a large-scale protein profiling in the PFC upon loss of FMRP. This study used a TMT-labeled proteomic analysis to identify a protein profile of the PFC in the Fmr1 knockout mouse. A total of 5886 proteins were identified in the PFC with 100 differentially abundant proteins (DAPs) in response to FMRP deficiency. Bioinformatical analyses showed that these DAPs were mostly enriched in immune system, extracellular part and complement and coagulation cascades. The complement and coagulation cascades include 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG), which are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis linked to activation of immune and inflammatory responses. Thus, our data provide an altered protein profile upon loss of FMRP in the PFC, and suggest that the enhancement of complement and coagulation cascades might contribute to etiological and pathogenic roles of ASD in FXS. SIGNIFICANCE: The etiology of autism spectrum disorder (ASD), a group of neurobiological disorders characterized by deficits in social interaction barriers and other abnormal behaviors, is still elusive. Autistic-like phenotypes are present in both Fragile X syndrome (FXS) patients and FMRP-deficiency FXS models. Given that prefrontal cortex is a critical brain area for social interaction, the FMRP absence induced-changes of a subset of proteins might contribute to ASD in FXS. Using a comprehensive proteomic analysis, this study provides a prefrontal protein profile of the FMRP-absent mouse with a total of 100 differentially abundant proteins (DAPs). Bioinformatic analyses suggest that these DAPs are mainly involved in the regulations of immune system and complement and coagulation cascades. We also show that 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG) in the complement and coagulation cascades are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis regarding dysregulation of immune and inflammatory responses in the prefrontal cortex. Therefore, this study suggests that these FMRP-deficient DAPs in the prefrontal cortex might contribute to the etiology and pathogenesis of ASD in FXS.
Collapse
Affiliation(s)
- Mei-Mei Gao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hang Shi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hua-Juan Yan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yue-Sheng Long
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
14
|
Cencelli G, Pacini L, De Luca A, Messia I, Gentile A, Kang Y, Nobile V, Tabolacci E, Jin P, Farace MG, Bagni C. Age-Dependent Dysregulation of APP in Neuronal and Skin Cells from Fragile X Individuals. Cells 2023; 12:758. [PMID: 36899894 PMCID: PMC10000963 DOI: 10.3390/cells12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.
Collapse
Affiliation(s)
- Giulia Cencelli
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Anastasia De Luca
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilenia Messia
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonietta Gentile
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, 00166 Rome, Italy
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Veronica Nobile
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Elisabetta Tabolacci
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
15
|
Nishanth MJ, Jha S. Genome-wide landscape of RNA-binding protein (RBP) networks as potential molecular regulators of psychiatric co-morbidities: a computational analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Psychiatric disorders are a major burden on global health. These illnesses manifest as co-morbid conditions, further complicating the treatment. There is a limited understanding of the molecular and regulatory basis of psychiatric co-morbidities. The existing research in this regard has largely focused on epigenetic modulators, non-coding RNAs, and transcription factors. RNA-binding proteins (RBPs) functioning as multi-protein complexes are now known to be predominant controllers of multiple gene regulatory processes. However, their involvement in gene expression dysregulation in psychiatric co-morbidities is yet to be understood.
Results
Ten RBPs (QKI, ELAVL2, EIF2S1, SRSF3, IGF2BP2, EIF4B, SNRNP70, FMR1, DAZAP1, and MBNL1) were identified to be associated with psychiatric disorders such as schizophrenia, major depression, and bipolar disorders. Analysis of transcriptomic changes in response to individual depletion of these RBPs showed the potential influence of a large number of RBPs driving differential gene expression, suggesting functional cross-talk giving rise to multi-protein networks. Subsequent transcriptome analysis of post-mortem human brain samples from diseased and control individuals also suggested the involvement of ~ 100 RBPs influencing gene expression changes. These RBPs were found to regulate various processes including transcript splicing, mRNA transport, localization, stability, and translation. They were also found to form an extensive interactive network. Further, hnRNP, SRSF, and PCBP family RBPs, Matrin3, U2AF2, KHDRBS1, PTBP1, and also PABPN1 were found to be the hub proteins of the RBP network.
Conclusions
Extensive RBP networks involving a few hub proteins could result in transcriptome-wide dysregulation of post-transcriptional modifications, potentially driving multiple psychiatric disorders. Understanding the functional involvement of RBP networks in psychiatric disorders would provide insights into the molecular basis of psychiatric co-morbidities.
Collapse
|
16
|
Krzisch MA, Wu H, Yuan B, Whitfield TW, Liu XS, Fu D, Garrett-Engele CM, Khalil AS, Lungjangwa T, Shih J, Chang AN, Warren S, Cacace A, Andrykovich KR, Rietjens RGJ, Wallace O, Sur M, Jain B, Jaenisch R. Fragile X Syndrome Patient-Derived Neurons Developing in the Mouse Brain Show FMR1-Dependent Phenotypes. Biol Psychiatry 2023; 93:71-81. [PMID: 36372569 DOI: 10.1016/j.biopsych.2022.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.
Collapse
Affiliation(s)
- Marine A Krzisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts.
| | - Hao Wu
- Full Circles Therapeutics, Inc., Cambridge, Massachusetts
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - X Shawn Liu
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York
| | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | | | - Andrew S Khalil
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Jennifer Shih
- Picower Institute for Learning and Memory, Cambridge, Massachusetts
| | | | - Stephen Warren
- Departments of Human Genetics, Biochemistry, and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | | | | | | | | | - Mriganka Sur
- Picower Institute for Learning and Memory, Cambridge, Massachusetts
| | - Bhav Jain
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
17
|
Talvio K, Minkeviciene R, Townsley KG, Achuta VS, Huckins LM, Corcoran P, Brennand KJ, Castrén ML. Reduced LYNX1 expression in transcriptome of human iPSC-derived neural progenitors modeling fragile X syndrome. Front Cell Dev Biol 2022; 10:1034679. [PMID: 36506088 PMCID: PMC9731341 DOI: 10.3389/fcell.2022.1034679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Lack of FMR1 protein results in fragile X syndrome (FXS), which is the most common inherited intellectual disability syndrome and serves as an excellent model disease to study molecular mechanisms resulting in neuropsychiatric comorbidities. We compared the transcriptomes of human neural progenitors (NPCs) generated from patient-derived induced pluripotent stem cells (iPSCs) of three FXS and three control male donors. Altered expression of RAD51C, PPIL3, GUCY1A2, MYD88, TRAPPC4, LYNX1, and GTF2A1L in FXS NPCs suggested changes related to triplet repeat instability, RNA splicing, testes development, and pathways previously shown to be affected in FXS. LYNX1 is a cholinergic brake of tissue plasminogen activator (tPA)-dependent plasticity, and its reduced expression was consistent with augmented tPA-dependent radial glial process growth in NPCs derived from FXS iPSC lines. There was evidence of human iPSC line donor-dependent variation reflecting potentially phenotypic variation. NPCs derived from an FXS male with concomitant epilepsy expressed differently several epilepsy-related genes, including genes shown to cause the auditory epilepsy phenotype in the murine model of FXS. Functional enrichment analysis highlighted regulation of insulin-like growth factor pathway in NPCs modeling FXS with epilepsy. Our results demonstrated potential of human iPSCs in disease modeling for discovery and development of therapeutic interventions by showing early gene expression changes in FXS iPSC-derived NPCs consistent with the known pathophysiological changes in FXS and by revealing disturbed FXS progenitor growth linked to reduced expression of LYNX1, suggesting dysregulated cholinergic system.
Collapse
Affiliation(s)
- Karo Talvio
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rimante Minkeviciene
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kayla G. Townsley
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Laura M. Huckins
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kristen J. Brennand
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Division of Molecular Psychiatry, Department of Psychiatry, Yale University, New Haven, CT, United States,Department of Genetics, Yale University, New Haven, CT, United States
| | - Maija L. Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland,*Correspondence: Maija L. Castrén,
| |
Collapse
|
18
|
Kuznitsov-Yanovsky L, Shapira G, Gildin L, Shomron N, Ben-Yosef D. Transcriptomic Analysis of Human Fragile X Syndrome Neurons Reveals Neurite Outgrowth Modulation by the TGFβ/BMP Pathway. Int J Mol Sci 2022; 23:ijms23169278. [PMID: 36012539 PMCID: PMC9409179 DOI: 10.3390/ijms23169278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
Fragile X Syndrome (FXS) is the main genetic reason for intellectual disability and is caused by the silencing of fragile X mental retardation protein (FMRP), an RNA-binding protein regulating the translation of many neuronal mRNAs. Neural differentiation of FX human embryonic stem cells (hESC) mimics the neurodevelopment of FXS fetuses and thus serves as a good model to explore the mechanisms underlining the development of FXS. Isogenic hESC clones with and without the FX mutation that share the same genetic background were in vitro differentiated into neurons, and their transcriptome was analyzed by RNA sequencing. FX neurons inactivating FMR1 expression presented delayed neuronal development and maturation, concomitant with dysregulation of the TGFβ/BMP signaling pathway, and genes related to the extracellular matrix. Migration assay showed decreased neurite outgrowth in FX neurons that was rescued by inhibition of the TGFβ/BMP signaling pathway. Our results provide new insights into the molecular pathway by which loss of FMRP affects neuronal network development. In FX neurons, the lack of FMRP dysregulates members of the BMP signaling pathway associated with ECM organization which, in a yet unknown mechanism, reduces the guidance of axonal growth cones, probably leading to the aberrant neuronal network function seen in FXS.
Collapse
Affiliation(s)
- Liron Kuznitsov-Yanovsky
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital Tel-Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Lital Gildin
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital Tel-Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital Tel-Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
19
|
Donnard E, Shu H, Garber M. Single cell transcriptomics reveals dysregulated cellular and molecular networks in a fragile X syndrome model. PLoS Genet 2022; 18:e1010221. [PMID: 35675353 PMCID: PMC9212148 DOI: 10.1371/journal.pgen.1010221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/21/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding the pathophysiology of Fragile X syndrome (FXS), its molecular basis is still poorly understood. Whole brain tissue expression profiles have proved surprisingly uninformative, therefore we applied single cell RNA sequencing to profile an FMRP deficient mouse model with higher resolution. We found that the absence of FMRP results in highly cell type specific gene expression changes that are strongest among specific neuronal types, where FMRP-bound mRNAs were prominently downregulated. Metabolic pathways including translation and respiration are significantly upregulated across most cell types with the notable exception of excitatory neurons. These effects point to a potential difference in the activity of mTOR pathways, and together with other dysregulated pathways, suggest an excitatory-inhibitory imbalance in the Fmr1-knock out cortex that is exacerbated by astrocytes. Our data demonstrate that FMRP loss affects abundance of key cellular communication genes that potentially affect neuronal synapses and provide a resource for interrogating the biological basis of this disorder. Fragile X syndrome is a leading genetic cause of inherited intellectual disability and autism spectrum disorder. It results from the inactivation of a single gene, FMR1 and hence the loss of its encoded protein FMRP. Despite decades of intensive research, we still lack an overview of the molecular and biological consequences of the disease. Using single cell RNA sequencing, we profiled cells from the brain of healthy mice and of knock-out mice lacking the FMRP protein, a common model for this disease, to identify molecular changes that happen across different cell types. We find neurons are the most impacted cell type, where genes in multiple pathways are similarly impacted. This includes transcripts known to be bound by FMRP, which are collectively decreased only in neurons but not in other cell types. Our results show how the loss of FMRP affects the intricate interactions between different brain cell types, which could provide new perspectives to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| |
Collapse
|
20
|
Lee A, Xu J, Wen Z, Jin P. Across Dimensions: Developing 2D and 3D Human iPSC-Based Models of Fragile X Syndrome. Cells 2022; 11:1725. [PMID: 35681419 PMCID: PMC9179297 DOI: 10.3390/cells11111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism spectrum disorder. FXS is caused by a cytosine-guanine-guanine (CGG) trinucleotide repeat expansion in the untranslated region of the FMR1 gene leading to the functional loss of the gene's protein product FMRP. Various animal models of FXS have provided substantial knowledge about the disorder. However, critical limitations exist in replicating the pathophysiological mechanisms. Human induced pluripotent stem cells (hiPSCs) provide a unique means of studying the features and processes of both normal and abnormal human neurodevelopment in large sample quantities in a controlled setting. Human iPSC-based models of FXS have offered a better understanding of FXS pathophysiology specific to humans. This review summarizes studies that have used hiPSC-based two-dimensional cellular models of FXS to reproduce the pathology, examine altered gene expression and translation, determine the functions and targets of FMRP, characterize the neurodevelopmental phenotypes and electrophysiological features, and, finally, to reactivate FMR1. We also provide an overview of the most recent studies using three-dimensional human brain organoids of FXS and end with a discussion of current limitations and future directions for FXS research using hiPSCs.
Collapse
Affiliation(s)
- Azalea Lee
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA;
- MD/PhD Program, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jie Xu
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA;
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
21
|
McCready FP, Gordillo-Sampedro S, Pradeepan K, Martinez-Trujillo J, Ellis J. Multielectrode Arrays for Functional Phenotyping of Neurons from Induced Pluripotent Stem Cell Models of Neurodevelopmental Disorders. BIOLOGY 2022; 11:316. [PMID: 35205182 PMCID: PMC8868577 DOI: 10.3390/biology11020316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
In vitro multielectrode array (MEA) systems are increasingly used as higher-throughput platforms for functional phenotyping studies of neurons in induced pluripotent stem cell (iPSC) disease models. While MEA systems generate large amounts of spatiotemporal activity data from networks of iPSC-derived neurons, the downstream analysis and interpretation of such high-dimensional data often pose a significant challenge to researchers. In this review, we examine how MEA technology is currently deployed in iPSC modeling studies of neurodevelopmental disorders. We first highlight the strengths of in vitro MEA technology by reviewing the history of its development and the original scientific questions MEAs were intended to answer. Methods of generating patient iPSC-derived neurons and astrocytes for MEA co-cultures are summarized. We then discuss challenges associated with MEA data analysis in a disease modeling context, and present novel computational methods used to better interpret network phenotyping data. We end by suggesting best practices for presenting MEA data in research publications, and propose that the creation of a public MEA data repository to enable collaborative data sharing would be of great benefit to the iPSC disease modeling community.
Collapse
Affiliation(s)
- Fraser P. McCready
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (F.P.M.); (S.G.-S.)
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sara Gordillo-Sampedro
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (F.P.M.); (S.G.-S.)
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kartik Pradeepan
- Department of Physiology and Pharmacology, Department of Psychiatry, Robarts Research and Brain and Mind Institutes, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada; (K.P.); (J.M.-T.)
| | - Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Department of Psychiatry, Robarts Research and Brain and Mind Institutes, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada; (K.P.); (J.M.-T.)
| | - James Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (F.P.M.); (S.G.-S.)
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
22
|
Impaired Functional Connectivity Underlies Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23042048. [PMID: 35216162 PMCID: PMC8878121 DOI: 10.3390/ijms23042048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by a developmentally regulated silencing of the FMR1 gene, but its effect on human neuronal network development and function is not fully understood. Here, we isolated isogenic human embryonic stem cell (hESC) subclones—one with a full FX mutation and one that is free of the mutation (control) but shares the same genetic background—differentiated them into induced neurons (iNs) by forced expression of NEUROG-1, and compared the functional properties of the derived neuronal networks. High-throughput image analysis demonstrates that FX-iNs have significantly smaller cell bodies and reduced arborizations than the control. Both FX- and control-neurons can discharge repetitive action potentials, and FX neuronal networks are also able to generate spontaneous excitatory synaptic currents with slight differences from the control, demonstrating that iNs generate more mature neuronal networks than the previously used protocols. MEA analysis demonstrated that FX networks are hyperexcitable with significantly higher spontaneous burst-firing activity compared to the control. Most importantly, cross-correlation analysis enabled quantification of network connectivity to demonstrate that the FX neuronal networks are significantly less synchronous than the control, which can explain the origin of the development of intellectual dysfunction associated with FXS.
Collapse
|
23
|
Zhang A, Sokolova I, Domissy A, Davis J, Rao L, Hana Utami K, Wang Y, Hagerman RJ, Pouladi MA, Sanna P, Boland MJ, Loring JF. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:613-629. [PMID: 35556144 PMCID: PMC9216490 DOI: 10.1093/stcltm/szac022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/25/2022] [Indexed: 12/03/2022] Open
Abstract
Fragile X Syndrome (FXS), the leading monogenic cause of intellectual disability and autism spectrum disorder, is caused by expansion of a CGG trinucleotide repeat in the 5ʹ-UTR of the Fragile X Mental Retardation-1 (FMR1) gene. Epigenetic silencing of FMR1 results in loss of the Fragile X Mental Retardation Protein (FMRP). Although most studies to date have focused on excitatory neurons, recent evidence suggests that GABAergic inhibitory networks are also affected. To investigate human GABAergic neurogenesis, we established a method to reproducibly derive inhibitory neurons from multiple FXS and control human pluripotent stem cell (hPSC) lines. Electrophysiological analyses suggested that the developing FXS neurons had a delay in the GABA functional switch, a transition in fetal development that converts the GABAA channel’s function from depolarization to hyperpolarization, with profound effects on the developing brain. To investigate the cause of this delay, we analyzed 14 400 single-cell transcriptomes from FXS and control cells at 2 stages of GABAergic neurogenesis. While control and FXS cells were similar at the earlier time point, the later-stage FXS cells retained expression of neuroblast proliferation-associated genes and had lower levels of genes associated with action potential regulation, synapses, and mitochondria compared with controls. Our analysis suggests that loss of FMRP prolongs the proliferative stage of progenitors, which may result in more neurons remaining immature during the later stages of neurogenesis. This could have profound implications for homeostatic excitatory-inhibitory circuit development in FXS, and suggests a novel direction for understanding disease mechanisms that may help to guide therapeutic interventions.
Collapse
Affiliation(s)
- Ai Zhang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
- Aspen Neuroscience, Inc.San Diego, CA, USA
| | - Irina Sokolova
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Alain Domissy
- Center for Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Joshua Davis
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Lee Rao
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, CA, USA
| | - Kagistia Hana Utami
- Department of Physiology, National University of Singapore, Singapore
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yanling Wang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Mahmoud A Pouladi
- Department of Physiology, National University of Singapore, Singapore
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
- British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Pietro Sanna
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jeanne F Loring
- Corresponding author: Jeanne F. Loring, Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA;
| |
Collapse
|
24
|
Panov J, Kaphzan H. Angelman Syndrome and Angelman-like Syndromes Share the Same Calcium-Related Gene Signatures. Int J Mol Sci 2021; 22:9870. [PMID: 34576033 PMCID: PMC8469403 DOI: 10.3390/ijms22189870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Angelman-like syndromes are a group of neurodevelopmental disorders that entail clinical presentation similar to Angelman Syndrome (AS). In our previous study, we showed that calcium signaling is disrupted in AS, and we identified calcium-target and calcium-regulating gene signatures that are able to differentiate between AS and their controls in different models. In the herein study, we evaluated these sets of calcium-target and calcium-regulating genes as signatures of AS-like and non-AS-like syndromes. We collected a number of RNA-seq datasets of various AS-like and non-AS-like syndromes and performed Principle Component Analysis (PCA) separately on the two sets of signature genes to visualize the distribution of samples on the PC1-PC2 plane. In addition to the evaluation of calcium signature genes, we performed differential gene expression analyses to identify calcium-related genes dysregulated in each of the studied syndromes. These analyses showed that the calcium-target and calcium-regulating signatures differentiate well between AS-like syndromes and their controls. However, in spite of the fact that many of the non-AS-like syndromes have multiple differentially expressed calcium-related genes, the calcium signatures were not efficient classifiers for non-AS-like neurodevelopmental disorders. These results show that features based on clinical presentation are reflected in signatures derived from bioinformatics analyses and suggest the use of bioinformatics as a tool for classification.
Collapse
Affiliation(s)
| | - Hanoch Kaphzan
- Laboratory for Neurobiology of Psychiatric Disorders, Sagol Department of Neurobiology, University of Haifa, Haifa 3498838, Israel;
| |
Collapse
|
25
|
Peteri UK, Pitkonen J, de Toma I, Nieminen O, Utami KH, Strandin TM, Corcoran P, Roybon L, Vaheri A, Ethell I, Casarotto P, Pouladi MA, Castrén ML. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia 2021; 69:2947-2962. [PMID: 34427356 DOI: 10.1002/glia.24080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
The function of astrocytes intertwines with the extracellular matrix, whose neuron and glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities have been reported in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We compared human FXS and control astrocytes generated from human induced pluripotent stem cells and we found increased expression of urokinase plasminogen activator (uPA), which modulates degradation of extracellular matrix. Several pathways associated with uPA and its receptor function were activated in FXS astrocytes. Levels of uPA were also increased in conditioned medium collected from FXS hiPSC-derived astrocyte cultures and correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB within the docking site for the phospholipase-Cγ1 (PLCγ1), indicating effects of uPA on neuronal plasticity. Gene expression changes during neuronal differentiation preceding astrogenesis likely contributed to properties of astrocytes with FXS-specific alterations that showed specificity by not affecting differentiation of adenosine triphosphate (ATP)-responsive astrocyte population. To conclude, our studies identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.
Collapse
Affiliation(s)
- Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho Pitkonen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilario de Toma
- Systems Neurobiology Laboratory, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Otso Nieminen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kagistia Hana Utami
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore
| | - Tomas M Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, and MultiPark and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iryna Ethell
- Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | | | - Mahmoud A Pouladi
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Sahni G, Chang S, Meng JTC, Tan JZY, Fatien JJC, Bonnard C, Utami KH, Chan PW, Tan TT, Altunoglu U, Kayserili H, Pouladi M, Reversade B, Toh Y. A Micropatterned Human-Specific Neuroepithelial Tissue for Modeling Gene and Drug-Induced Neurodevelopmental Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001100. [PMID: 33717833 PMCID: PMC7927627 DOI: 10.1002/advs.202001100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/22/2020] [Indexed: 05/05/2023]
Abstract
The generation of structurally standardized human pluripotent stem cell (hPSC)-derived neural embryonic tissues has the potential to model genetic and environmental mediators of early neurodevelopmental defects. Current neural patterning systems have so far focused on directing cell fate specification spatio-temporally but not morphogenetic processes. Here, the formation of a structurally reproducible and highly-organized neuroepithelium (NE) tissue is directed from hPSCs, which recapitulates morphogenetic cellular processes relevant to early neurulation. These include having a continuous, polarized epithelium and a distinct invagination-like folding, where primitive ectodermal cells undergo E-to-N-cadherin switching and apical constriction as they acquire a NE fate. This is accomplished by spatio-temporal patterning of the mesoendoderm, which guides the development and self-organization of the adjacent primitive ectoderm into the NE. It is uncovered that TGFβ signaling emanating from endodermal cells support tissue folding of the prospective NE. Evaluation of NE tissue structural dysmorphia, which is uniquely achievable in the model, enables the detection of apical constriction and cell adhesion dysfunctions in patient-derived hPSCs as well as differentiating between different classes of neural tube defect-inducing drugs.
Collapse
Affiliation(s)
- Geetika Sahni
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Shu‐Yung Chang
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation & Technology (iHealthTech)National University of SingaporeSingapore117599Singapore
| | - Jeremy Teo Choon Meng
- Divison of EngineeringNew York UniversityAbu Dhabi129188United Arab Emirates
- Department of Mechanical EngineeringNew York UniversityNew YorkNY11201USA
| | - Jerome Zu Yao Tan
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Jean Jacques Clement Fatien
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
| | - Carine Bonnard
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine (TLGM)Agency for Science, Technology, and Research (A*STAR)Singapore138648Singapore
| | - Puck Wee Chan
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
| | - Thong Teck Tan
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
| | - Umut Altunoglu
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
| | - Hülya Kayserili
- Istanbul Medical FacultyMedical Genetics DepartmentIstanbul34093Turkey
- Koç University School of MedicineMedical Genetics DepartmentIstanbul34010Turkey
| | - Mahmoud Pouladi
- Translational Laboratory in Genetic Medicine (TLGM)Agency for Science, Technology, and Research (A*STAR)Singapore138648Singapore
- Department of MedicineNational University of SingaporeSingapore119228Singapore
| | - Bruno Reversade
- Institute of Medical BiologyHuman Genetics and Embryology LaboratoryA*STARSingapore138648Singapore
- Koç University School of MedicineMedical Genetics DepartmentIstanbul34010Turkey
- Institute of Molecular and Cellular BiologyA*STARSingapore138673Singapore
- Amsterdam Reproduction and DevelopmentAcademic Medical Centre and VU University Medical CenterAmsterdam1105the Netherlands
- National University of SingaporeDepartment of PediatricsSingapore119228Singapore
| | - Yi‐Chin Toh
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore119077Singapore
- Institute for Health Innovation & Technology (iHealthTech)National University of SingaporeSingapore117599Singapore
- The N.1 Institute for HealthNational University of SingaporeSingapore117456Singapore
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyBrisbaneQueensland4000Australia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQueensland4059Australia
| |
Collapse
|
27
|
Patient-Derived Induced Pluripotent Stem Cells (iPSCs) and Cerebral Organoids for Drug Screening and Development in Autism Spectrum Disorder: Opportunities and Challenges. Pharmaceutics 2021; 13:pharmaceutics13020280. [PMID: 33669772 PMCID: PMC7922555 DOI: 10.3390/pharmaceutics13020280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorder (ASD) represents a group of neurodevelopmental diseases characterized by persistent deficits in social communication, interaction, and repetitive patterns of behaviors, interests, and activities. The etiopathogenesis is multifactorial with complex interactions between genetic and environmental factors. The clinical heterogeneity and complex etiology of this pediatric disorder have limited the development of pharmacological therapies. The major limit to ASD research remains a lack of relevant human disease models which can faithfully recapitulate key features of the human pathology and represent its genetic heterogeneity. Recent advances in induced pluripotent stem cells (iPSCs), reprogrammed from somatic cells of patients into all types of patient-specific neural cells, have provided a promising cellular tool for disease modeling and development of novel drug treatments. The iPSCs technology allowed not only a better investigation of the disease etiopathogenesis but also opened up the potential for personalized therapies and offered new opportunities for drug discovery, pharmacological screening, and toxicity assessment. Moreover, iPSCs can be differentiated and organized into three-dimensional (3D) organoids, providing a model which mimics the complexity of the brain’s architecture and more accurately recapitulates tissue- and organ-level disease pathophysiology. The aims of this review were to describe the current state of the art of the use of human patient-derived iPSCs and brain organoids in modeling ASD and developing novel therapeutic strategies and to discuss the opportunities and major challenges in this rapidly moving field.
Collapse
|
28
|
Generation of the Human Pluripotent Stem-Cell-Derived Astrocyte Model with Forebrain Identity. Brain Sci 2021; 11:brainsci11020209. [PMID: 33572154 PMCID: PMC7914711 DOI: 10.3390/brainsci11020209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 02/04/2023] Open
Abstract
Astrocytes form functionally and morphologically distinct populations of cells with brain-region-specific properties. Human pluripotent stem cells (hPSCs) offer possibilities to generate astroglia for studies investigating mechanisms governing the emergence of astrocytic diversity. We established a method to generate human astrocytes from hPSCs with forebrain patterning and final specification with ciliary neurotrophic factor (CNTF). Transcriptome profiling and gene enrichment analysis monitored the sequential expression of genes determining astrocyte differentiation and confirmed activation of forebrain differentiation pathways at Day 30 (D30) and D60 of differentiation in vitro. More than 90% of astrocytes aged D95 in vitro co-expressed the astrocytic markers glial fibrillary acidic protein (GFAP) and S100β. Intracellular calcium responses to ATP indicated differentiation of the functional astrocyte population with constitutive monocyte chemoattractant protein-1 (MCP-1/CCL2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) expression. The method was reproducible across several hPSC lines, and the data demonstrated the usefulness of forebrain astrocyte modeling in research investigating forebrain pathology.
Collapse
|
29
|
Wang JY. Using an Isogenic Human Pluripotent Stem Cell Model for Better Understanding Neurodevelopmental Defects in Fragile X Syndrome. Biol Psychiatry 2020; 88:e25-e27. [PMID: 32854833 DOI: 10.1016/j.biopsych.2020.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Jun Yi Wang
- Center for Mind and Brain, University of California-Davis, Davis, California.
| |
Collapse
|
30
|
Utami KH, Yusof NABM, Kwa JE, Peteri UK, Castrén ML, Pouladi MA. Elevated de novo protein synthesis in FMRP-deficient human neurons and its correction by metformin treatment. Mol Autism 2020; 11:41. [PMID: 32460900 PMCID: PMC7251671 DOI: 10.1186/s13229-020-00350-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
FXS is the most common genetic cause of intellectual (ID) and autism spectrum disorders (ASD). FXS is caused by loss of FMRP, an RNA-binding protein involved in the translational regulation of a large number of neuronal mRNAs. Absence of FMRP has been shown to lead to elevated protein synthesis and is thought to be a major cause of the synaptic plasticity and behavioural deficits in FXS. The increase in protein synthesis results in part from abnormal activation of key protein translation pathways downstream of ERK1/2 and mTOR signalling. Pharmacological and genetic interventions that attenuate hyperactivation of these pathways can normalize levels of protein synthesis and improve phenotypic outcomes in animal models of FXS. Several efforts are currently underway to trial this strategy in patients with FXS. To date, elevated global protein synthesis as a result of FMRP loss has not been validated in the context of human neurons. Here, using an isogenic human stem cell-based model, we show that de novo protein synthesis is elevated in FMRP-deficient neural cells. We further show that this increase is associated with elevated ERK1/2 and Akt signalling and can be rescued by metformin treatment. Finally, we examined the effect of normalizing protein synthesis on phenotypic abnormalities in FMRP-deficient neural cells. We find that treatment with metformin attenuates the increase in proliferation of FMRP-deficient neural progenitor cells but not the neuronal deficits in neurite outgrowth. The elevated level of protein synthesis and the normalization of neural progenitor proliferation by metformin treatment were validated in additional control and FXS patient-derived hiPSC lines. Overall, our results validate that loss of FMRP results in elevated de novo protein synthesis in human neurons and suggest that approaches targeting this abnormality are likely to be of partial therapeutic benefit in FXS.
Collapse
Affiliation(s)
- Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore.
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Jing Eugene Kwa
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
| | - Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research, Singapore (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|