1
|
Corbett CM, Bozarth SL, West EA. Effects of sex and estrous cycle on action-outcome contingencies. Behav Brain Res 2024; 477:115317. [PMID: 39490537 DOI: 10.1016/j.bbr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Goal-directed and habitual-like behaviors are both necessary to efficiently and effectively navigate the environment. A dysregulation between these behaviors can lead to an overreliance on habitual-like behaviors and may contribute to symptoms experienced in some neuropsychiatric disorders such as substance use disorder. One behavioral task used to evaluate goal-directed and habitual-like behavior is an action-outcome task, contingency degradation, where an action (i.e., lever press) is degraded by decoupling the receipt of a reward from the action. However, little is known about how male and female rats and females across the estrous cycle respond during contingency degradation training and extinction testing. Here, we investigated how the variable of sex and estrous cycle influences contingency degradation training and extinction testing and the correlation between baseline anxiety-like behaviors and performance on contingency degradation extinction testing in adult male and female Long-Evans rats. We found that both males and females learned the contingency degradation task. However, during extinction testing, males respond more to the contingent lever than the non-contingent lever while females do not differ in their responses on the non-contingent and contingent levers. Lower baseline anxiety-like behavior predicted better performance on the contingency degradation test in males, but not females. Next, when we examined performance during extinction testing in females based on their estrous cycle stage on test day, we found that females in the proestrus and estrus stages of the estrous cycle do not differ in their responses on the non-contingent and contingent levers, while females in the metestrus and diestrus stages of the estrous cycle respond more on the contingent lever than the non-contingent lever on the extinction test day, similar to male rats. Our findings indicate that the estrous cycle influences how female rats respond during contingency degradation extinction testing that is dependent on their estrous cycle stage.
Collapse
Affiliation(s)
- Claire M Corbett
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ
| | - Samantha L Bozarth
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ
| | - Elizabeth A West
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ; Rowan-Virtua School of Osteopathic Medicine, Virtua Health College of Medicine and Life Sciences of Rowan University, Stratford, NJ.
| |
Collapse
|
2
|
Li J, Zhou Y, Yin F, Du Y, Xu J, Fan S, Li Z, Wang X, Shen Q, Zhu Y, Ma T. The Orbitofrontal Cortex to Striatal Cholinergic Interneuron Circuit Controls Cognitive Flexibility Shaping Alcohol-Seeking Behavior. Biol Psychiatry 2024:S0006-3223(24)01658-5. [PMID: 39396737 DOI: 10.1016/j.biopsych.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/31/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND A top-down neuronal circuit from the orbitofrontal cortex (OFC) to the dorsomedial striatum (DMS) appears to be critical for cognitive flexibility. However, how OFC projections to different types of neurons in the DMS control cognitive flexibility and contribute to substance seeking and use, which are relatively inflexible behaviors, remains unclear. METHODS Mice were trained on two-bottle choice and operant alcohol self-administration procedures. The cognitive flexibility of the mice was tested through a place discrimination task. Electrophysiology and in vivo optogenetics were used to test the function of neural circuits in alcohol-seeking behavior. RESULTS We depicted a connection from the OFC to striatal neurons and found that OFC afferents could elicit functional flexibility in striatal cholinergic interneurons (CINs). A mouse model of chronic alcohol consumption showed impaired cognitive flexibility and reduced burst-pause firing. The impairment of the OFC-DMS circuit resulted in a reduction in glutamatergic transmission in OFC-medium spiny neurons (MSNs) through a CIN-mediated pre-inhibition mechanism. Importantly, remodeling the OFC-DMS circuit by inducing LTP restored cognitive flexibility. Furthermore, CINs were responsible for the impact of remodeling of the OFC-DMS circuit on cognitive flexibility. This regulatory role of CINs preferentially facilitated the potentiation of glutamatergic transmission in D2 receptor-expressing medium spiny neurons (D2-MSNs) but not in D1-MSNs. Finally, activation of the OFC-CIN-D2-MSN circuit decreased alcohol-seeking behavior. CONCLUSIONS Improving OFC-CIN circuit-mediated cognitive flexibility may provide a novel strategy for treating uncontrolled alcohol-seeking behavior.
Collapse
Affiliation(s)
- Jiaxin Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yao Zhou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Fangyuan Yin
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yanfeng Du
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jiancheng Xu
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shuyuan Fan
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ziyi Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaojie Wang
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qingfeng Shen
- Department of Substance Dependence, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Xuzhou Eastern People's Hospital, Xuzhou, China
| | - Yongsheng Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi'an Jiaotong University, Xi'an, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular &Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zheng H, Zhai T, Lin X, Dong G, Yang Y, Yuan TF. The resting-state brain activity signatures for addictive disorders. MED 2024; 5:201-223.e6. [PMID: 38359839 PMCID: PMC10939772 DOI: 10.1016/j.medj.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Addiction is a chronic and relapsing brain disorder. Despite numerous neuroimaging and neurophysiological studies on individuals with substance use disorder (SUD) or behavioral addiction (BEA), currently a clear neural activity signature for the addicted brain is lacking. METHODS We first performed systemic coordinate-based meta-analysis and partial least-squares regression to identify shared or distinct brain regions across multiple addictive disorders, with abnormal resting-state activity in SUD and BEA based on 46 studies (55 contrasts), including regional homogeneity (ReHo) and low-frequency fluctuation amplitude (ALFF) or fractional ALFF. We then combined Neurosynth, postmortem gene expression, and receptor/transporter distribution data to uncover the potential molecular mechanisms underlying these neural activity signatures. FINDINGS The overall comparison between addiction cohorts and healthy subjects indicated significantly increased ReHo and ALFF in the right striatum (putamen) and bilateral supplementary motor area, as well as decreased ReHo and ALFF in the bilateral anterior cingulate cortex and ventral medial prefrontal cortex, in the addiction group. On the other hand, neural activity in cingulate cortex, ventral medial prefrontal cortex, and orbitofrontal cortex differed between SUD and BEA subjects. Using molecular analyses, the altered resting activity recapitulated the spatial distribution of dopaminergic, GABAergic, and acetylcholine system in SUD, while this also includes the serotonergic system in BEA. CONCLUSIONS These results indicate both common and distinctive neural substrates underlying SUD and BEA, which validates and supports targeted neuromodulation against addiction. FUNDING This work was supported by the National Natural Science Foundation of China and Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health.
Collapse
Affiliation(s)
- Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiao Lin
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Guangheng Dong
- Department of Psychology, Yunnan Normal University, Kunming 650092, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China; Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
4
|
Lu H, Zhang Y, Qiu H, Zhang Z, Tan X, Huang P, Zhang M, Miao D, Zhu X. A new perspective for evaluating the efficacy of tACS and tDCS in improving executive functions: A combined tES and fNIRS study. Hum Brain Mapp 2024; 45:e26559. [PMID: 38083976 PMCID: PMC10789209 DOI: 10.1002/hbm.26559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Executive function enhancement is considered necessary for improving the quality of life of patients with neurological or psychiatric disorders, such as attention-deficit/hyperactivity disorder, obsessive-compulsive disorder and Alzheimer's disease. Transcranial electrical stimulation (tES) has been shown to have some beneficial effects on executive functioning, but the quantification of these improvements remains controversial. We aimed to explore the potential beneficial effects on executive functioning induced by the use of transcranial alternating current stimulation (tACS)/transcranial direct current stimulation (tDCS) on the right inferior frontal gyrus (IFG) and the accompanying brain function variations in the resting state. METHODS We recruited 229 healthy adults to participate in Experiments 1 (105 participants) and 2 (124 participants). The participants in each experiment were randomly divided into tACS, tDCS, and sham groups. The participants completed cognitive tasks to assess behavior related to three core components of executive functions. Functional near-infrared spectroscopy (fNIRS) was used to monitor the hemodynamic changes in crucial cortical regions in the resting state. RESULTS Inhibition and cognitive flexibility (excluding working memory) were significantly increased after tACS/tDCS, but there were no significant behavioral differences between the tACS and tDCS groups. fNIRS revealed that tDCS induced decreases in the functional connectivity (increased neural efficiency) of the relevant cortices. CONCLUSIONS Enhancement of executive function was observed after tES, and the beneficial effects of tACS/tDCS may need to be precisely evaluated via brain imaging indicators at rest. tDCS revealed better neural benefits than tACS during the stimulation phase. These findings might provide new insights for selecting intervention methods in future studies and for evaluating the clinical efficacy of tES.
Collapse
Affiliation(s)
- Hongliang Lu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Yajuan Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Huake Qiu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Zhilong Zhang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xuanyi Tan
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Peng Huang
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Mingming Zhang
- Department of Psychology, College of EducationShanghai Normal UniversityShanghaiChina
| | - Danmin Miao
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| | - Xia Zhu
- Department of Military Medical PsychologyAir Force Medical UniversityXi'anChina
| |
Collapse
|
5
|
Douton JE, Carelli RM. Unraveling Sex Differences in Affect Processing: Unique Oscillatory Signaling Dynamics in the Infralimbic Cortex and Nucleus Accumbens Shell. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:354-362. [PMID: 38298775 PMCID: PMC10829636 DOI: 10.1016/j.bpsgos.2023.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 02/02/2024] Open
Abstract
Background Negative affect is prevalent in psychiatric diseases such as depression and addiction. Projections from the infralimbic cortex (IL) to the nucleus accumbens shell (NAcSh) are causally linked to learned negative affect as 20 Hz optogenetic stimulation of this circuit reduces conditioned taste aversion (CTA) in male but not female rats. However, the prior study did not provide insight into how innate versus learned negative affect are processed in these areas across sex. Methods To address this issue, local field potential activity was simultaneously recorded in the IL and NAcSh in response to intraoral infusion of rewarding (saccharin) and aversive (quinine) tastants and following induction of a CTA in male and female Sprague Dawley rats. Results Local field potential oscillatory activity within each brain region to saccharin varied across sex. In males, CTA increased IL resting-state power, which was correlated with the strength of the learned aversion, and reduced beta power and IL-NAcSh coherence. In females, CTA increased gamma power in the NAcSh. Similar effects were observed in males and females after CTA in theta-low gamma phase-amplitude coupling. Finally, while quinine produced similar effects in oscillatory power across sex, females showed differences in phase-amplitude coupling within the NAcSh that may be linked to aversion resistance. Conclusions We revealed sex-specific hedonic processing in the IL and NAcSh and how oscillatory signaling is disrupted in learned negative affect, revealing translationally relevant insight into potential treatment strategies that can help to reduce the deleterious effects of learned negative affect in psychiatric illnesses.
Collapse
Affiliation(s)
- Joaquin E. Douton
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Regina M. Carelli
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Nguyen H, Makaroff SN, Li CQ, Hoffman S, Yang Y, Lu H. High inductance magnetic-core coils have enhanced efficiency in inducing suprathreshold motor response in rats. Phys Med Biol 2023; 68:10.1088/1361-6560/ad0bde. [PMID: 37949063 PMCID: PMC10990567 DOI: 10.1088/1361-6560/ad0bde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Objective. Transcranial magnetic stimulation (TMS) coil design involves a tradeoff among multiple parameters, including magnetic flux density (B), inductance (L), induced electric (E) field, focality, penetration depth, coil heating, etc. Magnetic materials with high permeability have been suggested to enhance coil efficiency. However, the introduction of magnetic core invariably increases coil inductance compared to its air-core counterpart, which in turn weakens theEfield. Our lab previously reported a rodent-specific TMS coil with silicon steel magnetic core, achieving 2 mm focality. This study aims to better understand the tradeoffs amongB,L,andEin the presence of magnetic core.Approach. The magnetic core initially operates within the linear range, transitioning to the nonlinear range when it begins to saturate at high current levels and reverts to the linear range as coil current approaches zero; both linear and nonlinear analyses were performed. Linear analysis assumes a weak current condition when magnetic core is not saturated; a monophasic TMS circuit was employed for this purpose. Nonlinear analysis assumes a strong current condition with varying degrees of core saturation.Main results. Results reveal that, the secondaryEfield generated by the silicon steel core substantially changed the dynamics during TMS pulse. Linear and nonlinear analyses revealed that higher inductance coils produced stronger peakEfields and longerEfield waveforms. On a macroscopic scale, the effects of these two factors on neuronal activation could be conceptually explained through a one-time-constant linear membrane model. Four coils with differentB,L,andEcharacteristics were designed and constructed. BothEfield mapping and experiments on awake rats confirmed that inductance could be much higher than previously anticipated, provided that magnetic material possesses a high saturation threshold.Significance. Our results highlight the novel potentials of magnetic core in TMS coil designs, especially for small animals.
Collapse
Affiliation(s)
- Hieu Nguyen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Sergey N Makaroff
- Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Charlotte Qiong Li
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Samantha Hoffman
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States of America
| |
Collapse
|
7
|
Davies RA, Barbee BR, Garcia-Sifuentes Y, Butkovich LM, Gourley SL. Subunit-selective PI3-kinase control of action strategies in the medial prefrontal cortex. Neurobiol Learn Mem 2023; 203:107789. [PMID: 37328026 PMCID: PMC10527156 DOI: 10.1016/j.nlm.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
PI3-kinase (PI3K) is an intracellular signaling complex that is stimulated upon cocaine exposure and linked with the behavioral consequences of cocaine. We recently genetically silenced the PI3K p110β subunit in the medial prefrontal cortex following repeated cocaine in mice, reinstating the capacity of these mice to engage in prospective goal-seeking behavior. In the present short report, we address two follow-up hypotheses: 1) The control of decision-making behavior by PI3K p110β is attributable to neuronal signaling, and 2) PI3K p110β in the healthy (i.e., drug-naïve) medial prefrontal cortex has functional consequences in the control of reward-related decision-making strategies. In Experiment 1, we found that silencing neuronal p110β improved action flexibility following cocaine. In Experiment 2, we reduced PI3K p110β in drug-naïve mice that were extensively trained to respond for food reinforcers. Gene silencing caused mice to abandon goal-seeking strategies, unmasking habit-based behaviors that were propelled by interactions with the nucleus accumbens. Thus, PI3K control of goal-directed action strategies appears to act in accordance with an inverted U-shaped function, with "too much" (following cocaine) or "too little" (following p110β subunit silencing) obstructing goal seeking and causing mice to defer to habit-like response sequences.
Collapse
Affiliation(s)
- Rachel A Davies
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Britton R Barbee
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA
| | - Yesenia Garcia-Sifuentes
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Neuroscience, Emory University, USA
| | - Laura M Butkovich
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Emory National Primate Research Center, Emory University, Children's Healthcare of Atlanta, USA; Graduate Program in Molecular and Systems Pharmacology, Emory University, USA; Graduate Program in Neuroscience, Emory University, USA.
| |
Collapse
|
8
|
Ngbokoli ML, Douton JE, Carelli RM. Prelimbic cortex and nucleus accumbens core resting state signaling dynamics as a biomarker for cocaine seeking behaviors. ADDICTION NEUROSCIENCE 2023; 7:100097. [PMID: 37396409 PMCID: PMC10310298 DOI: 10.1016/j.addicn.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Substance use disorders (SUDs) are characterized by maladaptive signaling in the prefrontal cortex and associated regions, however precisely how these drug-induced abnormalities may be linked to drug seeking/taking behaviors is not well understood. Here, in vivo local field potential (LFP) electrophysiology was used in rats to examine the relationship between overall spontaneous (resting state) activity within the prelimbic cortex (PrL) and nucleus accumbens (NAc) core, and their functional connectivity, to cocaine taking and seeking behaviors. Adult, male Sprague-Dawley rats were trained to self-administer either intravenous cocaine (0.33 mg/inf) or water reinforcement during 6-hour daily sessions over 2 weeks; extinction sessions were completed immediately after self-administration training and following 30 days experimenter-imposed abstinence. Rest LFP recordings were completed during 3 recording periods (15 min each in a chamber different from the self-administration context) conducted (1) prior to self-administration training (rest LFP 1) (2) immediately after 2 weeks of self-administration training (rest LFP 2) and (3) following 1 month abstinence (rest LFP 3). Our findings show that resting state LFP power in the PrL recorded prior to training (Rest LFP 1) was positively correlated with total cocaine intake and escalation of cocaine seeking at the beta frequency range. Immediately after self-administration training (Rest LFP 2) power in the NAc core at gamma frequency was negatively correlated with incubation of cocaine craving. For rats trained to self-administer water, no significant correlations were observed. Together, these findings show that resting state LFP at specific timepoints in the addiction cycle can serve as unique predictors (biomarkers) of cocaine use disorders.
Collapse
Affiliation(s)
- Metika L. Ngbokoli
- Department of Psychology and Neuroscience, The University of North Carolina, CB #3270 Davie Hall, Chapel Hill, NC 27599, USA
| | - Joaquin E. Douton
- Department of Psychology and Neuroscience, The University of North Carolina, CB #3270 Davie Hall, Chapel Hill, NC 27599, USA
| | - Regina M. Carelli
- Department of Psychology and Neuroscience, The University of North Carolina, CB #3270 Davie Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Gangal H, Xie X, Huang Z, Cheng Y, Wang X, Lu J, Zhuang X, Essoh A, Huang Y, Chen R, Smith LN, Smith RJ, Wang J. Drug reinforcement impairs cognitive flexibility by inhibiting striatal cholinergic neurons. Nat Commun 2023; 14:3886. [PMID: 37391566 PMCID: PMC10313783 DOI: 10.1038/s41467-023-39623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Addictive substance use impairs cognitive flexibility, with unclear underlying mechanisms. The reinforcement of substance use is mediated by the striatal direct-pathway medium spiny neurons (dMSNs) that project to the substantia nigra pars reticulata (SNr). Cognitive flexibility is mediated by striatal cholinergic interneurons (CINs), which receive extensive striatal inhibition. Here, we hypothesized that increased dMSN activity induced by substance use inhibits CINs, reducing cognitive flexibility. We found that cocaine administration in rodents caused long-lasting potentiation of local inhibitory dMSN-to-CIN transmission and decreased CIN firing in the dorsomedial striatum (DMS), a brain region critical for cognitive flexibility. Moreover, chemogenetic and time-locked optogenetic inhibition of DMS CINs suppressed flexibility of goal-directed behavior in instrumental reversal learning tasks. Notably, rabies-mediated tracing and physiological studies showed that SNr-projecting dMSNs, which mediate reinforcement, sent axonal collaterals to inhibit DMS CINs, which mediate flexibility. Our findings demonstrate that the local inhibitory dMSN-to-CIN circuit mediates the reinforcement-induced deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Himanshu Gangal
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Zhenbo Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Xiaowen Zhuang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Yufei Huang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ruifeng Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Rachel J Smith
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
- Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Bercum FM, Gomez MJN, Saddoris MP. Prefrontal cortex neurons in adult rats exposed to early life stress fail to appropriately signal the consequences of motivated actions. Physiol Behav 2023; 263:114107. [PMID: 36740134 PMCID: PMC10023442 DOI: 10.1016/j.physbeh.2023.114107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Early life stress (ELS) can set the stage for susceptibility to cognitive and emotional dysfunction in adulthood by disrupting typical neural development. The prefrontal cortex (PFC) continues to mature during early life, making this region particularly vulnerable to disruption for animals who experience ELS. Despite this, the effects of ELS experience on in vivo PFC function in awake and behaving adult animals are currently poorly understood. To assess this, we employed an instrumental conflict task to assess how hungry adult rats, either ELS (wet bedding) or unstressed Controls, were able to flexibly alter their motivation for food reward seeking (lever presses) in situations that were either threatening or safe. During this task, in vivo electrophysiological recordings (both single unit and local field potentials [LFPs]) were made in the rats' ventral-medial PFC (vmPFC). We found that ELS rats were less motivated to lever press for rewards than Controls in the threat situations during repeated extinction sessions. In recordings taken during this suppression task, Control vmPFC neurons displayed reliable differences between motivated actions, such as between rewarded and unrewarded presses, but ELS neurons failed to differentiate these action-outcome differences. We also found differences in task-related LFP activity between groups; in particular, prior ELS experience appears to induce abnormal changes in low-frequency oscillations during shock-associated threat stimuli prior to presses, as well as diminished higher-frequency oscillations following rewarded presses. Collectively, we demonstrate that ELS experience produces persistent impairment in motivational regulation that is associated with significant changes in in vivo PFC signals. Specifically, ELS-experienced adults fail to appropriately update motivated action strategies under threat conditions, and likewise fail to appropriately monitor and update action/outcome relationships in motivated behavior. These ELS-related changes may therefore lay the foundation for heightened susceptibility to mental-health disorders in adults such as substance abuse and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Florencia M Bercum
- Department Psychology & Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA
| | - Maria J Navarro Gomez
- Department Psychology & Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA
| | - Michael P Saddoris
- Department Psychology & Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO, 80301, USA.
| |
Collapse
|
11
|
Kahnt T. Computationally Informed Interventions for Targeting Compulsive Behaviors. Biol Psychiatry 2023; 93:729-738. [PMID: 36464521 PMCID: PMC9989040 DOI: 10.1016/j.biopsych.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Compulsive behaviors are central to addiction and obsessive-compulsive disorder and can be understood as a failure of adaptive decision making. Particularly, they can be conceptualized as an imbalance in behavioral control, such that behavior is guided predominantly by learned rather than inferred outcome expectations. Inference is a computational process required for adaptive behavior, and recent work across species has identified the neural circuitry that supports inference-based decision making. This includes the orbitofrontal cortex, which has long been implicated in disorders of compulsive behavior. Inspired by evidence that modulating orbitofrontal cortex activity can alter inference-based behaviors, here we discuss noninvasive approaches to target these circuits in humans. Specifically, we discuss the potential of network-targeted transcranial magnetic stimulation and real-time neurofeedback to modulate the neural underpinnings of inference. Both interventions leverage recent advances in our understanding of the neurocomputational mechanisms of inference-based behavior and may be used to complement current treatment approaches for behavioral disorders.
Collapse
Affiliation(s)
- Thorsten Kahnt
- National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland.
| |
Collapse
|
12
|
Moschak TM, Sloand TJ, Carelli RM. Prelimbic Cortex Activity during a Distress Tolerance Task Predicts Cocaine-Seeking Behavior in Male, But Not Female Rats. J Neurosci 2023; 43:647-655. [PMID: 36639895 PMCID: PMC9888504 DOI: 10.1523/jneurosci.1718-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Distress tolerance (DT) is defined as the ability to persist in challenging goal-directed behavior in the face of stress, and individuals with low DT exhibit heightened drug-seeking behavior. However, no preclinical studies have examined the neurobiology underlying this phenomenon. To assess this, in vivo electrophysiology was used in Long Evans male and female rats during a DT task to record neural activity in the prelimbic cortex (PrL), a brain region implicated in drug-seeking. Rats were first assessed for DT, defined as the amount of time elapsed before rats quit seeking reward in an increasingly difficult operant task. Subsequently, rats underwent 2 weeks of self-administration for either water/saline or cocaine for 6 h/day. Animals then began a 1 month period of experimenter-imposed abstinence to induce heightened drug-seeking behavior. On day 28 of abstinence, DT and neural activity were reassessed; and on day 30, cocaine-seeking behavior was examined under extinction. Males had significantly higher DT than females and exhibited significantly more phasic PrL activity during the DT task. Furthermore, in male rats with a history of cocaine, PrL activity shifted to track DT; and this change in activity significantly correlated with the change in DT. Additionally, male (but not female) rats with low DT after 28 d of abstinence had significantly heightened drug-seeking behavior. Finally, PrL activity during the DT task predicted cocaine-seeking behavior. Collectively, these data demonstrate an important role for the PrL in DT in males, and link this neural activity and behavior to drug-seeking, particularly in males.SIGNIFICANCE STATEMENT Distress tolerance (DT) is defined as the ability to persist in challenging goal-directed behavior in the face of stress, and individuals with low DT exhibit heightened drug-seeking. Here, we investigated the role of the prelimbic cortex (PrL) in DT and its relationship to cocaine-seeking in male and female rats. We found that males had significantly higher DT than females and exhibited significantly more PrL activity during the DT task. Furthermore, male (but not female) rats with low DT after 28 d of abstinence had significantly heightened drug-seeking behavior. Finally, PrL activity during the DT task predicted cocaine-seeking. These data demonstrate an important role for the PrL in DT and link this neural activity and behavior to drug-seeking in males.
Collapse
Affiliation(s)
- Travis M Moschak
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79902
| | - T Joseph Sloand
- Department of Psychology & Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599
| | - Regina M Carelli
- Department of Psychology & Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
Stock AK, Wendiggensen P, Ghin F, Beste C. Alcohol-induced deficits in reactive control of response selection and inhibition are counteracted by a seemingly paradox increase in proactive control. Sci Rep 2023; 13:1097. [PMID: 36658291 PMCID: PMC9852446 DOI: 10.1038/s41598-023-28012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
High-dose alcohol intoxication reduces cognitive control, including inhibition. Although inhibition deficits may contribute to the behavioral deficits commonly observed in alcohol use disorder (AUD), many questions about potentially modulating factors have remained unanswered. We examined the effects of experimentally induced high-dose alcohol intoxication (~ 1.1 ‰) on the interplay between controlled vs. automatic response selection and inhibition in healthy young men. A holistic EEG-based theta activity analysis that considered both reactive control during task performance and preceding proactive control processes was run. It revealed a previously unknown seesaw relationship, with decreased reactive control, but paradoxically increased proactive control. Most importantly, alcohol-induced increases in proactive occipital theta band power were associated with reductions in negative alcohol effects on reactive control processes associated with decreased activity in the SMA and medial frontal cortex. Our findings demonstrate that research should not solely focus on immediate effects during task performance. Aside from differential neurobiochemical and neuroanatomical effects of alcohol, it is also conceivable that proactive control may have been recruited in a (secondary) response to compensate for alcohol-induced impairments in reactive control. Against this background, it could be promising to investigate changes in such compensatory mechanisms in pronounced alcohol-associated inhibition deficits, like in AUD patients.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany. .,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany. .,Faculty of Psychology, TU Dresden, Dresden, Germany.
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
Costa KM, Scholz R, Lloyd K, Moreno-Castilla P, Gardner MPH, Dayan P, Schoenbaum G. The role of the lateral orbitofrontal cortex in creating cognitive maps. Nat Neurosci 2023; 26:107-115. [PMID: 36550290 PMCID: PMC9839657 DOI: 10.1038/s41593-022-01216-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
We use mental models of the world-cognitive maps-to guide behavior. The lateral orbitofrontal cortex (lOFC) is typically thought to support behavior by deploying these maps to simulate outcomes, but recent evidence suggests that it may instead support behavior by underlying map creation. We tested between these two alternatives using outcome-specific devaluation and a high-potency chemogenetic approach. Selectively inactivating lOFC principal neurons when male rats learned distinct cue-outcome associations, but before outcome devaluation, disrupted subsequent inference, confirming a role for the lOFC in creating new maps. However, lOFC inactivation surprisingly led to generalized devaluation, a result that is inconsistent with a complete mapping failure. Using a reinforcement learning framework, we show that this effect is best explained by a circumscribed deficit in credit assignment precision during map construction, suggesting that the lOFC has a selective role in defining the specificity of associations that comprise cognitive maps.
Collapse
Affiliation(s)
- Kauê Machado Costa
- National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Robert Scholz
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Kevin Lloyd
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Perla Moreno-Castilla
- National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
15
|
Niedringhaus M, West EA. Prelimbic cortex neural encoding dynamically tracks expected outcome value. Physiol Behav 2022; 256:113938. [PMID: 35944659 PMCID: PMC11247951 DOI: 10.1016/j.physbeh.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Animals must modify their behavior based on updated expected outcomes in a changing environment. Prelimbic cortex (PrL) neural encoding during learning predicts, and is necessary for, appropriately altering behavior based on a new expected outcome value following devaluation. We aimed to determine how PrL neural activity encodes reward predictive cues after the expected outcome value of those cues is decreased following conditioned taste aversion. In one post-devaluation session, rats were tested under extinction to determine their ability to alter their behavior to the expected outcome values (i.e., extinction test). In a second post-devaluation session, rats were tested with the newly devalued outcome delivered so that the rats experienced the updated outcome value within the session (i.e., re-exposure test). We found that PrL neural encoding of the cue associated with the devalued reward predicted the ability of rats to suppress behavior in the extinction test session, but not in the re-exposure test session. While all rats were able to successfully devalue the outcome during conditioned taste aversion, a subset of rats continued to consume the devalued outcome in the re-exposure test session. We found differential patterns of PrL neural encoding in the population of rats that did not avoid the devalued outcome during the re-exposure test compared to the rats that successfully avoided the devalued outcome. Our findings suggest that PrL neural encoding dynamically tracks expected outcome values, and differential neural encoding in the PrL to reward predictive cues following expected outcome value changes may contribute to distinct behavioral phenotypes.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084
| | - Elizabeth A West
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084; Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084.
| |
Collapse
|
16
|
Bercum FM, Navarro Gomez MJ, Saddoris MP. Elevated fear responses to threatening cues in rats with early life stress is associated with greater excitability and loss of gamma oscillations in ventral-medial prefrontal cortex. Neurobiol Learn Mem 2021; 185:107541. [PMID: 34687892 PMCID: PMC9336060 DOI: 10.1016/j.nlm.2021.107541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
Stress experienced early in development can have profound influences on developmental trajectories and ultimately behaviors in adulthood. Potent stressors during brain maturation can profoundly disrupt prefrontal cortical areas in particular, which can set the stage for prefrontal-dependent alterations in fear regulation and risk of drug abuse in adulthood. Despite these observations, few studies have investigated in vivo signaling in prefrontal signals in animals with a history of early life stress (ELS). Here, rats with ELS experienced during the first post-natal week were then tested on a conditioned suppression paradigm during adulthood. During conditioned suppression, electrophysiological recordings were made in the ventral medial prefrontal cortex (vmPFC) during presentations of a fear-associated cue that resolved both single-unit activity and local field potentials (LFPs). Relative to unstressed controls, ELS-experienced rats showed greater fear-related suppression of lever pressing. During presentations of the fear-associated cue (CS+), neurons in the vmPFC of ELS animals showed a significant increase in the probability of excitatory encoding relative to controls, and excitatory phasic responses in the ELS animals were reliably of higher magnitude than Controls. In contrast, vmPFC neurons in ELS subjects better discriminated between the shock-associated CS+ and the neutral ("safe") CS- cue than Controls. LFPs recorded in the same locations revealed that high gamma band (65-95 Hz) oscillations were strongly potentiated in Controls during presentation of the fear-associated CS+ cue, but this potentiation was abolished in ELS subjects. Notably, no other LFP spectra differed between ELS and Controls for either the CS+ or CS-. Collectively, these data suggest that ELS experience alters the neurobehavioral functions of PFC in adulthood that are critical for processing fear regulation. As such, these alterations may also provide insight into increased susceptibility to other PFC-dependent processes such as risk-based choice, motivation, and regulation of drug use and relapse in ELS populations.
Collapse
Affiliation(s)
- Florencia M Bercum
- Department Psychology & Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301, United States
| | - Maria J Navarro Gomez
- Department Psychology & Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301, United States
| | - Michael P Saddoris
- Department Psychology & Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, Boulder, CO 80301, United States.
| |
Collapse
|
17
|
Remifentanil self-administration in mice promotes sex-specific prefrontal cortex dysfunction underlying deficits in cognitive flexibility. Neuropsychopharmacology 2021; 46:1734-1745. [PMID: 34012018 PMCID: PMC8358018 DOI: 10.1038/s41386-021-01028-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/18/2022]
Abstract
Opioid-based drugs are frequently used for pain management in both males and females despite the known risk of prefrontal cortex dysfunction and cognitive impairments. Although poorly understood, loss of cognitive control following chronic drug use has been linked to decreased activation of frontal cortex regions. Here, we show that self-administration of the potent opioid, remifentanil, causes a long-lasting hypoactive basal state evidenced by a decrease in ex vivo excitability that is paralleled by an increase in firing capacity of layer 5/6 pyramidal neurons in the prelimbic, but not infralimbic region of the medial prefrontal cortex. This phenomenon was observed in females after as few as 5 days and up to 25-30 days of self-administration. In contrast, pyramidal neurons in males showed increased excitability following 10-16 days of self-administration, with hypoactive states arising only following 25-30 days of self-administration. The emergence of a hypoactive, but not hyperactive basal state following remifentanil self-administration aligned with deficits in cognitive flexibility as assessed using an operant-based attentional set-shifting task. In females, the hypoactive basal state is driven by a reduction in excitatory synaptic transmission mediated by AMPA-type glutamate receptors. Alternatively, hyper- and hypoactive states in males align selectively with decreased and increased GABAB signaling, respectively. Chemogenetic compensation for this hypoactive state prior to testing restored cognitive flexibility, basal hypoactive state, and remifentanil-induced plasticity. These data define cellular and synaptic mechanisms by which opioids impair prefrontal function and cognitive control; indicating that interventions aimed at targeting opioid-induced adaptations should be tailored based on biological sex.
Collapse
|
18
|
Frohlich F, Riddle J, Abramowitz JS. Transcranial alternating current stimulation for the treatment of obsessive-compulsive disorder? Brain Stimul 2021; 14:1048-1050. [PMID: 34192553 PMCID: PMC9337719 DOI: 10.1016/j.brs.2021.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Flavio Frohlich
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Justin Riddle
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan S Abramowitz
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Steele VR. A Circuit-Based Approach to Treating Substance Use Disorders With Noninvasive Brain Stimulation. Biol Psychiatry 2021; 89:944-946. [PMID: 33958035 DOI: 10.1016/j.biopsych.2021.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Vaughn R Steele
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|