1
|
Abo Hamza E, Tindle R, Pawlak S, Bedewy D, Moustafa AA. The impact of poverty and socioeconomic status on brain, behaviour, and development: a unified framework. Rev Neurosci 2024; 35:597-617. [PMID: 38607658 DOI: 10.1515/revneuro-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In this article, we, for the first time, provide a comprehensive overview and unified framework of the impact of poverty and low socioeconomic status (SES) on the brain and behaviour. While there are many studies on the impact of low SES on the brain (including cortex, hippocampus, amygdala, and even neurotransmitters) and behaviours (including educational attainment, language development, development of psychopathological disorders), prior studies did not integrate behavioural, educational, and neural findings in one framework. Here, we argue that the impact of poverty and low SES on the brain and behaviour are interrelated. Specifically, based on prior studies, due to a lack of resources, poverty and low SES are associated with poor nutrition, high levels of stress in caregivers and their children, and exposure to socio-environmental hazards. These psychological and physical injuries impact the normal development of several brain areas and neurotransmitters. Impaired functioning of the amygdala can lead to the development of psychopathological disorders, while impaired hippocampus and cortex functions are associated with a delay in learning and language development as well as poor academic performance. This in turn perpetuates poverty in children, leading to a vicious cycle of poverty and psychological/physical impairments. In addition to providing economic aid to economically disadvantaged families, interventions should aim to tackle neural abnormalities caused by poverty and low SES in early childhood. Importantly, acknowledging brain abnormalities due to poverty in early childhood can help increase economic equity. In the current study, we provide a comprehensive list of future studies to help understand the impact of poverty on the brain.
Collapse
Affiliation(s)
- Eid Abo Hamza
- College of Education, Humanities & Social Sciences, 289293 Al Ain University , 64141, Al Jimi, UAE
- Faculty of Education, Tanta University, Al-Geish St., 122011, Tanta, Egypt
| | - Richard Tindle
- JMS Allied Services, 1109 Coffs Harbour , NSW, 2452, Australia
| | - Simon Pawlak
- Department of Psychological Sciences, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Dalia Bedewy
- Department of Psychology, College of Humanities and Sciences, 59104 Ajman University , University Street, Al jerf 1, Ajman, UAE
- Department of Psychology, Faculty of Education, Tanta University, Al-Geish St., 122011, Tanta, Egypt
- 59104 Humanities and Social Sciences Research Center (HSSRC), Ajman University , University Street, Al jerf 1, Ajman, UAE
| | - Ahmed A Moustafa
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Cnr Kingsway & University Roads, Auckland Park, Johannesburg, 2092, South Africa
- School of Psychology, Faculty of Society and Design, 448704 Bond University , 14 University Dr, Robina QLD 4226, Gold Coast, QLD, Australia
| |
Collapse
|
2
|
Schwabe L. Memory Under Stress: From Adaptation to Disorder. Biol Psychiatry 2024:S0006-3223(24)01385-4. [PMID: 38880463 DOI: 10.1016/j.biopsych.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Stressful events are ubiquitous in everyday life. Exposure to these stressors initiates the temporally orchestrated release of a multitude of hormones, peptides, and neurotransmitters that target brain areas that have been critically implicated in learning and memory. This review summarizes recent insights on the profound impact of stress on 4 fundamental processes of memory: memory formation, memory contextualization, memory retrieval, and memory flexibility. Stress mediators instigate dynamic alterations in these processes, thereby facilitating efficient responding under stress and the creation of a decontextualized memory representation that can effectively aid coping with novel future threats. While they are generally adaptive, the same stress-related changes may contribute to the rigid behaviors, uncontrollable intrusions, and generalized fear responding seen in anxiety disorders and posttraumatic stress disorder. Drawing on recent discoveries in cognitive neuroscience and psychiatry, this review discusses how stress-induced alterations in memory processes can simultaneously foster adaptation to stressors and fuel psychopathology. The transition from adaptive to maladaptive changes in the impact of stress on memory hinges on the nuanced interplay of stressor characteristics and individual predispositions. Thus, taking individual differences in the cognitive response to stressors into account is essential for any successful treatment of stress-related mental disorders.
Collapse
Affiliation(s)
- Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Labuschagne I, Dominguez JF, Grace S, Mizzi S, Henry JD, Peters C, Rabinak CA, Sinclair E, Lorenzetti V, Terrett G, Rendell PG, Pedersen M, Hocking DR, Heinrichs M. Specialization of amygdala subregions in emotion processing. Hum Brain Mapp 2024; 45:e26673. [PMID: 38590248 PMCID: PMC11002533 DOI: 10.1002/hbm.26673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The amygdala is important for human fear processing. However, recent research has failed to reveal specificity, with evidence that the amygdala also responds to other emotions. A more nuanced understanding of the amygdala's role in emotion processing, particularly relating to fear, is needed given the importance of effective emotional functioning for everyday function and mental health. We studied 86 healthy participants (44 females), aged 18-49 (mean 26.12 ± 6.6) years, who underwent multiband functional magnetic resonance imaging. We specifically examined the reactivity of four amygdala subregions (using regions of interest analysis) and related brain connectivity networks (using generalized psycho-physiological interaction) to fear, angry, and happy facial stimuli using an emotional face-matching task. All amygdala subregions responded to all stimuli (p-FDR < .05), with this reactivity strongly driven by the superficial and centromedial amygdala (p-FDR < .001). Yet amygdala subregions selectively showed strong functional connectivity with other occipitotemporal and inferior frontal brain regions with particular sensitivity to fear recognition and strongly driven by the basolateral amygdala (p-FDR < .05). These findings suggest that amygdala specialization to fear may not be reflected in its local activity but in its connectivity with other brain regions within a specific face-processing network.
Collapse
Affiliation(s)
- Izelle Labuschagne
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | | | - Sally Grace
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Simone Mizzi
- School of Health and Biomedical ScienceRMIT UniversityMelbourneVictoriaAustralia
| | - Julie D. Henry
- School of PsychologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Craig Peters
- Department of Pharmacy PracticeWayne State UniversityDetroitMichiganUSA
| | | | - Erin Sinclair
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Valentina Lorenzetti
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Gill Terrett
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Peter G. Rendell
- Healthy Brain and Mind Research Centre, School of Behavioural and Health SciencesAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Mangor Pedersen
- Department of Psychology and NeuroscienceAuckland University of TechnologyAucklandNew Zealand
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Darren R. Hocking
- Institute for Health & SportVictoria UniversityMelbourneVictoriaAustralia
| | - Markus Heinrichs
- Department of PsychologyAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
- Freiburg Brain Imaging CenterUniversity Medical Center, Albert‐Ludwigs University of FreiburgFreiburg im BreisgauGermany
| |
Collapse
|
4
|
Merz EC, Myers B, Hansen M, Simon KR, Strack J, Noble KG. Socioeconomic Disparities in Hypothalamic-Pituitary-Adrenal Axis Regulation and Prefrontal Cortical Structure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:83-96. [PMID: 38090738 PMCID: PMC10714216 DOI: 10.1016/j.bpsgos.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 02/01/2024] Open
Abstract
Socioeconomic disadvantage during childhood predicts an increased risk for mental health problems across the life span. Socioeconomic disadvantage shapes multiple aspects of children's proximal environments and increases exposure to chronic stressors. Drawing from multiple literatures, we propose that childhood socioeconomic disadvantage may lead to adaptive changes in the regulation of stress response systems including the hypothalamic-pituitary-adrenal (HPA) axis. These changes, in turn, affect the development of prefrontal cortical (PFC) circuitry responsible for top-down control over cognitive and emotional processes. Translational findings indicate that chronic stress reduces dendritic complexity and spine density in the medial PFC and anterior cingulate cortex, in part through altered HPA axis regulation. Socioeconomic disadvantage has frequently been associated with reduced gray matter in the dorsolateral and ventrolateral PFC and anterior cingulate cortex and lower fractional anisotropy in the superior longitudinal fasciculus, cingulum bundle, and uncinate fasciculus during middle childhood and adolescence. Evidence of socioeconomic disparities in hair cortisol concentrations in children has accumulated, although null findings have been reported. Coupled with links between cortisol levels and reduced gray matter in the PFC and anterior cingulate cortex, these results support mechanistic roles for the HPA axis and these PFC circuits. Future longitudinal studies should simultaneously consider multiple dimensions of proximal factors, including cognitive stimulation, while focusing on epigenetic processes and genetic moderators to elucidate how socioeconomic context may influence the HPA axis and PFC circuitry involved in cognitive and emotional control. These findings, which point to modifiable factors, can be harnessed to inform policy and more effective prevention strategies.
Collapse
Affiliation(s)
- Emily C. Merz
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Katrina R. Simon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Kimberly G. Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| |
Collapse
|
5
|
Ding Q, Xu J, Peng S, Chen J, Luo Y, Li X, Wu R, Li X, Qin S. Brain network integration underpins differential susceptibility of adolescent anxiety. Psychol Med 2024; 54:193-202. [PMID: 37781905 DOI: 10.1017/s0033291723002325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Parenting is a common and potent environmental factor influencing adolescent anxiety. Yet, the underlying neurobiological susceptibility signatures remain elusive. Here, we used a longitudinal twin neuroimaging study to investigate the brain network integration and its heritable relation to underpin the neural differential susceptibility of adolescent anxiety to parenting environments. METHODS 216 twins from the Beijing Twin Study completed the parenting and anxiety assessments and fMRI scanning. We first identified the brain network integration involved in the influences of parenting at age 12 on anxiety symptoms at age 15. We then estimated to what extent heritable sensitive factors are responsible for the susceptibility of brain network integration. RESULTS Consistent with the differential susceptibility theory, the results showed that hypo-connectivity within the central executive network amplified the impact of maternal hostility on anxiety symptoms. A high anti-correlation between the anterior salience and default mode networks played a similar modulatory role in the susceptibility of adolescent anxiety to paternal hostility. Genetic influences (21.18%) were observed for the connectivity pattern in the central executive network. CONCLUSIONS Brain network integration served as a promising neurobiological signature of the differential susceptibility to adolescent anxiety. Our findings deepen the understanding of the neural sensitivity in the developing brain and can inform early identification and personalized interventions for adolescents at risk of anxiety disorders.
Collapse
Affiliation(s)
- Qingwen Ding
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiahua Xu
- Chinese Institute for Brain Research, Beijing, China
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Siya Peng
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Jie Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruilin Wu
- Institute of Psychology, Beihang University, Beijing, China
| | - Xinying Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shaozheng Qin
- Chinese Institute for Brain Research, Beijing, China
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Shunkai L, Chen P, Zhong S, Chen G, Zhang Y, Zhao H, He J, Su T, Yan S, Luo Y, Ran H, Jia Y, Wang Y. Alterations of insular dynamic functional connectivity and psychological characteristics in unmedicated bipolar depression patients with a recent suicide attempt. Psychol Med 2023; 53:3837-3848. [PMID: 35257645 DOI: 10.1017/s0033291722000484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mounting evidence showed that insula contributed to the neurobiological mechanism of suicidal behaviors in bipolar disorder (BD). However, no studies have analyzed the dynamic functional connectivity (dFC) of insular Mubregions and its association with personality traits in BD with suicidal behaviors. Therefore, we investigated the alterations of dFC variability in insular subregions and personality characteristics in BD patients with a recent suicide attempt (SA). METHODS Thirty unmedicated BD patients with SA, 38 patients without SA (NSA) and 35 demographically matched healthy controls (HCs) were included. The sliding-window analysis was used to evaluate whole-brain dFC for each insular subregion seed. We assessed between-group differences of psychological characteristics on the Minnesota Multiphasic Personality Inventory-2. Finally, a multivariate regression model was adopted to predict the severity of suicidality. RESULTS Compared to NSA and HCs, the SA group exhibited decreased dFC variability values between the left dorsal anterior insula and the left anterior cerebellum. These dFC variability values could also be utilized to predict the severity of suicidality (r = 0.456, p = 0.031), while static functional connectivity values were not appropriate for this prediction. Besides, the SA group scored significantly higher on the schizophrenia clinical scales (p < 0.001) compared with the NSA group. CONCLUSIONS Our findings indicated that the dysfunction of insula-cerebellum connectivity may underlie the neural basis of SA in BD patients, and highlighted the dFC variability values could be considered a neuromarker for predictive models of the severity of suicidality. Moreover, the psychiatric features may increase the vulnerability of suicidal behavior.
Collapse
Affiliation(s)
- Lai Shunkai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shuya Yan
- School of Management, Jinan University, Guangzhou, China
| | - Yange Luo
- School of Management, Jinan University, Guangzhou, China
| | - Hanglin Ran
- School of Management, Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Feng P, Becker B, Zhou F, Feng T, Chen Z. Sleep deprivation altered encoding of basolateral amygdala on fear acquisition. Cereb Cortex 2023; 33:2655-2668. [PMID: 35699604 DOI: 10.1093/cercor/bhac233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/14/2022] Open
Abstract
Sleep deprivation (SD) may lead to the development of fear- and anxiety-related emotional disorders. However, the neural mechanisms underlying the effects of SD on fear acquisition are unclear. Here, we tested whether and how SD influences the behavioral and neural manifestations of fear acquisition. We found that subjective fear ratings and objective fear indices (skin conductance response [SCR]) in the SD group were greater than those in the control group during fear acquisition, suggesting that SD facilitated fear acquisition (nSD = 18 and ncontrol = 23 for self-reported rating analysis; nSD = 10 and ncontrol = 10 for SCR analysis). Neuroimaging data showed that the SD group exhibited stronger activity in the left basolateral amygdala (BLA) and left superficial amygdala (SFA). Moreover, the left BLA activity, which positively correlated with the objective fear indices, significantly mediated the effect of SD on fear acquisition. Together, the present findings indicate that SD facilitates fear acquisition by augmenting threat-specific encoding in the BLA, which may be a potential biomarker of the risk of developing fear-related disorders under traumatic and distressing situations.
Collapse
Affiliation(s)
- Pan Feng
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| | - Benjamin Becker
- High-Field Magnetic Resonance Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu 611731, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
| | - Zhiyi Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Chongqing 400715, China
- Department of Psychology, Army Medical University, Chongqing 400000, China
| |
Collapse
|
8
|
Zhang Q, Dong X, Song Y, Wang C, Ji S, Mei H, Wang R. Improvement of semantic processing ability of Chinese characters in school children: A comparative study based on 2009 and 2019 data. Front Neurosci 2023; 17:1110674. [PMID: 36968480 PMCID: PMC10030507 DOI: 10.3389/fnins.2023.1110674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
To explore the characteristics of semantic cognitive development of school children by observing the development changes over 10 years, a retrospective event-related potential (ERP) study was conducted on the semantic processing characteristics of Chinese characters in children aged 7–11 years with the same study design in 2009 and 2019. For the EEGs recorded in 2009, the N400 amplitude of semantic processing in children aged 7–11 years showed an approximately inverted U-shaped development trend with a slow rise at the age of 7–9, a peak at the age of 10, then a rapid decline at the age of 11. However, for the EEGs recorded in 2019, the N400 amplitude showed a gradually decreasing development trend with a slow decline for the 7–11 years class. Our data suggested that the semantic processing of Chinese characters in children aged 7–11 years in 2019 was one age stage earlier than that in 2009. The children’s brain cognition is in the process of development and change with high plasticity. 10 years of favorable social and educational environmental factors have significantly improved children’s semantic processing ability of Chinese characters.
Collapse
Affiliation(s)
- Qinfen Zhang
- Children’s Health Research Center, Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
- *Correspondence: Qinfen Zhang,
| | - Xuan Dong
- Children’s Health Research Center, Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Yan Song
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chaoqun Wang
- Children’s Health Research Center, Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Shiyan Ji
- Children’s Health Research Center, Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Haitian Mei
- Children’s Health Research Center, Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Rui Wang
- Children’s Health Research Center, Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| |
Collapse
|
9
|
Ortiz R, Zhao S, Kline DM, Brock G, Carroll JE, Seeman TE, Jaffee SR, Berger JS, Golden SH, Carnethon MR, Joseph JJ. Childhood environment early life stress, caregiver warmth, and associations with the cortisol diurnal curve in adulthood: The coronary artery risk development in young adults (CARDIA) study. Psychoneuroendocrinology 2023; 149:106008. [PMID: 36599226 PMCID: PMC10029914 DOI: 10.1016/j.psyneuen.2022.106008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Early life stress (ELS) is associated with increased morbidity and mortality across the lifecourse. Studies observing a relationship between ELS and stress physiology (cortisol), may help explain the connection to poor health outcomes, but have been limited by cortisol measures used. PURPOSE We examined the association between ELS measured by a Risky Family (RF) environment questionnaire, and adult diurnal cortisol profile inclusive of multiple cortisol measures. METHODS RF and cortisol were collected from Coronary Artery Risk Development in Young Adults Study participants at follow-up (Year 15). Complete case (n = 672) data were included in multi-variable regression analyses with log transformed cortisol measures (outcomes) including wake-up cortisol, cortisol awakening response [CAR], AUC and five other cortisol diurnal curve measures. RESULTS Participants were age 39.9 + /- 3.7 years and 51.6% Black. For every 1 unit increase in RF, there was a 1.4% greater wake-up cortisol and flatter CAR after adjustment for age, sex, income, and smoking (B=0.014, p = 0.023; B=-0.014, p = 0.028, respectively). Each unit increase in caregiver warmth/affection was associated with a 6.9% higher (steeper) CAR (B=0.069, p = 0.03). Results remained significant after adjusting for other covariates except social support in adulthood. An interaction between child abuse and caregiver warmth was nearly significant (p = 0.068), such that for those with exposure to the greatest caregiver warmth and lowest child abuse, CAR was steepest CONCLUSIONS: We demonstrate that ELS is associated with altered cortisol regulation in adulthood. However, further research is needed to assess how healthy relationships throughout the life course may modulate cortisol regulation in adulthood.
Collapse
Affiliation(s)
- Robin Ortiz
- Institute for Excellence in Health Equity, New York University Langone Health, New York, NY, USA; Departments of Pediatrics and Population Health, New York University, Grossman School of Medicine, New York, NY, USA.
| | - Songzhu Zhao
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - David M Kline
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Guy Brock
- Department of Biostatistics and Data Science, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Judith E Carroll
- The University of California, Los Angeles, David Geffen School of Medicine, Jane and Terri Semel Institute for Neuroscience and Human Behavior, Cousins Center for Psychoneuroimmunology, Department of Psychiatry & Biobehavioral Sciences, Los Angeles, CA, USA
| | - Teresa E Seeman
- Division of Geriatrics, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sara R Jaffee
- Department of Psychology, The University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Berger
- Departments of Medicine and Surgery, New York University, Grossman School of Medicine, New York, NY, USA; Center for the Prevention of Cardiovascular Disease, Division of Cardiology, NYU Langone Health, New York, NY, USA
| | - Sherita H Golden
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mercedes R Carnethon
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joshua J Joseph
- Division of Endocrinology, Diabetes and Metabolism, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
10
|
Luo Y, Chen X, Zeng W, Xiao M, Liu Y, Gao X, Chen H. Associations of harsh, unpredictable environment, amygdala connectivity and overeating for children. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110644. [PMID: 36167214 DOI: 10.1016/j.pnpbp.2022.110644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE In harsh and unpredictable environments, individuals tend to engage in activities that yield immediate rewards as delayed benefits can be unavailable. Substantial evidence suggests that a harsh and unpredictable childhood environment is associated with overeating. However, the neuromechanisms underlying this association remain unclear. This study aimed to investigate amygdala connectivity in relation to environmental harshness and unpredictability (EHU) from an evolutionary perspective and examine their relationship with overeating in children. METHODS Eighty-five children aged 8 to 12 years were scanned using a magnetic resonance imaging machine to assess resting-state functional connectivity (RSFC) of the two subregions of the amygdala (i.e., centromedial amygdala [CMA]; basolateral amygdala [BLA]). Self-reports of EHU and parental reports of overeating, including food responsiveness and enjoyment of food, were obtained cross-sectionally. Furthermore, findings indicated that children completed high- and low-calorie food portion choice tasks in the absence of hunger at 12 months of follow-up. RESULTS EHU was positively associated with parental reports of overeating, including food responsiveness and enjoyment, as well as children's selection of high-calorie food portion sizes. Moreover, static RSFC analyses revealed that EHU was negatively associated with bilateral BLA-left inferior frontal gyrus (IFG) connectivity, while dynamic RSFC analyses found that EHU was negatively associated with right CMA, left inferior parietal lobule, and right CMA-right precuneus connectivity. Particularly, the left BLA-left IFG connectivity mediated the association between EHU and parental reports of food responsiveness. CONCLUSION EHU was negatively associated with amygdala connectivity, which is implicated in the intrinsic processing of emotional regulation. Furthermore, deficits in emotional regulation resulted in increased energy intake. These insights provide a new perspective for understanding the developmental neuromechanisms underlying obesity.
Collapse
Affiliation(s)
- Yijun Luo
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; School of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; School of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Weiyu Zeng
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; School of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; School of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; School of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; School of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China; School of Psychology, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, China.
| |
Collapse
|
11
|
Zhu Y, Zeng Y, Ren J, Zhang L, Chen C, Fernandez G, Qin S. Emotional learning retroactively promotes memory integration through rapid neural reactivation and reorganization. eLife 2022; 11:e60190. [PMID: 36476501 PMCID: PMC9815824 DOI: 10.7554/elife.60190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neutral events preceding emotional experiences can be better remembered, likely by assigning them as significant to guide possible use in future. Yet, the neurobiological mechanisms of how emotional learning enhances memory for past mundane events remain unclear. By two behavioral studies and one functional magnetic resonance imaging study with an adapted sensory preconditioning paradigm, we show rapid neural reactivation and connectivity changes underlying emotion-charged retroactive memory enhancement. Behaviorally, emotional learning retroactively enhanced initial memory for neutral associations across the three studies. Neurally, emotional learning potentiated trial-specific reactivation of overlapping neural traces in the hippocampus and stimulus-relevant neocortex. It further induced rapid hippocampal-neocortical functional reorganization supporting such retroactive memory benefit, as characterized by enhanced hippocampal-neocortical coupling modulated by the amygdala during emotional learning, and a shift of hippocampal connectivity from stimulus-relevant neocortex to distributed transmodal prefrontal-parietal areas at post-learning rests. Together, emotional learning retroactively promotes memory integration for past neutral events through stimulating trial-specific reactivation of overlapping representations and reorganization of associated memories into an integrated network to foster its priority for future use.
Collapse
Affiliation(s)
- Yannan Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Yimeng Zeng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Jingyuan Ren
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Lingke Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
| | - Changming Chen
- School of Education, Chongqing Normal UniversityChongqingChina
| | - Guillen Fernandez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenNetherlands
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
12
|
Hu W, Zhao X, Liu Y, Ren Y, Wei Z, Tang Z, Tian Y, Sun Y, Yang J. Reward sensitivity modulates the brain reward pathway in stress resilience via the inherent neuroendocrine system. Neurobiol Stress 2022; 20:100485. [PMID: 36132434 PMCID: PMC9483565 DOI: 10.1016/j.ynstr.2022.100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
In the previous 10 years, researchers have suggested a critical role for the brain reward system in stress resilience. However, no study has provided an empirical link between activity in the mesostriatal reward regions during stress and the recovery of cortisol stress response. Moreover, although reward sensitivity as a trait has been demonstrated to promote stress resilience, it remains unclear whether it modulates the brain reward system in stress resilience and how this effect is achieved by the inherent neuroendocrine system. To investigate these uncertainties, 70 young adults were recruited to participate in a ScanSTRESS task, and their brain imaging data and saliva samples (for cortisol assay) were collected during the task. In addition, we assessed reward sensitivity, cortisol awakening response, and intrinsic functional connectivity of the brain in all the participants. We found that left putamen activation during stress exposure positively predicted cortisol recovery. In addition, reward sensitivity was positively linked with activation of the left putamen, and this relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic connectivity. These findings suggest that reward sensitivity modulates reward pathways in stress resilience through the interplay of the diurnal stress response system and network of the hippocampus-prefrontal circuitry. Summarily, the current study built a model to highlight the dynamic and multifaceted interaction between pertinent allostatic factors in the reward-resilience pathway and uncovered new insight into the resilience function of the mesostriatal reward system during stress. Cortisol recovery can be predicted by activation of the left putamen in stress. Activation of the left putamen was positively linked with reward sensitivity. This relationship was serially mediated by the cortisol awakening response and right hippocampus-left inferior frontal gyrus intrinsic coupling.
Collapse
Affiliation(s)
- Weiyu Hu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yipeng Ren
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zhenni Wei
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Zihan Tang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yun Tian
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| | - Yadong Sun
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.,Key Laboratory of Cognition and Personality, Southwest University, Chongqing, 400715, China
| |
Collapse
|
13
|
Schneider M, Müller CP, Knies AK. Low income and schizophrenia risk: a narrative review. Behav Brain Res 2022; 435:114047. [PMID: 35933046 DOI: 10.1016/j.bbr.2022.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
Despite decades of research, the precise etiology of schizophrenia is not fully understood. Ample evidence indicates that the disorder derives from a complex interplay of genetic and environmental factors during vulnerable stages of brain maturation. Among the plethora of risk factors investigated, stress, pre- and perinatal insults, and cannabis use have been repeatedly highlighted as crucial environmental risk factors for schizophrenia. Compelling findings from population-based longitudinal studies suggest low income as an additional risk factor for future schizophrenia diagnosis, but underlying mechanisms remain unclear. In this narrative review, we 1) summarize the literature in support of a relationship between low (parental) income and schizophrenia risk, and 2) explore the mediating role of chronic stress, pre- and perinatal factors, and cannabis use as established risk factors for schizophrenia. Our review describes how low income facilitates the occurrence and severity of these established risk factors and thus contributes to schizophrenia liability. The broadest influence of low income was identified for stress, as low income was found to be associated with exposure to a multitude of severe psychological and physiological stressors. This narrative review adds to the growing literature reporting a close relationship between income and mental health.
Collapse
Affiliation(s)
- Miriam Schneider
- Department of Scientific Coordination and Management, Danube Private University, 3500 Krems-Stein, Austria.
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; Centre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Andrea K Knies
- Department of Scientific Coordination and Management, Danube Private University, 3500 Krems-Stein, Austria
| |
Collapse
|
14
|
Poudel R, Tobia MJ, Riedel MC, Salo T, Flannery JS, Hill-Bowen LD, Dick AS, Laird AR, Parra CM, Sutherland MT. Risky decision-making strategies mediate the relationship between amygdala activity and real-world financial savings among individuals from lower income households: A pilot study. Behav Brain Res 2022; 428:113867. [PMID: 35385783 PMCID: PMC10739684 DOI: 10.1016/j.bbr.2022.113867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 03/06/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022]
Abstract
Lower financial savings among individuals experiencing adverse social determinants of health (SDoH) increases vulnerabilities during times of crisis. SDoH including low socioeconomic status (low-SES) influence cognitive abilities as well as health and life outcomes that may perpetuate poverty and disparities. Despite evidence suggesting a role for financial growth in minimizing SDoH-related disparities and vulnerabilities, neurobiological mechanisms linked with financial behavior remain to be elucidated. As such, we examined the relationships between brain activity during decision-making (DM), laboratory-based task performance, and money savings behavior. Participants (N = 24, 14 females) from low-SES households (income<$20,000/year) underwent fMRI scanning while performing the Balloon Analogue Risk Task (BART), a DM paradigm probing risky- and strategic-DM processes. Participants also completed self-report instruments characterizing relevant personality characteristics and then engaged in a community outreach financial program where amount of money saved was tracked over a 6-month period. Regarding BART-related brain activity, we observed expected activity in regions implicated in reward and emotional processing including the amygdala. Regarding brain-behavior relationships, we found that laboratory-based BART performance mediated the impact of amygdala activity on real-world behavior. That is, elevated amygdala activity was linked with BART strategic-DM which, in turn, was linked with more money saved after 6 months. In exploratory analyses, this mediation was moderated by emotion-related personality characteristics such that, only individuals reporting lower alexithymia demonstrated a relationship between amygdala activity and savings. These outcomes suggest that DM-related amygdala activity and/or emotion-related personality characteristics may provide utility as an endophenotypic marker of individual's financial savings behavior.
Collapse
Affiliation(s)
- Ranjita Poudel
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Michael J Tobia
- Department of Physics, Florida International University, Miami, FL, United States
| | - Michael C Riedel
- Department of Physics, Florida International University, Miami, FL, United States
| | - Taylor Salo
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Jessica S Flannery
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Lauren D Hill-Bowen
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Anthony S Dick
- Department of Psychology, Florida International University, Miami, FL, United States
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, United States
| | - Carlos M Parra
- College of Business, Florida International University, Miami, FL, United States
| | - Matthew T Sutherland
- Department of Psychology, Florida International University, Miami, FL, United States.
| |
Collapse
|
15
|
Li M, Lan Q, Qiu L, Yuan Y, He F, Zhang C, Zhang L. Diurnal Cortisol in Left-Behind Adolescents: Relations to Negative Family Expressiveness and Internalizing Problems. Front Public Health 2022; 10:844014. [PMID: 35619807 PMCID: PMC9127735 DOI: 10.3389/fpubh.2022.844014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the accumulating evidence for increased risks for behavioral problems in left-behind adolescents in China, little research has explored their HPA axis functioning, which is hypothesized to play a central role in the association between early adversity and health. In the present study, we designed a longitudinal study to examine HPA axis function in left-behind adolescents and its mediating role in the association between family emotional expressiveness and internalizing problems. Participants were 81 adolescents (44 female; 37 male) aged 11-16 years. Salivary cortisol samples were collected six times a day for two consecutive days on regular school days. Negative family expressiveness (NFE) and internalizing problems were measured using self-report questionnaires. The results showed that NFE was negatively associated with diurnal cortisol, and diurnal cortisol was negatively associated with internalizing problems. Further analysis showed that diurnal cortisol secretion measured by AUC (area under the curve) mediated the association between NFE and internalizing problems. Our findings extended the existing literature about left-behind children via a psychoneuroendocrinological perspective, documenting the negative consequences of the family environment for youth health and development.
Collapse
Affiliation(s)
- Man Li
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Tianjin Normal University, Academy of Psychology and Behavior, Tianjin, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China.,Tianjin Social Science Laboratory of Students' Mental Development and Learning, Tianjin, China
| | - Qili Lan
- School of Psychological and Cognitive Science, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Lirong Qiu
- School of Psychological and Cognitive Science, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yidan Yuan
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Fengjiao He
- School of Psychological and Cognitive Science, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Chen Zhang
- School of Psychological and Cognitive Science, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Linlin Zhang
- Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
16
|
DeJoseph ML, Herzberg MP, Sifre RD, Berry D, Thomas KM. Measurement matters: An individual differences examination of family socioeconomic factors, latent dimensions of children's experiences, and resting state functional brain connectivity in the ABCD sample. Dev Cogn Neurosci 2022; 53:101043. [PMID: 34915436 PMCID: PMC8683693 DOI: 10.1016/j.dcn.2021.101043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
The variation in experiences between high and low-socioeconomic status contexts are posited to play a crucial role in shaping the developing brain and may explain differences in child outcomes. Yet, examinations of SES and brain development have largely been limited to distal proxies of these experiences (e.g., income comparisons). The current study sought to disentangle the effects of multiple socioeconomic indices and dimensions of more proximal experiences on resting-state functional connectivity (rsFC) in a sample of 7834 youth (aged 9-10 years) from the Adolescent Brain Cognitive Development (ABCD) study. We applied moderated nonlinear factor analysis (MNLFA) to establish measurement invariance among three latent environmental dimensions of experience (material/economic deprivation, caregiver social support, and psychosocial threat). Results revealed measurement biases as a function of child age, sex, racial group, family income, and parental education, which were statistically adjusted in the final MNLFA scores. Mixed-effects models demonstrated that socioeconomic indices and psychosocial threat differentially predicted variation in frontolimbic networks, and threat statistically moderated the association between income and connectivity between the dorsal and ventral attention networks. Findings illuminate the importance of reducing measurement biases to gain a more socioculturally-valid understanding of the complex and nuanced links between socioeconomic context, children's experiences, and neurodevelopment.
Collapse
Affiliation(s)
| | - Max P Herzberg
- Institute of Child Development, University of Minnesota, USA; Department of Psychiatry, Washington University School of Medicine, USA.
| | - Robin D Sifre
- Institute of Child Development, University of Minnesota, USA.
| | - Daniel Berry
- Institute of Child Development, University of Minnesota, USA.
| | | |
Collapse
|
17
|
Luby JL. Elucidating Neural Mechanisms of Poverty on Child Development Leads Back to Psychosocial Mechanisms. Biol Psychiatry 2021; 90:141-142. [PMID: 34266619 DOI: 10.1016/j.biopsych.2021.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
18
|
Xiong B, Chen C, Tian Y, Zhang S, Liu C, Evans TM, Fernández G, Wu J, Qin S. Brain preparedness: The proactive role of the cortisol awakening response in hippocampal-prefrontal functional interactions. Prog Neurobiol 2021; 205:102127. [PMID: 34343631 DOI: 10.1016/j.pneurobio.2021.102127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Upon awakening from nighttime sleep, the stress hormone cortisol in humans exhibits a robust rise within thirty to forty-five minutes. This cortisol awakening response (CAR), a crucial point of reference within the healthy cortisol circadian rhythm, has been linked to various psychological, psychiatric and health-related conditions. The CAR is thought to prepare the brain for anticipated challenges of the upcoming day to maintain one's homeostasis and promote adaptive responses. Using brain imaging with a prospective design and pharmacological manipulation, we investigate the neurobiological mechanisms underlying this preparation function of the CAR across two studies. In Study 1, a robust CAR is predictive of less hippocampal and prefrontal activity, though enhanced functional coupling between those regions during a demanding task hours later in the afternoon. Reduced prefrontal activity is in turn linked to better working memory performance, implicating that the CAR proactively promotes brain preparedness based on improved neurocognitive efficiency. In Study 2, pharmacologically suppressed CAR using Dexamethasone mirrors this proactive effect, which further causes a selective reduction of prefrontal top-down functional modulation over hippocampal activity. These findings establish a causal link between the CAR and its proactive role in optimizing functional brain networks involved in neuroendocrine control, executive function and memory.
Collapse
Affiliation(s)
- Bingsen Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Changming Chen
- School of Education, Chongqing Normal University, Chongqing, 401331, China
| | - Yanqiu Tian
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Shouwen Zhang
- West Essence Clinic, Beijing Institute of Functional Neurosurgery & Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Tanya M Evans
- School of Education and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour & Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EN, the Netherlands
| | - Jianhui Wu
- Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China; Chinese Institute for Brain Research, Beijing, 100069, China.
| |
Collapse
|