1
|
Chopra S, Levi PT, Holmes A, Orchard ER, Segal A, Francey SM, O'Donoghue B, Cropley VL, Nelson B, Graham J, Baldwin L, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Fornito A. Brainwide Anatomical Connectivity and Prediction of Longitudinal Outcomes in Antipsychotic-Naïve First-Episode Psychosis. Biol Psychiatry 2025; 97:157-166. [PMID: 39069164 DOI: 10.1016/j.biopsych.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Disruptions of axonal connectivity are thought to be a core pathophysiological feature of psychotic illness, but whether they are present early in the illness, prior to antipsychotic exposure, and whether they can predict clinical outcome remain unknown. METHODS We acquired diffusion-weighted magnetic resonance images to map structural connectivity between each pair of 319 parcellated brain regions in 61 antipsychotic-naïve individuals with first-episode psychosis (15-25 years, 46% female) and a demographically matched sample of 27 control participants. Clinical follow-up data were also acquired in patients 3 and 12 months after the scan. We used connectome-wide analyses to map disruptions of inter-regional pairwise connectivity and connectome-based predictive modeling to predict longitudinal change in symptoms and functioning. RESULTS Individuals with first-episode psychosis showed disrupted connectivity in a brainwide network linking all brain regions compared with controls (familywise error-corrected p = .03). Baseline structural connectivity significantly predicted change in functioning over 12 months (r = 0.44, familywise error-corrected p = .041), such that lower connectivity within fronto-striato-thalamic systems predicted worse functional outcomes. CONCLUSIONS Brainwide reductions of structural connectivity exist during the early stages of psychotic illness and cannot be attributed to antipsychotic medication. Moreover, baseline measures of structural connectivity can predict change in patient functional outcomes up to 1 year after engagement with treatment services.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia; Department of Psychology, Yale University, New Haven, Connecticut; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Priscila T Levi
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Alexander Holmes
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Edwina R Orchard
- Yale Child Study Centre, Yale University, New Haven, Connecticut
| | - Ashlea Segal
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia; Wu Tsai Institute, Department of Neuroscience, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Shona M Francey
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian O'Donoghue
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; St. Vincent's University Hospital, Dublin 4, Ireland; Department of Psychiatry, University College Dublin, Dublin 4, Ireland
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lara Baldwin
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susy Harrigan
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Mental Health, Melbourne School of Global and Population Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia; Western Hospital Sunshine, St. Albans, Victoria, Australia
| | - Stephen J Wood
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; School of Psychology, University of Birmingham, Edgbaston, United Kingdom
| | - Patrick McGorry
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Dauvermann MR, Costello L, Nabulsi L, Philemy GM, Corley E, Fernandes A, Kakodkar P, Neo WX, Mothersill D, Holleran L, Hallahan B, McDonald C, Donohoe G, Cannon DM. Structural brain connectivity does not associate with childhood trauma in individuals with schizophrenia. J Psychiatr Res 2024; 180:451-461. [PMID: 39541636 DOI: 10.1016/j.jpsychires.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Schizophrenia is a brain dysconnectivity disorder. However, it is not well understood whether the experience of childhood trauma (CT) affects dysconnectivity in individuals with schizophrenia (SZ). Using a network-based approach, we examined whether self-reported CT would explain additional variance compared to whole-brain topology and structural connectivity changes in SZ versus healthy controls (HC). MATERIAL AND METHODS CT was assessed in 51 SZ (mean age ± standard deviation 44 ± 11 years) and 140 HC (34.0 ± 12 years). Structural brain networks were constructed from T1-weighted MR and diffusion-MRI scans using non-tensor based tractography. Group differences in whole-brain topology and permutation-based statistics were examined and corrected for age and sex. RESULTS SZ showed reductions in efficiency, strength, clustering and density (p < 0.01) as well as increases in path length (F(range) = 4.71-18.1, p < 0.03) when compared to HC. We also observed hypoconnectivity in a subnetwork of frontotemporal, frontoparietal and occipital regions in SZ relative to HC (T > 4.0, p < 0.001). However, we did not find that high CT levels were related to structural network differences or structural connectivity changes in SZ. CONCLUSIONS CT did not impact on topology or subnetwork connectivity changes in SZ. High CT levels were also not associated with any differences in network organisation irrespective of diagnosis. However, our findings confirm that SZ showed both network-level reductions and increases in a subnetwork. These findings suggest that the patterns of neuroanatomical dysconnectivity in established schizophrenia may not be influenced by CT. Future studies are needed to investigate the association between CT and structural dysconnectivity in schizophrenia.
Collapse
Affiliation(s)
- Maria R Dauvermann
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland; Institute for Mental Health, School of Psychology, University of Birmingham, B15 2TT, United Kingdom
| | - Laura Costello
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Leila Nabulsi
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland; Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina Del Rey, CA, 90292, USA
| | - Genevieve Mc Philemy
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Emma Corley
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Andrea Fernandes
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Pramath Kakodkar
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Wee Xuan Neo
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - David Mothersill
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland; Department of Psychology, School of Business, National College of Ireland, Dublin, Ireland
| | - Laurena Holleran
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Brian Hallahan
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Colm McDonald
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Gary Donohoe
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| | - Dara M Cannon
- Center for Neuroimaging, Cognition and Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33 Galway, Ireland
| |
Collapse
|
3
|
Al-Sharif NB, Zavaliangos-Petropulu A, Narr KL. A review of diffusion MRI in mood disorders: mechanisms and predictors of treatment response. Neuropsychopharmacology 2024; 50:211-229. [PMID: 38902355 PMCID: PMC11525636 DOI: 10.1038/s41386-024-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024]
Abstract
By measuring the molecular diffusion of water molecules in brain tissue, diffusion MRI (dMRI) provides unique insight into the microstructure and structural connections of the brain in living subjects. Since its inception, the application of dMRI in clinical research has expanded our understanding of the possible biological bases of psychiatric disorders and successful responses to different therapeutic interventions. Here, we review the past decade of diffusion imaging-based investigations with a specific focus on studies examining the mechanisms and predictors of therapeutic response in people with mood disorders. We present a brief overview of the general application of dMRI and key methodological developments in the field that afford increasingly detailed information concerning the macro- and micro-structural properties and connectivity patterns of white matter (WM) pathways and their perturbation over time in patients followed prospectively while undergoing treatment. This is followed by a more in-depth summary of particular studies using dMRI approaches to examine mechanisms and predictors of clinical outcomes in patients with unipolar or bipolar depression receiving pharmacological, neurostimulation, or behavioral treatments. Limitations associated with dMRI research in general and with treatment studies in mood disorders specifically are discussed, as are directions for future research. Despite limitations and the associated discrepancies in findings across individual studies, evolving research strongly indicates that the field is on the precipice of identifying and validating dMRI biomarkers that could lead to more successful personalized treatment approaches and could serve as targets for evaluating the neural effects of novel treatments.
Collapse
Affiliation(s)
- Noor B Al-Sharif
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Artemis Zavaliangos-Petropulu
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine L Narr
- Departments of Neurology and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Schneider K, Alexander N, Jansen A, Nenadić I, Straube B, Teutenberg L, Thomas-Odenthal F, Usemann P, Dannlowski U, Kircher T, Nagels A, Stein F. Brain structural associations of syntactic complexity and diversity across schizophrenia spectrum and major depressive disorders, and healthy controls. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:101. [PMID: 39487121 PMCID: PMC11530549 DOI: 10.1038/s41537-024-00517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
Deviations in syntax production have been well documented in schizophrenia spectrum disorders (SSD). Recently, we have shown evidence for transdiagnostic subtypes of syntactic complexity and diversity. However, there is a lack of studies exploring brain structural correlates of syntax across diagnoses. We assessed syntactic complexity and diversity of oral language production using four Thematic Apperception Test pictures in a sample of N = 87 subjects (n = 24 major depressive disorder (MDD), n = 30 SSD patients both diagnosed according to DSM-IV-TR, and n = 33 healthy controls (HC)). General linear models were used to investigate the association of syntax with gray matter volume (GMV), fractional anisotropy (FA), axial (AD), radial (RD), and mean diffusivity (MD). Age, sex, total intracranial volume, group, interaction of group and syntax were covariates of no interest. Syntactic diversity was positively correlated with the GMV of the right medial pre- and postcentral gyri and with the FA of the left superior-longitudinal fasciculus (temporal part). Conversely, the AD of the left cingulum bundle and the forceps minor were negatively correlated with syntactic diversity. The AD of the right inferior-longitudinal fasciculus was positively correlated with syntactic complexity. Negative associations were observed between syntactic complexity and the FA of the left cingulum bundle, the right superior-longitudinal fasciculus, and the AD of the forceps minor and the left uncinate fasciculus. Our study showed brain structural correlates of syntactic complexity and diversity across diagnoses and HC. This contributes to a comprehensive understanding of the interplay between linguistic and neural substrates in syntax production in psychiatric disorders and HC.
Collapse
Affiliation(s)
- Katharina Schneider
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany.
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Arne Nagels
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
5
|
Demirlek C, Verim B, Zorlu N, Demir M, Yalincetin B, Eyuboglu MS, Cesim E, Uzman-Özbek S, Süt E, Öngür D, Bora E. Functional brain networks in clinical high-risk for bipolar disorder and psychosis. Psychiatry Res 2024; 342:116251. [PMID: 39488942 DOI: 10.1016/j.psychres.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/20/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Abnormal connectivity in the brain has been linked to the pathophysiology of severe mental illnesses, including bipolar disorder and schizophrenia. The current study aimed to investigate large-scale functional networks and global network metrics in clinical high-risk for bipolardisorder (CHR-BD, n = 25), clinical high-risk for psychosis (CHR-P, n = 30), and healthy controls (HCs, n = 19). Help-seeking youth at CHR-BD and CHR-P were recruited from the early intervention program at Dokuz Eylul University, Izmir, Turkey. Resting-state functional magnetic resonance imaging scans were obtained from youth at CHR-BD, CHR-P, and HCs. Graph theoretical analysis and network-based statistics were employed to construct and examine the topological features of the whole-brain metrics and large-scale functional networks. Connectivity was increased (i) between the visual and default mode, (ii) between the visual and salience, (iii) between the visual and cingulo-opercular networks, and decreased (i) within the default mode and (ii) between the default mode and fronto-parietal networks in the CHR-P compared to HCs. Decreased global efficiency was found in CHR-P compared to CHR-BD. Functional networks were not different between CHR-BD and HCs. Global efficiency was negatively correlated with subthreshold positive symptoms and thought disorder in the high-risk groups. The current results suggest disrupted networks in CHR-P compared to HCs and CHR-BD. Moreover, transdiagnostic psychosis features are linked to functional brain networks in the at-risk groups. However, given the small, medicated sample, results are exploratory and hypothesis-generating.
Collapse
Affiliation(s)
- Cemal Demirlek
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA; Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Burcu Verim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Nabi Zorlu
- Department of Psychiatry, Katip Celebi University, Ataturk Education and Research Hospital, Izmir, Turkey
| | - Muhammed Demir
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Berna Yalincetin
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Merve S Eyuboglu
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Cesim
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Simge Uzman-Özbek
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ekin Süt
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Dost Öngür
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Emre Bora
- Department of Neurosciences, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Victoria, Australia
| |
Collapse
|
6
|
Libedinsky I, Helwegen K, Boonstra J, Guerrero Simón L, Gruber M, Repple J, Kircher T, Dannlowski U, van den Heuvel MP. Polyconnectomic scoring of functional connectivity patterns across eight neuropsychiatric and three neurodegenerative disorders. Biol Psychiatry 2024:S0006-3223(24)01665-2. [PMID: 39424166 DOI: 10.1016/j.biopsych.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Neuropsychiatric and neurodegenerative disorders involve diverse changes in brain functional connectivity. As an alternative to approaches searching for specific mosaic patterns of affected connections and networks, we used polyconnectomic scoring to quantify disorder-related whole-brain connectivity signatures into interpretable, personalized scores. METHODS The polyconnectomic score (PCS) measures the extent to which an individual's functional connectivity (FC) mirrors the whole-brain circuitry characteristics of a trait. We computed PCS for eight neuropsychiatric conditions (attention-deficit/hyperactivity disorder, anxiety-related disorders, autism spectrum disorder, obsessive-compulsive disorder, bipolar disorder, major depressive disorder, schizoaffective disorder, and schizophrenia) and three neurodegenerative conditions (Alzheimer's disease, frontotemporal dementia, and Parkinson's disease) across 22 datasets with resting-state functional MRI of 10,667 individuals (5,325 patients, 5,342 controls). We further examined PCS in 26,673 individuals from the population-based UK Biobank cohort. RESULTS PCS was consistently higher in out-of-sample patients across six of the eight neuropsychiatric and across all three investigated neurodegenerative disorders ([min, max]: AUC = [0.55, 0.73], pFDR = [1.8 x 10-16, 4.5 x 10-2]). Individuals with elevated PCS levels for neuropsychiatric conditions exhibited higher neuroticism (pFDR < 9.7 x 10-5), lower cognitive performance (pFDR < 5.3 x 10-5), and lower general wellbeing (pFDR < 9.7 x 10-4). CONCLUSIONS Our findings reveal generalizable whole-brain connectivity alterations in brain disorders. PCS effectively aggregates disorder-related signatures across the entire brain into an interpretable, subject-specific metric. A toolbox is provided for PCS computation.
Collapse
Affiliation(s)
- Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jackson Boonstra
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laura Guerrero Simón
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Antonoudiou P, Teboul E, Amaya KA, Stone BT, Dorst KE, Maguire JL. Biased Information Routing Through the Basolateral Amygdala, Altered Valence Processing, and Impaired Affective States Associated With Psychiatric Illnesses. Biol Psychiatry 2024:S0006-3223(24)01652-4. [PMID: 39395471 DOI: 10.1016/j.biopsych.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Accumulating evidence supports a role for altered circuit function in impaired valence processing and altered affective states as a core feature of psychiatric illnesses. We review the circuit mechanisms underlying normal valence processing and highlight evidence supporting altered function of the basolateral amygdala, valence processing, and affective states across psychiatric illnesses. The mechanisms controlling network activity that governs valence processing are reviewed in the context of potential pathophysiological mechanisms mediating circuit dysfunction and impaired valence processing in psychiatric illnesses. Finally, we review emerging data demonstrating experience-dependent, biased information routing through the basolateral amygdala promoting negative valence processing and discuss the potential relevance to impaired affective states and psychiatric illnesses.
Collapse
Affiliation(s)
- Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Eric Teboul
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Kenneth A Amaya
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Bradly T Stone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Kaitlyn E Dorst
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
8
|
Hermann A, Benke C, Blecker CR, de Haas B, He Y, Hofmann SG, Iffland JR, Jengert-Stahl J, Kircher T, Leinweber K, Linka M, Mulert C, Neudert MK, Noll AK, Melzig CA, Rief W, Rothkopf C, Schäfer A, Schmitter CV, Schuster V, Stark R, Straube B, Zimmer RI, Kirchner L. Study protocol TransTAM: Transdiagnostic research into emotional disorders and cognitive-behavioral therapy of the adaptive mind. BMC Psychiatry 2024; 24:657. [PMID: 39369190 PMCID: PMC11456249 DOI: 10.1186/s12888-024-06108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Emotional disorders such as depression and anxiety disorders share substantial similarities in their etiology and treatment. In recent decades, these commonalities have been increasingly recognized in classification systems and treatment programs crossing diagnostic boundaries. METHODS To examine the prospective effects of different transdiagnostic markers on relevant treatment outcomes, we plan to track a minimum of N = 200 patients with emotional disorders during their routine course of cognitive behavioral therapy at two German outpatient clinics. We will collect a wide range of transdiagnostic markers, ranging from basic perceptual processes and self-report measures to complex behavioral and neurobiological indicators, before entering therapy. Symptoms and psychopathological processes will be recorded before entering therapy, between the 20th and 24th therapy session, and at the end of therapy. DISCUSSION Our results could help to identify transdiagnostic markers with high predictive power, but also provide deeper insights into which patient groups with which symptom clusters are less likely to benefit from therapy, and for what reasons. TRIAL REGISTRATION The trial was preregistered at the German Clinical Trial Register (DRKS-ID: DRKS00031206; 2023-05-09).
Collapse
Affiliation(s)
- Andrea Hermann
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany.
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany.
| | - Christoph Benke
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Carlo R Blecker
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
| | - Benjamin de Haas
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Yifei He
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Stefan G Hofmann
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Jona R Iffland
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
| | - Johanna Jengert-Stahl
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Katrin Leinweber
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Marcel Linka
- Experimental Psychology, Justus Liebig University of Giessen, Giessen, Germany
| | - Christoph Mulert
- Center of Psychiatry, Justus Liebig University of Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Marie K Neudert
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Ann-Kathrin Noll
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Christiane A Melzig
- Department of Clinical Psychology, Experimental Psychopathology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Winfried Rief
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Constantin Rothkopf
- Institute of Psychology, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Axel Schäfer
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Christina V Schmitter
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Verena Schuster
- Department of Psychology, Philipps University of Marburg, Marburg, Germany
| | - Rudolf Stark
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
- Justus Liebig University of Giessen, Bender Institute of Neuroimaging, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Philipps University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Raphaela I Zimmer
- Department of Psychotherapy and Systems Neuroscience, Justus Liebig University of Giessen, Giessen, Germany
| | - Lukas Kirchner
- Department of Clinical Psychology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
9
|
Flinkenflügel K, Gruber M, Meinert S, Thiel K, Winter A, Goltermann J, Usemann P, Brosch K, Stein F, Thomas-Odenthal F, Wroblewski A, Pfarr JK, David FS, Beins EC, Grotegerd D, Hahn T, Leehr EJ, Dohm K, Bauer J, Forstner AJ, Nöthen MM, Jamalabadi H, Straube B, Alexander N, Jansen A, Witt SH, Rietschel M, Nenadić I, van den Heuvel MP, Kircher T, Repple J, Dannlowski U. The interplay between polygenic score for tumor necrosis factor-α, brain structural connectivity, and processing speed in major depression. Mol Psychiatry 2024; 29:3151-3159. [PMID: 38693319 PMCID: PMC11449800 DOI: 10.1038/s41380-024-02577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Reduced processing speed is a core deficit in major depressive disorder (MDD) and has been linked to altered structural brain network connectivity. Ample evidence highlights the involvement of genetic-immunological processes in MDD and specific depressive symptoms. Here, we extended these findings by examining associations between polygenic scores for tumor necrosis factor-α blood levels (TNF-α PGS), structural brain connectivity, and processing speed in a large sample of MDD patients. Processing speed performance of n = 284 acutely depressed, n = 177 partially and n = 198 fully remitted patients, and n = 743 healthy controls (HC) was estimated based on five neuropsychological tests. Network-based statistic was used to identify a brain network associated with processing speed. We employed general linear models to examine the association between TNF-α PGS and processing speed. We investigated whether network connectivity mediates the association between TNF-α PGS and processing speed. We identified a structural network positively associated with processing speed in the whole sample. We observed a significant negative association between TNF-α PGS and processing speed in acutely depressed patients, whereas no association was found in remitted patients and HC. The mediation analysis revealed that brain connectivity partially mediated the association between TNF-α PGS and processing speed in acute MDD. The present study provides evidence that TNF-α PGS is associated with decreased processing speed exclusively in patients with acute depression. This association was partially mediated by structural brain connectivity. Using multimodal data, the current findings advance our understanding of cognitive dysfunction in MDD and highlight the involvement of genetic-immunological processes in its pathomechanisms.
Collapse
Grants
- WI 3439/3-1, WI 3439/3-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- RI 908/11-1, RI 908/11-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- JA 1890/7-1, JA 1890/7-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- EP-C-16-015 EPA
- DA1151/5-1, DA1151/5-2, DA1151/11‑1 DA1151/6-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- NO 246/10-1, NO 246/10-2 Deutsche Forschungsgemeinschaft (German Research Foundation)
- HA7070/2-2, HA7070/3, HA7070/4 Deutsche Forschungsgemeinschaft (German Research Foundation)
- STR 1146/18-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- ERC-COG 101001062, VIDI-452-16-015 Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- KI 588/14-1, KI 588/14-2, KI 588/22-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- Interdisziplinäres Zentrum für Klinische Forschung, medizinische Fakultät, Münster (Dan3/012/17)
- Innovative medizinische Forschung Münster (IMF): RE111604, RE111722, RE 221707
Collapse
Affiliation(s)
- Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Eva C Beins
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Radiology, University of Münster, Münster, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Center for Human Genetics, University of Marburg, Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Martijn P van den Heuvel
- Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg, Marburg, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
10
|
Poortman SR, Barendse ME, Setiaman N, van den Heuvel MP, de Lange SC, Hillegers MH, van Haren NE. Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100336. [PMID: 39040431 PMCID: PMC11260845 DOI: 10.1016/j.bpsgos.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 07/24/2024] Open
Abstract
Background Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength.
Collapse
Affiliation(s)
- Simon R. Poortman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Marjolein E.A. Barendse
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Nikita Setiaman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Siemon C. de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Manon H.J. Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Neeltje E.M. van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
11
|
Gencheva TM, Valkov BV, Kandilarova SS, Maes MHJ, Stoyanov DS. Diagnostic value of structural, functional and effective connectivity in bipolar disorder. Acta Psychiatr Scand 2024. [PMID: 39137928 DOI: 10.1111/acps.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The aim of this systematic review is to assess the functional magnetic resonance imaging (fMRI) studies of bipolar disorder (BD) patients that characterize differences in terms of structural, functional, and effective connectivity between the patients with BD, patients with other psychiatric disorders and healthy controls as possible biomarkers for diagnosing the disorder using neuroimaging. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), guidelines a systematic search for recent (since 2015) original studies on connectivity in bipolar disorder was conducted in PUBMED and SCOPUS. RESULTS A total of 60 studies were included in this systematic review: 20 of the structural connectivity, 33 of the functional connectivity, and only 7 of the studies focused on effective connectivity complied with the inclusion and exclusion criteria. DISCUSSION Despite the great heterogeneity in the findings, there are several trends that emerge. In structural connectivity studies, the main abnormalities in bipolar disorder patients were in the frontal gyrus, anterior, as well as posterior cingulate cortex and differences in emotion and reward-related networks. Cerebellum (vermis) to cerebrum functional connectivity was found to be the most common finding in BD. Moreover, prefrontal cortex and amygdala connectivity as part of the rich-club hubs were often reported to be disrupted. The most common findings based on effective connectivity were alterations in salience network, default mode network and executive control network. Although more studies with larger sample sizes are needed to ascertain altered brain connectivity as diagnostic biomarker, there is a perspective that the method could be used as a single marker of diagnosis in the future, and the process of adoption could be accelerated by using approaches such as semiunsupervised machine learning.
Collapse
Affiliation(s)
| | - Bozhidar V Valkov
- Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Sevdalina S Kandilarova
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| | - Michael H J Maes
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| | - Drozdstoy S Stoyanov
- Department of Psychiatry and Medical Psychology, and Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research and Innovation Program for the Development of MU - PLOVDIV - (SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan For Recovery and Sustainability, European Union - NextGenerationEU, Plovdiv, Bulgaria
| |
Collapse
|
12
|
Krug A, Stein F, David FS, Schmitt S, Brosch K, Pfarr JK, Ringwald KG, Meller T, Thomas-Odenthal F, Meinert S, Thiel K, Winter A, Waltemate L, Lemke H, Grotegerd D, Opel N, Repple J, Hahn T, Streit F, Witt SH, Rietschel M, Andlauer TFM, Nöthen MM, Philipsen A, Nenadić I, Dannlowski U, Kircher T, Forstner AJ. Factor analysis of lifetime psychopathology and its brain morphometric and genetic correlates in a transdiagnostic sample. Transl Psychiatry 2024; 14:235. [PMID: 38830892 PMCID: PMC11148082 DOI: 10.1038/s41398-024-02936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
There is a lack of knowledge regarding the relationship between proneness to dimensional psychopathological syndromes and the underlying pathogenesis across major psychiatric disorders, i.e., Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizoaffective Disorder (SZA), and Schizophrenia (SZ). Lifetime psychopathology was assessed using the OPerational CRITeria (OPCRIT) system in 1,038 patients meeting DSM-IV-TR criteria for MDD, BD, SZ, or SZA. The cohort was split into two samples for exploratory and confirmatory factor analyses. All patients were scanned with 3-T MRI, and data was analyzed with the CAT-12 toolbox in SPM12. Psychopathological factor scores were correlated with gray matter volume (GMV) and cortical thickness (CT). Finally, factor scores were used for exploratory genetic analyses including genome-wide association studies (GWAS) and polygenic risk score (PRS) association analyses. Three factors (paranoid-hallucinatory syndrome, PHS; mania, MA; depression, DEP) were identified and cross-validated. PHS was negatively correlated with four GMV clusters comprising parts of the hippocampus, amygdala, angular, middle occipital, and middle frontal gyri. PHS was also negatively associated with the bilateral superior temporal, left parietal operculum, and right angular gyrus CT. No significant brain correlates were observed for the two other psychopathological factors. We identified genome-wide significant associations for MA and DEP. PRS for MDD and SZ showed a positive effect on PHS, while PRS for BD showed a positive effect on all three factors. This study investigated the relationship of lifetime psychopathological factors and brain morphometric and genetic markers. Results highlight the need for dimensional approaches, overcoming the limitations of the current psychiatric nosology.
Collapse
Affiliation(s)
- Axel Krug
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Kai G Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- German Centre for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Jena, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany
| | - Till F M Andlauer
- Department of Neurology, Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Centre for Human Genetics, University of Marburg, Marburg, Germany
| |
Collapse
|
13
|
Zhang Z, Wei W, Wang S, Li M, Li X, Li X, Wang Q, Yu H, Zhang Y, Guo W, Ma X, Zhao L, Deng W, Sham PC, Sun Y, Li T. Dynamic structure-function coupling across three major psychiatric disorders. Psychol Med 2024; 54:1629-1640. [PMID: 38084608 DOI: 10.1017/s0033291723003525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure-function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). METHODS We quantified the dynamic structure-function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure-function coupling with the topological features of functional networks to examine how the structure-function relationship facilitates brain information communication over time. RESULTS The dynamic structure-function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure-function coupling and the topological features of functional networks are altered in a manner indicative of state specificity. CONCLUSIONS These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure-function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- School of Physics, Hangzhou Normal University, Hangzhou, China
- Institute of Brain Science, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wei Wei
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Sujie Wang
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
| | - Mingli Li
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaojing Li
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaoyu Li
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Hua Yu
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Yamin Zhang
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Wanjun Guo
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Xiaohong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Deng
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yu Sun
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Li
- Department of Biomedical Engineering, & Department of Neurobiology, Key Laboratory for Biomedical Engineering of Ministry of Education, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University, Hangzhou, China
- Translational Psychiatry Research Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Georgiadis F, Larivière S, Glahn D, Hong LE, Kochunov P, Mowry B, Loughland C, Pantelis C, Henskens FA, Green MJ, Cairns MJ, Michie PT, Rasser PE, Catts S, Tooney P, Scott RJ, Schall U, Carr V, Quidé Y, Krug A, Stein F, Nenadić I, Brosch K, Kircher T, Gur R, Gur R, Satterthwaite TD, Karuk A, Pomarol-Clotet E, Radua J, Fuentes-Claramonte P, Salvador R, Spalletta G, Voineskos A, Sim K, Crespo-Facorro B, Tordesillas Gutiérrez D, Ehrlich S, Crossley N, Grotegerd D, Repple J, Lencer R, Dannlowski U, Calhoun V, Rootes-Murdy K, Demro C, Ramsay IS, Sponheim SR, Schmidt A, Borgwardt S, Tomyshev A, Lebedeva I, Höschl C, Spaniel F, Preda A, Nguyen D, Uhlmann A, Stein DJ, Howells F, Temmingh HS, Diaz Zuluaga AM, López Jaramillo C, Iasevoli F, Ji E, Homan S, Omlor W, Homan P, Kaiser S, Seifritz E, Misic B, Valk SL, Thompson P, van Erp TGM, Turner JA, Bernhardt B, Kirschner M. Connectome architecture shapes large-scale cortical alterations in schizophrenia: a worldwide ENIGMA study. Mol Psychiatry 2024; 29:1869-1881. [PMID: 38336840 PMCID: PMC11371638 DOI: 10.1038/s41380-024-02442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024]
Abstract
Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.
Collapse
Affiliation(s)
- Foivos Georgiadis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland.
| | - Sara Larivière
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - David Glahn
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, US
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, US
| | - Bryan Mowry
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Carmel Loughland
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, USA
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Carlton South, VIC, Australia
| | - Frans A Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Melissa J Green
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW, Australia
| | - Murray J Cairns
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Patricia T Michie
- School of Psychological Sciences, University of Newcastle, Newcastle, NSW, Australia
| | - Paul E Rasser
- School of Medicine and Public Health, College of Health, Medicine, and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia
| | - Stanley Catts
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - Paul Tooney
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rodney J Scott
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Ulrich Schall
- Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vaughan Carr
- School of Clinical Medicine, Discipline of Psychiatry, UNSW Sydney, Sydney, NSW, Australia
| | - Yann Quidé
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, UNSW Sydney, Sydney, NSW, Australia
| | - Axel Krug
- University Hospital Bonn, Department of Psychiatry and Psychotherapy, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Rudolf Bultmann Str. 8, 35039, Marburg, Germany
| | - Igor Nenadić
- Department. of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry, University of Marburg, Rudolf Bultmann Str. 8, 35039, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Rudolf Bultmann Str. 8, 35039, Marburg, Germany
| | - Raquel Gur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ruben Gur
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Andriana Karuk
- FIDMAG Germanes Hospitalàries Research Foundation & CIBERSAM, ISCIII, Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation & CIBERSAM, ISCIII, Barcelona, Spain
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation & CIBERSAM, ISCIII, Barcelona, Spain
| | | | - Aristotle Voineskos
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
| | | | - Diana Tordesillas Gutiérrez
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences, Technischen Universität Dresden, Faculty of Medicine, University Hospital C.G. Carus, Dresden, Germany
| | - Nicolas Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Rebekka Lencer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Kelly Rootes-Murdy
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Caroline Demro
- University of Minnesota Department of Psychology, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Ian S Ramsay
- University of Minnesota Department of Psychiatry & Behavioral Sciences, Minneapolis, MN, USA
| | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- University of Minnesota Department of Psychiatry & Behavioral Sciences, Minneapolis, MN, USA
| | - Andre Schmidt
- University of Basel, Department of Psychiatry, Basel, Switzerland
| | | | | | - Irina Lebedeva
- Mental Health Research Center, Moscow, Russian Federation
| | - Cyril Höschl
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Filip Spaniel
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Dana Nguyen
- Department of Pediatric Neurology, University of California Irvine, Irvine, CA, USA
| | - Anne Uhlmann
- Department of child and adolescent psychiatry, TU Dresden, Dresden, Germany
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Fleur Howells
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Henk S Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Ana M Diaz Zuluaga
- Research Group in Psychiatry, Department of Psychiatry, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Carlos López Jaramillo
- Research Group in Psychiatry, Department of Psychiatry, School of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Felice Iasevoli
- University of Naples, Department of Neuroscience, Naples, Italy
| | - Ellen Ji
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Stephanie Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Wolfgang Omlor
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Philipp Homan
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland
| | - Bratislav Misic
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Sofie L Valk
- Forschungszentrum Jülich, Jülich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Paul Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theo G M van Erp
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Jessica A Turner
- Department of Psychiatry and Behavioral Health, the Ohio State University, Columbus, OH, USA
| | - Boris Bernhardt
- McGill University, Montreal Neurological Institute, Montreal, QC, Canada
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital University of Zurich, Zurich, Switzerland.
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
15
|
Huang D, Wu Y, Yue J, Wang X. Causal relationship between resting-state networks and depression: a bidirectional two-sample mendelian randomization study. BMC Psychiatry 2024; 24:402. [PMID: 38811927 PMCID: PMC11138044 DOI: 10.1186/s12888-024-05857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Cerebral resting-state networks were suggested to be strongly associated with depressive disorders. However, the causal relationship between cerebral networks and depressive disorders remains controversial. In this study, we aimed to investigate the effect of resting-state networks on depressive disorders using a bidirectional Mendelian randomization (MR) design. METHODS Updated summary-level genome-wide association study (GWAS) data correlated with resting-state networks were obtained from a meta-analysis of European-descent GWAS from the Complex Trait Genetics Lab. Depression-related GWAS data were obtained from the FinnGen study involving participants with European ancestry. Resting-state functional magnetic resonance imaging and multiband diffusion imaging of the brain were performed to measure functional and structural connectivity in seven well-known networks. Inverse-variance weighting was used as the primary estimate, whereas the MR-Pleiotropy RESidual Sum and Outliers (PRESSO), MR-Egger, and weighted median were used to detect heterogeneity, sensitivity, and pleiotropy. RESULTS In total, 20,928 functional and 20,573 structural connectivity data as well as depression-related GWAS data from 48,847 patients and 225,483 controls were analyzed. Evidence for a causal effect of the structural limbic network on depressive disorders was found in the inverse variance-weighted limbic network (odds ratio, [Formula: see text]; 95% confidence interval, [Formula: see text]; [Formula: see text]), whereas the causal effect of depressive disorders on SC LN was not found(OR=1.0025; CI,1.0005-1.0046; P=0.012). No significant associations between functional connectivity of the resting-state networks and depressive disorders were found in this MR study. CONCLUSIONS These results suggest that genetically determined structural connectivity of the limbic network has a causal effect on depressive disorders and may play a critical role in its neuropathology.
Collapse
Affiliation(s)
- Dongmiao Huang
- Department of Psychiatry, the Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, East Meihua Road, Zhuhai City, Guangdong Province, 519000, China
| | - Yuelin Wu
- Department of Psychiatry, the Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, East Meihua Road, Zhuhai City, Guangdong Province, 519000, China
| | - Jihui Yue
- Department of Psychiatry, the Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, East Meihua Road, Zhuhai City, Guangdong Province, 519000, China.
| | - Xianglan Wang
- Department of Psychiatry, the Fifth Affiliated Hospital of Sun Yat-sen University, No. 52, East Meihua Road, Zhuhai City, Guangdong Province, 519000, China.
| |
Collapse
|
16
|
Nkire N, Kinsella A, Russell V, Waddington JL. Duration of the psychosis prodrome and its relationship to duration of untreated psychosis across all 12 DSM-IV psychotic diagnoses: Evidence for a trans-diagnostic process associated with resilience. Eur Neuropsychopharmacol 2024; 80:5-13. [PMID: 38128335 DOI: 10.1016/j.euroneuro.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
While duration of the psychosis prodrome (DPP) attracts attention in relation to the developmental trajectory of psychotic illness and service models, fundamental issues endure in the context of dimensional-spectrum models of psychosis. Among 205 epidemiologically representative subjects in the Cavan-Monaghan First Episode Psychosis Study, DPP was systematically quantified and compared, for the first time, across all 12 DSM-IV psychotic diagnoses. DPP was also compared with duration of untreated psychosis (DUP) and each was then analysed in relation to premorbid features across three age ranges: <12, 12-15 and 16-18 years. For each diagnosis, medians for both DPP and DUP were shorter than means, indicating common right-skewed distributions. Rank orders for both DPP and DUP were longest for schizophrenia, intermediate for other schizophrenia-spectrum psychoses, psychotic depression and psychotic disorder not otherwise specified, and shortest for brief psychotic disorder, bipolar disorder and substance-induced psychotic disorder, though with overlapping right-skewed distributions. DPP was longer than DUP for all diagnoses except substance-induced psychotic disorder. Across functional psychotic diagnoses, longer DPP was predicted by higher premorbid intelligence and better premorbid adjustment during age 16-18 years. These findings indicate that, trans-diagnostically, DPP and DUP share right-skewed continuities, in accordance with a dimensional-spectrum model of psychotic illness, and may reflect a unitary process that has been dichotomized at a subjective threshold along its trajectory. Better premorbid functioning during age 16-18 years appears to confer resilience by delaying progression to overt psychotic symptoms and may constitute a particular target period for psychosocial interventions.
Collapse
Affiliation(s)
- Nnamdi Nkire
- Drumalee Primary Care Centre, Cavan-Monaghan Mental Health Service, Cavan, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anthony Kinsella
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Vincent Russell
- Drumalee Primary Care Centre, Cavan-Monaghan Mental Health Service, Cavan, Ireland; Department of Psychiatry, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Cai M, Ma J, Wang Z, Zhao Y, Zhang Y, Wang H, Xue H, Chen Y, Zhang Y, Wang C, Zhao Q, Xue K, Liu F. Individual-level brain morphological similarity networks: Current methodologies and applications. CNS Neurosci Ther 2023; 29:3713-3724. [PMID: 37519018 PMCID: PMC10651978 DOI: 10.1111/cns.14384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS The human brain is an extremely complex system in which neurons, clusters of neurons, or regions are connected to form a complex network. With the development of neuroimaging techniques, magnetic resonance imaging (MRI)-based brain networks play a key role in our understanding of the intricate architecture of human brain. Among them, the structural MRI-based brain morphological network approach has attracted increasing attention due to the advantages in data acquisition, image quality, and in revealing the structural organizing principles intrinsic to the brain. This review is to summarize the methodology and related applications of individual-level morphological networks. BACKGROUND There have been a growing number of studies related to brain morphological similarity networks. Conventional morphological networks are intersubject covariance networks constructed using a certain morphological indicator of a group of subjects; individual-level morphological networks, on the other hand, measure the morphological similarity between brain regions for individual brains and can reflect the morphological information of single subjects. In recent years, individual morphological networks have demonstrated significant worth in exploring the topological changes of the human brain under both normal and disease conditions. Such studies provided novel perspectives for understanding human brain development and exploring the pathological mechanisms of neuropsychiatric disorders. CONCLUSION This paper mainly focuses on the studies of brain morphological networks at the individual level, introduces several ways for network construction, reviews representative work in this field, and finally points out current problems and future directions.
Collapse
Affiliation(s)
- Mengjing Cai
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Juanwei Ma
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yao Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yijing Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - He Wang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Chunyang Wang
- Department of Scientific ResearchTianjin Medical University General HospitalTianjinChina
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional ImagingTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
18
|
Lin S, Zhang C, Zhang Y, Chen S, Lin X, Peng B, Xu Z, Hou G, Qiu Y. Shared and specific neurobiology in bipolar disorder and unipolar disorder: Evidence based on the connectome gradient and a transcriptome-connectome association study. J Affect Disord 2023; 341:304-312. [PMID: 37661059 DOI: 10.1016/j.jad.2023.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Distinguishing bipolar disorder (BD) and unipolar disorder (UD) remains challenging. To identify the common and diagnosis-specific neuropathological alterations and their potential molecular mechanisms in patients with UD and BD (with a current depressive episode). METHODS Resting-state functional magnetic resonance imaging was obtained from 279 participants (95 BD patients, 107 UD patients and 77 health controls). Connectome gradients analysis was performed to explore the shared and diagnosis-specific gradient alterations in BD and UD. The Allen Human Brain Atlas data was used to explore the potential gene mechanisms of the gradient alterations. RESULTS BD and UD had shared hierarchical disorganisation, including downgrading and contraction from the unimodal sensory networks (vision and sensorimotor) to the transmodal cognitive networks (limbic, frontoparietal, dorsal attention, and default) (all P < 0.05, FDR corrected) in gradient 1 and gradient 2. The BD patients had specific connectome gradient dysfunction in the subcortical network. Moreover, the hierarchical disorganisation was closely correlated with profiles of gene expression specific to the neuroglial cells in the prefrontal cortex in BD and UD, while the most correlated gene ontology biological processes and function were concentrated in synaptic signalling, calcium ion binding, and transmembrane transporter activity. CONCLUSION These findings reveal the shared and diagnosis-specific neurobiological mechanism underlying BD and UD patients, which advances our understanding of the neuromechanisms of these disorders.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Chao Zhang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yingli Zhang
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Xiaoshan Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China
| | - Bo Peng
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, Guangdong 518020, People's Republic of China
| | - Ziyun Xu
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Cuizhu AVE 1080, Luohu district, Shenzhen 518020, China.
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Taoyuan Ave 89, Nanshan district, Shenzhen 518000, PR China.
| |
Collapse
|
19
|
Sanchez SM, Tsuchiyagaito A, Kuplicki R, Park H, Postolski I, Rohan M, Paulus MP, Guinjoan SM. Repetitive Negative Thinking-Specific and -Nonspecific White Matter Tracts Engaged by Historical Psychosurgical Targets for Depression. Biol Psychiatry 2023; 94:661-671. [PMID: 36965550 PMCID: PMC10517085 DOI: 10.1016/j.biopsych.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Repetitive negative thinking (RNT) is a frequent symptom of major depressive disorder (MDD) that is associated with poor outcomes and treatment resistance. While most studies on RNT have focused on structural and functional characteristics of gray matter, this study aimed to examine the association between white matter (WM) tracts and interindividual variability in RNT. METHODS A probabilistic tractography approach was used to characterize differences in the size and anatomical trajectory of WM fibers traversing psychosurgery targets historically useful in the treatment of MDD (anterior capsulotomy, anterior cingulotomy, and subcaudate tractotomy) in patients with MDD and low (n = 53) or high (n = 52) RNT, and healthy control subjects (n = 54). MDD samples were propensity matched on depression and anxiety severity and demographics. RESULTS WM tracts traversing left hemisphere targets and reaching the ventral anterior body of the corpus callosum (thus extending to contralateral regions) were larger in the high-RNT MDD group compared with low-RNT (effect size D = 0.27, p = .042) and healthy control (D = 0.23, p = .02) groups. MDD was associated with greater size of tracts that converge onto the right medial orbitofrontal cortex regardless of RNT intensity. Other RNT-nonspecific findings in MDD involved tracts reaching the left primary motor and right primary somatosensory cortices. CONCLUSIONS This study provides the first evidence to our knowledge that WM connectivity patterns, which could become targets of intervention, differ between high- and low-RNT participants with MDD. These WM differences extend to circuits that are not specific to RNT, possibly subserving reward mechanisms and psychomotor activity.
Collapse
Affiliation(s)
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | | | - Heekyeong Park
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychology, University of North Texas, Dallas, Texas
| | - Ivan Postolski
- Institute for Research in Computational Sciences, National Scientific and Technical Research Council-University of Buenos Aires, Buenos Aires, Argentina
| | - Michael Rohan
- Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma
| | - Salvador M Guinjoan
- Laureate Institute for Brain Research, Tulsa, Oklahoma; Department of Psychiatry, Oklahoma University Health Sciences Center, Tulsa, Oklahoma.
| |
Collapse
|
20
|
Libedinsky I, Helwegen K, Simón LG, Gruber M, Repple J, Kircher T, Dannlowski U, van den Heuvel MP. Quantifying brain connectivity signatures by means of polyconnectomic scoring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559327. [PMID: 37808808 PMCID: PMC10557693 DOI: 10.1101/2023.09.26.559327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A broad range of neuropsychiatric disorders are associated with alterations in macroscale brain circuitry and connectivity. Identifying consistent brain patterns underlying these disorders by means of structural and functional MRI has proven challenging, partly due to the vast number of tests required to examine the entire brain, which can lead to an increase in missed findings. In this study, we propose polyconnectomic score (PCS) as a metric designed to quantify the presence of disease-related brain connectivity signatures in connectomes. PCS summarizes evidence of brain patterns related to a phenotype across the entire landscape of brain connectivity into a subject-level score. We evaluated PCS across four brain disorders (autism spectrum disorder, schizophrenia, attention deficit hyperactivity disorder, and Alzheimer's disease) and 14 studies encompassing ~35,000 individuals. Our findings consistently show that patients exhibit significantly higher PCS compared to controls, with effect sizes that go beyond other single MRI metrics ([min, max]: Cohen's d = [0.30, 0.87], AUC = [0.58, 0.73]). We further demonstrate that PCS serves as a valuable tool for stratifying individuals, for example within the psychosis continuum, distinguishing patients with schizophrenia from their first-degree relatives (d = 0.42, p = 4 × 10-3, FDR-corrected), and first-degree relatives from healthy controls (d = 0.34, p = 0.034, FDR-corrected). We also show that PCS is useful to uncover associations between brain connectivity patterns related to neuropsychiatric disorders and mental health, psychosocial factors, and body measurements.
Collapse
Affiliation(s)
- Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laura Guerrero Simón
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Schneider K, Leinweber K, Jamalabadi H, Teutenberg L, Brosch K, Pfarr JK, Thomas-Odenthal F, Usemann P, Wroblewski A, Straube B, Alexander N, Nenadić I, Jansen A, Krug A, Dannlowski U, Kircher T, Nagels A, Stein F. Syntactic complexity and diversity of spontaneous speech production in schizophrenia spectrum and major depressive disorders. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:35. [PMID: 37248240 DOI: 10.1038/s41537-023-00359-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023]
Abstract
Syntax, the grammatical structure of sentences, is a fundamental aspect of language. It remains debated whether reduced syntactic complexity is unique to schizophrenia spectrum disorder (SSD) or whether it is also present in major depressive disorder (MDD). Furthermore, the association of syntax (including syntactic complexity and diversity) with language-related neuropsychology and psychopathological symptoms across disorders remains unclear. Thirty-four SSD patients and thirty-eight MDD patients diagnosed according to DSM-IV-TR as well as forty healthy controls (HC) were included and tasked with describing four pictures from the Thematic Apperception Test. We analyzed the produced speech regarding its syntax delineating measures for syntactic complexity (the total number of main clauses embedding subordinate clauses) and diversity (number of different types of complex sentences). We performed cluster analysis to identify clusters based on syntax and investigated associations of syntactic, to language-related neuropsychological (verbal fluency and verbal episodic memory), and psychopathological measures (positive and negative formal thought disorder) using network analyses. Syntax in SSD was significantly reduced in comparison to MDD and HC, whereas the comparison of HC and MDD revealed no significant differences. No associations were present between speech measures and current medication, duration and severity of illness, age or sex; the single association accounted for was education. A cluster analysis resulted in four clusters with different degrees of syntax across diagnoses. Subjects with less syntax exhibited pronounced positive and negative symptoms and displayed poorer performance in executive functioning, global functioning, and verbal episodic memory. All cluster-based networks indicated varying degrees of domain-specific and cross-domain connections. Measures of syntactic complexity were closely related while syntactic diversity appeared to be a separate node outside of the syntactic network. Cross-domain associations were more salient in more complex syntactic production.
Collapse
Affiliation(s)
- Katharina Schneider
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany.
| | - Katrin Leinweber
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Florian Thomas-Odenthal
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Adrian Wroblewski
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Arne Nagels
- Department of English and Linguistics, General Linguistics, University of Mainz, Mainz, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
22
|
Cohen BM, Öngür D. The need for evidence-based updating of ICD and DSM models of psychotic and mood disorders. Mol Psychiatry 2023; 28:1836-1838. [PMID: 36697753 DOI: 10.1038/s41380-023-01967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Affiliation(s)
- Bruce M Cohen
- Robertson Steele Professor of Psychiatry, Harvard Medical School, Boston, MA, USA.
- President and Psychiatrist in Chief, Emeritus, McLean Hospital, 115 Mill St., Belmont, MA, 02478, USA.
| | - Dost Öngür
- William P. and Henry B. Test Professor of Psychiatry, Harvard Medical School, Boston, MA, USA
- Chief, Division of Psychotic Disorders, McLean Hospital, 115 Mill St., Belmont, MA, USA
| |
Collapse
|
23
|
Xu Y, Wang Y, Hu N, Yang L, Yu Z, Han L, Xu Q, Zhou J, Chen J, Mao H, Pan Y. Intrinsic Organization of Occipital Hubs Predicts Depression: A Resting-State fNIRS Study. Brain Sci 2022; 12:brainsci12111562. [PMID: 36421888 PMCID: PMC9688420 DOI: 10.3390/brainsci12111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunctional brain networks have been found in patients with major depressive disorder (MDD). In this study, to verify this in a more straightforward way, we investigated the intrinsic organization of brain networks in MDD by leveraging the resting-state functional near-infrared spectroscopy (rs-fNIRS). Thirty-four MDD patients (24 females, 38.41 ± 13.14 years old) and thirty healthy controls (22 females, 34.43 ± 5.03 years old) underwent a 10 min rest while their brain activity was recorded via fNIRS. The results showed that MDD patients and healthy controls exhibited similar resting-state functional connectivity. Moreover, the depression group showed lower small-world Lambda (1.12 ± 0.04 vs. 1.16 ± 0.10, p = 0.04) but higher global efficiency (0.51 ± 0.03 vs. 0.48 ± 0.05, p = 0.03) than the control group. Importantly, MDD patients, as opposed to healthy controls, showed a significantly lower nodal local efficiency at the left middle occipital gyrus (0.56 ± 0.36 vs. 0.81 ± 0.20, pFDR < 0.05), which predicted the level of depression in MDD (r = 0.45, p = 0.01, R2 = 0.15). In sum, we found a more integrated brain network in MDD patients with a lower nodal local efficiency at the occipital hub, which could predict depressive symptoms.
Collapse
Affiliation(s)
- You Xu
- Department of Sleep Medicine, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Tianmushan Road 305, Hangzhou 310013, China
| | - Yajie Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nannan Hu
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| | - Lili Yang
- Department of Sleep Medicine, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Tianmushan Road 305, Hangzhou 310013, China
| | - Zhenghe Yu
- Department of Sleep Medicine, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Tianmushan Road 305, Hangzhou 310013, China
| | - Li Han
- Department of Sleep Medicine, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Tianmushan Road 305, Hangzhou 310013, China
| | - Qianqian Xu
- Department of Sleep Medicine, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Tianmushan Road 305, Hangzhou 310013, China
| | - Jingjing Zhou
- Department of Sleep Medicine, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Tianmushan Road 305, Hangzhou 310013, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjing Mao
- Department of Sleep Medicine, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Tianmushan Road 305, Hangzhou 310013, China
- Correspondence: (H.M.); (Y.P.)
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.M.); (Y.P.)
| |
Collapse
|