1
|
Morningstar MD, Lopez KM, Mayfield SS, Almeida-Mancero RN, Marquez J, Flores AM, Hafer BR, Estrada E, Holtzman GA, Goranson EV, Reid NM, Aldrich AR, Ghatalia DV, Patel JR, Padilla CM, Chavez GJ, Kelly-Roman J, Bhakta PA, Valenzuela CF, Linsenbardt DN. Connectivity of the neuronal network for contextual fear memory is disrupted in a mouse model of third-trimester binge-like ethanol exposure. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024. [PMID: 39672678 DOI: 10.1111/acer.15503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/18/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND In rodents, third-trimester-equivalent alcohol exposure (TTAE) produces significant deficits in hippocampal-dependent memory processes such as contextual fear conditioning (CFC). The present study sought to characterize changes in both behavior and Fos+ neurons following CFC in ethanol (EtOH)-treated versus saline-treated mice using TRAP2:Ai14 mice that permanently label Fos+ neurons following a tamoxifen injection. We hypothesized that TTAE would produce long-lasting disruptions to the networks engaged following CFC with a particular emphasis on the limbic memory system. METHODS On postnatal day 7, mice received either two injections of saline or 2.5 g/kg EtOH spaced 2 h apart. The mice were left undisturbed until they reached adulthood, at which point they underwent CFC. After context exposure on day 2, mice received a tamoxifen injection. Brain tissue was harvested. Slides were automatically imaged using a Zeiss AxioScanner. Manual counts on a priori regions of interest were conducted. Automated counts were performed on the whole brain using the QUINT 2D stitching pipeline. Last, novel network analyses were applied to identify future regions of interest. RESULTS TTAE reduced context recall on day 2 of CFC. Fos+ neural density increased in the CA1 and CA3. Fos+ counts were reduced in the anteroventral (AV) and anterodorsal thalamus. The limbic memory system showed significant hyperconnectivity in male TTAE mice, and the AV shifted affinity toward hippocampal subregions. Last, novel regions such as a subparafascicular area and basomedial amygdalar nucleus were implicated as important mediators. DISCUSSION These results suggest that CFC is mediated by the limbic memory system and is disrupted following TTAE. Given the increase in CA1 and CA3 activity, a potential hypothesis is that TTAE causes disruptions to memory encoding following day 1 conditioning. Future studies will aim to determine whether this disruption specifically affects the encoding or retrieval of fear memories.
Collapse
Affiliation(s)
- Mitchell D Morningstar
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Katalina M Lopez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Stefanie S Mayfield
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Roberto N Almeida-Mancero
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joshua Marquez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Andres M Flores
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Brooke R Hafer
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Edilberto Estrada
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Gwen A Holtzman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Emerald V Goranson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Natalie M Reid
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Abigale R Aldrich
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Desna V Ghatalia
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Juhee R Patel
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Christopher M Padilla
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Glenna J Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Javier Kelly-Roman
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Pooja A Bhakta
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - David N Linsenbardt
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
3
|
Aboharb F, Davoudian PA, Shao LX, Liao C, Rzepka GN, Wojtasiewicz C, Indajang J, Dibbs M, Rondeau J, Sherwood AM, Kaye AP, Kwan AC. Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.590306. [PMID: 38826215 PMCID: PMC11142187 DOI: 10.1101/2024.05.23.590306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for characterizing and validating psychoactive drugs with psychedelic properties.
Collapse
Affiliation(s)
- Farid Aboharb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Weill Cornell Medicine/Rockefeller/Sloan-Kettering Tri-Institutional MD/PhD Program, New York, NY, 10021, USA
| | - Pasha A. Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Gillian N. Rzepka
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Jocelyne Rondeau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | | | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, 06477, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06511, USA
| | - Alex C. Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, 10065, USA
| |
Collapse
|
4
|
Yang XL, Gao W, Dong WY, Zheng C, Wang S, Wei HR, Luo Y, Zhang Z, Chen Y, Jin Y. A neural circuit for alcohol withdrawal-induced hyperalgesia in a nondependent state. SCIENCE ADVANCES 2024; 10:eadp8636. [PMID: 39331713 PMCID: PMC11430459 DOI: 10.1126/sciadv.adp8636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Alcohol use disorder is highly prevalent worldwide, with characteristically severe pain sensitivity during withdrawal. Here, we established a mouse model of hyperalgesia during ethanol withdrawal (EW) before addiction to investigate the window for onset and underlying mechanisms. Viral tracing with in vivo microendoscopic and two-photon calcium imaging identified a circuit pathway from dorsal hippocampal CA1 glutamatergic neurons (dCA1Glu) to anterior cingulate cortex glutamatergic neurons (ACCGlu) activated in EW mice with hyperalgesia. Chemogenetic inhibition of this pathway can alleviate hyperalgesia in EW mice, whereas artificial activation recapitulates EW-induced hyperalgesia in naïve mice. These findings demonstrate that the dCA1Glu → ACCGlu neuronal pathway participates in driving EW-induced hyperalgesia before ethanol dependence in mice.
Collapse
Affiliation(s)
- Xin-Lu Yang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Anesthesiology, First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Wei Gao
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wan-Ying Dong
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Changjian Zheng
- Department of Anesthesiology, First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Sheng Wang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hong-Rui Wei
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yanli Luo
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Biophysics and Neurobiology, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
| | - Yongquan Chen
- Department of Anesthesiology, First Affiliated Hospital of Wannan Medical College, Wuhu 241002, China
| | - Yan Jin
- Department of Biophysics and Neurobiology, CAS Key laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei 230026, China
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
5
|
Ardinger CE, Chen Y, Kimbrough A, Grahame NJ, Lapish CC. Sex differences in neural networks recruited by frontloaded binge alcohol drinking. Addict Biol 2024; 29:e13434. [PMID: 39256902 PMCID: PMC11387202 DOI: 10.1111/adb.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/28/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024]
Abstract
Frontloading is an alcohol drinking pattern where intake is skewed towards the onset of access. This study aimed to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female, 31 male) mice that underwent 8 days of binge drinking using drinking-in-the-dark (DID). On Days 1-7 mice received 20% (v/v) alcohol or water for 2 h. Intake was measured in 1-min bins using volumetric sippers. On Day 8 mice were perfused 80 min into the DID session and brains were extracted. Brains were processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For network analyses, Day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a change-point analysis. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (three modules in both frontloaders and non-frontloaders) as compared to water (seven modules). In females, an opposite effect was observed. Alcohol access (nine modules for frontloaders) increased modularity as compared to water (five modules). Further, different brain regions served as hubs in frontloaders as compared to control groups. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females and we identify several brain-wide signatures of frontloading.
Collapse
Affiliation(s)
- Cherish E. Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
- Weldon School of Biomedical Engineering, College of EngineeringPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute of Inflammation, Immunology, and Infectious DiseasePurdue UniversityWest LafayetteIndianaUSA
| | - Nicholas J. Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| | - Christopher C. Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research CenterIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
- Stark Neuroscience Research InstituteIndiana University – Purdue University IndianapolisIndianapolisIndianaUSA
| |
Collapse
|
6
|
Chan AE, Anderson JQ, Grigsby KB, Jensen BE, Ryabinin AE, Ozburn AR. Sex differences in nucleus accumbens core circuitry engaged by binge-like ethanol drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608144. [PMID: 39229134 PMCID: PMC11370393 DOI: 10.1101/2024.08.15.608144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Growing parity in Alcohol Use Disorder (AUD) diagnoses in men and women necessitates consideration of sex as a biological variable. In humans and rodents, the nucleus accumbens core (NAcc) regulates alcohol binge drinking, a risk factor for developing AUD. We labeled NAcc inputs with a viral retrograde tracer and quantified whole-brain c-Fos to determine the regions and NAcc inputs differentially engaged in male and female mice during binge-like ethanol drinking. We found that binge-like ethanol drinking females had 129 brain areas with greater c-Fos than males. Moreover, ethanol engaged more NAcc inputs in binge-like ethanol drinking females (as compared with males), including GABAergic and glutamatergic inputs. Relative to water controls, ethanol increased network modularity and decreased connectivity in both sexes and did so more dramatically in males. These results demonstrate that early-stage binge-like ethanol drinking engages brain regions and NAcc-inputs and alters network dynamics in a sex-specific manner.
Collapse
Affiliation(s)
- Amy E Chan
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Justin Q Anderson
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Kolter B Grigsby
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Bryan E Jensen
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| | - Andrey E Ryabinin
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Oregon Health and Science University, Dept. of Behavioral Neuroscience, Portland Alcohol Research Center, Portland, OR, 97239, USA
- Veterans Affairs Portland Health Care System, Research and Development Service, Portland, OR, 97239, USA
| |
Collapse
|
7
|
Szelenyi ER, Navarrete JS, Murry AD, Zhang Y, Girven KS, Kuo L, Cline MM, Bernstein MX, Burdyniuk M, Bowler B, Goodwin NL, Juarez B, Zweifel LS, Golden SA. An arginine-rich nuclear localization signal (ArgiNLS) strategy for streamlined image segmentation of single cells. Proc Natl Acad Sci U S A 2024; 121:e2320250121. [PMID: 39074275 PMCID: PMC11317604 DOI: 10.1073/pnas.2320250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single cells. However, conventional fluorescent protein (FP) modifications used to discriminate single cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and nondeleterious nuclear localization signal (NLS) tag strategy, called "Arginine-rich NLS" (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes and in response to both local and systemic brain-wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances machine learning-automated segmentation of single cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single cells at scale and paired with behavioral procedures.
Collapse
Affiliation(s)
- Eric R. Szelenyi
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Jovana S. Navarrete
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | - Alexandria D. Murry
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Yizhe Zhang
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Kasey S. Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195
| | - Lauren Kuo
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Undergraduate Program in Biochemistry, University of Washington, Seattle, WA98195
| | - Marcella M. Cline
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Mollie X. Bernstein
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | | | - Bryce Bowler
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Nastacia L. Goodwin
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | - Barbara Juarez
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA98195
| | - Larry S. Zweifel
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA98195
| | - Sam A. Golden
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| |
Collapse
|
8
|
Shankar K, Bonnet-Zahedi S, Milan K, D'argence AR, Sneddon E, Qiao R, Chonwattangul S, Carrette LLG, Kallupi M, George O. Acute nicotine activates orectic and inhibits anorectic brain regions in rats exposed to chronic nicotine. Neuropharmacology 2024; 253:109959. [PMID: 38648925 DOI: 10.1016/j.neuropharm.2024.109959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Nicotine use produces psychoactive effects, and chronic use is associated with physiological and psychological symptoms of addiction. However, chronic nicotine use is known to decrease food intake and body weight gain, suggesting that nicotine also affects central metabolic and appetite regulation. We recently showed that acute nicotine self-administration in nicotine-dependent animals produces a short-term increase in food intake, contrary to its long-term decrease of feeding behavior. As feeding behavior is regulated by complex neural signaling mechanisms, this study aimed to test the hypothesis that nicotine intake in animals exposed to chronic nicotine may increase activation of pro-feeding regions and decrease activation of pro-satiety regions to produce the acute increase in feeding behavior. FOS immunohistochemistry revealed that acute nicotine intake in nicotine self-administering animals increased activation of the pro-feeding arcuate and lateral hypothalamic nuclei and decreased activation of the pro-satiety parabrachial nucleus. Regional correlational analysis also showed that acute nicotine changes the functional connectivity of the hunger/satiety network. Further dissection of the role of the arcuate nucleus using electrophysiology found that putative POMC neurons in animals given chronic nicotine exhibited decreased firing following acute nicotine application. These brain-wide central signaling changes may contribute to the acute increase in feeding behavior we see in rats after acute nicotine and provide new areas of focus for studying both nicotine addiction and metabolic regulation.
Collapse
Affiliation(s)
- Kokila Shankar
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Sélène Bonnet-Zahedi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA; Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, 13005, France
| | - Kristel Milan
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Andrea Ruiz D'argence
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Elizabeth Sneddon
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Ran Qiao
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Supakorn Chonwattangul
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Lieselot L G Carrette
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Marsida Kallupi
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Olivier George
- Department of Psychiatry, University of California San Diego School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Giannone F, Ebrahimi C, Endrass T, Hansson AC, Schlagenhauf F, Sommer WH. Bad habits-good goals? Meta-analysis and translation of the habit construct to alcoholism. Transl Psychiatry 2024; 14:298. [PMID: 39030169 PMCID: PMC11271507 DOI: 10.1038/s41398-024-02965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 07/21/2024] Open
Abstract
Excessive alcohol consumption remains a global public health crisis, with millions suffering from alcohol use disorder (AUD, or simply "alcoholism"), leading to significantly reduced life expectancy. This review examines the interplay between habitual and goal-directed behaviors and the associated neurobiological changes induced by chronic alcohol exposure. Contrary to a strict habit-goal dichotomy, our meta-analysis of the published animal experiments combined with a review of human studies reveals a nuanced transition between these behavioral control systems, emphasizing the need for refined terminology to capture the probabilistic nature of decision biases in individuals with a history of chronic alcohol exposure. Furthermore, we distinguish habitual responding from compulsivity, viewing them as separate entities with diverse roles throughout the stages of the addiction cycle. By addressing species-specific differences and translational challenges in habit research, we provide insights to enhance future investigations and inform strategies for combatting AUD.
Collapse
Affiliation(s)
- F Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - C Ebrahimi
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - T Endrass
- Faculty of Psychology, Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, 01062, Dresden, Germany
| | - A C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - F Schlagenhauf
- Department of Psychotherapy, Campus Charité Mitte, Charité Universitätsmedizin Berlin & St. Hedwig Hospital, 10117, Berlin, Germany
| | - W H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, 68159, Mannheim, Germany.
| |
Collapse
|
10
|
Li Z, Li J, Wei Y, Zou W, Vidjro OE, Wang J, Zhou L, Zhu Y, Ma T. Anterior and Posterior Basolateral Amygdala Projections of Cell Type-Specific D1-Expressing Neurons From the Medial Prefrontal Cortex Differentially Control Alcohol-Seeking Behavior. Biol Psychiatry 2024; 95:963-973. [PMID: 37952812 DOI: 10.1016/j.biopsych.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Alcohol use disorder is characterized by compulsive alcohol-seeking behavior, which is associated with dysregulation of afferent projections from the medial prefrontal cortex to the basolateral amygdala (BLA). However, the contribution of the cell type-specific mechanism in this neuronal circuit to alcohol-seeking behavior remains unclear. METHODS Mice were trained with 2-bottle choice and operant alcohol self-administration procedures. Anterograde and retrograde viral methods traced the connection between dopamine type 1 receptor (D1R) neurons and BLA neurons. Electrophysiology and in vivo optogenetic techniques were used to test the function of neural circuits in alcohol-seeking behavior. RESULTS Chronic alcohol consumption preferentially changed the activity of posterior BLA (pBLA) neurons but not anterior BLA (aBLA) neurons and overexcited D1R neurons in the medial prefrontal cortex. Interestingly, we found that 2 populations of D1R neurons, anterior and posterior (pD1R) neurons, separately targeted the aBLA and pBLA, respectively, and only a few D1R neurons innervated both aBLA and pBLA neurons. Furthermore, pD1R neurons exhibited more excitability than anterior D1R neurons in alcohol-drinking mice. Moreover, we observed enhanced glutamatergic transmission and an increased NMDA/AMPA receptor ratio in the medial prefrontal cortex inputs from pD1R neurons to the pBLA. Optogenetic long-term depression induction of the pD1R-pBLA circuit reduced alcohol-seeking behavior, while optogenetic long-term depression or long-term potentiation induction of the anterior D1R-aBLA circuit produced no change in alcohol intake. CONCLUSIONS The pD1R-pBLA circuit mediates chronic alcohol consumption, which may suggest a cell type-specific neuronal mechanism underlying reward-seeking behavior in alcohol use disorder.
Collapse
Affiliation(s)
- Ziyi Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaxin Li
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanxia Wei
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wanying Zou
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Olivia Ewi Vidjro
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Toxicology, the Key laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li Zhou
- Department of Anesthesiology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China; Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongsheng Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, National Biosafety Evidence Foundation, Xi'an Jiaotong University, Xi'an, China.
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration and Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Toxicology, the Key laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Chi XT, Yang W, Zhang JB, Lei YT, Tao CC, Chen HN, Zheng ZK, Xin WJ, Xu T, Gao S, Zhang XQ. A Cross-Sectional and Longitudinal Integrated Study on Brain Functional Changes in a Neuropathic Pain Rat Model. eNeuro 2024; 11:ENEURO.0272-23.2024. [PMID: 38346901 PMCID: PMC10925899 DOI: 10.1523/eneuro.0272-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/10/2024] Open
Abstract
Human and animal imaging studies demonstrated that chronic pain profoundly alters the structure and the functionality of several brain regions and even causes mental dysfunctions such as depression and anxiety disorders. In this article, we conducted a multimodal study cross-sectionally and longitudinally, to evaluate how neuropathic pain affects the brain. Using the spared nerve injury (SNI) model which promotes long-lasting mechanical allodynia, results showed that neuropathic pain deeply modified the intrinsic organization of the brain functional network 2 weeks after injury. There are significant changes in the activity of the left thalamus (Th_L) and left olfactory bulb (OB_L) brain regions after SNI, as evidenced by both the blood oxygen level-dependent (BOLD) signal and c-Fos expression. Importantly, these changes were closely related to mechanical pain behavior of rats. However, it is worth noting that after morphine administration for analgesia, only the increased activity in the TH region is reversed, while the decreased activity in the OB region becomes more prominent. Functional connectivity (FC) and c-Fos correlation analysis further showed these two regions of interest (ROIs) exhibit different FC patterns with other brain regions. Our study comprehensively revealed the adaptive changes of brain neural networks induced by nerve injury in both cross-sectional and longitudinal dimensions and emphasized the abnormal activity and FC of Th_L and OB_L in the pathological condition. It provides reliable assistance in exploring the intricate mechanisms of diseases.
Collapse
Affiliation(s)
- Xin-Tian Chi
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Wu Yang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Jian-Bo Zhang
- Department of Pain Management, State Key Specialty in Pain Medicine, Guangzhou Medical University Second Affiliated Hospital, Guangzhou 510260, China
| | - Yu-Tao Lei
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Chen-Chen Tao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Hong-Ni Chen
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Zi-Kun Zheng
- Department of Electronic Engineering, Shantou University, Shantou 515063, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Gao
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| | - Xue-Qin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), School of Health Management and Institute of Mental Psychology, Guangzhou Medical University, Guangzhou 511495, China
| |
Collapse
|
12
|
Ardinger CE, Chen Y, Kimbrough A, Grahame NJ, Lapish CC. Sex Differences in Neural Networks Recruited by Frontloaded Binge Alcohol Drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579387. [PMID: 38370732 PMCID: PMC10871329 DOI: 10.1101/2024.02.08.579387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Frontloading is an alcohol drinking pattern where intake is skewed toward the onset of access. The goal of the current study was to identify brain regions involved in frontloading. Whole brain imaging was performed in 63 C57Bl/6J (32 female and 31 male) mice that underwent 8 days of binge drinking using the drinking-in-the-dark (DID) model. On days 1-7, three hours into the dark cycle, mice received 20% (v/v) alcohol or water for two hours. Intake was measured in 1-minute bins using volumetric sippers, which facilitated analyses of drinking patterns. On day 8 mice were perfused 80 minutes into the DID session and brains were extracted. Brains were then processed to stain for Fos protein using iDISCO+. Following light sheet imaging, ClearMap2.1 was used to register brains to the Allen Brain Atlas and detect Fos+ cells. For brain network analyses, day 8 drinking patterns were used to characterize mice as frontloaders or non-frontloaders using a recently developed change-point analysis. Based on this analysis the groups were female frontloaders (n = 20), female non-frontloaders (n = 2), male frontloaders (n = 13) and male non-frontloaders (n = 8). There were no differences in total alcohol intake in animals that frontloaded versus those that did not. Only two female mice were characterized as non-frontloaders, thus preventing brain network analysis of this group. Functional correlation matrices were calculated for each group from log10 Fos values. Euclidean distances were calculated from these R values and hierarchical clustering was used to determine modules (highly connected groups of brain regions). In males, alcohol access decreased modularity (3 modules in both frontloaders and non-frontloaders) as compared to water drinkers (7 modules). In females, an opposite effect was observed. Alcohol access (9 modules for frontloaders) increased modularity as compared to water drinkers (5 modules). These results suggest sex differences in how alcohol consumption reorganizes the functional architecture of neural networks. Next, key brain regions in each network were identified. Connector hubs, which primarily facilitate communication between modules, and provincial hubs, which facilitate communication within modules, were of specific interest for their important and differing roles. In males, 4 connector hubs and 17 provincial hubs were uniquely identified in frontloaders (i.e., were brain regions that did not have this status in male non-frontloaders or water drinkers). These represented a group of hindbrain regions (e.g., locus coeruleus and the pontine gray) functionally connected to striatal/cortical regions (e.g., cortical amygdalar area) by the paraventricular nucleus of the thalamus. In females, 16 connector and 17 provincial hubs were uniquely identified which were distributed across 8 of the 9 modules in the female frontloader alcohol drinker network. Only one brain region (the nucleus raphe pontis) was a connector hub in both sexes, suggesting that frontloading in males and females may be driven by different brain regions. In conclusion, alcohol consumption led to fewer, but more densely connected, groups of brain regions in males but not females, and recruited different hub brain regions between the sexes. These results suggest that alcohol frontloading leads to a reduction in network efficiency in male mice.
Collapse
Affiliation(s)
- Cherish E Ardinger
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN
| | - Nicholas J Grahame
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| | - Christopher C Lapish
- Addiction Neuroscience, Department of Psychology and Indiana Alcohol Research Center, Indiana University - Purdue University Indianapolis, Indianapolis, IN
- Stark Neuroscience Research Institute, Indiana University - Purdue University Indianapolis, Indianapolis, IN
| |
Collapse
|
13
|
Xie Y, Brynildsen JK, Windisch K, Blendy JA. Neural Network Connectivity Following Opioid Dependence is Altered by a Common Genetic Variant in the µ-Opioid Receptor, OPRM1 A118G. J Neurosci 2024; 44:e1492232023. [PMID: 38124015 PMCID: PMC10866092 DOI: 10.1523/jneurosci.1492-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Opioid use disorder is a chronic, relapsing disease associated with persistent changes in brain plasticity. A common single nucleotide polymorphism (SNP) in the µ-opioid receptor gene, OPRM1 A118G, is associated with altered vulnerability to opioid addiction. Reconfiguration of neuronal connectivity may explain dependence risk in individuals with this SNP. Mice with the equivalent Oprm1 variant, A112G, demonstrate sex-specific alterations in the rewarding properties of morphine and heroin. To determine whether this SNP influences network-level changes in neuronal activity, we compared FOS expression in male and female mice that were opioid-naive or opioid-dependent. Network analyses identified significant differences between the AA and GG Oprm1 genotypes. Based on several graph theory metrics, including small-world analysis and degree centrality, we show that GG females in the opioid-dependent state exhibit distinct patterns of connectivity compared to other groups of the same genotype. Using a network control theory approach, we identified key cortical brain regions that drive the transition between opioid-naive and opioid-dependent brain states; however, these regions are less influential in GG females leading to sixfold higher average minimum energy needed to transition from the acute to the dependent state. In addition, we found that the opioid-dependent brain state is significantly less stable in GG females compared to other groups. Collectively, our findings demonstrate sex- and genotype-specific modifications in local, mesoscale, and global properties of functional brain networks following opioid exposure and provide a framework for identifying genotype differences in specific brain regions that play a role in opioid dependence.
Collapse
Affiliation(s)
- Yihan Xie
- Department of Systems Pharmacology and Translational Therapeutics and Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Julia K Brynildsen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Kyle Windisch
- Department of Systems Pharmacology and Translational Therapeutics and Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics and Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, Pennsylvania
| |
Collapse
|
14
|
Carrette L, Santos A, Brennan M, Othman D, Collazo A, George O. Antagonists of the stress and opioid systems restore the functional connectivity of the prefrontal cortex during alcohol withdrawal through divergent mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.30.560339. [PMID: 37873478 PMCID: PMC10592857 DOI: 10.1101/2023.09.30.560339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic alcohol consumption leads to dependence and withdrawal symptoms upon cessation, contributing to persistent use. However, the brain network mechanisms by which the brain orchestrates alcohol withdrawal and how these networks are affected by pharmacological treatments remain elusive. Recent work revealed that alcohol withdrawal produces a widespread increase in coordinated brain activity and a decrease in modularity of the whole-brain functional network using single-cell whole-brain imaging of immediate early genes. This decreased modularity and functional hyperconnectivity are hypothesized to be novel biomarkers of alcohol withdrawal in alcohol dependence, which could potentially be used to evaluate the efficacy of new medications for alcohol use disorder. However, there is no evidence that current FDA-approved medications or experimental treatments known to reduce alcohol drinking in animal models can normalize the changes in whole-brain functional connectivity. In this report, we tested the effect of R121919, a CRF1 antagonist, and naltrexone, an FDA-approved treatment for alcohol use disorder, on whole-brain functional connectivity using the cellular marker FOS combined with graph theory and advanced network analyses. Results show that both R121919 and naltrexone restored the functional connectivity of the prefrontal cortex during alcohol withdrawal, but through divergent mechanisms. Specifically, R121919 increased FOS activation in the prefrontal cortex, partially restored modularity, and normalized connectivity, particularly in CRF1-rich regions, including the prefrontal, pallidum, and extended amygdala circuits. On the other hand, naltrexone decreased FOS activation throughout the brain, decreased modularity, and increased connectivity overall except for the Mu opioid receptor-rich regions, including the thalamus. These results identify the brain networks underlying the pharmacological effects of R121919 and naltrexone and demonstrate that these drugs restored different aspects of functional connectivity of the prefrontal cortex, pallidum, amygdala, and thalamus during alcohol withdrawal. Notably, these effects were particularly prominent in CRF1- and Mu opioid receptors-rich regions highlighting the potential of whole-brain functional connectivity using FOS as a tool for identifying neuronal network mechanisms underlying the pharmacological effects of existing and new medications for alcohol use disorder.
Collapse
Affiliation(s)
- L.L.G. Carrette
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - A. Santos
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - M. Brennan
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - D. Othman
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - A. Collazo
- Beckman Institute, CalTech, Passadena, CA, United States
| | - O. George
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| |
Collapse
|
15
|
Ortega-de San Luis C, Pezzoli M, Urrieta E, Ryan TJ. Engram cell connectivity as a mechanism for information encoding and memory function. Curr Biol 2023; 33:5368-5380.e5. [PMID: 37992719 DOI: 10.1016/j.cub.2023.10.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, which allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here, we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal ventral CA1 (vCA1) region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components, respectively. Finally, we identify a synaptic plasticity mechanism mediated by postsynaptic density protein 95 (PSD-95), which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Esteban Urrieta
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin D02 PN40, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland; Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC 3052, Australia; Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
16
|
Szelenyi ER, Navarrete JS, Murry AD, Zhang Y, Girven KS, Kuo L, Cline MM, Bernstein MX, Burdyniuk M, Bowler B, Goodwin NL, Juarez B, Zweifel LS, Golden SA. An arginine-rich nuclear localization signal (ArgiNLS) strategy for streamlined image segmentation of single-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568319. [PMID: 38045271 PMCID: PMC10690249 DOI: 10.1101/2023.11.22.568319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single-cells. However, conventional fluorescent protein (FP) modifications used to discriminate single-cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and non-deleterious nuclear localization signal (NLS) tag strategy, called 'Arginine-rich NLS' (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single-cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes, and in response to both local and systemic brain wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances ML-automated segmentation of single-cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single-cells at scale and paired with behavioral procedures.
Collapse
Affiliation(s)
- Eric R. Szelenyi
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Jovana S. Navarrete
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
- University of Washington, Graduate Program in Neuroscience, Seattle, WA, USA
| | - Alexandria D. Murry
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Yizhe Zhang
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Kasey S. Girven
- University of Washington, Department of Anesthesiology and Pain Medicine
| | - Lauren Kuo
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington Undergraduate Program in Biochemistry
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Marcella M. Cline
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
- Cajal Neuroscience, Seattle, WA, USA
| | - Mollie X. Bernstein
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
| | | | - Bryce Bowler
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Nastacia L. Goodwin
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
- University of Washington, Graduate Program in Neuroscience, Seattle, WA, USA
| | - Barbara Juarez
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
- University of Maryland School of Medicine, Department of Neurobiology, Baltimore, MD, USA
| | - Larry S. Zweifel
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
| | - Sam A. Golden
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| |
Collapse
|
17
|
Haubrich J, Nader K. Network-level changes in the brain underlie fear memory strength. eLife 2023; 12:RP88172. [PMID: 38047914 PMCID: PMC10695559 DOI: 10.7554/elife.88172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
The strength of a fear memory significantly influences whether it drives adaptive or maladaptive behavior in the future. Yet, how mild and strong fear memories differ in underlying biology is not well understood. We hypothesized that this distinction may not be exclusively the result of changes within specific brain regions, but rather the outcome of collective changes in connectivity across multiple regions within the neural network. To test this, rats were fear conditioned in protocols of varying intensities to generate mild or strong memories. Neuronal activation driven by recall was measured using c-fos immunohistochemistry in 12 brain regions implicated in fear learning and memory. The interregional coordinated brain activity was computed and graph-based functional networks were generated to compare how mild and strong fear memories differ at the systems level. Our results show that mild fear recall is supported by a well-connected brain network with small-world properties in which the amygdala is well-positioned to be modulated by other regions. In contrast, this connectivity is disrupted in strong fear memories and the amygdala is isolated from other regions. These findings indicate that the neural systems underlying mild and strong fear memories differ, with implications for understanding and treating disorders of fear dysregulation.
Collapse
Affiliation(s)
- Josue Haubrich
- Department of Psychology, McGill UniversityMontréalCanada
- Department of Neurophysiology, Ruhr-University BochumBochumGermany
| | - Karim Nader
- Department of Psychology, McGill UniversityMontréalCanada
| |
Collapse
|
18
|
Luis CODS, Pezzoli M, Urrieta E, Ryan TJ. Engram cell connectivity as a mechanism for information encoding and memory function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558774. [PMID: 37790352 PMCID: PMC10542553 DOI: 10.1101/2023.09.21.558774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Information derived from experiences is incorporated into the brain as changes to ensembles of cells, termed engram cells, that allow memory storage and recall. The mechanism by which those changes hold specific information is unclear. Here we test the hypothesis that the specific synaptic wiring between engram cells is the substrate of information storage. First, we monitor how learning modifies the connectivity pattern between engram cells at a monosynaptic connection involving the hippocampal vCA1 region and the amygdala. Then, we assess the functional significance of these connectivity changes by artificially activating or inhibiting its presynaptic and postsynaptic components respectively. Finally, we identify a synaptic plasticity mechanism mediated by PSD-95, which impacts the connectivity pattern among engram cells and contributes to the long-term stability of the memory. These findings impact our theory of learning and memory by helping us explain the translation of specific information into engram cells and how these connections shape brain function.
Collapse
Affiliation(s)
- Clara Ortega-de San Luis
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Maurizio Pezzoli
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland
- Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Esteban Urrieta
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Tomás J Ryan
- School of Biochemistry and Immunology, Trinity College of Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Melbourne, Victoria, Australia
- Child & Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada
| |
Collapse
|
19
|
Wills TA. Unveiling New Brain Circuits and Network Activity in Alcohol Use Disorder: Insights From Innovative Technologies. Biol Psychiatry 2023; 94:365-366. [PMID: 37558313 DOI: 10.1016/j.biopsych.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Affiliation(s)
- Tiffany A Wills
- Department of Anatomy and Cell Biology, Neuroscience Center of Excellence and Alcohol and Drug Abuse Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana.
| |
Collapse
|
20
|
Zhou R, Huang C, Bi N, Li L, Li C, Gu X, Song Y, Wang HL. Chronic Pb Exposure Induces Anxiety and Depression-like Behaviors in Mice via Excitatory Neuronal Hyperexcitability in Ventral Hippocampal Dentate Gyrus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12222-12233. [PMID: 37559393 DOI: 10.1021/acs.est.3c03426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Lead (Pb) is a widespread neurotoxic pollutant. Pb exposure is associated with mood disorders, with no well-established neural mechanisms elucidated. In the present study, we aimed to investigate whether excitatory neurons in the dentate gyrus subregion of the ventral hippocampus (vDG) played a key role in Pb-induced anxiety and depression-like behaviors. C57BL/6 mice were exposed to 100 ppm Pb starting on day 1 of pregnancy until experiments were performed using the offspring. Behavioral studies suggested that chronic Pb exposure triggered anxiety and depression-like behaviors. A combination of electrophysiological, optogenetic, and immunohistochemistry experiments was conducted. Results showed that Pb exposure resulted in excitatory neuronal hyperexcitability in vDG and that the behavioral deficits caused by Pb exposure could be rescued by inhibition of excitatory neuronal activity. Moreover, it was found that the action potential (AP) threshold of excitatory neurons was decreased by electrophysiological recordings. Our study demonstrates a significant role for excitatory neurons in vDG in Pb-induced anxiety and depression-like behaviors in mice, which is likely a result of decreased AP threshold. These outcomes can serve as an important basis for understanding mechanisms of anxiety and depression under environmental Pb exposure and help in the design of therapeutic strategies.
Collapse
Affiliation(s)
- Ruiqing Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Nanxi Bi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Ling Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Changqing Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Xiaozhen Gu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230000, Anhui, PR China
| |
Collapse
|