1
|
Pelagatti C, Blini E, Vannucci M. Catching Mind Wandering With Pupillometry: Conceptual and Methodological Challenges. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024:e1695. [PMID: 39435485 DOI: 10.1002/wcs.1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Mind-wandering (MW) refers to the shift of attention away from an ongoing task and/or external environment towards mental contents (e.g., memories, prospective thoughts) unrelated to the task. Physiological measures (e.g., pupil size, EEG, and fMRI) have often been acquired as objective markers for MW states, which has greatly helped their study as well as triangulation with other measures. Pupillometry in particular has been used as a covert biomarker of MW because it is reliably modulated by several distinct processes spanning arousal, emotion, and attention, and it signals attentional lapses. Yet, coupling MW and the measurement of pupil size has led to seemingly contrasting results. We argue that, common to the studies reviewed here, one reason is resolving to the measurement of tonic pupil size, which reflects low-frequency, slow changes in one's physiological state, and thus implicitly assumes that MW is a static, long-lasting process. We then additionally focus on three major axes of variability in the reviewed studies: (i) the definition and measurement of MW; (ii) the impact of contextual aspects, such as task demands and individual arousal levels; (iii) the identification and tracking of MW in combination with pupillary measures. We provide an overview of these differences and put forward recommendations for using physiological measures-including, but not limited to, pupil size-in MW research effectively. In conclusion, pupillometry can be a very informative tool for MW research, provided that it is used with the due methodological caution.
Collapse
Affiliation(s)
- Claudia Pelagatti
- Department of NEUROFARBA, Section of Psychology, University of Florence, Florence, Italy
| | - Elvio Blini
- Department of NEUROFARBA, Section of Psychology, University of Florence, Florence, Italy
| | - Manila Vannucci
- Department of NEUROFARBA, Section of Psychology, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Steendam ST, Prutean N, Clybouw F, Eayrs JO, Kukkonen N, Notebaert W, Krebs RM, Wiersema JR, Boehler CN. Compensating for the mobile menace with extra effort: A pupillometry investigation of the mere presence effect of smartphones. Biol Psychol 2024; 193:108893. [PMID: 39419164 DOI: 10.1016/j.biopsycho.2024.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Previous research suggests that the mere presence of a smartphone can detrimentally affect performance. However, other studies failed to observe such detrimental effects. A limitation of existing studies is that no indexes of (potentially compensating) effort were included. Further, time-on-task effects have been unexplored. Here, we address these limitations by investigating the mere-presence effect of a smartphone on performance in two continuous-performance experiments (Experiment 1 using an n-back and a number judgement task at two difficulty levels, and Experiment 2 using a pure, challenging n-back task), measuring pupil size to assess invested effort, and taking into account time-on-task effects. Finally, contrary to previous studies that predominantly used between-subject designs, we utilized within-subject designs in both experiments. Contrary to expectations, Experiment 1 largely yielded no significant effects of smartphone presence on performance. Nonetheless, the presence of a smartphone triggered larger tonic pupil size in the more difficult task, and a more rapid decrease over time. Experiment 2 similarly failed to demonstrate smartphone effects on performance, but replicated the finding of larger tonic pupil size in the presence of a smartphone. In addition, tonic pupil size showed a slower decrease over time when a smartphone was present. In Experiment 2, we could furthermore look at phasic pupil size, which decreased over time in the absence of a phone but not in its presence. These findings suggest a complex relationship between smartphone presence, effort, and time-on-task, which does not necessarily express itself behaviorally, highlighting in particular the need to also explore potential contributions of (compensatory) effort.
Collapse
Affiliation(s)
- S Tabitha Steendam
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium.
| | - Nicoleta Prutean
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium
| | - Fleur Clybouw
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium
| | - Joshua O Eayrs
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium
| | - Nanne Kukkonen
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium
| | - Wim Notebaert
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium
| | - Ruth M Krebs
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium
| | - Jan R Wiersema
- Department of Experimental Clinical and Health Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000 , Belgium
| | - C Nico Boehler
- Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent 9000, Belgium
| |
Collapse
|
3
|
Zekveld AA, Kramer SE, Heslenfeld DJ, Versfeld NJ, Vriend C. Hearing Impairment: Reduced Pupil Dilation Response and Frontal Activation During Degraded Speech Perception. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024:1-18. [PMID: 39392910 DOI: 10.1044/2024_jslhr-24-00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
PURPOSE A relevant aspect of listening is the effort required during speech processing, which can be assessed by pupillometry. Here, we assessed the pupil dilation response of normal-hearing (NH) and hard of hearing (HH) individuals during listening to clear sentences and masked or degraded sentences. We combined this assessment with functional magnetic resonance imaging (fMRI) to investigate the neural correlates of the pupil dilation response. METHOD Seventeen NH participants (Mage = 46 years) were compared to 17 HH participants (Mage = 45 years) who were individually matched in age and educational level. Participants repeated sentences that were presented clearly, that were distorted, or that were masked. The sentence intelligibility level of masked and distorted sentences was 50% correct. Silent baseline trials were presented as well. Performance measures, pupil dilation responses, and fMRI data were acquired. RESULTS HH individuals had overall poorer speech reception than the NH participants, but not for noise-vocoded speech. In addition, an interaction effect was observed with smaller pupil dilation responses in HH than in NH listeners for the degraded speech conditions. Hearing impairment was associated with higher activation across conditions in the left superior temporal gyrus, as compared to the silent baseline. However, the region of interest analysis indicated lower activation during degraded speech relative to clear speech in bilateral frontal regions and the insular cortex, for HH compared to NH listeners. Hearing impairment was also associated with a weaker relation between the pupil response and activation in the right inferior frontal gyrus. Overall, degraded speech evoked higher frontal activation than clear speech. CONCLUSION Brain areas associated with attentional and cognitive-control processes may be increasingly recruited when speech is degraded and are related to the pupil dilation response, but this relationship is weaker in HH listeners. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.27162135.
Collapse
Affiliation(s)
- Adriana A Zekveld
- Otolaryngology-Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, the Netherlands
- Institute of Psychology, Leiden University, the Netherlands
| | - Sophia E Kramer
- Otolaryngology-Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, the Netherlands
| | - Dirk J Heslenfeld
- Faculty of Behavioural and Movement Sciences, Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Niek J Versfeld
- Otolaryngology-Head and Neck Surgery, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, the Netherlands
| | - Chris Vriend
- Department of Psychiatry and Department of Anatomy and Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
- Brain Imaging, Amsterdam Neuroscience, the Netherlands
| |
Collapse
|
4
|
van Steenbergen H, Wilderjans TF, Band GPH, Nieuwenhuis ST. Boosting arousal and cognitive performance through alternating posture: Insights from a multi-method laboratory study. Psychophysiology 2024; 61:e14634. [PMID: 38943231 DOI: 10.1111/psyp.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 07/01/2024]
Abstract
This study investigated the role of arousal and effort costs in the cognitive benefits of alternating between sitting and standing postures using a sit-stand desk, while measuring executive functions, self-reports, physiology, and neural activity in a 2-h laboratory session aimed to induce mental fatigue. Two sessions were conducted with a one-week gap, during which participants alternated between sitting and standing postures each 20-min block in one session and remained seated in the other. In each block, inhibition, switching, and updating were assessed. We examined effects of time-on-task, acute (local) effects of standing versus sitting posture, and cumulative (global) effects of a standing posture that generalize to the subsequent block in which participants sit. Results (N = 43) confirmed that time-on-task increased mental fatigue and decreased arousal. Standing (versus sitting) led to acute increases in arousal levels, including self-reports, alpha oscillations, and cardiac responses. Standing also decreased physiological and perceived effort costs. Standing enhanced processing speed in the flanker task, attributable to shortened nondecision time and speeded evidence accumulation processes. No significant effects were observed on higher-level executive functions. Alternating postures also increased heart rate variability cumulatively over time. Exploratory mediation analyses indicated that the positive impact of acute posture on enhanced drift rate was mediated by self-reported arousal, whereas decreased nondecision time was mediated by reductions in alpha power. In conclusion, alternating between sitting and standing postures can enhance arousal, decrease effort costs, and improve specific cognitive and physiological outcomes.
Collapse
Affiliation(s)
- Henk van Steenbergen
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Tom F Wilderjans
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
- Methodology and Statistics Unit, Institute of Psychology, Faculty of Social and Behavioral Sciences, Leiden University, Leiden, The Netherlands
- Research Group of Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Guido P H Band
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Sander T Nieuwenhuis
- Cognitive Psychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
5
|
Zhang Y, Sares A, Delage A, Lehmann A, Deroche M. Pupillometry reveals effects of pitch manipulation within and across words on listening effort and short-term memory. Sci Rep 2024; 14:22595. [PMID: 39349635 PMCID: PMC11442447 DOI: 10.1038/s41598-024-73320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
For individuals with hearing loss, even successful speech communication comes at a cost. Cochlear implants transmit degraded information, specifically for voice pitch, which demands extra and sustained listening effort. The current study hypothesized that abnormal pitch patterns contribute to the additional listening effort, even in non-tonal language native speaking normally hearing listeners. We manipulated the fundamental frequency (F0) within and across words, while participants listen and repeat (simple intelligibility task), or listen, repeat, and later recall (concurrent encoding task) the words. In both experiments, the F0 manipulations resulted in small changes in intelligibility but no difference in free recall or subjective effort ratings. Pupillary metrics were yet sensitive to these manipulations: pupil dilations were larger when words were monotonized (flat contour) or inverted (the natural contour flipped upside-down), and larger when successive words were organized into a melodic pattern. The most likely interpretation is that the natural or expected F0 contour of a word contributes to its identity and facilitate its matching and retrieval from the phonological representation stored in long-term memory. Consequently, degrading words' F0 contour can result in extra listening effort. Our results call for solutions to improve pitch saliency and naturalness in future development of cochlear implants' signal processing strategies, even for non-tonal languages.
Collapse
Affiliation(s)
- Yue Zhang
- McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
6
|
Benelli A, Memoli C, Neri F, Romanella SM, Cinti A, Giannotta A, Lomi F, Scoccia A, Pandit S, Zambetta RM, Rossi S, Santarnecchi E. Reduction of cognitive fatigue and improved performance at a VR-based driving simulator using tRNS. iScience 2024; 27:110536. [PMID: 39314236 PMCID: PMC11418143 DOI: 10.1016/j.isci.2024.110536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/28/2024] [Accepted: 07/15/2024] [Indexed: 09/25/2024] Open
Abstract
Cognitive fatigue (CF) increases accident risk reducing performance, especially during complex tasks such as driving. We evaluated whether transcranial random noise stimulation (tRNS) could mitigate CF and improve driving performance. In a double-blind study, thirty participants performed a virtual reality truck driving task during real (n = 15) or sham (n = 15) tRNS applied bilaterally on the "anti-fatigue network". They completed two 30-min driving sessions while their driving performances were constantly monitored; heart rate was also monitored to evaluate arousal (Root-Mean-Square of successive R-R difference). tRNS was applied only during the first driving session to evaluate both online and offline stimulation effects. The primary outcome was CF reduction and performance improvement in the second (non-stimulated) driving session. Real tRNS significantly improved driving performances in the second driving session and reduced perceived CF. These results might also lead to the use of tRNS in those neurological disorders characterized by fatigue.
Collapse
Affiliation(s)
- Alberto Benelli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Cristina Memoli
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Neri
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Sara M. Romanella
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandra Cinti
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Giannotta
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- School of Advanced Studies, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Francesco Lomi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Adriano Scoccia
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Rafaella Mendes Zambetta
- Centro de Ciências Biológicas e da Saúde (CCBS). Universidade Federal de São Carlos (UFSCAR), São Carlos, SP, Brazil
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Oto-Neuro-Tech Conjoined Lab, Policlinico Le Scotte, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Departments of Radiology, Neurology and Psychiatry, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Campbell MJ, Cregan SC, Joyce JM, Kowal M, Toth AJ. Comparing the cognitive performance of action video game players and age-matched controls following a cognitively fatiguing task: A stage 2 registered report. Br J Psychol 2024; 115:363-385. [PMID: 38140897 DOI: 10.1111/bjop.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Recent work demonstrates that those who regularly play action video games (AVGs) consistently outperform non-gamer (NG) controls on tests of various cognitive abilities. AVGs place high demands on several cognitive functions and are often engaged with for long periods of time (e.g., over 2 h), predisposing players to experiencing cognitive fatigue. The detrimental effects of cognitive fatigue have been widely studied in various contexts where accurate performance is crucial, including aviation, military, and sport. Even though AVG players may be prone to experiencing cognitive fatigue, this topic has received little research attention to date. In this study, we compared the effect of a cognitively fatiguing task on the subsequent cognitive performance of action video game players and NG control participants. Our results indicated AVGs showed superior spatial working memory and complex attention abilities while showing no difference from NGs on simple attention performance. Additionally, we found that our cognitive fatigue and control interventions did not differentially affect the cognitive performance of AVGs and NGs in this study. This pre-registered study provides evidence that AVGs show superior cognitive abilities in comparison to a non-gaming population, but do not appear more resilient to cognitive fatigue.
Collapse
Affiliation(s)
- Mark J Campbell
- Lero, the Science Foundation Ireland Research Centre for Software, University of Limerick, Limerick, Ireland
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| | - Sarah C Cregan
- Lero, the Science Foundation Ireland Research Centre for Software, University of Limerick, Limerick, Ireland
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| | - John M Joyce
- Lero, the Science Foundation Ireland Research Centre for Software, University of Limerick, Limerick, Ireland
| | - Magdalena Kowal
- Lero, the Science Foundation Ireland Research Centre for Software, University of Limerick, Limerick, Ireland
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| | - Adam J Toth
- Lero, the Science Foundation Ireland Research Centre for Software, University of Limerick, Limerick, Ireland
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
8
|
Xu S, Zhang H, Fan J, Jiang X, Zhang M, Guan J, Ding H, Zhang Y. Auditory Challenges and Listening Effort in School-Age Children With Autism: Insights From Pupillary Dynamics During Speech-in-Noise Perception. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2410-2453. [PMID: 38861391 DOI: 10.1044/2024_jslhr-23-00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
PURPOSE This study aimed to investigate challenges in speech-in-noise (SiN) processing faced by school-age children with autism spectrum conditions (ASCs) and their impact on listening effort. METHOD Participants, including 23 Mandarin-speaking children with ASCs and 19 age-matched neurotypical (NT) peers, underwent sentence recognition tests in both quiet and noisy conditions, with a speech-shaped steady-state noise masker presented at 0-dB signal-to-noise ratio in the noisy condition. Recognition accuracy rates and task-evoked pupil responses were compared to assess behavioral performance and listening effort during auditory tasks. RESULTS No main effect of group was found on accuracy rates. Instead, significant effects emerged for autistic trait scores, listening conditions, and their interaction, indicating that higher trait scores were associated with poorer performance in noise. Pupillometric data revealed significantly larger and earlier peak dilations, along with more varied pupillary dynamics in the ASC group relative to the NT group, especially under noisy conditions. Importantly, the ASC group's peak dilation in quiet mirrored that of the NT group in noise. However, the ASC group consistently exhibited reduced mean dilations than the NT group. CONCLUSIONS Pupillary responses suggest a different resource allocation pattern in ASCs: An initial sharper and larger dilation may signal an intense, narrowed resource allocation, likely linked to heightened arousal, engagement, and cognitive load, whereas a subsequent faster tail-off may indicate a greater decrease in resource availability and engagement, or a quicker release of arousal and cognitive load. The presence of noise further accentuates this pattern. This highlights the unique SiN processing challenges children with ASCs may face, underscoring the importance of a nuanced, individual-centric approach for interventions and support.
Collapse
Affiliation(s)
- Suyun Xu
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | - Hua Zhang
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Juan Fan
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoming Jiang
- Institute of Linguistics, Shanghai International Studies University, China
| | - Minyue Zhang
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | | | - Hongwei Ding
- Speech-Language-Hearing Center, School of Foreign Languages, Shanghai Jiao Tong University, China
- National Research Centre for Language and Well-Being, Shanghai, China
| | - Yang Zhang
- Department of Speech-Language-Hearing Sciences and Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis
| |
Collapse
|
9
|
Pütz S, Mertens A, Chuang L, Nitsch V. Physiological measures of operators' mental state in supervisory process control tasks: a scoping review. ERGONOMICS 2024; 67:801-830. [PMID: 38031407 DOI: 10.1080/00140139.2023.2289858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023]
Abstract
Physiological measures are often used to assess the mental state of human operators in supervisory process control tasks. However, the diversity of research approaches creates a heterogeneous landscape of empirical evidence. To map existing evidence and provide guidance to researchers and practitioners, this paper systematically reviews 109 empirical studies that report relationships between peripheral nervous system measures and mental state dimensions (e.g. mental workload, mental fatigue, stress, and vigilance) of interest. Ocular and electrocardiac measures were the most prominent measures across application fields. Most studies sought to validate such measures for reliable assessments of cognitive task demands and time on task, with measures of pupil size receiving the most empirical support. In comparison, less research examined the utility of physiological measures in predicting human task performance. This approach is discussed as an opportunity to focus on operators' individual response to cognitive task demands and to advance the state of research.
Collapse
Affiliation(s)
- Sebastian Pütz
- Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Aachen, Germany
| | - Alexander Mertens
- Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Aachen, Germany
| | - Lewis Chuang
- Professorship for Humans and Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Verena Nitsch
- Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Aachen, Germany
| |
Collapse
|
10
|
Robison MK, Garner LD. Pupillary correlates of individual differences in n-back task performance. Atten Percept Psychophys 2024; 86:799-807. [PMID: 38326632 DOI: 10.3758/s13414-024-02853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
We used pupillometry during a 2-back task to examine individual differences in the intensity and consistency of attention and their relative role in a working memory task. We used sensitivity, or the ability to distinguish targets (2-back matches) and nontargets, as the measure of task performance; task-evoked pupillary responses (TEPRs) as the measure of attentional intensity; and intraindividual pretrial pupil variability as the measure of attentional consistency. TEPRs were greater on target trials compared with nontarget trials, although there was no difference in TEPR magnitude when participants answered correctly or incorrectly to targets. Importantly, this effect interacted with performance: high performers showed a greater separation in their TEPRs between targets and nontargets, whereas there was little difference for low performers. Further, in regression analysis, larger TEPRs on target trials predicted better performance, whereas larger TEPRs on nontarget trials predicted worse performance. Sensitivity positively correlated with average pretrial pupil diameter and negatively correlated with intraindividual variability in pretrial pupil diameter. Overall, we found evidence that both attentional intensity (TEPRs) and consistency (pretrial pupil variation) predict performance on an n-back working memory task.
Collapse
Affiliation(s)
- Matthew K Robison
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA.
| | - Lauren D Garner
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
11
|
Skora L, Marzecová A, Jocham G. Tonic and phasic transcutaneous auricular vagus nerve stimulation (taVNS) both evoke rapid and transient pupil dilation. Brain Stimul 2024; 17:233-244. [PMID: 38423207 DOI: 10.1016/j.brs.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Transcutaneous auricular vagus nerve stimulation (tVNS or taVNS) is a non-invasive method of electrical stimulation of the afferent pathway of the vagus nerve, suggested to drive changes in putative physiological markers of noradrenergic activity, including pupil dilation. OBJECTIVE However, it is unknown whether different taVNS modes can map onto the phasic and tonic modes of noradrenergic activity. The effects of taVNS on pupil dilation in humans are inconsistent, largely due to differences in stimulation protocols. Here, we attempted to address these issues. METHODS We investigated pupil dilation under phasic (1 s) and tonic (30 s) taVNS, in a pre-registered, single-blind, sham-controlled, within-subject cross-over design, in the absence of a behavioural task. RESULTS Phasic taVNS induced a rapid increase in pupil size over baseline, significantly greater than under sham stimulation, which rapidly declined after stimulation offset. Tonic taVNS induced a similarly rapid (and larger than sham) increase in pupil size over baseline, returning to baseline within 5 s, despite the ongoing stimulation. Thus, both active and sham tonic modes closely resembled the phasic effect. There were no differences in tonic baseline pupil size, and no sustained effects of stimulation on tonic baseline pupil size. CONCLUSIONS These results suggest that both phasic- and tonic-like taVNS under the standard stimulation parameters may modulate primarily the phasic mode of noradrenergic activity, as indexed by evoked pupil dilation, over and above somatosensory effects. This result sheds light on the temporal profile of phasic and tonic stimulation, with implications for their applicability in further research.
Collapse
Affiliation(s)
- Lina Skora
- Heinrich Heine University Düsseldorf, Germany; University of Sussex, Brighton, UK.
| | | | | |
Collapse
|
12
|
Matuz A, Darnai G, Zsidó AN, Janszky J, Csathó Á. Structural neural correlates of mental fatigue and reward-induced improvement in performance. Biol Futur 2024; 75:93-104. [PMID: 37889452 DOI: 10.1007/s42977-023-00187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Neuroimaging studies investigating the association between mental fatigue (henceforth fatigue) and brain physiology have identified many brain regions that may underly the cognitive changes induced by fatigue. These studies focused on the functional changes and functional connectivity of the brain relating to fatigue. The structural correlates of fatigue, however, have received little attention. To fill this gap, this study explored the associations of fatigue with cortical thickness of frontal and parietal regions. In addition, we aimed to explore the associations between reward-induced improvement in performance and neuroanatomical markers in fatigued individuals. Thirty-nine healthy volunteers performed the psychomotor vigilance task for 15 min (i.e., 3 time-on-task blocks of 5 min) out of scanner; followed by an additional rewarded block of the task lasting 5 min. Baseline high-resolution T1-weigthed MR images were obtained. Reaction time increased with time-on-task but got faster again in the rewarded block. Participants' subjective fatigue increased during task performance. In addition, we found that higher increase in subjective mental fatigue was associated with the cortical thickness of the following areas: bilateral precuneus, right precentral gyrus; right pars triangularis and left superior frontal gyrus. Our results suggest that individual differences in subjective mental fatigue may be explained by differences in the degree of cortical thickness of areas that are associated with motor processes, executive functions, intrinsic alertness and are parts of the default mode network.
Collapse
Affiliation(s)
- András Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary.
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Gergely Darnai
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Szigeti Str. 12, Pécs, 7624, Hungary
| | - András N Zsidó
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Institute of Psychology, Faculty of Humanities, University of Pécs, Pécs, Hungary
| | - József Janszky
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Department of Neurology, Medical School, University of Pécs, Szigeti Str. 12, Pécs, 7624, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Árpád Csathó
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
13
|
Karthikeyan R, Carrizales J, Johnson C, Mehta RK. A Window Into the Tired Brain: Neurophysiological Dynamics of Visuospatial Working Memory Under Fatigue. HUMAN FACTORS 2024; 66:528-543. [PMID: 35574703 DOI: 10.1177/00187208221094900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE We examine the spatiotemporal dynamics of neural activity and its correlates in heart rate and its variability (HR/HRV) during a fatiguing visuospatial working memory task. BACKGROUND The neural and physiological drivers of fatigue are complex, coupled, and poorly understood. Investigations that combine the fidelity of neural indices and the field-readiness of physiological measures can facilitate measurements of fatigue states in operational settings. METHOD Sixteen healthy adults, balanced by sex, completed a 60-minute fatiguing visuospatial working memory task. Changes in task performance, subjective measures of effort and fatigue, cerebral hemodynamics, and HR/HRV were analyzed. Peak brain activation, functional and effective connections within relevant brain networks were contrasted against spectral and temporal features of HR/HRV. RESULTS Task performance elicited increased neural activation in regions responsible for maintaining working memory capacity. With the onset of time-on-task effects, resource utilization was seen to increase beyond task-relevant networks. Over time, functional connections in the prefrontal cortex were seen to weaken, with changes in the causal relationships between key regions known to drive working memory. HR/HRV indices were seen to closely follow activity in the prefrontal cortex. CONCLUSION This investigation provided a window into the neurophysiological underpinnings of working memory under the time-on-task effect. HR/HRV was largely shown to mirror changes in cortical networks responsible for working memory, therefore supporting the possibility of unobtrusive state recognition under ecologically valid conditions. APPLICATIONS Findings here can inform the development of a fieldable index for cognitive fatigue.
Collapse
|
14
|
Csathó Á, Van der Linden D, Matuz A. Change in heart rate variability with increasing time-on-task as a marker for mental fatigue: A systematic review. Biol Psychol 2024; 185:108727. [PMID: 38056707 DOI: 10.1016/j.biopsycho.2023.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Fatigue-specific changes in the autonomic nervous system are often assumed to underlie the development of mental fatigue caused by prolonged cognitive tasks (i.e. Time-on-Task). Therefore, several previous studies have chosen to investigate the Time-on-Task related changes in heart rate variability (HRV). However, previous studies have used many different HRV indices, and their results often show inconsistencies. The present study, therefore, systematically reviewed previous empirical HRV studies with healthy individuals and in which mental fatigue is induced by prolonged cognitive tasks. Articles relevant to the objectives were systematically searched and selected by applying the PRISMA guidelines. We screened 360 records found on 4 databases and found that 19 studies were eligible for full review in accordance with the inclusion criteria. In general, all studies reviewed (with the exception of two studies) found significant changes in HRV with increasing Time-on-Task, suggesting that HRV is a reliable autonomic marker for Time-on-Task induced fatigue. The most conclusive HRV indices that showed a consistent Time-on-Task effect were the low frequency component of HRV and the time domain indices, particularly the root mean square of successive differences. Time-on-Task typically induced an increasing trend in both type of measures.
Collapse
Affiliation(s)
- Árpád Csathó
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Dimitri Van der Linden
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| | - András Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary; Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| |
Collapse
|
15
|
LoTemplio S, Silcox J, Murdock R, Strayer DL, Payne BR. To err is human- to understand error-processing is divine: Contributions of working memory and anxiety to error-related brain and pupil responses. Psychophysiology 2023; 60:e14392. [PMID: 37496438 DOI: 10.1111/psyp.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 07/28/2023]
Abstract
Both anxiety and working memory capacity appear to predict increased (more negative) error-related negativity (ERN) amplitudes, despite being inversely related to one another. Until the interactive effects of these variables on the ERN are clarified, there may be challenges posed to our ability to use the ERN as an endophenotype for anxiety, as some have suggested. The compensatory error monitoring hypothesis suggests that high trait-anxiety individuals have larger ERN amplitudes because they must employ extra, compensatory efforts to override the working memory demands of their anxiety. Yet, to our knowledge, no ERN study has employed direct manipulation of working memory demands in conjunction with direct manipulations of induced (state) anxiety. Furthermore, little is known about how these manipulations affect other measures of error processing, such as the error-related pupil dilation response and post-error behavioral adjustments. Therefore, we manipulate working memory load and anxiety in a 2 × 2 within-subjects design to examine the interactive effects of working memory load and anxiety on ERN amplitude, error-related pupil dilation response amplitude, and post-error behavior. There were no effects of our manipulations on ERN amplitude, suggesting a strong interpretation of compensatory error-processing theory. However, our worry manipulation affected post-error behavior, such that worry caused a reduction in post-error accuracy. Additionally, our working memory manipulation affected error-related PDR magnitude and the amplitude of the error-related positivity (Pe), such that increased working memory load decreased the amplitude of these responses. Implications of these results within the context of the compensatory error processing framework are discussed.
Collapse
Affiliation(s)
| | - Jack Silcox
- University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
16
|
Chiossi JSC, Patou F, Ng EHN, Faulkner KF, Lyxell B. Phonological discrimination and contrast detection in pupillometry. Front Psychol 2023; 14:1232262. [PMID: 38023001 PMCID: PMC10646334 DOI: 10.3389/fpsyg.2023.1232262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The perception of phonemes is guided by both low-level acoustic cues and high-level linguistic context. However, differentiating between these two types of processing can be challenging. In this study, we explore the utility of pupillometry as a tool to investigate both low- and high-level processing of phonological stimuli, with a particular focus on its ability to capture novelty detection and cognitive processing during speech perception. Methods Pupillometric traces were recorded from a sample of 22 Danish-speaking adults, with self-reported normal hearing, while performing two phonological-contrast perception tasks: a nonword discrimination task, which included minimal-pair combinations specific to the Danish language, and a nonword detection task involving the detection of phonologically modified words within sentences. The study explored the perception of contrasts in both unprocessed speech and degraded speech input, processed with a vocoder. Results No difference in peak pupil dilation was observed when the contrast occurred between two isolated nonwords in the nonword discrimination task. For unprocessed speech, higher peak pupil dilations were measured when phonologically modified words were detected within a sentence compared to sentences without the nonwords. For vocoded speech, higher peak pupil dilation was observed for sentence stimuli, but not for the isolated nonwords, although performance decreased similarly for both tasks. Conclusion Our findings demonstrate the complexity of pupil dynamics in the presence of acoustic and phonological manipulation. Pupil responses seemed to reflect higher-level cognitive and lexical processing related to phonological perception rather than low-level perception of acoustic cues. However, the incorporation of multiple talkers in the stimuli, coupled with the relatively low task complexity, may have affected the pupil dilation.
Collapse
Affiliation(s)
- Julia S. C. Chiossi
- Oticon A/S, Smørum, Denmark
- Department of Special Needs Education, University of Oslo, Oslo, Norway
| | | | - Elaine Hoi Ning Ng
- Oticon A/S, Smørum, Denmark
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Swedish Institute for Disability Research, Linköping University, Linköping, Sweden
| | | | - Björn Lyxell
- Department of Special Needs Education, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Zekveld AA, Pielage H, Versfeld NJ, Kramer SE. The Influence of Hearing Loss on the Pupil Response to Degraded Speech. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:4083-4099. [PMID: 37699194 DOI: 10.1044/2023_jslhr-23-00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
PURPOSE Current evidence regarding the influence of hearing loss on the pupil response elicited by speech perception is inconsistent. This might be partially due to confounding effects of age. This study aimed to compare pupil responses in age-matched groups of normal-hearing (NH) and hard of hearing (HH) listeners during listening to speech. METHOD We tested the baseline pupil size and mean and peak pupil dilation response of 17 NH participants (Mage = 46 years; age range: 20-62 years) and 17 HH participants (Mage = 45 years; age range: 20-63 years) who were pairwise matched on age and educational level. Participants performed three speech perception tasks at a 50% intelligibility level: noise-vocoded speech and speech masked with either stationary noise or interfering speech. They also listened to speech presented in quiet. RESULTS Hearing loss was associated with poorer speech perception, except for noise-vocoded speech. In contrast to NH participants, performance of HH participants did not improve across trials for the interfering speech condition, and it decreased for speech in stationary noise. HH participants had a smaller mean pupil dilation in degraded speech conditions compared to NH participants, but not for speech in quiet. They also had a steeper decline in the baseline pupil size across trials. The baseline pupil size was smaller for noise-vocoded speech as compared to the other conditions. The normalized data showed an additional group effect on the baseline pupil response. CONCLUSIONS Hearing loss is associated with a smaller pupil response and steeper decline in baseline pupil size during the perception of degraded speech. This suggests difficulties of the HH participants to sustain their effort investment and performance across the test session.
Collapse
Affiliation(s)
- Adriana A Zekveld
- Ear & Hearing Section, Otolaryngology-Head and Neck Surgery, Amsterdam UMC, VU University medical center Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, the Netherlands
| | - Hidde Pielage
- Ear & Hearing Section, Otolaryngology-Head and Neck Surgery, Amsterdam UMC, VU University medical center Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, the Netherlands
| | - Niek J Versfeld
- Ear & Hearing Section, Otolaryngology-Head and Neck Surgery, Amsterdam UMC, VU University medical center Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, the Netherlands
| | - Sophia E Kramer
- Ear & Hearing Section, Otolaryngology-Head and Neck Surgery, Amsterdam UMC, VU University medical center Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, the Netherlands
| |
Collapse
|
18
|
Zhou X, Fukuyama H, Sugisawa T, Okita Y, Kanda H, Yamamoto Y, Araki T, Gomi F. Pupillary Light Reflex and Multimodal Imaging in Patients With Central Serous Chorioretinopathy. Invest Ophthalmol Vis Sci 2023; 64:28. [PMID: 37850945 PMCID: PMC10593139 DOI: 10.1167/iovs.64.13.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Purpose The purpose of this study was to investigate and compare the corresponding alterations of the pupillary response between acute and chronic central serous chorioretinopathy (CSC) and between different disease categories. Methods We recruited patients with unilateral acute and chronic CSC. An eye tracker was applied to determine the pupillary light reflex (PLR) and evaluate the following PLR metrics in healthy eyes: pupil diameter, diameter changes, including relative constriction amplitude (AMP%), and re-dilation ratio (D1%). Baseline optical coherence tomography (OCT), and fluorescein and indocyanine green angiography (FA/ICGA) were performed to analyze the relationship between pupillary response and retinal/choroidal architecture. Results In total, 52 patients were enrolled, including 25 with acute CSC and 27 with chronic CSC. Compared to the chronic CSC group, the acute CSC group displayed a significantly larger baseline pupil diameter (BPD; of 5.51 mm, P = 0.015), lower AMP% (34.40%, P = 0.004), and higher D1% (93.01%, P = 0.002), indicating sympathetic overactivity. On OCT, the total macular volume was positively correlated with the D1% (r = 0.48, P = 0.005) and negatively with AMP (r = -0.47, P = 0.007). On ICGA, the intense choroidal vascular hyperpermeability (CVH) group displayed a greater BPD than the nonintense CVH group. Additionally, 9 cases with later recurrent episodes following therapy showed a lower AMP% and higher D1% than the nonrecurrent group. Conclusions The PLR revealed sympathetic excitation in patients with acute CSC. The stronger D1% was significantly associated with greater total macular volume, and it may be a potential biomarker for predicting the later recurrence of CSC.
Collapse
Affiliation(s)
- Xiaoyin Zhou
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
- Department of Ophthalmology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hisashi Fukuyama
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Takaaki Sugisawa
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Yoichi Okita
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Hiroyuki Kanda
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Yuki Yamamoto
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Takashi Araki
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| | - Fumi Gomi
- Department of Ophthalmology, Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
19
|
Hatsukawa H, Ishikawa M. Psychological states affecting initial pupil size changes after olfactory stimulation in healthy participants. Sci Rep 2023; 13:16050. [PMID: 37749199 PMCID: PMC10520065 DOI: 10.1038/s41598-023-43004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Odor perception affects physiological and psychological states. Pupillary light reflex (PLR) parameters can be affected by olfactory stimulation and psychological states, although it remains unclear whether the olfactory stimulation-induced psychological changes can associate with PLR parameter changes. This study aimed to investigate effects of olfactory stimulation-induced psychological changes on PLR parameter changes with repeated measurements. We collected data on six mood subscales of the profile of mood states, and on five PLR parameter measurements from 28 healthy participants. Participants underwent a 10-min olfactory stimulation on different days with six odorants available with the T&T olfactometer. As obtained data were clustered, we used linear mixed-effects models for statistical analyses. The olfactory stimulation using the no-odor liquid did not affect mood states and the initial pupil size (INIT). The sweat odorant worsened all mood subscales including fatigue-inertia (Fatigue)/Vigor-Activity (Vigor), and decreased INIT compared to the no-odor liquid. When comparing INIT responses related to changes in mood subscales between the no-odor liquid and the sweat odorant, worsened states of Fatigue/Vigor were associated with decreased INIT in the sweat odorant. Fatigue/Vigor can be used as mental fatigue indicators. Thus, mental fatigue can be associated with decreased INIT in the olfactory stimulation.
Collapse
Affiliation(s)
- Hiroatsu Hatsukawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan
| | - Masaaki Ishikawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Amagasaki, Hyogo Prefecture, 660-8550, Japan.
| |
Collapse
|
20
|
McLaughlin DJ, Zink ME, Gaunt L, Reilly J, Sommers MS, Van Engen KJ, Peelle JE. Give me a break! Unavoidable fatigue effects in cognitive pupillometry. Psychophysiology 2023; 60:e14256. [PMID: 36734299 PMCID: PMC11161670 DOI: 10.1111/psyp.14256] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 02/04/2023]
Abstract
Pupillometry has a rich history in the study of perception and cognition. One perennial challenge is that the magnitude of the task-evoked pupil response diminishes over the course of an experiment, a phenomenon we refer to as a fatigue effect. Reducing fatigue effects may improve sensitivity to task effects and reduce the likelihood of confounds due to systematic physiological changes over time. In this paper, we investigated the degree to which fatigue effects could be ameliorated by experimenter intervention. In Experiment 1, we assigned participants to one of three groups-no breaks, kinetic breaks (playing with toys, but no social interaction), or chatting with a research assistant-and compared the pupil response across conditions. In Experiment 2, we additionally tested the effect of researcher observation. Only breaks including social interaction significantly reduced the fatigue of the pupil response across trials. However, in all conditions we found robust evidence for fatigue effects: that is, regardless of protocol, the task-evoked pupil response was substantially diminished (at least 60%) over the duration of the experiment. We account for the variance of fatigue effects in our pupillometry data using multiple common statistical modeling approaches (e.g., linear mixed-effects models of peak, mean, and baseline pupil diameters, as well as growth curve models of time-course data). We conclude that pupil attenuation is a predictable phenomenon that should be accommodated in our experimental designs and statistical models.
Collapse
Affiliation(s)
- Drew J. McLaughlin
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Maggie E. Zink
- Department of Otolaryngology, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Lauren Gaunt
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Jamie Reilly
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania, USA
| | - Mitchell S. Sommers
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Kristin J. Van Engen
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Jonathan E. Peelle
- Department of Otolaryngology, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Requier F, Demnitz-King H, Whitfield T, Klimecki O, Marchant NL, Collette F. The Effect of Meditation-Based Interventions on Patients with Fatigue Symptoms: A Systematic Review and Meta-Analysis. Psychol Belg 2023; 63:64-81. [PMID: 37358949 PMCID: PMC10289041 DOI: 10.5334/pb.1182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Persistent fatigue constitutes a prevalent and debilitating symptom in several diseases. The symptom is not effectively alleviated by pharmaceutical treatments, and meditation has been proposed as a non-pharmacological intervention. Indeed, meditation has been shown to reduce inflammatory/immune problems, pain, stress, anxiety and depression which are associated with pathological fatigue. This review synthesizes data from randomized control trials (RCTs) that explored the effect of meditation-based interventions (MeBIs) on fatigue in pathological conditions. Eight databases were searched from inception to April 2020. Thirty-four RCTs met eligibility criteria and covered six conditions (68% cancer), 32 of which were included in the meta-analysis. The main analysis showed an effect in favor of MeBIs compared to control groups (g = 0.62). Separate moderator analyses assessing control group, pathological condition, and MeBI type, highlighted a significantly moderating role of the control group. Indeed, compared to actively controlled studies, studies using a passive control group were associated with a statistically significantly more beneficial impact of the MeBIs (g = 0.83). These results indicate that MeBIs alleviate pathological fatigue and it seems that the studies with a passive control group showed a greater effect of MeBI on the reduction of fatigue compared to studies using active control groups. However, the specific effect of meditation type and pathological condition should be analyzed with more studies, and there remains a need to assess meditation effects on different types of fatigue (i.e., physical and mental) and in additional conditions (e.g., post-COVID-19).
Collapse
Affiliation(s)
- Florence Requier
- GIGA-CRC In Vivo Imaging, Université de Liège, Bâtiment B30, Allée du Six Août, 8, Sart Tilman, 4000 Liège, Belgium
- Department of Psychology, Cognition and Behavior, University of Liège, Liège, Belgium
| | | | - Tim Whitfield
- Division of Psychiatry, University College London, London, UK
| | - Olga Klimecki
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | | | - Fabienne Collette
- GIGA-CRC In Vivo Imaging, Université de Liège, Bâtiment B30, Allée du Six Août, 8, Sart Tilman, 4000 Liège, Belgium
- Department of Psychology, Cognition and Behavior, University of Liège, Liège, Belgium
| |
Collapse
|
22
|
Bonmassar C, Scharf F, Widmann A, Wetzel N. On the relationship of arousal and attentional distraction by emotional novel sounds. Cognition 2023; 237:105470. [PMID: 37150156 DOI: 10.1016/j.cognition.2023.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Unexpected and task-irrelevant sounds can impair performance in a task. It has been shown that highly arousing emotional distractor sounds impaired performance less compared to moderately arousing neutral distractor sounds. The present study tests whether these differential emotion-related distraction effects are directly related to an enhancement of arousal evoked by processing of emotional distractor sounds. We disentangled costs of orienting of attention and benefits of increased arousal levels during the presentation of highly arousing emotional and moderately arousing neutral novel sounds that were embedded in a sequence of repeated standard sounds. We used sound-related pupil dilation responses as a marker of arousal and RTs as a marker of distraction in a visual categorization task in 57 healthy young adults. Multilevel analyses revealed increased RT and increased pupil dilation in response to novel vs. standard sounds. Emotional novel sounds reduced distraction effects on the behavioral level and increased pupil dilation responses compared to neutral novel sounds. Bayes Factors revealed strong evidence against an inverse proportional relationship between behavioral distraction effects and sound-related pupil dilation responses for emotional sounds. Given that the activity of the locus coeruleus has been linked to both changes in pupil diameter and arousal, it may embody an indirect relationship as a common antecedent by the release of norepinephrine into brain networks involved in attention control and control of the pupil. The present study provides new insights into the relation of changes in arousal and attentional distraction during the processing of emotional task-irrelevant novel sounds.
Collapse
Affiliation(s)
| | | | - Andreas Widmann
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Leipzig University, Germany
| | - Nicole Wetzel
- Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences Magdeburg, Germany; University of Applied Sciences Magdeburg-, Stendal, Germany
| |
Collapse
|
23
|
Assouline A, Mendelsohn A. Weaving a story: Narrative formation over prolonged time scales engages social cognition and frontoparietal networks. Eur J Neurosci 2023; 57:809-823. [PMID: 36617430 DOI: 10.1111/ejn.15909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
Forming narratives is of key importance to human experience, enabling one to render large amounts of information into relatively compacted stories for future retrieval, giving meaning to otherwise fragmented occurrences. The neural mechanisms that underlie coherent narrative construction of causally connected information over prolonged temporal periods are yet unclear. Participants in this fMRI study observed consecutive scenes from a full-length movie either in their original order, enabling causal inferences over time, or in reverse order, impeding a key component of coherent narratives-causal inference. In between scenes, we presented short periods of blank screens for examining post-encoding processing effects. Using multivariate pattern analysis (MVPA) followed by seed-base correlation analysis, we hypothesized that networks involved in online monitoring of incoming information on the one hand, and offline processing of previous occurrences on the other would differ between the groups. We found that despite the exposure to the same scenes, the chronological-order condition exhibited enhanced functional connectivity in frontoparietal regions associated with information integration and working memory. The reverse-order condition yielded offline, post-scene coactivation of neural networks involved in social cognition and particularly theory of mind and action comprehension. These findings shed light on offline processes of narrative construction efforts, highlighting the role of social cognition networks in seeking for narrative coherence.
Collapse
Affiliation(s)
- Amir Assouline
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| | - Avi Mendelsohn
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.,The Institute of Information Processing and Decision Making (IIPDM), University of Haifa, Haifa, Israel
| |
Collapse
|
24
|
Lu H, van der Linden D, Bakker AB. Changes in pupil dilation and P300 amplitude indicate the possible involvement of the locus coeruleus-norepinephrine (LC-NE) system in psychological flow. Sci Rep 2023; 13:1908. [PMID: 36732597 PMCID: PMC9894923 DOI: 10.1038/s41598-023-28781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Psychological flow is a state of full task immersion. The present study was conducted to test the hypothesis that psychological flow is positively related to activity of the phasic locus coeruleus-norepinephrine (LC-NE) system, which supports decisions on whether to engage in or disengage from the current activity. Subjective flow was assessed among 36 participants who engaged in a gamified version of the n-back task with various difficulty levels (0, 1, 2, and 3 back). During the tasks, continuous pupil diameter and EEG were recorded. We found that psychological flow and two presumed indicators of the phasic LC-NE activity (pupil dilation and EEG P300 amplitude) fit inverted U-shapes with increasing subjective task difficulty. Moreover, a positive linear relationship between psychological flow and pupil dilation (not with P300) was found. In conclusion, this study indicates the involvement of the LC-NE system in the peak experience of flow.
Collapse
Affiliation(s)
- Hairong Lu
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands.
| | - Dimitri van der Linden
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands
| | - Arnold B Bakker
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands
- Department of Industrial Psychology and People Management, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
25
|
Darnai G, Matuz A, Alhour HA, Perlaki G, Orsi G, Arató Á, Szente A, Áfra E, Nagy SA, Janszky J, Csathó Á. The neural correlates of mental fatigue and reward processing: A task-based fMRI study. Neuroimage 2023; 265:119812. [PMID: 36526104 DOI: 10.1016/j.neuroimage.2022.119812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Increasing time spent on the task (i.e., the time-on-task (ToT) effect) often results in mental fatigue. Typical effects of ToT are decreasing levels of task-related motivation and the deterioration of cognitive performance. However, a massive body of research indicates that the detrimental effects can be reversed by extrinsic motivators, for example, providing rewards to fatigued participants. Although several attempts have been made to identify brain areas involved in mental fatigue and related reward processing, the neural correlates are still less understood. In this study, we used the psychomotor vigilance task to induce mental fatigue and blood oxygen-level-dependent functional magnetic resonance imaging to investigate the neural correlates of the ToT effect and the reward effect (i.e., providing extra monetary reward after fatigue induction) in a healthy young sample. Our results were interpreted in a recently proposed neurocognitive framework. The activation of the right middle frontal gyrus, right insula and right anterior cingulate gyrus decreased as fatigue emerged and the cognitive performance dropped. However, after providing an extra reward, the cognitive performance, as well as activation of these areas, increased. Moreover, the activation levels of all of the mentioned areas were negatively associated with reaction times. Our results confirm that the middle frontal gyrus, insula and anterior cingulate cortex play crucial roles in cost-benefit evaluations, a potential background mechanism underlying fatigue, as suggested by the neurocognitive framework.
Collapse
Affiliation(s)
- Gergely Darnai
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary; Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; ELKH-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - András Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | | | - Gábor Perlaki
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; ELKH-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Pécs Diagnostic Centre, Pécs, Hungary
| | - Gergely Orsi
- ELKH-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Pécs Diagnostic Centre, Pécs, Hungary; Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Arató
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Anna Szente
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Áfra
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Szilvia Anett Nagy
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; ELKH-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary; Pécs Diagnostic Centre, Pécs, Hungary; Structural Neurobiology Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; ELKH-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary.
| | - Árpád Csathó
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
26
|
Hatsukawa H, Ishikawa M. Decreased initial pupil size and shortened constriction latency due to negative mood states and mental fatigue in clinical subacute pain models. Physiol Behav 2022; 253:113850. [PMID: 35598830 DOI: 10.1016/j.physbeh.2022.113850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Previous clinical studies on pupillary light reflex parameters showed shortened constriction latency (LAT) and decreased initial pupil size (INIT) due to increased numeric rating scale (NRS) scores, reflecting subjective pain intensity, in subacute pain models. As noxious stimulation causes pupil dilation, decreased INIT (pupil constriction) was an unexpected finding. Pain-related negative moods and mental fatigue might have caused this finding. We aimed to investigate how psychological states affect LAT/INIT in two subacute pain models. For psychological assessment, we used the Profile of Mood States (POMS) and calculated the total mood disturbance (TMD) score using six mood categories. We collected data on NRS scores, POMS-related scores, LAT, and INIT through a longitudinal study. Using linear mixed-effects models, we evaluated the association of TMD scores with NRS scores, LAT, and INIT. Furthermore, we performed subanalyses targeting two mood categories that represent mental fatigue: Fatigue-Inertia (Fatigue) and Vigor-Activity (Vigor). We investigated whether obtained results can be identical in both models. In total, 141 patients were enrolled. Increased NRS scores were associated with increased TMD/Fatigue scores and decreased Vigor scores, being associated with shortened LAT/decreased INIT in both models. Score changes in NRS, TMD, Fatigue, and Vigor indicated that increased subjective pain intensity can be associated with negative mood states, especially mental fatigue. This study revealed that negative moods and mental fatigue induced by acute pain can be associated with shortened LAT/decreased INIT in both models, indicating clinical potential of LAT/INIT as objective indicators reflecting the psychological states for pain assessment.
Collapse
Affiliation(s)
- Hiroatsu Hatsukawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Hyogo Prefecture, Amagasaki 660-8550, Japan
| | - Masaaki Ishikawa
- Department of Otolaryngology, Head and Neck Surgery, Hyogo Prefectural Amagasaki General Medical Center, 2-17-77 Higashinaniwachou, Hyogo Prefecture, Amagasaki 660-8550, Japan.
| |
Collapse
|
27
|
Hinss MF, Brock AM, Roy RN. Cognitive effects of prolonged continuous human-machine interaction: The case for mental state-based adaptive interfaces. FRONTIERS IN NEUROERGONOMICS 2022; 3:935092. [PMID: 38235472 PMCID: PMC10790890 DOI: 10.3389/fnrgo.2022.935092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/28/2022] [Indexed: 01/19/2024]
Abstract
Operators of complex systems across multiple domains (e.g., aviation, automotive, and nuclear power industry) are required to perform their tasks over prolonged and continuous periods of time. Mental fatigue as well as reduced cognitive flexibility, attention, and situational awareness all result from prolonged continuous use, putting at risk the safety and efficiency of complex operations. Mental state-based adaptive systems may be a solution to this problem. These systems infer the current mental state of an operator based on a selection of metrics ranging from operator independent measures (e.g., weather and time of day), to behavioral (e.g., reaction time and lane deviation) as well as physiological markers (e.g., electroencephalography and cardiac activity). The interaction between operator and system may then be adapted in one of many ways to mitigate any detected degraded cognitive state, thereby ensuring continued safety and efficiency. Depending on the task at hand and its specific problems, possible adaptations -usually based on machine learning estimations- e.g., include modifications of information, presentation modality or stimuli salience, as well as task scheduling. Research on adaptive systems is at the interface of several domains, including neuroergonomics, human factors, and human-computer interaction in an applied and ecological context, necessitating careful consideration of each of the aforementioned aspects. This article provides an overview of some of the key questions and aspects to be considered by researchers for the design of mental state-based adaptive systems, while also promoting their application during prolonged continuous use to pave the way toward safer and more efficient human-machine interaction.
Collapse
Affiliation(s)
- Marcel F. Hinss
- Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Toulouse, France
- Ecole Nationale de l'Aviation Civile (ENAC), Université de Toulouse, Toulouse, France
| | - Anke M. Brock
- Ecole Nationale de l'Aviation Civile (ENAC), Université de Toulouse, Toulouse, France
| | - Raphaëlle N. Roy
- Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Toulouse, France
| |
Collapse
|
28
|
Cognitive load-induced pupil dilation reflects potential flight ability. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Krol MA, Jellema T. Sensorimotor anticipation of others' actions in real-world and video settings: modulation by level of engagement? Soc Neurosci 2022; 17:293-304. [PMID: 35613478 DOI: 10.1080/17470919.2022.2083229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electroencephalography (EEG) studies investigating social cognition have used both video and real-world stimuli, often without a strong reasoning why one or the other was chosen. Video stimuli can be selected for practical reasons, while naturalistic real-world stimuli are ecologically valid. The current study investigated modulatory effects on EEG mu (8 - 13 Hz) suppression, directly prior to the onset - and during the course - of observed actions, related to real-world and video settings. Recordings were made over sensorimotor cortex and stimuli in both settings consisted of identical (un)predictable object-related grasping and placing actions. In both settings a very similar mu suppression was found during unfolding of the action, irrespective of predictability. However, mu suppression related to the anticipation of upcoming predictable actions was found exclusively in the real-world setting. Thus, even though the presentation setting does not seem to modulate mu suppression during action observation, it does affect the anticipation-related mu suppression. We discuss the possibility that this may be due to increased social engagement in real-world settings, which in particular affects anticipation. The findings emphasise the importance of using real-world stimuli to bring out the subtle, anticipatory, aspects related to action observation.
Collapse
Affiliation(s)
- Manon A Krol
- Donders Centre for Cognitive Neuroimaging, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Tjeerd Jellema
- The University of Hull Department of Psychology, Cottingham Road, HU6 7RX, Hull, United Kingdom
| |
Collapse
|
30
|
Shi L, Zheng L, Jin D, Lin Z, Zhang Q, Zhang M. Assessment of Combination of Automated Pupillometry and Heart Rate Variability to Detect Driving Fatigue. Front Public Health 2022; 10:828428. [PMID: 35265578 PMCID: PMC8898938 DOI: 10.3389/fpubh.2022.828428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives Approximately 20~30% of all traffic accidents are caused by fatigue driving. However, limited practicability remains a barrier for the real application of available techniques to detect driving fatigue. Use of pupillary light reflex (PLR) may be potentially effective for driving fatigue detection. Methods A 90 min monotonous simulated driving task was utilized to induce driving fatigue. During the task, PLR measurements were performed at baseline and at an interval of 30 min. Subjective rating scales, heart rate variability (HRV) were monitored simultaneously. Results Thirty-two healthy volunteers in China participated in our study. Based on the results of subjective evaluation and behavioral performances, driving fatigue was verified to be successfully induced by a simulated driving task. Significant variations of PLR and HRV parameters were observed, which also showed significant relevance with the change in Karolinska Sleepiness Scale at several timepoints (|r| = 0.55 ~ 0.72, P < 0.001). Furthermore, PLR variations had excellent ability to detect driving fatigue with high sensitivity and specificity, of which maximum constriction velocity variations achieved a sensitivity of 85.00% and specificity of 72.34% for driving fatigue detection, vs. 82.50 and 78.72% with a combination of HRV variations, a nonsignificant difference (AUC = 0.835, 0.872, P > 0.05). Conclusions Pupillary light reflex variation may be a potential indicator in the detection of driving fatigue, achieving a comparative performance compared with the combination with heart rate variability. Further work may be involved in developing a commercialized driving fatigue detection system based on pupillary parameters.
Collapse
Affiliation(s)
- Lin Shi
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Leilei Zheng
- Department of Psychiatry, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danni Jin
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoling Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| |
Collapse
|
31
|
Pupillary correlates of individual differences in long-term memory. Psychon Bull Rev 2022; 29:1355-1366. [PMID: 35355225 DOI: 10.3758/s13423-022-02081-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
The present study is the first to examine individual differences in long-term memory, arousal dysregulation, and intensity of attention within the same experiment. Participants (N = 106) completed 28 lists of an immediate free-recall task while their pupil diameter was recorded via an eye-tracker during the encoding period. Two main pupillary measures were extracted: intraindividual variability in pre-list pupil diameter and evoked pupillary responses during item encoding. Variability in pre-list pupil diameter served as a measure of arousal dysregulation, and evoked pupillary responses served as a measure of intensity of attention. Based on prior work, we hypothesized that there would be a positive association between intensity of attention and recall ability, and that there would be a negative association between arousal dysregulation and recall ability. Collectively these two measures accounted for 19% of interindividual variance in recall, with 5% attributable uniquely to intensity of attention and 12% attributable uniquely to arousal regulation. The findings demonstrate that there are sources of individual differences in long-term memory that can be revealed via pupillometry, notably the amount of effort deployed during item encoding and the degree to which people exhibit dysregulated arousal. Both findings are consistent with recent theorizing regarding the role of the locus coeruleus (LC)-norepinephrine (NE) system's role in goal-directed cognition. Specifically, the LC governs both moment-to-moment arousal and NE release to cortical regions subserving cognitive processing. Among people for whom this system operates most optimally, long-term memory retention is superior.
Collapse
|
32
|
Lewczuk K, Wizła M, Oleksy T, Wyczesany M. Emotion Regulation, Effort and Fatigue: Complex Issues Worth Investigating. Front Psychol 2022; 13:742557. [PMID: 35250704 PMCID: PMC8888450 DOI: 10.3389/fpsyg.2022.742557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Karol Lewczuk
- Institute of Psychology, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Magdalena Wizła
- Institute of Psychology, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Tomasz Oleksy
- Department of Psychology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
33
|
Wendiggensen P, Ghin F, Koyun AH, Stock AK, Beste C. Pretrial Theta Band Activity Affects Context-dependent Modulation of Response Inhibition. J Cogn Neurosci 2022; 34:605-617. [PMID: 35061021 DOI: 10.1162/jocn_a_01816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The ability to inhibit a prepotent response is a crucial prerequisite of goal-directed behavior. So far, research on response inhibition has mainly examined these processes when there is little to no cognitive control during the decision to respond. We manipulated the "context" in which response inhibition has to be exerted (i.e., a controlled or an automated context) by combining a Simon task with a go/no-go task and focused on theta band activity. To investigate the role of "context" in response inhibition, we also examined how far theta band activity in the pretrial period modulates context-dependent variations of theta band activity during response inhibition. This was done in an EEG study applying beamforming methods. Here, we examined n = 43 individuals. We show that an automated context, as opposed to a controlled context, compromises response inhibition performance and increases the need for cognitive control. This was also related to context-dependent modulations of theta band activity in superior frontal and middle frontal regions. Of note, results showed that theta band activity in the pretrial period, associated with the right inferior frontal cortex, was substantially correlated with context-dependent modulations of theta band activity during response inhibition. The direction of the obtained correlation provides insights into the functional relevance of a pretrial theta band activity. The data suggest that pretrial theta band activity reflects some form of attentional sampling to inform possible upcoming processes signaling the need for cognitive control.
Collapse
Affiliation(s)
- Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Germany
| |
Collapse
|
34
|
The effect of background speech on attentive sound processing: A pupil dilation study. Int J Psychophysiol 2022; 174:47-56. [PMID: 35150772 DOI: 10.1016/j.ijpsycho.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
Abstract
Listening to task-irrelevant speech while performing a cognitive task can involuntarily deviate our attention and lead to decreases in performance. One explanation for the impairing effect of irrelevant speech is that semantic processing can consume attentional resources. In the present study, we tested this assumption by measuring performance in a non-linguistic attentional task while participants were exposed to meaningful (native) and non-meaningful (foreign) speech. Moreover, based on the tight relation between pupillometry and attentional processes, we also registered changes in pupil diameter size to quantify the effect of meaningfulness upon attentional allocation. To these aims, we recruited 41 native German speakers who had neither received formal instruction in French nor had extensive informal contact with this language. The focal task consisted of an auditory oddball task. Participants performed a duration discrimination task containing frequently repeated standard sounds and rarely presented deviant sounds while a story was read in German or (non-meaningful) French in the background. Our results revealed that, whereas effects of language meaningfulness on attention were not detectable at the behavioural level, participants' pupil dilated more in response to the sounds of the auditory task when background speech was played in non-meaningful French compared to German, independent of sound type. In line with the initial hypothesis, this suggested that semantic processing of the native language required attentional resources, which lead to fewer resources devoted to the processing of the sounds of the focal task. Our results highlight the potential of the pupil dilation response for the investigation of subtle cognitive processes that might not surface when only behaviour is measured.
Collapse
|
35
|
Yu S, Mückschel M, Beste C. Superior frontal regions reflect the dynamics of task engagement and theta band-related control processes in time-on task effects. Sci Rep 2022; 12:846. [PMID: 35039615 PMCID: PMC8763946 DOI: 10.1038/s41598-022-04972-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Impairment of cognitive performance is often observed in time-on tasks. Theoretical considerations suggest that especially prefrontal cortex cognitive control functions is affected by time-on-task effects, but the role of effort/task engagement is not understood. We examine time-on-task effects in cognitive control on a neurophysiological level using a working-memory modulated response inhibition task and inter-relate prefrontal neuroanatomical region-specific theta-band activity with pupil diameter data using EEG-beamforming approaches. We show that task performance declines with time-on tasks, which was paralleled by a concomitant decreases of task-evoked superior frontal gyrus theta-band activity and a reduction in phasic pupil diameter modulations. A strong relation between cognitive control-related superior frontal theta-band activity and effort/task engagement indexed by phasic pupil diameter modulations was observed in the beginning of the experiment, especially for tasks requiring inhibitory controls and demanding high working memory. This strong relation vanished at the end of the experiment, suggesting a decoupling of cognitive control resources useable for a task and effort invested that characterizes time-on-task effects in prefrontal cortical structures.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany. .,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
36
|
Yu S, Mückschel M, Rempel S, Ziemssen T, Beste C. Time-on-task effects on working memory gating processes—A role of theta synchronization and the norepinephrine system. Cereb Cortex Commun 2022; 3:tgac001. [PMID: 35098128 PMCID: PMC8794645 DOI: 10.1093/texcom/tgac001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Performance impairment as an effect of prolonged engagement in a specific task is commonly observed. Although this is a well-known effect in everyday life, little is known about how this affects central cognitive functions such as working memory (WM) processes. In the current study, we ask how time-on-task affects WM gating processes and thus processes regulating WM maintenance and updating. To this end, we combined electroencephalography methods and recordings of the pupil diameter as an indirect of the norepinephrine (NE) system activity. Our results showed that only WM gate opening but not closing processes showed time-on-task effects. On the neurophysiological level, this was associated with modulation of dorsolateral prefrontal theta band synchronization processes, which vanished with time-on-task during WM gate opening. Interestingly, also the modulatory pattern of the NE system, as inferred using pupil diameter data, changed. At the beginning, a strong correlation of pupil diameter data and theta band synchronization processes during WM gate opening is observed. This modulatory effect vanished at the end of the experiment. The results show that time-on-task has very specific effects on WM gate opening and closing processes and suggests an important role of NE system in the time-on-task effect on WM gate opening process.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
| | - Sarah Rempel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, MS Centre, TU Dresden 01309
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden 01309
- Faculty of Medicine, University Neuropsychology Centre, TU Dresden 01309
- Address correspondence to Christian Beste, Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, D01309 Dresden, Germany.
| |
Collapse
|
37
|
Thurman SM, Cohen Hoffing RA, Madison A, Ries AJ, Gordon SM, Touryan J. "Blue Sky Effect": Contextual Influences on Pupil Size During Naturalistic Visual Search. Front Psychol 2022; 12:748539. [PMID: 34992563 PMCID: PMC8725886 DOI: 10.3389/fpsyg.2021.748539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 01/28/2023] Open
Abstract
Pupil size is influenced by cognitive and non-cognitive factors. One of the strongest modulators of pupil size is scene luminance, which complicates studies of cognitive pupillometry in environments with complex patterns of visual stimulation. To help understand how dynamic visual scene statistics influence pupil size during an active visual search task in a visually rich 3D virtual environment (VE), we analyzed the correlation between pupil size and intensity changes of image pixels in the red, green, and blue (RGB) channels within a large window (~14 degrees) surrounding the gaze position over time. Overall, blue and green channels had a stronger influence on pupil size than the red channel. The correlation maps were not consistent with the hypothesis of a foveal bias for luminance, instead revealing a significant contextual effect, whereby pixels above the gaze point in the green/blue channels had a disproportionate impact on pupil size. We hypothesized this differential sensitivity of pupil responsiveness to blue light from above as a “blue sky effect,” and confirmed this finding with a follow-on experiment with a controlled laboratory task. Pupillary constrictions were significantly stronger when blue was presented above fixation (paired with luminance-matched gray on bottom) compared to below fixation. This effect was specific for the blue color channel and this stimulus orientation. These results highlight the differential sensitivity of pupillary responses to scene statistics in studies or applications that involve complex visual environments and suggest blue light as a predominant factor influencing pupil size.
Collapse
Affiliation(s)
- Steven M Thurman
- US DEVCOM Army Research Laboratory, Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | - Russell A Cohen Hoffing
- US DEVCOM Army Research Laboratory, Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | - Anna Madison
- US DEVCOM Army Research Laboratory, Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | - Anthony J Ries
- US DEVCOM Army Research Laboratory, Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| | | | - Jonathan Touryan
- US DEVCOM Army Research Laboratory, Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD, United States
| |
Collapse
|
38
|
A role of the norepinephrine system or effort in the interplay of different facets of inhibitory control. Neuropsychologia 2022; 166:108143. [PMID: 34998865 DOI: 10.1016/j.neuropsychologia.2022.108143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 01/23/2023]
Abstract
Inhibitory control has multiple facets, and one possible distinction can be made between 'inhibition of interferences' and the 'inhibition of actions'. Both facets of inhibitory control show an interdependency. Even though some neurophysiological processes underlying this interdependency have been examined, the role of neuro-modulatory processes in their interplay are not understood. In the current study, we examine the role of the norepinephrine (NE) system in these processes. We did so by combining a Go/Nogo and Simon task. We recorded the EEG and pupil diameter data as an indirect index of NE system activity during the task. EEG theta band activity data and pupil diameter data were then integrated after conducting a temporal signal decomposition of the EEG data. We show that particularly theta band activity coding stimulus-response translation processes associated with middle frontal cortices, but not stimulus-driven processes are modulated by the interplay between the 'inhibition of interferences' and the 'inhibition of actions'. Modulations in stimulus-response translation processes were systematically correlated with pupil-diameter responses. The pattern of correlations suggests that phasic NE system activity particularly modulates stimulus-response mapping processes during conflict monitoring in incongruent Nogo trials, which may explain behavioral performance effects. Phasic NE system activity reflects essential modulators of the interplay between the 'inhibition of interferences' and the 'inhibition of actions'.
Collapse
|
39
|
Martin JT, Whittaker AH, Johnston SJ. Pupillometry and the vigilance decrement: Task-evoked but not baseline pupil measures reflect declining performance in visual vigilance tasks. Eur J Neurosci 2022; 55:778-799. [PMID: 34978115 PMCID: PMC9306885 DOI: 10.1111/ejn.15585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/05/2022]
Abstract
Baseline and task‐evoked pupil measures are known to reflect the activity of the nervous system's central arousal mechanisms. With the increasing availability, affordability and flexibility of video‐based eye tracking hardware, these measures may one day find practical application in real‐time biobehavioural monitoring systems to assess performance or fitness for duty in tasks requiring vigilant attention. But real‐world vigilance tasks are predominantly visual in their nature and most research in this area has taken place in the auditory domain. Here, we explore the relationship between pupil size—both baseline and task‐evoked—and behavioural performance measures in two novel vigilance tasks requiring visual target detection: (1) a traditional vigilance task involving prolonged, continuous and uninterrupted performance (n = 28) and (2) a psychomotor vigilance task (n = 25). In both tasks, behavioural performance and task‐evoked pupil responses declined as time spent on task increased, corroborating previous reports in the literature of a vigilance decrement with a corresponding reduction in task‐evoked pupil measures. Also in line with previous findings, baseline pupil size did not show a consistent relationship with performance measures. Our data offer novel insights into the complex interplay of brain systems involved in vigilant attention and question the validity of the assumption that baseline (prestimulus) pupil size and task‐evoked (poststimulus) pupil measures reflect the tonic and phasic firing modes of the locus coeruleus.
Collapse
Affiliation(s)
- Joel T Martin
- School of Human and Health Sciences, Department of Psychology, University of Swansea, Swansea, UK.,Department of Psychology, University of York, York, UK
| | - Annalise H Whittaker
- Platform Systems Division, Defence, Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK
| | - Stephen J Johnston
- School of Human and Health Sciences, Department of Psychology, University of Swansea, Swansea, UK
| |
Collapse
|
40
|
Gilsoul J, Libertiaux V, Collette F. Cognitive fatigue in young, middle‐aged, and older: Breaks as a way to recover. APPLIED PSYCHOLOGY-AN INTERNATIONAL REVIEW-PSYCHOLOGIE APPLIQUEE-REVUE INTERNATIONALE 2021. [DOI: 10.1111/apps.12358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jessica Gilsoul
- GIGA‐CRC in Vivo Imaging University of Liège Liège Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog) University of Liège Liège Belgium
| | | | - Fabienne Collette
- GIGA‐CRC in Vivo Imaging University of Liège Liège Belgium
- Psychology and Neuroscience of Cognition Research Unit (PsyNCog) University of Liège Liège Belgium
| |
Collapse
|
41
|
Matuz A, van der Linden D, Zsidó A, Csathó Á. Visually guided movement with increasing time-on-task: Differential effects on movement preparation and movement execution. Q J Exp Psychol (Hove) 2021; 75:565-582. [PMID: 34507504 DOI: 10.1177/17470218211048001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Top-down cognitive control seems to be sensitive to the detrimental effects of fatigue induced by time-on-task (ToT). The planning and preparation of the motor responses may be especially vulnerable to ToT. Yet, effects of ToT specific to the different phases of movements have received little attention. Therefore, in three experiments, we assessed the effect of ToT on a mouse-pointing task. In Experiment 1, there were 16 possible target positions with variable movement directions. In Experiment 2, the layout of the targets was simplified. In Experiment 3, using cuing conditions, we examined whether the effects of ToT on movement preparation and execution were caused by an increased orientation deficit or decreased phasic alertness. In each experiment, initiation of movement (preparatory phase) became slower, movement execution became faster and overall response time remained constant with increasing ToT. There was, however, no significant within-person association between the preparatory and execution phases. In Experiments 1 and 2, we found a decreasing movement time/movement error ratio, suggesting a more impulsive execution of the pointing movement. In addition, ToT was also accompanied with imprecise movement execution as indicated by the increased errors, mainly in Experiment 2. The results of Experiment 3 indicated that ToT did not induce orientation and phasic alerting deficits but rather was accompanied by decreased tonic alertness.
Collapse
Affiliation(s)
- András Matuz
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| | - Dimitri van der Linden
- Department of Psychology, Education, and Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - András Zsidó
- Institute of Psychology, University of Pécs, Pécs, Hungary
| | - Árpád Csathó
- Department of Behavioural Sciences, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
42
|
Gergelyfi M, Sanz-Arigita EJ, Solopchuk O, Dricot L, Jacob B, Zénon A. Mental fatigue correlates with depression of task-related network and augmented DMN activity but spares the reward circuit. Neuroimage 2021; 243:118532. [PMID: 34496289 DOI: 10.1016/j.neuroimage.2021.118532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Long-lasting and demanding cognitive activity typically leads to mental fatigue (MF). Indirect evidence suggests that MF may be caused by altered motivational processes. Here, we hypothesized that if MF consists in an alteration of motivational states, brain functional changes induced by MF could specifically affect the brain motivation circuit. In order to test this hypothesis, we devised a functional neuroimaging protocol to detect altered brain activity in reward-related brain regions in relation to cognitively induced mental fatigue. Twenty-five healthy participants underwent a FATIGUE and a CONTROL session on different days. In the FATIGUE session, MF was induced by performing a demanding cognitive task (adapted Stroop task) during 90 min, whereas in the CONTROL session, participants were asked to read magazines for the same period of time. We measured the neural consequences of the MF induction during a working memory task (Missing Number task) while modulating extrinsic motivation with block-wise variations in monetary reward. We also tracked participants' momentary fatigue, anxiety state and intrinsic motivation prior to and following the MF inducement and measurement. Accuracy on the Missing Number Task was lower in the FATIGUE than in the CONTROL condition. Furthermore, subjective MF, but not its behavioral manifestations, was associated with hypoactivity of the task-evoked neural responses. Importantly, activity in regions modulated by reward showed no differences between FATIGUE and CONTROL sessions. In parallel, subjective MF correlated with increased on-task activity and resting-state functional connectivity in the default mode network. These results indicate that subjective mental fatigue is not associated with altered activity in the brain motivation circuit but rather with hypoactivity in task-specific brain regions as well as relative increases of activity and connectivity in the default mode network during and after the task.
Collapse
Affiliation(s)
- Mόnika Gergelyfi
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | | | - Oleg Solopchuk
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium; Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Benvenuto Jacob
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Alexandre Zénon
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium; Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
43
|
Plain B, Pielage H, Richter M, Bhuiyan TA, Lunner T, Kramer SE, Zekveld AA. Social observation increases the cardiovascular response of hearing-impaired listeners during a speech reception task. Hear Res 2021; 410:108334. [PMID: 34450568 DOI: 10.1016/j.heares.2021.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
Certain cardiovascular measures allow for distinction between sympathetic and parasympathetic nervous system activity. Applied during listening, these measures may provide a novel and complementary insight into listening effort. To date, few studies have implemented cardiovascular measures of listening effort and seldom have these included hearing-impaired participants. These studies have generally measured changes in cardiovascular parameters while manipulating environmental factors, such as listening difficulty. Yet, listening effort is also known to be moderated by individual factors, including the importance of performing successfully. In this study, we aimed to manipulate success importance by adding observers to the traditional laboratory set-up. Twenty-nine hearing-impaired participants performed a speech reception task both alone and in the presence of two observers. Auditory stimuli consisted of Danish Hearing in Noise Test (HINT) sentences masked by four-talker babble. Sentences were delivered at two individually adapted signal-to-noise ratios, corresponding to 50 and 80% of sentences correct. We measured change scores, relative to baseline, of pre-ejection period, two indices of heart rate variability, heart rate and blood pressure (systolic, diastolic, and mean arterial pressure). After each condition, participants rated their effort investment, stress, tendency to give up and preference to change the situation to improve audibility. A multivariate analysis revealed that cardiovascular reactivity increased in the presence of the observers, compared to when the task was performed alone. More specifically, systolic, diastolic, and mean arterial blood pressure increased while observed. Interestingly, participants' subjective ratings were sensitive only to intelligibility level, not the observation state. This study was the first to report results from a range of different cardiovascular variables measured from hearing-impaired participants during a speech reception task. Due to the timing of the observers' presence, we were not able to conclusively attribute these physiological changes to being task related. Therefore, instead of representing listening effort, we suggest that the increased cardiovascular response detected during observation reveals increased physiological stress associated with potential evaluation.
Collapse
Affiliation(s)
- Bethany Plain
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; Eriksholm Research Centre, Snekkersten, Denmark.
| | - Hidde Pielage
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands; Eriksholm Research Centre, Snekkersten, Denmark
| | - Michael Richter
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | | | | | - Sophia E Kramer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Adriana A Zekveld
- Amsterdam UMC, Vrije Universiteit Amsterdam, Otolaryngology Head and Neck Surgery, Ear & Hearing, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Holdnack JA, Brennan PF. Usability and Effectiveness of Immersive Virtual Grocery Shopping for Assessing Cognitive Fatigue in Healthy Controls: Protocol for a Randomized Controlled Trial. JMIR Res Protoc 2021; 10:e28073. [PMID: 34346898 PMCID: PMC8374668 DOI: 10.2196/28073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Cognitive fatigue (CF) is a human response to stimulation and stress and is a common comorbidity in many medical conditions that can result in serious consequences; however, studying CF under controlled conditions is difficult. Immersive virtual reality provides an experimental environment that enables the precise measurement of the response of an individual to complex stimuli in a controlled environment. OBJECTIVE We aim to examine the development of an immersive virtual shopping experience to measure subjective and objective indicators of CF induced by instrumental activities of daily living. METHODS We will recruit 84 healthy participants (aged 18-75 years) for a 2-phase study. Phase 1 is a user experience study for testing the software functionality, user interface, and realism of the virtual shopping environment. Phase 2 uses a 3-arm randomized controlled trial to determine the effect that the immersive environment has on fatigue. Participants will be randomized into 1 of 3 conditions exploring fatigue response during a typical human activity (grocery shopping). The level of cognitive and emotional challenges will change during each activity. The primary outcome of phase 1 is the experience of user interface difficulties. The primary outcome of phase 2 is self-reported CF. The core secondary phase 2 outcomes include subjective cognitive load, change in task performance behavior, and eye tracking. Phase 2 uses within-subject repeated measures analysis of variance to compare pre- and postfatigue measures under 3 conditions (control, cognitive challenge, and emotional challenge). RESULTS This study was approved by the scientific review committee of the National Institute of Nursing Research and was identified as an exempt study by the institutional review board of the National Institutes of Health. Data collection will begin in spring 2021. CONCLUSIONS Immersive virtual reality may be a useful research platform for simulating the induction of CF associated with the cognitive and emotional challenges of instrumental activities of daily living. TRIAL REGISTRATION ClinicalTrials.gov NCT04883359; http://clinicaltrials.gov/ct2/show/NCT04883359. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/28073.
Collapse
Affiliation(s)
- James A Holdnack
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Patricia Flatley Brennan
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
45
|
Lunner T, Alickovic E, Graversen C, Ng EHN, Wendt D, Keidser G. Three New Outcome Measures That Tap Into Cognitive Processes Required for Real-Life Communication. Ear Hear 2021; 41 Suppl 1:39S-47S. [PMID: 33105258 PMCID: PMC7676869 DOI: 10.1097/aud.0000000000000941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/11/2020] [Indexed: 11/29/2022]
Abstract
To increase the ecological validity of outcomes from laboratory evaluations of hearing and hearing devices, it is desirable to introduce more realistic outcome measures in the laboratory. This article presents and discusses three outcome measures that have been designed to go beyond traditional speech-in-noise measures to better reflect realistic everyday challenges. The outcome measures reviewed are: the Sentence-final Word Identification and Recall (SWIR) test that measures working memory performance while listening to speech in noise at ceiling performance; a neural tracking method that produces a quantitative measure of selective speech attention in noise; and pupillometry that measures changes in pupil dilation to assess listening effort while listening to speech in noise. According to evaluation data, the SWIR test provides a sensitive measure in situations where speech perception performance might be unaffected. Similarly, pupil dilation has also shown sensitivity in situations where traditional speech-in-noise measures are insensitive. Changes in working memory capacity and effort mobilization were found at positive signal-to-noise ratios (SNR), that is, at SNRs that might reflect everyday situations. Using stimulus reconstruction, it has been demonstrated that neural tracking is a robust method at determining to what degree a listener is attending to a specific talker in a typical cocktail party situation. Using both established and commercially available noise reduction schemes, data have further shown that all three measures are sensitive to variation in SNR. In summary, the new outcome measures seem suitable for testing hearing and hearing devices under more realistic and demanding everyday conditions than traditional speech-in-noise tests.
Collapse
Affiliation(s)
- Thomas Lunner
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Linköping University, Linköping, Sweden
- Department of Electrical Engineering, Division Automatic Control, Linköping University, Linköping, Sweden
- Department of Health Technology, Hearing Systems, Technical University of Denmark, Lyngby, Denmark
| | - Emina Alickovic
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Electrical Engineering, Division Automatic Control, Linköping University, Linköping, Sweden
| | | | - Elaine Hoi Ning Ng
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Linköping University, Linköping, Sweden
- Oticon A/S, Kongebakken, Denmark
| | - Dorothea Wendt
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Health Technology, Hearing Systems, Technical University of Denmark, Lyngby, Denmark
| | - Gitte Keidser
- Eriksholm Research Centre, Oticon A/S, Snekkersten, Denmark
- Department of Behavioural Sciences and Learning, Linnaeus Centre HEAD, Linköping University, Linköping, Sweden
| |
Collapse
|
46
|
TüEyeQ, a rich IQ test performance data set with eye movement, educational and socio-demographic information. Sci Data 2021; 8:154. [PMID: 34135342 PMCID: PMC8208979 DOI: 10.1038/s41597-021-00938-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/11/2021] [Indexed: 11/08/2022] Open
Abstract
We present the TüEyeQ data set - to the best of our knowledge - the most comprehensive data set generated on a culture fair intelligence test (CFT 20-R), i.e., an IQ Test, consisting of 56 single tasks, taken by 315 individuals aged between 18 and 30 years. In addition to socio-demographic and educational information, the data set also includes the eye movements of the individuals while taking the IQ test. Along with distributional information we also highlight the potential for predictive analysis on the TüEyeQ data set and report the most important covariates for predicting the performance of a participant on a given task along with their influence on the prediction. Measurement(s) | intelligence • eye movement • Socioeconomic Factors | Technology Type(s) | culture fair intelligence test (CFT-R) • eye tracking device • Questionnaire | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.14173244
Collapse
|
47
|
Ocular measures during associative learning predict recall accuracy. Int J Psychophysiol 2021; 166:103-115. [PMID: 34052234 DOI: 10.1016/j.ijpsycho.2021.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/20/2022]
Abstract
The ability to form associations between stimuli and commit those associations to memory is a cornerstone of human cognition. Dopamine and noradrenaline are critical neuromodulators implicated in a range of cognitive functions, including learning and memory. Eye blink rate (EBR) and pupil diameter have been shown to index dopaminergic and noradrenergic activity. Here, we examined how these ocular measures relate to accuracy in a paired-associate learning task where participants (N = 73) learned consistent object-location associations over eight trials consisting of pre-trial fixation, encoding, delay, and retrieval epochs. In order to examine how within-subject changes and between-subject changes in ocular metrics related to accuracy, we mean centered individual metric values on each trial based on within-person and across-subject means for each epoch. Within-participant variation in EBR was positively related to accuracy in both encoding and delay epochs: faster EBR within the individual predicted better retrieval. Differences in EBR across participants was negatively related to accuracy in the encoding epoch and in early trials of the pre-trial fixation: faster EBR, relative to other subjects, predicted poorer retrieval. Visual scanning behavior in pre-trial fixation and delay epochs was also positively related to accuracy in early trials: more scanning predicted better retrieval. We found no relationship between pupil diameter and accuracy. These results provide novel evidence supporting the utility of ocular metrics in illuminating cognitive and neurobiological mechanisms of paired-associate learning.
Collapse
|
48
|
Sullivan MD, Huang R, Rovetti J, Sparrow EP, Spaniol J. Associations between phasic arousal and decisions under risk in younger and older adults. Neurobiol Aging 2021; 105:262-271. [PMID: 34134055 DOI: 10.1016/j.neurobiolaging.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/16/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Higher arousal is linked to simple decision strategies and an increased preference for immediate rewards in younger adults, but little is known about the influence of arousal on decision making in older adults. In light of age-related locus coeruleus-norepinephrine system declines, we predicted a reduced association between arousal and decision behavior in older adults. Younger and older participants made a series of choices between smaller, higher-probability and larger, lower-probability financial gains. Each choice was preceded by the presentation of a high-arousal or low-arousal sound. Pupil dilation was continuously recorded as an index of task-evoked arousal. Both age groups showed significant modulation of pupil dilation as a function of arousal condition. Higher-arousal sounds were associated with shorter response times, particularly in younger adults. Furthermore, higher-arousal sounds were associated with greater risk aversion in younger adults and greater risk seeking in older adults, in line with an arousal-related amplification of baseline preferences in both age groups. Jointly, these findings help inform current theories of the effects of arousal on information processing in younger and older adults.
Collapse
Affiliation(s)
| | - Ringo Huang
- Department of Psychology, University of California, Los Angeles
| | | | | | | |
Collapse
|
49
|
Robison MK, Obulasetty M, Blais C, Wingert KM, Brewer GA. The effect of binaural beat stimulation on sustained attention. PSYCHOLOGICAL RESEARCH 2021; 86:808-822. [PMID: 33978805 DOI: 10.1007/s00426-021-01524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Binaural beats have been used as a way of modifying cognition via auditory stimulation. A recent meta-analysis suggests that binaural beat stimulation can have a positive effect on attention (Garcia-Argibay et al., Psychologische Forschung 83:1124-1136, 2019a, Psychological Research Psychologische Forschung 83:357-372, 2019b), with the sample-weighted average effect size being about .58. This is an intriguing and potentially useful finding, both theoretically and practically. In this study, we focus on sustained attention. We delivered beta-frequency (16 Hz) binaural beat stimulation during a sustained attention task. In "Experiment 1", reaction times were faster under beat stimulation than control stimulation in a between-subjects design. However, the effect was modest in magnitude, and model comparisons using Bayes Factors were indiscriminate between including and excluding the effect from the model. We followed this initial experiment with two concurrently administered follow-up experiments. In "Experiment 2", we added thought probes to measure any changes in task engagement associated with binaural beat stimulation. "Experiment 2" revealed a different effect from "Experiment 1": participants in the binaural beat condition exhibited a shallower vigilance decrement. However, the beat stimulation did not affect the thought probes responses. Combining data across the two experiments indicated rather strong evidence against the hypothesis that beta-frequency binaural beats can augment sustained attention, either via a general speeding of responding or a mitigation of the vigilance decrement. Finally, in "Experiment 3", we investigated whether pupillary measures of arousal and/or task engagement would be affected by binaural beat stimulation. There was no evidence for such effects. Overall, we did not observe any consistent evidence that binaural beat stimulation can augment sustained attention or its subjective and physiological correlates.
Collapse
Affiliation(s)
- Matthew K Robison
- Department of Psychology, University of Texas at Arlington, 501 Nedderman Drive, Box 19528, Arlington, TX, 76019, USA.
| | - Mohitha Obulasetty
- College of Osteopathic Medicine, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | - Chris Blais
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Kimberly M Wingert
- Consortium Research Fellows Program, Consortium of Universities of the Washington Metropolitan Area, Washington, DC, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
50
|
Bafna T, Hansen JP. Mental fatigue measurement using eye metrics: A systematic literature review. Psychophysiology 2021; 58:e13828. [PMID: 33825234 DOI: 10.1111/psyp.13828] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/07/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
Mental fatigue measurement techniques utilize one or a combination of the cognitive, affective, and behavioral responses of the body. Eye-tracking and electrooculography, which are used to compute eye-based features, have gained momentum with increases in accuracy and robustness of the lightweight equipment emerging in the markets and can be used for objective and continuous assessment of mental fatigue. The main goal of this systematic review was to summarize the various eye-based features that have been used to measure mental fatigue and explore the relation of eye-based features to mental fatigue. The review process, following the preferred reporting items for systematic reviews and meta-analyses, used the electronic databases Web of Science, Scopus, ACM digital library, IEEE Xplore, and PubMed. Of the 1,385 retrieved documents, 34 studies met the inclusion criteria, resulting in 21 useful eye-based features. Categorizing these into eight groups revealed saccades as the most promising category, with saccade mean and peak velocity providing quick access to the cognitive states within 30 min of fatiguing activity. Complex brain networks involving sympathetic and parasympathetic nervous systems control the relation of mental fatigue to tonic pupil size and have the potential to indicate mental fatigue in controlled experimental conditions. Other categories, like blinks, are derived from the field of sleep research and should be used with caution. Several limitations emerged in the analysis, including varied experimental methods, use of dim lighting during the experiment (that could possibly also induce sleepiness), and use of unclear data analysis techniques, thereby complicating comparisons between studies.
Collapse
Affiliation(s)
- Tanya Bafna
- Department of Technology, Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Paulin Hansen
- Department of Technology, Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|