1
|
Singh N, Bhuker A, Pandey V, Punia H, Sourabh, Singh B, Ahmad A, Tyagi A, Malik A. Nano-enhanced storage of American cotton using metal-oxide nanoparticles for improving seed quality traits. Sci Rep 2024; 14:24445. [PMID: 39424830 PMCID: PMC11489578 DOI: 10.1038/s41598-024-71179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 08/26/2024] [Indexed: 10/21/2024] Open
Abstract
Cotton seeds have poorer germination than other crops because of their high sensitivity towards insect pests and other biotic and abiotic stresses during the germination process. In the present study, inorganic bulk and nano nutrients of zinc oxide (ZnO) and titanium oxide (TiO2) nanoparticles were synthesized using the chemical reduction method and invigourated with cotton seeds. The characterization of nanoparticles was done by FESEM, HRTEM, UV/Vis analysis and FTIR. The delinted and fuzzy seeds of two American cotton varieties (H 1300 and H 1098-i) were nano-primed for 10 h with zinc oxide nanoparticles (ZnONPs) @ 400 ppm and titanium dioxide nanoparticles (TiO2NPs) @ 100 ppm. After nanoparticle invigouration, the seeds were analyzed for various parameters at different intervals (0 months, 3 months, 6 months, 9 months and 12 months) such as germination percentage, seedling length, seedling dry weight, electrical conductivity, dehydrogenase activity, antioxidant enzyme activity. The results indicated that that different storage periods and nanopriming treatments had significant effects on all seed quality parameters except the effect of nanopriming treatments on germination percentage (excluding delinted seeds of H 1098-i). It is also revealed that the interaction effect of nanopriming treatment and storage period was non-significant on all parameters except EC. Maximum reduction in seed quality parameters was observed in control treatment and minimum was found when seeds were nanoprimed with ZnONPs @ 400 ppm. The differences in the response for both NPs can be attributed to their surface charge, and concentration used. Overall, ZnONPs and TiO2NPs could hold seed quality and vigour during the storage of cotton seeds of American varieties (H 1300 and H 1098-i).
Collapse
Affiliation(s)
- Nirmal Singh
- Department of Seed Science and Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Axay Bhuker
- Department of Seed Science and Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Vineeta Pandey
- Faculty of Agricultural Sciences, GLA University, Mathura, Uttar Pradesh, India
| | - Himani Punia
- Department of Sciences, Chandigarh School of Business, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | - Sourabh
- Division of Integrated Farming Systems, ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
| | - Bhupender Singh
- Department of Horticulture, Training Assistant Farm, CCS Haryana Agricultural University, Hisar, 125 004, Haryana, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Anurag Malik
- Department of Seed Science and Technology, College of Agriculture, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India.
- Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
2
|
Mohammadi Dargah M, Pedram P, Cabrera-Barjas G, Delattre C, Nesic A, Santagata G, Cerruti P, Moeini A. Biomimetic synthesis of nanoparticles: A comprehensive review on green synthesis of nanoparticles with a focus on Prosopis farcta plant extracts and biomedical applications. Adv Colloid Interface Sci 2024; 332:103277. [PMID: 39173272 DOI: 10.1016/j.cis.2024.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
The synthesis of nanoparticles (NPs) using environmentally friendly methods has garnered significant attention in response to concerns about the environmental impact of various nanomaterial manufacturing techniques. To address this issue, natural resources like extracts from plants, fungi, and bacteria are employed as a green alternative for nanoparticle synthesis. Plant extracts, which contain active components such as terpenoids, alkaloids, phenols, tannins, and vitamins, operate as coating and reducing agents. Bacteria and fungi, on the other hand, rely on internal enzymes, sugar molecules, membrane proteins, nicotinamide adenine dinucleotide (NADH), and nicotinamide adenine dinucleotide phosphate (NADPH) dependent enzymes to play critical roles as reducing agents. This review collects recent advancements in biomimetic methods for nanoparticle synthesis, critically discussing the preparation approaches, the type of particles obtained, and their envisaged applications. A specific focus is given on using Prosopis fractal plant extracts to synthesize nanoparticles tailored for biomedical applications. The applications of this plant and its role in the biomimetic manufacturing of nanoparticles have not been reported yet, making this review a pioneering and valuable contribution to the field.
Collapse
Affiliation(s)
- Maryam Mohammadi Dargah
- Department of Pharmaceutical Chemistry, Faculty of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Pedram
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Gustavo Cabrera-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastian, Campus Las Tres Pascualas, Lientur 1457, 4080871 Concepción, Chile
| | - Cedric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| | - Aleksandra Nesic
- University of Belgrade, Vinca Institute for Nuclear Sciences, National Institute of Republic of Serbia, Mike Petrovica Alasa 12-14, Belgrade 11000, Serbia
| | - Gabriella Santagata
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pierfrancesco Cerruti
- Institute of Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Arash Moeini
- Chair of Brewing and Beverage Technology, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
3
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
4
|
Jha PK, Jaidumrong T, Rokaya D, Ovatlarnporn C. Callistemon viminalis leaf extract phytochemicals modified silver-ruthenium bimetallic zinc oxide nanocomposite biosynthesis: application on nanocoating photocatalytic Escherichia coli disinfection. RSC Adv 2024; 14:11017-11026. [PMID: 38586445 PMCID: PMC10995692 DOI: 10.1039/d4ra01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
Antibiotics are of great interest due to antibiotic-resistant problems around the globe due to bacterial resistance to conventional antibiotics. In this study, a novel green biosynthesis of silver-ruthenium bimetallic zinc oxide nanocomposite using Callistemon viminalis leaf extract as a reducing agent using zinc nitrate hexahydrate, silver nitrate, and ruthenium(iii) chloride as capping agents was reported. The results demonstrated that the surface morphology of the prepared bimetallic nanocomposite by scanning electron microscopy was hexagonal in shape for zinc nanoparticle, rectangular in shape for silver nanoparticle, and tetragonal in shape for ruthenium nanoparticle, having an average surface size 25, 35, and 55 nm, respectively. Fourier transform infrared analysis confirmed the presence of compounds containing alkene, halo-, sulfoxide, phenol, nitro-, phenyl-ester, carboxylic acid, amines, and alcohols which act as functional groups attached to the surface of nanocomposites. Results from X-ray diffraction analysis found 81.12% crystallinity and hexagonal structure of zinc nanoparticles, rectangular structure of silver nanoparticles, and tetragonal structure of ruthenium nanoparticles, which are also similar to the results from transmission electron microscopy analysis. The average size distribution by dynamic light scattering of silver-ruthenium bimetallic zinc oxide nanocomposite was 255 nm, which confirms the biosynthesis of non-uniform size. Photo-disinfection activity of a silver-ruthenium bimetallic zinc oxide nanocomposite against Escherichia coli bacteria isolated from hospital wastewater under dark and ultraviolet-A irradiation conditions was observed. The antibacterial activity was calculated at 2.42704239, ensuring the silver-ruthenium bimetallic zinc oxide nanomaterials have photo-disinfection properties. The results from this study revealed that the developed novel antibacterial nanocomposite of silver-ruthenium bimetallic zinc oxide is useful in nanocoating photocatalytic Escherichia coli disinfection and can be applied to disinfect surfaces.
Collapse
Affiliation(s)
- Pankaj Kumar Jha
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Tunyakamon Jaidumrong
- Faculty of Environmental Management, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Dinesh Rokaya
- Department of Prosthodontics, Faculty of Dentistry, Zarqa University Zarqa 13110 Jordan
| | - Chitchamai Ovatlarnporn
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Drug Delivery System Excellence Center, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
5
|
Ma Y, Yuan S, Ma Z, Hou Y, Niu S, Lekai L, Liu G, Cao F. Comparative Study of Different Pretreatment and Combustion Methods on the Grindability of Rice-Husk-Based SiO 2. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2951. [PMID: 37999305 PMCID: PMC10674930 DOI: 10.3390/nano13222951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The rice husk (RH) combustion pretreatment method plays a crucial role in the extraction of nanoscale SiO2 from RH as a silicon source. This study examined the effects of diverse pretreatment methods and combustion temperatures on the particle size distribution of nanoscale high-purity amorphous SiO2 extracted from rice husk ash (RHA) post RH combustion. The experiment was structured using the Taguchi method, employing an L9 (21 × 33) orthogonal mixing table. The median diameter (D50) served as the output response parameter, with the drying method (A), combustion temperature (B), torrefaction temperature (C), and pretreatment method (D) as the input parameters. The results showed the torrefaction temperature (C) as being the predominant factor affecting the D50, which decreased with an increasing torrefaction temperature (C). The optimal parameter combination was identified as A2B2C3D2. The verification test revealed that roasting could improve the abrasiveness of Rh-based silica and reduce the average particle size. Torrefaction at medium temperatures might narrow the size distribution range of RHA-SiO2. We discovered that the purity of silica increased with an increasing roasting temperature by evaluating the concentration of silica in the sample. The production of RHA with silica concentrations up to 92.3% was investigated. X-ray diffraction analysis affirmed that SiO2's crystal structure remained unaltered across different treatment methods, consistently presenting as amorphous. These results provide a reference for extracting high-value products through RH combustion.
Collapse
Affiliation(s)
- Yunhai Ma
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China;
| | - Shengwang Yuan
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Zichao Ma
- Department of Mechanical Engineering, The Pennsylvania State University, State College, PA 16802-4400, USA;
| | - Yihao Hou
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Li Lekai
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Guoqin Liu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, Changchun 130022, China; (S.Y.); (Y.H.); (S.N.); (L.L.); (G.L.)
| | - Feipeng Cao
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China;
| |
Collapse
|
6
|
Hyder S, Ul-Nisa M, Shahzadi, Shahid H, Gohar F, Gondal AS, Riaz N, Younas A, Santos-Villalobos SDL, Montoya-Martínez AC, Sehar A, Latif F, Rizvi ZF, Iqbal R. Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107960. [PMID: 37591032 DOI: 10.1016/j.plaphy.2023.107960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Sustainable ecosystem management leads to the use of eco-friendly agricultural techniques for crop production. One of them is the use of metal and metal oxide nanomaterials and nanoparticles, which have proven to be a valuable option for the improvement of agricultural food systems. Moreover, the biological synthesis of these nanoparticles, from plants, bacteria, and fungi, also contributes to their eco-friendly and sustainable characteristics. Nanoparticles, which vary in size from 1 to 100 nm have a variety of mechanisms that are safer and more efficient than conventional fertilizers. Their usage as fertilizers and insecticides in agriculture is gaining favor in the scientific community to maximize crop output. More studies in this field will increase our understanding of this new technology and its broad acceptance in terms of performance, affordability, and environmental protection, as certain nanoparticles may outperform conventional fertilizers and insecticides. Accordingly, to the information gathered in this review, nanoparticles show remarkable potential for enhancing crop production, improving soil quality, and protecting the environment, however, metal and metal oxide NPs are not widely employed in agriculture. Many features of nanoparticles are yet left over, and it is necessary to uncover them. In this sense, this review article provides an overview of various types of metal and metal oxide nanoparticles used in agriculture, their characterization and synthesis, the recent research on them, and their possible application for the improvement of crop productivity in a sustainable manner.
Collapse
Affiliation(s)
- Sajjad Hyder
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Mushfaq Ul-Nisa
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Shahzadi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Humaira Shahid
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Faryal Gohar
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Amjad Shahzad Gondal
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Nadia Riaz
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, 54000, Pakistan.
| | | | - Amelia C Montoya-Martínez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Ciudad Obregón, SO, Mexico.
| | - Anam Sehar
- Student Affairs and Counselling Office, Lahore Garrison University, DHA Phase VI, Lahore, Pakistan.
| | - Fariha Latif
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, 51040, Pakistan.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
7
|
Mosallam FM, Abbas HA, Shaker GH, Gomaa SE. Alleviating the virulence of Pseudomonas aeruginosa and Staphylococcus aureus by ascorbic acid nanoemulsion. Res Microbiol 2023; 174:104084. [PMID: 37247797 DOI: 10.1016/j.resmic.2023.104084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
The high incidence of persistent multidrug resistant bacterial infections is a worldwide public health burden. Alternative strategies are required to deal with such issue including the use of drugs with anti-virulence activity. The application of nanotechnology to develop advanced Nano-materials that target quorum sensing regulated virulence factors is an attractive approach. Synthesis of ascorbic acid Nano-emulsion (ASC-NEs) and assessment of its activity in vitro against the virulence factors and its protective ability against pathogenesis as well as the effect against expression of quorum sensing genes of Pseudomonas aeruginosa and Staphylococcus aureus isolates. Ascorbic acid Nano-emulsion was characterized by DLS Zetasizer Technique, Zeta potential; Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The antibacterial activity of ASC-NEs was tested by the broth microdilution method and the activity of their sub-MIC against the expression of quorum sensing controlled virulence was investigated using phenotypic experiments and RT-PCR. The protective activity of ASC-NEs against P. aeruginosa as well as S. aureus pathogenesis was tested in vivo. Phenotypically, ASC-NEs had strong virulence inhibitory activity against the tested bacteria. The RT-PCR experiment showed that it exhibited significant QS inhibitory activity. The in vivo results showed that ASC-NEs protected against staphylococcal infection, however, it failed to protect mice against Pseudomonal infection. These results suggest the promising use of nanoformulations against virulence factors in multidrug resistant P. aeruginosa and S. aureus. However, further studies are required concerning the potential toxicity, clearance and phamacokinetics of the nanoformulations.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Microbiology Lab., Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Hisham A Abbas
- Department of Microbiology and Immunology-Faculty of Pharmacy-Zagazig University, Zagazig, Egypt
| | - Ghada H Shaker
- Department of Microbiology and Immunology-Faculty of Pharmacy-Zagazig University, Zagazig, Egypt
| | - Salwa E Gomaa
- Department of Microbiology and Immunology-Faculty of Pharmacy-Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27437-9. [PMID: 37171732 DOI: 10.1007/s11356-023-27437-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Green synthesis of nanoparticles (NPs) using plant materials and microorganisms has evolved as a sustainable alternative to conventional techniques that rely on toxic chemicals. Recently, green-synthesized eco-friendly NPs have attracted interest for their potential use in various biological applications. Several studies have demonstrated that green-synthesized NPs are beneficial in multiple medicinal applications, including cancer treatment, targeted drug delivery, and wound healing. Additionally, due to their photodegradation activity, green-synthesized NPs are a promising tool in environmental remediation. Photodegradation is a process that uses light and a photocatalyst to turn a pollutant into a harmless product. Green NPs have been found efficient in degrading pollutants such as dyes, herbicides, and heavy metals. The use of microbes and flora in green synthesis technology for nanoparticle synthesis is biologically safe, cost-effective, and eco-friendly. Plants and microbes can now use and accumulate inorganic metallic ions in the environment. Various NPs have been synthesized via the bio-reduction of biological entities or their extracts. There are several biological and environmental uses for biologically synthesized metallic NPs, such as photocatalysis, adsorption, and water purification. Since the last decade, the green synthesis of NPs has gained significant interest in the scientific community. Therefore, there is a need for a review that serves as a one-stop resource that points to relevant and recent studies on the green synthesis of NPs and their biological and photocatalytic efficiency. This review focuses on the green fabrication of NPs utilizing diverse biological systems and their applications in biological and photodegradation processes.
Collapse
Affiliation(s)
- Azad Qayoom Malik
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Tahir Ul Gani Mir
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Deepak Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Irtiqa Ashraf Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Adfar Rashid
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Mehnaz Ayoub
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Saurabh Shukla
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
9
|
Biogeneration of silver nanoparticles from Cuphea procumbens for biomedical and environmental applications. Sci Rep 2023; 13:790. [PMID: 36646714 PMCID: PMC9842608 DOI: 10.1038/s41598-022-26818-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Nanotechnology is one of the most important and relevant disciplines today due to the specific electrical, optical, magnetic, chemical, mechanical and biomedical properties of nanoparticles. In the present study we demonstrate the efficacy of Cuphea procumbens to biogenerate silver nanoparticles (AgNPs) with antibacterial and antitumor activity. These nanoparticles were synthesized using the aqueous extract of C. procumbens as reducing agent and silver nitrate as oxidizing agent. The Transmission Electron Microscopy demonstrated that the biogenic AgNPs were predominantly quasi-spherical with an average particle size of 23.45 nm. The surface plasmonic resonance was analyzed by ultraviolet visible spectroscopy (UV-Vis) observing a maximum absorption band at 441 nm and Infrared Spectroscopy (FT IR) was used in order to structurally identify the functional groups of some compounds involved in the formation of nanoparticles. The AgNPs demonstrated to have antibacterial activity against the pathogenic bacteria Escherichia coli and Staphylococcus aureus, identifying the maximum zone of inhibition at the concentration of 0.225 and 0.158 µg/mL respectively. Moreover, compared to the extract, AgNPs exhibited better antitumor activity and higher therapeutic index (TI) against several tumor cell lines such as human breast carcinoma MCF-7 (IC50 of 2.56 µg/mL, TI of 27.65 µg/mL), MDA-MB-468 (IC50 of 2.25 µg/mL, TI of 31.53 µg/mL), human colon carcinoma HCT-116 (IC50 of 1.38 µg/mL, TI of 51.07 µg/mL) and melanoma A-375 (IC50 of 6.51 µg/mL, TI of 10.89 µg/mL). This fact is of great since it will reduce the side effects derived from the treatment. In addition, AgNPs revealed to have a photocatalytic activity of the dyes congo red (10-3 M) in 5 min and malachite green (10-3 M) in 7 min. Additionally, the degradation percentages were obtained, which were 86.61% for congo red and 82.11% for malachite green. Overall, our results demonstrated for the first time that C. procumbens biogenerated nanoparticles are excellent candidates for several biomedical and environmental applications.
Collapse
|
10
|
Yadav SA, Suvathika G, Alghuthaymi MA, Abd-Elsalam KA. Fungal-derived nanoparticles for the control of plant pathogens and pests. FUNGAL CELL FACTORIES FOR SUSTAINABLE NANOMATERIALS PRODUCTIONS AND AGRICULTURAL APPLICATIONS 2023:755-784. [DOI: 10.1016/b978-0-323-99922-9.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Sonawane H, Shelke D, Chambhare M, Dixit N, Math S, Sen S, Borah SN, Islam NF, Joshi SJ, Yousaf B, Rinklebe J, Sarma H. Fungi-derived agriculturally important nanoparticles and their application in crop stress management - Prospects and environmental risks. ENVIRONMENTAL RESEARCH 2022; 212:113543. [PMID: 35613631 DOI: 10.1016/j.envres.2022.113543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 05/28/2023]
Abstract
Nanotechnology has a wide range of agricultural applications, with emphasize on the development of novel nano-agrochemicals such as, nano-fertilizer and nano-pesticides. It has a significant impact on sustainable agriculture by increasing agricultural productivity, while reducing the use of inorganic fertilizers, pesticides, and herbicides. Nano-coating delivery methods for agrochemicals have improved agrochemical effectiveness, safety, and consistency. Biosynthesis of nanoparticles (NPs) has recently been recognized as an effective tool, contrary to chemically derived NPs, for plant abiotic and biotic stress control, and crop improvement. In this regard, fungi have tremendous scope and importance for producing biogenic NPs of various sizes, shapes, and characteristics. Fungi are potential candidates for synthesis of biogenic NPs due to their enhanced bioavailability, biological activity, and higher metal tolerance. However, their biomimetic properties and high capacity for dispersion in soil, water environments, and foods may have negative environmental consequences. Furthermore, their bioaccumulation raises significant concerns about the novel properties of nanomaterials potentially causing adverse biological effects, including toxicity. This review provides a concise outline of the growing role of fungal-mediated metal NPs synthesis, its potential applications in crop field, and associated issues of nano-pollution in soil and its future implications.
Collapse
Affiliation(s)
- Hiralal Sonawane
- PG Research Centre Botany, PDEA's Prof. Ramkrishna More ACS College, Akurdi, Pune, Maharashtra, India
| | - Deepak Shelke
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Mahadev Chambhare
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Nishi Dixit
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Siddharam Math
- Department of Botany, Amruteshwar Art's, Commerce, and Science College, Vinzar, Velha, Pune, Maharashtra, India
| | - Suparna Sen
- Environmental Biotechnology Lab, Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, India
| | | | - Nazim Forid Islam
- Institutional Biotech Hub, Department of Botany, N N Saikia College, Titabar, 785630, India
| | - Sanket J Joshi
- Oil & Gas Research Centre, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman
| | - Balal Yousaf
- Research Group for Advanced Carbonaceous Material for Environmental Applications, Chinese Academy of Science (CAS)-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefai, 230026, Anhui, China
| | - Jörg Rinklebe
- Laboratory of Soil- and Groundwater-Management, Institute of Soil Engineering, Waste and Water Science, Faculty of Architecture and Civil Engineering, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| | - Hemen Sarma
- Institutional Biotech Hub, Department of Botany, N N Saikia College, Titabar, 785630, India; Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar, BTR, Assam, 783370, India.
| |
Collapse
|
12
|
Light-Emitting-Diode-Assisted, Fungal-Pigment-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Activity. Polymers (Basel) 2022; 14:polym14153140. [PMID: 35956655 PMCID: PMC9370687 DOI: 10.3390/polym14153140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Nanoparticle synthesis, such as green synthesis of silver nanoparticles (AgNPs) using biogenic extracts, is affected by light, which changes the characteristics of particles. However, the effect of light-emitting diodes (LEDs) on AgNP biosynthesis using fungal pigment has not been examined. In this study, LEDs of different wavelengths were used in conjunction with Talaromyces purpurogenus extracellular pigment for AgNP biosynthesis. AgNPs were synthesized by mixing 10 mL of fungal pigment with AgNO3, followed by 24 h exposure to LEDs of different wavelengths, such as blue, green, orange, red, and infrared. All treatments increased the yield of AgNPs. The solutions exposed to blue, green, and infrared LEDs exhibited a significant increase in AgNP synthesis. All AgNPs were then synthesized to determine the optimum precursor (AgNO3) concentration and reaction rate. The results indicated 5 mM AgNO3 as the optimum precursor concentration; furthermore, AgNPs-blue LED had the highest reaction rate. Dynamic light scattering analysis, zeta potential measurement, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the AgNPs. All LED-synthesized AgNPs exhibited an antimicrobial potential against Escherichia coli and Staphylococcus aureus. The combination of LED-synthesized AgNPs and the antibiotic streptomycin demonstrated a synergistic antimicrobial activity against both bacterial species.
Collapse
|
13
|
Abbas HA, Shaker GH, Mosallam FM, Gomaa SE. Novel silver metformin nano-structure to impede virulence of Staphylococcus aureus. AMB Express 2022; 12:84. [PMID: 35771288 PMCID: PMC9247137 DOI: 10.1186/s13568-022-01426-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is a prevalent etiological agent of health care associated and community acquired infections. Antibiotic abuse resulted in developing multidrug resistance in S. aureus that complicates treatment of infections. Targeting bacterial virulence using FDA approved medication offers an alternative to the antibiotics with no stress on bacterial viability. Using nanomaterials as anti-virulence agent against S. aureus virulence factors is a valuable approach. This study aims to investigate the impact of metformin (MET), metformin nano (MET-Nano), silver metformin nano structure (Ag-MET-Ns) and silver nanoparticles (AgNPs) on S. aureus virulence and pathogenicity. The in vitro results showed a higher inhibitory activity against S. aureus virulence factors with both MET-Nano and Ag-MET-Ns treatment. However, genotypically, it was found that except for agrA and icaR genes that are upregulated, the tested agents significantly downregulated the expression of crtM, sigB, sarA and fnbA genes, with Ag-MET-Ns being the most efficient one. MET-Nano exhibited the highest protection against S. aureus infection in mice. These data indicate the promising anti-virulence activity of nanoformulations especially Ag-MET-Ns against multidrug resistant S. aureus by inhibiting quorum sensing signaling system. A new formation of silver metformin nanostructure. The in vitro inhibition of S. aureus virulence factors. Nano structure form improves the activity of anti-virulence agents.
Collapse
Affiliation(s)
- Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University,, Zagazig, Egypt
| | - Ghada H Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University,, Zagazig, Egypt
| | - Farag M Mosallam
- Drug Microbiology Lab., Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Salwa E Gomaa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University,, Zagazig, Egypt
| |
Collapse
|
14
|
Knocking down Pseudomonas aeruginosa virulence by oral hypoglycemic metformin nano emulsion. World J Microbiol Biotechnol 2022; 38:119. [PMID: 35644864 PMCID: PMC9148876 DOI: 10.1007/s11274-022-03302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facilitate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors’ expression. The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our findings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.
Collapse
|
15
|
Therapeutic potential of biogenic and optimized silver nanoparticles using Rubia cordifolia L. leaf extract. Sci Rep 2022; 12:8831. [PMID: 35614187 PMCID: PMC9133087 DOI: 10.1038/s41598-022-12878-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Rubia cordifolia L. is a widely used traditional medicine in the Indian sub-continent and Eastern Asia. In the present study, the aqueous leaf extract of the R. Cordifolia was used to fabricate silver nanoparticles (RC@AgNPs), following a green synthesis approach. Effect of temperature (60 °C), pH (8), as well the concentration of leaf extract (2 ml) and silver nitrate (2 mM) were optimized for the synthesis of stable RC@AgNPs. The phytofabrication of nanosilver was validated by UV–visible spectral analysis, which displayed a distinctive surface plasmon resonance peak at 432 nm. The effective functional molecules as capping and stabilizing agents, and responsible for the conversion of Ag+ to nanosilver (Ag0) were identified using the FTIR spectra. The spherical RC@AgNPs with an average size of ~ 20.98 nm, crystalline nature, and 61% elemental composition were revealed by TEM, SEM, XRD, and. EDX. Biogenic RC@AgNPs displayed a remarkable anticancer activity against B16F10 (melanoma) and A431 (carcinoma) cell lines with respective IC50 of 36.63 and 54.09 µg/mL, respectively. Besides, RC@AgNPs showed strong antifungal activity against aflatoxigenic Aspergillus flavus, DNA-binding properties, and DPPH and ABTS free radical inhibition. The presented research provides a potential therapeutic agent to be utilized in various biomedical applications.
Collapse
|
16
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Anand U, Carpena M, Kowalska-Góralska M, Garcia-Perez P, Sunita K, Bontempi E, Dey A, Prieto MA, Proćków J, Simal-Gandara J. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153472. [PMID: 35093375 DOI: 10.1016/j.scitotenv.2022.153472] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance is one of the current threats to human health, forcing the use of drugs that are more noxious, costlier, and with low efficiency. There are several causes behind antibiotic resistance, including over-prescription of antibiotics in both humans and livestock. In this scenario, researchers are shifting to new alternatives to fight back this concerning situation. SCOPE AND APPROACH Nanoparticles have emerged as new tools that can be used to combat deadly bacterial infections directly or indirectly to overcome antibiotic resistance. Although nanoparticles are being used in the pharmaceutical industry, there is a constant concern about their toxicity toward human health because of the involvement of well-known toxic chemicals (i.e., sodium/potassium borohydride) making their use very risky for eukaryotic cells. KEY FINDINGS AND CONCLUSIONS Multiple nanoparticle-based approaches to counter bacterial infections, providing crucial insight into the design of elements that play critical roles in the creation of antimicrobial nanotherapeutic drugs, are currently underway. In this context, plant-based nanoparticles will be less toxic than many other forms, which constitute promising candidates to avoid widespread damage to the microbiome associated with current practices. This article aims to review the actual knowledge on plant-based nanoparticle products for antibiotic resistance and the possible replacement of antibiotics to treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Monika Kowalska-Góralska
- Department of Limnology and Fisheries, Institute of Animal Husbandry and Breeding, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - P Garcia-Perez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Kumari Sunita
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India.
| | - Miguel A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, ul. Kożuchowska 7a, 51-631 Wrocław, Poland.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
18
|
Noman M, Ahmed T, Ijaz U, Hameed A, Shahid M, Azizullah, Li D, Song F. Microbe-oriented nanoparticles as phytomedicines for plant health management: An emerging paradigm to achieve global food security. Crit Rev Food Sci Nutr 2022; 63:7489-7509. [PMID: 35254111 DOI: 10.1080/10408398.2022.2046543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biotic and abiotic environmental stresses affect the production and quality of agricultural products worldwide. The extensive use of traditional preventive measures comprising toxic chemicals has become more problematic due to severe ecotoxicological challenges. To address this issue, engineered nanoparticles (NPs) with their distinct physical and chemical properties has gained scientific attention and can help plants to confront environmental challenges. Despite their ameliorative and beneficial effects, toxicological concerns have been raised about NPs. The recent development of biogenic NPs (bio-NPs) is getting attention in agriculture due to their diverse biocompatibility, better functional efficacy, and eco-friendly nature compared to the recalcitrant NPs, providing a promising strategy for increased crop protection against biotic and abiotic environmental stresses, with the ultimate goal of ensuring global food security. This review summarizes the recent advances in the engineering of bio-NPs with particular emphasis on the functions of bio-NPs in protecting plants from biotic and abiotic environmental stresses, delivery and entry routes of NPs to plant systems, nanotoxicity, and plant physiological/biochemical responses to nanotoxicity. Future perspectives of bio-NP-enabled strategies, remaining pitfalls, and possible solutions to combat environmental challenges via advanced nanotechnology to achieve global food security and a sustainable agricultural system are also discussed.
Collapse
Affiliation(s)
- Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Usman Ijaz
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Amir Hameed
- Plant Breeding and Acclimatization Institute, National Research Institute, Blonie, Poland
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Azizullah
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Effects of Biogenic ZnO Nanoparticles on Growth, Physiological, Biochemical Traits and Antioxidants on Olive Tree In Vitro. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, there is an increasing interest in nanotechnology, since some nanomaterials can enhance crop growth, yield, nutritional status, and antioxidant defences. This work aimed to investigate for the first time the influence of zinc oxide nanoparticles (ZnO-NPs) on the in vitro growth and biochemical parameters of the olive tree (cv. Moraiolo). With this goal, biogenic ZnO-NPs (spherical shape and dimensions in the range of 10–20 nm), deriving from a green synthesis carried out with a Lemna minor L. extract were used. Different concentrations (0, 2, 6 and 18 mg L−1) of ZnO-NPs were added to the olive growth medium (OM substrate), and three sub-cultures of 45 days each were carried out. ZnO-NPs at 6 and 18 mg L−1 enhanced some growth parameters in the olive tree explants, such as the number of shoots, green fresh and total dry weight. Moreover, the abovementioned concentrations raised the chlorophyll a and b content and soluble protein. Finally, concerning the dosage applied, the treatments stimulated the content of carotenoids, anthocyanins, total phenol content (TPC), and the radical scavenging activity towards DPPH (2.2-diphenyl-1-picrylhydrazyl). In conclusion, this study highlighted that biogenic ZnO-NPs exerted beneficial effects on the olive tree explants in vitro, improving the effectiveness of the micropropagation technique.
Collapse
|
20
|
Mahapatra DM, Satapathy KC, Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: Phycoprospects and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149990. [PMID: 34492488 DOI: 10.1016/j.scitotenv.2021.149990] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 05/21/2023]
Abstract
Increased food demands and ceasing nutrient deposits have resulted in a great shortfall between the food supply and demand and would be worse in the years to come. Higher inputs of synthetic fertilizers on lands have resulted in environmental pollution, persistent changes in the soil ecology, and physicochemical conditions. This has greatly decreased the natural soil fertility thereby hindering agricultural productivity, human health, and hygiene. Bio-based resilient nutrient sources as wastewater-derived algae are promising as a complete nutrient for agriculture and have the potential to be used in soilless cultivations. Innovations in nano-fortification and nano-sizing of minerals and algae have the potential to facilitate nutrients bioavailability and efficacy for a multifold increase in productivity. In this context, various options on minerals nanofertilizer application in agricultural food production besides efficient biofertilizer have been investigated. Algal biofertilizer with the nanoscale application has huge prospects for further agriculture productivities and fosters suitable development.
Collapse
Affiliation(s)
- Durga Madhab Mahapatra
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Biological and Ecological Engineering Department, Oregon State University, Corvallis, OR, USA.
| | - Kanhu Charan Satapathy
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Anthropology, Utkal University, Bhubaneswar 751004, Odisha, India.
| | - Bhabatarini Panda
- Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar 751004, Odisha, India; Post Graduate Department of Botany, Utkal University, Bhubaneswar 751004, Odisha, India.
| |
Collapse
|
21
|
Maroušek J, Maroušková A, Periakaruppan R, Gokul GM, Anbukumaran A, Bohatá A, Kříž P, Bárta J, Černý P, Olšan P. Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics. Polymers (Basel) 2022; 14:polym14020266. [PMID: 35054673 PMCID: PMC8780494 DOI: 10.3390/polym14020266] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023] Open
Abstract
Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the silica nanoparticles (nSi). The synthesized silica nanoparticles (nSi) were characterized by ultraviolet–visible (UV–Vis) spectrophotometry, X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FTIR). All the results obtained jointly and independently verified the formation of silica nanoparticles. In addition, EDAX analysis confirmed the high purity of the nSi composed only of Si and O, with no other impurities. XRD spectroscopy showed the characteristic diffraction peaks for nSi and confirmed the formation of an amorphous nature. The average size of nSi obtained is 18 nm. The surface charge and stability of nSi were analyzed by using the dynamic light scattering (DLS) and thus revealed that the nSi samples have a negative charge (−20.3 mV). In addition, the seed germination and the shoot and root formation on Vigna unguiculata were investigated by using the nSi. The results revealed that the application of nSi enhanced the germination in V. unguiculata. However, further research studies must be performed in order to determine the toxic effect of biogenic nSi before mass production and use of agricultural applications.
Collapse
Affiliation(s)
- Josef Maroušek
- Institute of Technology and Business in Czech Budejovice, Faculty of Technology, 370 01 České Budějovice, Czech Republic;
- Faculty of Management and Economics, Tomas Bata University in Zlin, 76001 Zlín, Czech Republic
- Faculty of Agriculture, University of South Bohemia in Czech Budejovice, 37005 České Budějovice, Czech Republic; (A.B.); (P.K.); (J.B.); (P.Č.); (P.O.)
- Correspondence:
| | - Anna Maroušková
- Institute of Technology and Business in Czech Budejovice, Faculty of Technology, 370 01 České Budějovice, Czech Republic;
| | - Rajiv Periakaruppan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India; (R.P.); (G.M.G.)
| | - G. M. Gokul
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, India; (R.P.); (G.M.G.)
| | - Ananthan Anbukumaran
- Department of Microbiology, Urumu Dhanalaksmi College, Tiruchirapalli 620019, India;
| | - Andrea Bohatá
- Faculty of Agriculture, University of South Bohemia in Czech Budejovice, 37005 České Budějovice, Czech Republic; (A.B.); (P.K.); (J.B.); (P.Č.); (P.O.)
| | - Pavel Kříž
- Faculty of Agriculture, University of South Bohemia in Czech Budejovice, 37005 České Budějovice, Czech Republic; (A.B.); (P.K.); (J.B.); (P.Č.); (P.O.)
- Department of Applied Physics and Technology, Faculty of Education, University of South Bohemia, 37115 České Budějovice, Czech Republic
| | - Jan Bárta
- Faculty of Agriculture, University of South Bohemia in Czech Budejovice, 37005 České Budějovice, Czech Republic; (A.B.); (P.K.); (J.B.); (P.Č.); (P.O.)
| | - Pavel Černý
- Faculty of Agriculture, University of South Bohemia in Czech Budejovice, 37005 České Budějovice, Czech Republic; (A.B.); (P.K.); (J.B.); (P.Č.); (P.O.)
- Department of Applied Physics and Technology, Faculty of Education, University of South Bohemia, 37115 České Budějovice, Czech Republic
| | - Pavel Olšan
- Faculty of Agriculture, University of South Bohemia in Czech Budejovice, 37005 České Budějovice, Czech Republic; (A.B.); (P.K.); (J.B.); (P.Č.); (P.O.)
| |
Collapse
|
22
|
Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal Nanoparticles as Novel Antifungal Agents for Sustainable Agriculture: Current Advances and Future Directions. J Fungi (Basel) 2021; 7:1033. [PMID: 34947015 PMCID: PMC8706727 DOI: 10.3390/jof7121033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023] Open
Abstract
The use of metal nanoparticles is considered a good alternative to control phytopathogenic fungi in agriculture. To date, numerous metal nanoparticles (e.g., Ag, Cu, Se, Ni, Mg, and Fe) have been synthesized and used as potential antifungal agents. Therefore, this proposal presents a critical and detailed review of the use of these nanoparticles to control phytopathogenic fungi. Ag nanoparticles have been the most investigated nanoparticles due to their good antifungal activities, followed by Cu nanoparticles. It was also found that other metal nanoparticles have been investigated as antifungal agents, such as Se, Ni, Mg, Pd, and Fe, showing prominent results. Different synthesis methods have been used to produce these nanoparticles with different shapes and sizes, which have shown outstanding antifungal activities. This review shows the success of the use of metal nanoparticles to control phytopathogenic fungi in agriculture.
Collapse
Affiliation(s)
- Aida R. Cruz-Luna
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico;
| | - Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo 68230, Mexico;
| | - Alfonso Vásquez-López
- Instituto Politécnico Nacional, CIIDIR-OAXACA, Hornos Núm 1003, Col. Noche Buena, Santa Cruz Xoxocotlán 71230, Mexico;
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| |
Collapse
|
23
|
Mani VM, Kalaivani S, Sabarathinam S, Vasuki M, Soundari AJPG, Ayyappa Das MP, Elfasakhany A, Pugazhendhi A. Copper oxide nanoparticles synthesized from an endophytic fungus Aspergillus terreus: Bioactivity and anti-cancer evaluations. ENVIRONMENTAL RESEARCH 2021; 201:111502. [PMID: 34214561 DOI: 10.1016/j.envres.2021.111502] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The mycofabricated metal nanoparticles (NPs) plays a significant role in cancer therapeutics and imparts a strategy in medicine. The current investigation focused to synthesize the Copper Oxide Nanoparticles (CuONPs) using an endophytic fungus isolated from Aegle marmelosa medicinal tree located in Western Ghats, India. The endophytic fungus FCBY1 explored the highest antagonistic and antioxidant activities among the 16 pigmented endophytic fungal strains which were isolated from the collected samples. The fungus FCBY1 was identified for its morphological and molecular characteristics where the (Internal Transcribed Spacer) ITS 1, 5.8 ribosomal gene and ITS 2 were sequenced; and the organism FCBY1 is Aspergillus terreus. The endophyte was put through for the synthesis of CuONPs and the size and structure of the synthesized particles were characterized by Scanning Electron Microscope (SEM). The confirmation of the CuONPs was characterized by FT-IR, EDAX and XRD analyses. The CuONPs exhibited the maximized antibacterial and antifungal activities against the human clinical pathogens; moreover the particles also explicated the free radicals/ROS scavenging at minimum concentration, which was assessed through DPPH, nitric oxide radical scavenging assays, and reductive power ability. The anti-cancer activity of CuONPs on colon cancer cell lines (HT-29) was evaluated by MTT (IC50: 22 μg/mL) and FACS analyses (32.11% cells gated in S phase of cell cycle). Angiogenesis inhibition in tumor cells was estimated through in vivo HET- CAM assessment and the highest concentration 60 μL tested inhibited the blood vessels at the percentage of 31.36% and 81.81%. The CuONPs explicated the anti-cancer activities in a concentration - dependent manner and the results of this investigation manifest the significant role of the CuONPs in cancer therapeutics.
Collapse
Affiliation(s)
- Vellingiri Manon Mani
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamil Nadu, 641402, India
| | - Sethumathavan Kalaivani
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamil Nadu, 641402, India
| | - Shanmugam Sabarathinam
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Manikandan Vasuki
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamil Nadu, 641402, India
| | | | - M P Ayyappa Das
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore, Tamil Nadu, 641402, India
| | - Ashraf Elfasakhany
- Mechanical Engineering Department, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
24
|
Nanoparticles: Mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Andra S, Balu SK, Jeevanandam J, Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1355-1382. [PMID: 33710422 DOI: 10.1007/s00210-021-02064-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
In recent times, the search for innovative material to fabricate smart textiles has been increasing to satisfy the expectation and needs of the consumers, as the textile material plays a key role in the evolution of human culture. Further, the textile materials provide an excellent environment for the microbes to grow, because of their large surface area and ability to retain moisture. In addition, the growth of harmful bacteria on the textile material not only damages them but also leads to intolerable foul odour and significant danger to public health. In particular, the pathogenic bacteria present in the fabric surface can cause severe skin infections such as skin allergy and irritation via direct human contact and even can lead to heart problems and pneumonia in certain cases. Recently, nanoparticles and nanomaterials play a significant role in textile industries for developing functional smart textiles with self-cleaning, UV-protection, insect repellent, waterproof, anti-static, flame-resistant and antimicrobial-resistant properties. Thus, this review is an overview of various textile fibres that favour bacterial growth and potential antibacterial nanoparticles that can inhibit the growth of bacteria on fabric surfaces. In addition, the probable antibacterial mechanism of nanoparticles and the significance of the fabric surface modification and fabric finishes in improving the long-term antibacterial efficacy of nanoparticle-coated fabrics were also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, India
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | | |
Collapse
|
26
|
Gallo G, Schillaci D. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections. Appl Microbiol Biotechnol 2021; 105:5357-5366. [PMID: 34184105 DOI: 10.1007/s00253-021-11418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
The widespread use of antibiotics has resulted in the outbreak and spread of antibiotic-resistant pathogens. Bacterial antibiotic resistance may develop at cellular and community levels. In the latter case, it is based on tolerance which implicates the shift from a free-living form of life (i.e., planktonic) to a sessile multi-stratified community (i.e., biofilm). Metal nanoparticles (MNPs) have been shown to be promising candidates as antimicrobial agents. MNPs are able to interact with and penetrate bacterial biofilms, thus, resulting effective antibiofilm compounds. Another interesting aspect is the possibility of using plants, fungi, yeasts, and bacteria to obtain biogenic MNPs (BMNP). Bacteria are able to grow in presence of many different toxic heavy metal ions thanks to different metal resistance gene clusters that allow a variety of biochemical counters (formation of harmless complexes, efflux, precipitation, reduction, etc.). The formation of BMNPs by bacterial cells could be, in most cases, just a consequence of metal detoxification mechanisms. This review focuses on BMNPs from bacterial origin that may represent a good source of compounds with a broad spectrum of activity against common Gram-positive and Gram-negative pathogens and bacterial biofilms thereof. In particular, the state of art on BMNP synthesis by bacteria is presented and potential applications in the fight against biofilm-associated infections and resistant pathogens are highlighted. In addition, critical aspects on BMNP bacterial synthesis and utilization are commented.Key points• New antimicrobials to fight antibiotic-resistant pathogens are urgently needed.• Biogenic metal nanoparticles can efficiently hit biofilm-forming pathogens.• Metal-nanoparticle composition could confer specific antibiofilm activity.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy.
| | - Domenico Schillaci
- Laboratory of Microbiology and Biologic Assays, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi, 32, 90123, Palermo, Italy
| |
Collapse
|
27
|
Meena M, Zehra A, Swapnil P, Harish, Marwal A, Yadav G, Sonigra P. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications. Front Chem 2021; 9:613343. [PMID: 34113600 PMCID: PMC8185355 DOI: 10.3389/fchem.2021.613343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nanotechnology has become a very advanced and popular form of technology with huge potentials. Nanotechnology has been very well explored in the fields of electronics, automobiles, construction, medicine, and cosmetics, but the exploration of nanotecnology's use in agriculture is still limited. Due to climate change, each year around 40% of crops face abiotic and biotic stress; with the global demand for food increasing, nanotechnology is seen as the best method to mitigate challenges in disease management in crops by reducing the use of chemical inputs such as herbicides, pesticides, and fungicides. The use of these toxic chemicals is potentially harmful to humans and the environment. Therefore, using NPs as fungicides/ bactericides or as nanofertilizers, due to their small size and high surface area with high reactivity, reduces the problems in plant disease management. There are several methods that have been used to synthesize NPs, such as physical and chemical methods. Specially, we need ecofriendly and nontoxic methods for the synthesis of NPs. Some biological organisms like plants, algae, yeast, bacteria, actinomycetes, and fungi have emerged as superlative candidates for the biological synthesis of NPs (also considered as green synthesis). Among these biological methods, endophytic microorganisms have been widely used to synthesize NPs with low metallic ions, which opens a new possibility on the edge of biological nanotechnology. In this review, we will have discussed the different methods of synthesis of NPs, such as top-down, bottom-up, and green synthesis (specially including endophytic microorganisms) methods, their mechanisms, different forms of NPs, such as magnesium oxide nanoparticles (MgO-NPs), copper nanoparticles (Cu-NPs), chitosan nanoparticles (CS-NPs), β-d-glucan nanoparticles (GNPs), and engineered nanoparticles (quantum dots, metalloids, nonmetals, carbon nanomaterials, dendrimers, and liposomes), and their molecular approaches in various aspects. At the molecular level, nanoparticles, such as mesoporous silica nanoparticles (MSN) and RNA-interference molecules, can also be used as molecular tools to carry genetic material during genetic engineering of plants. In plant disease management, NPs can be used as biosensors to diagnose the disease.
Collapse
Affiliation(s)
- Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Andleeb Zehra
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Swapnil
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Botany, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Avinash Marwal
- Department of Biotechnology, Vigyan Bhawan, Mohanlal Sukhadia University, Udaipur, India
| | - Garima Yadav
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| | - Priyankaraj Sonigra
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, India
| |
Collapse
|
28
|
Potentials of Medicinal Plant Extracts as an Alternative to Synthetic Chemicals in Postharvest Protection and Preservation of Horticultural Crops: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13115897] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Horticultural crops undergo various physiological and biochemical changes that lead to undesirable physiological disorders, decay and subsequent economic losses during storage. Quality degradation of horticultural crops is mainly caused by postharvest pathogens such as Botrytis cinerea and Penicillium spp., etc. The application of synthetic fungicides remains the most effective method to control postharvest pathogens. However, their use is becoming increasingly restricted internationally due to health concerns and consumers’ requests for safe and natural alternatives. This has led researchers to investigate natural flora as one of the alternatives to be used in crop protection and preservation. Various medicinal plant parts have different phytochemicals and antioxidants that can be used in crop protection and preservation. Extracts from plants such as Ruta chalepensis, Eucalyptus globulus, etc., have proven to be effective in controlling postharvest pathogens of horticultural crops and increased their shelf life when used as a substitute for synthetic chemicals. Furthermore, extracts from neem and other medicinal plants contain a predominant and insecticidal active ingredient. The application of medicinal plant extracts could be a useful alternative to synthetic chemicals in the postharvest protection and preservation of horticultural crops. This review paper details the application of medicinal plant extracts for postharvest protection and preservation of horticultural crops.
Collapse
|
29
|
Al Saqr A, Khafagy ES, Alalaiwe A, Aldawsari MF, Alshahrani SM, Anwer MK, Khan S, Lila ASA, Arab HH, Hegazy WAH. Synthesis of Gold Nanoparticles by Using Green Machinery: Characterization and In Vitro Toxicity. NANOMATERIALS 2021; 11:nano11030808. [PMID: 33809859 PMCID: PMC8004202 DOI: 10.3390/nano11030808] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.
Collapse
Affiliation(s)
- Ahmed Al Saqr
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: ; Tel.: +966-533-564-286
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Saad M. Alshahrani
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (A.A.S.); (A.A.); (M.F.A.); (S.M.A.); (M.K.A.)
| | - Salman Khan
- Department of Biosciences, Integral University, Lucknow 226026, India;
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| |
Collapse
|
30
|
Hernández-Díaz JA, Garza-García JJ, Zamudio-Ojeda A, León-Morales JM, López-Velázquez JC, García-Morales S. Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1270-1287. [PMID: 32869290 DOI: 10.1002/jsfa.10767] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 05/02/2023]
Abstract
Nanotechnology is an emerging science with a wide array of applications involving the synthesis and manipulation of materials with dimensions in the range of 1-100 nm. Nanotechnological applications include diverse fields such as pharmaceuticals, medicine, the environment, food processing and agriculture. Regarding the latter, applications are mainly focused on plant growth and crop protection against plagues and diseases. In recent years, the biogenic reduction of elements such as Ag, Au, Cu, Cd, Al, Se, Zn, Ce, Ti and Fe with plant extracts has become one of the most accepted techniques for obtaining nanoparticles (NPs), as it is considered an ecological and cost-effective process without the use of chemical contaminants. The objective of this work was to review NPs synthesized by green chemistry using vegetable extracts, as well as their use as antimicrobial agents against phytopathogenic fungi and bacteria. Given the need for alternatives to control and integrate management of phytopathogens, this review is relevant to agriculture, although this technology is barely exploited in this field. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- José A Hernández-Díaz
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Jorge Jo Garza-García
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | | | - Janet M León-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Julio C López-Velázquez
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Soledad García-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| |
Collapse
|
31
|
Hashem AH, Abdelaziz AM, Askar AA, Fouda HM, Khalil AMA, Abd-Elsalam KA, Khaleil MM. Bacillus megaterium-Mediated Synthesis of Selenium Nanoparticles and Their Antifungal Activity against Rhizoctonia solani in Faba Bean Plants. J Fungi (Basel) 2021; 7:195. [PMID: 33803321 PMCID: PMC8001679 DOI: 10.3390/jof7030195] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.
Collapse
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Ahmed A. Askar
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Hossam M. Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
| | - Ahmed M. A. Khalil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 13759, Egypt; (A.H.H.); (A.A.A.); (H.M.F.); (A.M.A.K.)
- Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia;
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Mona M. Khaleil
- Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
32
|
Sasireka KS, Lalitha P. Biogenic synthesis of bimetallic nanoparticles and their applications. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The current advancements in nanotechnology suggest a sustainable development in the green synthesis of bimetallic nanoparticles (BMNPs) through green approaches. Though challenging, nano phyto technology has versatile methods to achieve desired unique properties like optic, electronic, magnetic, therapeutic, and catalytic efficiencies. Bio-inspired, facile synthesis of bifunctional BMNPs is possible using abundant, readily available natural plant sources, bio-mass wastes and microorganisms. Synergistic effects of two different metals on mixing, bring new insight for the vast applications, which is not achievable in using monometallic NPs. By adopting bio-inspired greener approaches for synthesizing NPs, the risk of environmental toxicity caused by conventional physicochemical methods become negligible. This article hopes to provide the significance of cost-effective, one-step, eco-friendly and facile synthesis of noble/transition bimetallic NPs. This review article endows an overview of the bio-mediated synthesis of bimetallic NPs, classifications of BMNPs, current characterization techniques, possible mechanistic aspects for reducing metal ions, and the stability of formed NPs and bio-medical/industrial applications of fabricated NPs. The review also highlights the prospective future direction to improve reliability, reproducibility of biosynthesis methods, its actual mechanism in research works and extensive application of biogenic bimetallic NPs.
Collapse
Affiliation(s)
- Krishnan Sundarrajan Sasireka
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| | - Pottail Lalitha
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| |
Collapse
|
33
|
Evaluation of Phytotoxicity of Bimetallic Ag/Au Nanoparticles Synthesized Using Geum urbanum L. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01814-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractThe growing production and wider application of metal nanoparticles gives rise to many concerns about their release to natural ecosystems. It is very important to be aware of the harmful impact of nanoparticles on living organisms, including plants. Therefore, it is of vital significance to explore the impact of metal nanoparticles on plants. This work assessed the phytotoxicity of bimetallic Ag/Au nanoparticles and Geum urbanum L. extract. The obtained bimetallic Ag/Au nanoparticles were characterized by UV–vis spectrophotometry (UV–vis), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The microscopic studies enabled the determination of the size of the obtained nanoparticles, which was 50 nm. The wide range of concentrations evaluated in the course of the study made it possible to observe changes in selected plants (seeds of Lepidium sativum, Linum flavum, Zea mays, Solanum lycopersicum var. Cerasiforme and Salvia hispanica-Chia) caused by a stress factor. The studies showed that the solution of Ag/Au nanoparticles was most toxic to flax (IC50 = 9.83 × 10–6/9.25 × 10–6 mg/ml), and least toxic to lupine (IC50 = 1.23 × 10–3/1.16 × 10–3 mg/ml). Moreover, we studied the toxicity of Geum urbanum extract. The extracts diluted to 0.00875 mg/ml stimulated the growth of lupine, flax and garden cress; extracts diluted to 0.175 mg/ml stimulated the growth of Chia and tomatoes; and extracts diluted to 0.00875 mg/ml stimulated the growth of corn. G. urbanum extract was most toxic to lupine (IC50 = 0.374 mg/ml), and least toxic to corn (IC50 = 4.635 mg/ml).
Collapse
|
34
|
Jacinto MJ, Silva VC, Valladão DMS, Souto RS. Biosynthesis of magnetic iron oxide nanoparticles: a review. Biotechnol Lett 2020; 43:1-12. [PMID: 33156459 DOI: 10.1007/s10529-020-03047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Nanoparticles promise to revolutionize the way we think of ordinary materials thanks to the new features such small structures exhibit which include strength, durability, optical and magnetics properties. Magnetic iron oxide nanoparticles (IONPs) are a prominent class of NMs because of their potential application in magnetic separation, hyperthermia, targeted drug delivery, and catalysis. Most synthetic nanoparticulate platforms rely on the use of tough chemical procedures associated with unfriendly, harmful and costly reactants. For this reason, bio-inspired approaches have become the most successful alternatives to fabricate nanomaterials in an "eco-friendly" manner, and many bio-protocols that make use of substrates from plants and microorganisms have been successfully applied in the synthesis of magnetic IONPs. In this review, the main biosynthesis protocols applied in the synthesis of iron oxide nanoparticles are discussed. A discussion on the challenges for a second stage perspective which would be a large scale production is also given.
Collapse
Affiliation(s)
- M J Jacinto
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil.
| | - V C Silva
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil
| | - D M S Valladão
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil
| | - R S Souto
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil
| |
Collapse
|
35
|
Riaz M, Altaf M, Ayaz M, Sherkheli MA, Islam A. Antibacterial and antioxidant potential of biosynthesized silver nanoparticles using aqueous root extract of Angilica glauca. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1835977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muhammad Riaz
- SA–Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| | - Muhammad Altaf
- Department of Chemistry, University of AJK, Muzaffarabad, Pakistan
| | - Muhammad Ayaz
- Department of Chemistry, Quaid-i-Azam University, Islamabad
| | - Muhammad Azhar Sherkheli
- Department of Pharmaceutical Sciences, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Arshad Islam
- SA–Centre for Interdisciplinary Research in Basic Science (SA-CIRBS), Faculty of Basic & Applied Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
36
|
Rahman A, Lin J, Jaramillo FE, Bazylinski DA, Jeffryes C, Dahoumane SA. In Vivo Biosynthesis of Inorganic Nanomaterials Using Eukaryotes-A Review. Molecules 2020; 25:E3246. [PMID: 32708767 PMCID: PMC7397067 DOI: 10.3390/molecules25143246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic cells and organisms-more specifically, live plants and living biomass of several species of microalgae, yeast, fungus, mammalian cells, and animals. It also highlights the strengths and weaknesses of the synthesis methodologies and the NP characteristics, bio-applications, and proposed synthesis mechanisms. This comprehensive review also brings attention to enabling a better understanding between the living organisms themselves and the synthesis conditions that allow their exploitation as nanobiotechnological production platforms as these might serve as a robust resource to boost and expand the bio-production and use of desirable, functional inorganic nanomaterials.
Collapse
Affiliation(s)
- Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA;
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Julia Lin
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Francisco E. Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador;
| | - Dennis A. Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA;
| | - Clayton Jeffryes
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador;
| |
Collapse
|
37
|
|
38
|
Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21 st century: status and challenges for healthy human nutrition. PLANT AND SOIL 2020; 453:245-270. [PMID: 32836404 PMCID: PMC7363690 DOI: 10.1007/s11104-020-04635-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers. Agronomic biofortification intends to enrich crops with Se in order to secure its adequate supply by people. SCOPE The goal of this review is to report the present knowledge of the distribution and processes of Se in soil and at the plant-soil interface, and of Se behaviour inside the plant in terms of biofortification. It aims to unravel the Se metabolic pathways that affect the nutritional value of edible plant products, various Se biofortification strategies in challenging environments, as well as the impact of Se-enriched food on human health. CONCLUSIONS Agronomic biofortification and breeding are prevalent strategies for battling Se deficiency. Future research addresses nanosized Se biofortification, crop enrichment with multiple micronutrients, microbial-integrated agronomic biofortification, and optimization of Se biofortification in adverse conditions. Biofortified food of superior nutritional quality may be created, enriched with healthy Se-compounds, as well as several other valuable phytochemicals. Whether such a food source might be used as nutritional intervention for recently emerged coronavirus infections is a relevant question that deserves investigation.
Collapse
Affiliation(s)
- Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Università di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO Italy
| |
Collapse
|
39
|
Hamed AA, Kabary H, Khedr M, Emam AN. Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete. RSC Adv 2020; 10:10361-10367. [PMID: 35498609 PMCID: PMC9050352 DOI: 10.1039/c9ra11021f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/13/2020] [Indexed: 11/28/2022] Open
Abstract
The increase in antibiotic resistance related to microbial biofilms creates an urgent need to search for an alternative and active antimicrobial agent. Recently, nanoparticles have gained considerable attention from scientists due to their potent antimicrobial activity. In the present study, two endosymbiotic actinomycete strains were isolated from marine sponge Crella cyathophora by surface sterilization and incubation of sponge pieces on culture media selective for actinobacteria. The culture filtrate extracts, including the bacterial supernatants (F) and cell filtrate (C) of the two actinomycete strains, were used as the reducing agent for the green biosynthesis of silver nanoparticles. The as-prepared silver nanoparticles were characterized using dynamic light scattering, zeta-potential, UV-Vis spectroscopy, and transmission electron microscopy. The average particle size for synthesized silver nanoparticles was about ∼8.66 ± 2 to 35 ± 2 nm with monodisperse spherical-like shapes and polydispersed shapes, respectively. The synthesized silver nanoparticles exhibited significant antimicrobial activity toward pathogenic microbes, especially with P. aeruginosa and E. cloacae. The effect of silver nanoparticles on the growth curve dynamics of P. aeruginosa and E. cloacae showed that the slope of the bacterial growth curve continuously decreased with increasing nanoparticle concentration. Moreover, the antibiofilm activity of the silver nanoparticles was measured, and the results showed that the silver nanoparticles displayed high biofilm inhibition activity against P. aeruginosa, B. subtilis, and S. aureus. Furthermore, silver nanoparticles exhibited a low to moderate cytotoxic effect against hepatocellular carcinoma cancerous cells, which reflect its possible use in the biomedical field. Culture filtrate of 2 actinomycetes extracted from marine sponge Crella cyathophora was used for the biosynthesis of AgNPs with a significant anti-microbial and biofilm activity. Also, AgNPs exhibited a low to moderate cytotoxicity against cells.![]()
Collapse
Affiliation(s)
- Ahmed A. Hamed
- Microbial Chemistry Department
- National Research Centre
- Giza
- Egypt
- Marine Biodiscovery Centre
| | - Hoda Kabary
- Department Agricultural Microbiology
- National Research Center
- Giza
- Egypt
| | - Mohamed Khedr
- Botany and Microbiology Department
- Faculty of Science
- Al-Azhar University
- Cairo
- Egypt
| | - Ahmed N. Emam
- Refractories, Ceramics and Building Materials Department
- National Research Centre (NRC)
- Giza
- Egypt
- Nanomedicine and Tissue Culture Lab
| |
Collapse
|
40
|
Sivasankar P, Poongodi S, Seedevi P, Kalaimurugan D, Sivakumar M, Loganathan S. Nanoparticles from Actinobacteria: A Potential Target to Antimicrobial Therapy. Curr Pharm Des 2019; 25:2626-2636. [PMID: 31603056 DOI: 10.2174/1381612825666190709221710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 11/22/2022]
Abstract
Nanoparticles have gained significant importance in the past two decades, due to their multifaceted applications in the field of nanomedicine. As our ecosystems and habitats are changing due to global warming, many new diseases are emerging continuously. Treating these costs a lot of money and mostly ends up in failure. In addition, frequent use of antibiotics to control the emerging diseases has led the pathogens to develop resistance to antibiotics. Hence, the nanoparticles are targeted to treat such diseases instead of the costly antibiotics. In particular, the biosynthesized nanoparticles have received considerable attention due to their simple, eco-friendly and promising activity. To highlight, microbial mediated nanoparticles have been found to possess higher activity and thus have a promising role in antimicrobial therapy to fight against the emerging drug-resistant pathogens. In this context, this review article is aimed at highlight the role of nanoparticles in the field of nanomedicine and importance of actinobacteria in the nanoparticle synthesis and their need in antimicrobial therapy. This is a comprehensive review, focusing on the potential of actinobacteria-mediated nanoparticles in the field of nanomedicine.
Collapse
Affiliation(s)
- Palaniappan Sivasankar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Subramaniam Poongodi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Palaniappan Seedevi
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Dharman Kalaimurugan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Murugesan Sivakumar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| | - Sivakumar Loganathan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem- 636011, Tamil Nadu, India
| |
Collapse
|