1
|
Raketh M, Kana R, Kongjan P, Faua'ad Syed Muhammad SA, O-Thong S, Mamimin C, Jariyaboon R. Enhancing bio-hydrogen and bio-methane production of concentrated latex wastewater (CLW) by Co-digesting with palm oil mill effluent (POME): Batch and continuous performance test and ADM-1 modeling. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119031. [PMID: 37741194 DOI: 10.1016/j.jenvman.2023.119031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
This study aimed at investigating the biohydrogen and biomethane potential of co-digestion from palm oil mill effluent (POME) and concentrated latex wastewater (CLW) in a two-stage anaerobic digestion (AD) process under thermophilic (55 ± 3 °C) and at an ambient temperature (30 ± 3 °C) conditions, respectively. The batch experiments of POME:CLW mixing ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 was investigated with the initial loadings at 10 g-VS/L. The highest hydrogen yield of 115.57 mLH2/g-VS was obtained from the POME: CLW mixing ratio of 100:0 with 29.0 of C/N ratio. While, the highest subsequent methane production yield of 558.01 mLCH4/g-VS was achieved from hydrogen effluent from POME:CLW mixing ratio of 70:30 0 with 21.8 of C/N ratio. This mixing ratio revealed the highest synergisms of about 9.21% and received maximum total energy of 19.70 kJ/g-VS. Additionally, continuous hydrogen and methane production were subsequently performed in a series of continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge blanket reactor (UASB) to treat the co-substate. The results indicated that the highest hydrogen yield of POME:CLW mixing ratio at 70:30 of 95.45 mL-H2/g-VS was generated at 7-day HRT, while methane production was obtained from HRT 15 days with a yield of 204.52 mL-CH4/g-VS. Thus, the study indicated that biogas production yield of CLW could be enhanced by co-digesting with POME. In addition, the two-stage AD model under anaerobic digestion model no. 1 (ADM-1) framework was established, 9.10% and 2.43% of error fitting of hydrogen and methane gas between model simulation data and experimental data were found. Hence, this research work presents a novel approach for optimization and feasibility for co-digestion of POME with CLW to generate mixed gaseous biofuel potentially.
Collapse
Affiliation(s)
- Marisa Raketh
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand
| | - Rusnee Kana
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand
| | - Prawit Kongjan
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand
| | - Syed Anuar Faua'ad Syed Muhammad
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Skudai, 81310, Skudai, Johor, Malaysia
| | - Sompong O-Thong
- International College, Thaksin University, Songkhla, 90000, Thailand
| | - Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rattana Jariyaboon
- Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand; Department of Science, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand.
| |
Collapse
|
2
|
Wijerathna WSMSK, Wimalaweera TIP, Samarajeewa DR, Lindamulla LMLKB, Rathnayake RMLD, Nanayakkara KGN, Jegatheesan V, Wei Y, Jinadasa KBSN. Imperative assessment on the current status of rubber wastewater treatment: Research development and future perspectives. CHEMOSPHERE 2023; 338:139512. [PMID: 37474026 DOI: 10.1016/j.chemosphere.2023.139512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The environment has been significantly impacted by the rubber industry through the release of large quantities of wastewater during various industrial processes. Therefore, it is crucial to treat the wastewater from the rubber industry before discharging it into natural water bodies. With the understanding that alarmingly depleting freshwater sources need to be preserved for future generations, this paper reviews the status of the rubber industry and the pollution caused by them, focusing mainly on water pollution. The review pays special attention to the recent advancements in wastewater treatment techniques for rubber industry wastewater categorizing them into pre-treatment, secondary, and tertiary treatment processes while discussing the advantages and disadvantages. Through a comprehensive analysis of existing literature, it was determined that organic content and NH4+ are the most frequently focused water quality parameters, and despite some treatment methods demonstrating superior performance, many of the methods still face limitations and require further research to improve systems to handle high organic loading on the treatment systems and to implement them in industrial scale. The paper also explores the potential of utilizing untreated or treated wastewater and byproducts of wastewater treatment in contributing towards achieving several United Nations sustainable development goals (UN-SDGs); SDG 6, SDG 7, SDG 9, and SDG 12.
Collapse
Affiliation(s)
- W S M S K Wijerathna
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - T I P Wimalaweera
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - D R Samarajeewa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - L M L K B Lindamulla
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia.
| | - R M L D Rathnayake
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - V Jegatheesan
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Institute of Fundamental Studies, Hantana Road, Kandy, 20000, Sri Lanka.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
3
|
Raketh M, Kongjan P, Trably E, Samahae N, Jariyaboon R. Effect of organic loading rate and effluent recirculation on biogas production of desulfated skim latex serum using up-flow anaerobic sludge blanket reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116886. [PMID: 36455441 DOI: 10.1016/j.jenvman.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
High sulfate contents in skim latex serum (SLS) can be reduced by rubber wood ash (RWA). Subsequently, the desulfated skim latex serum (DSLS) can be further anaerobically treated more effectively with the accompanying generated biomethane. In this study, DSLS was treated using an up-flow anaerobic sludge blanket (UASB) reactor operated at 10-day HRT and under mesophilic (37 °C) conditions. The effect of organic loading rates (OLR) at 0.89, 1.79 and 3.57 g-COD/L-reactor∙d on DSLS biodegradability was investigated in Phase I-IV using NaHCO3 as an external buffering agent. Maximum methane production yield of 226.35 mL-CH4/g-CODadded corresponding to 403.25 mL-CH4/L reactor·d was achieved at the suitable OLR of 1.79 g-COD/L-reactor∙d. UASB effluent recirculation which was then applied to replace the NaHCO3. It was found that with 53% effluent recirculation similar to an OLR of 2.01 g-COD/L-reactor∙d, an average of 185.70 mL-CH4/g-CODadded corresponding to 371.40 mL/L reactor·d of methane production was reached. The dominant bacteria in UASB reactor were members of Proteobacteria, Bacteroidota, Firmicutes, and Desulfobacterota phyla. Meanwhile, the archaeal community was majorly dominated by the genera Methanosaeta sp. and Methanomethylovorans sp. The study clearly indicates the capabilities of UASB reactor with effluent recirculation to treat DSLS anaerobically.
Collapse
Affiliation(s)
- Marisa Raketh
- Energy Technology Program, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand
| | - Prawit Kongjan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand; Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand
| | - Eric Trably
- INRAE, Univ Montpellier, LBE, Narbonne, France
| | - Nurta Samahae
- Science Program in Chemistry-Biology, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand
| | - Rattana Jariyaboon
- Department of Science, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand; Bio-Mass Conversion to Energy and Chemicals (Bio-MEC) Research Unit, Faculty of Science and Technology, Prince of Songkla University (PSU), Pattani, 94000, Thailand.
| |
Collapse
|
4
|
Li Q, Huang M, Shu S, Chen X, Gao N, Zhu Y. Quinone-mediated Sb removal from sulfate-rich wastewater by anaerobic granular sludge: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156217. [PMID: 35623523 DOI: 10.1016/j.scitotenv.2022.156217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/10/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) is a typical pollutant in sulfate-rich industrial wastewater. This study investigated the Sb removal efficiency in sulfate-rich water by anaerobic granular sludge (AnGS) and the stimulation of amended anthraquinone-2-sulfonate (AQS). Results showed that 89.0% of 5 mg/L Sb(V) was reduced by AnGS within 24 h, along with the observed first accumulation (up to 552.2 μg/L) and then precipitation of Sb(Ш); coexistence of 2 g/L sulfate inhibited the removal of Sb(V) by 71.4% within 24 h, along with gradual accumulation of Sb(Ш) by 3257.4 μg/L, indicating the potential competition of adsorption sites and electron donors between Sb(V) and sulfate. Amendment of 31 mg/L AQS successfully removed the inhibition from sulfate, contributing to 99.5% Sb(V) removal and minimum Sb(Ш) accumulation in Sb(V) + sulfate+AQS group. Further test results suggested that Sb(V) removal by AnGS was mainly through dissimilatory reduction instead of bio-sorption, while Sb(Ш) removal mainly relied on instant bio-sorption by AnGS followed by precipitation in the form of Sb2O3 and Sb2S3. Extracellular Polymeric Substances (EPS) characterization showed that AQS promoted the accumulation of Sb(V) and Sb(Ш) in EPS. High-throughput sequencing analysis showed the enrichment of sulfate-reducing bacteria (SRB) in Sb(V) + sulfate group and suppressed SRB growth in Sb(V) + sulfate+AQS group.
Collapse
Affiliation(s)
- Qi Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoguang Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control Reuse, Tongji University, Shanghai 200092, China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Grujović MŽ, Mladenović KG, Marković SM, Đukić NN, Stajić JM, Ostojić AM, Zlatić NM. Chemical, radiological and microbiological characterization of a drinking water source: a case study. Lett Appl Microbiol 2022; 75:1136-1150. [PMID: 35765797 DOI: 10.1111/lam.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
This study examined water samples from a local stream in Central Serbia, which was consumed as drinking water. The chemical parameters (chemical oxygen demand, pH, total concentration of dissolved substances and electrical conductivity), the concentration of major, trace, and radioactive elements in the water as well as the content of those from the environment, were examined. In addition, the microbiological quality of the water was inspected. The water samples were acidic (pH from 5.27 to 5.69) and chemical oxygen demand ranged in upper permissible limits (up to 6.25 mg O2 l-1 (WR)). The concentrations of major, trace and radioactive elements, including radon, were below maximum contaminant levels. The water contained a higher number of total coliform bacteria than it was allowed (˃10 colony forming units (CFU) in 100 ml of water) as well as enterococci and Escherichia coli. The characterization of the isolated bacteria indicated that two isolates demonstrated proteolytic activity, while full antibiotic resistance was not detected. The isolates showed moderate to strong ability to produce biofilm, while the isolates of E. coli were nonpathogenic. The results indicated that examined water samples were not microbiologically and chemically safe, therefore, the usage of analyzed water was not recommended as a water supply. Further research needs to include more frequent monitoring in order to propose measures for the improvement of the water quality and prevention of health risks for consumers.
Collapse
Affiliation(s)
- M Ž Grujović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - K G Mladenović
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - S M Marković
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| | - N N Đukić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| | - J M Stajić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Republic of Serbia
| | - A M Ostojić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| | - N M Zlatić
- University of Kragujevac, Faculty of Science, Department of Biology and Ecology, Radoja Domanović 12, 34000 Kragujevac, Republic of Serbia
| |
Collapse
|
6
|
Enhancement of Thermophilic Biogas Production from Palm Oil Mill Effluent by pH Adjustment and Effluent Recycling. Processes (Basel) 2021. [DOI: 10.3390/pr9050878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A sudden pH drops always inhibits the anaerobic digestion (AD) reactor for biogas production from palm oil mill effluent (POME). The pH adjustment of POME by oil palm ash addition and the biogas effluent recycling effect on the preventing of pH drop and change of the archaea community was investigated. The pH adjustment of POME to 7.5 increased the methane yield two times more than raw POME (pH 4.3). The optimal dose for pH adjustment by oil palm ash addition was 5% w/v with a methane yield of 440 mL-CH4/gVS. The optimal dose for pH adjustment by biogas effluent recycling was 20% v/v with a methane yield of 351 mL-CH4/gVS. Methane production from POME in a continuous reactor with pH adjustment by 5% w/v oil palm ash and 20% v/v biogas effluent recycling was 19.1 ± 0.25 and 13.8 ± 0.3 m3 CH4/m3-POME, respectively. The pH adjustment by oil palm ash enhanced methane production for the long-term operation with the stability of pH, alkalinity, and archaea community. Oil palm ash increased the number of Methanosarcina mazei and Methanothermobacter defluvii. Oil palm ash is a cost-effective alkali material as a source of buffer and trace metals for preventing the pH drop and the increased methanogen population in the AD process.
Collapse
|
7
|
Wongfaed N, Kongjan P, Suksong W, Prasertsan P, O-Thong S. Strategies for recovery of imbalanced full-scale biogas reactor feeding with palm oil mill effluent. PeerJ 2021; 9:e10592. [PMID: 33505799 PMCID: PMC7797170 DOI: 10.7717/peerj.10592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/26/2020] [Indexed: 11/24/2022] Open
Abstract
Background Full-scale biogas production from palm oil mill effluent (POME) was inhibited by low pH and highly volatile fatty acid (VFA) accumulation. Three strategies were investigated for recovering the anaerobic digestion (AD) imbalance on biogas production, namely the dilution method (tap water vs. biogas effluent), pH adjustment method (NaOH, NaHCO3, Ca(OH)2, oil palm ash), and bioaugmentation (active methane-producing sludge) method. The highly economical and feasible method was selected and validated in a full-scale application. Results The inhibited sludge from a full-scale biogas reactor could be recovered within 30–36 days by employing various strategies. Dilution of the inhibited sludge with biogas effluent at a ratio of 8:2, pH adjustment with 0.14% w/v NaOH, and 8.0% w/v oil palm ash were considered to be more economically feasible than other strategies tested (dilution with tap water, or pH adjustment with 0.50% w/v Ca(OH)2, or 1.25% NaHCO3 and bioaugmentation) with a recovery time of 30–36 days. The recovered biogas reactor exhibited a 35–83% higher methane yield than self-recovery, with a significantly increased hydrolysis constant (kH) and specific methanogenic activity (SMA). The population of Clostridium sp., Bacillus sp., and Methanosarcina sp. increased in the recovered sludge. The imbalanced full-scale hybrid cover lagoon reactor was recovered within 15 days by dilution with biogas effluent at a ratio of 8:2 and a better result than the lab-scale test (36 days). Conclusion Dilution of the inhibited sludge with biogas effluent could recover the imbalance of the full-scale POME-biogas reactor with economically feasible and high biogas production performance.
Collapse
Affiliation(s)
- Nantharat Wongfaed
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Prawit Kongjan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Wantanasak Suksong
- School of Bioresources and Technology, King Mongkut's University of Technology, Thonburi, Bangkok, Thailand
| | - Poonsuk Prasertsan
- Research and Development Office, Prince of Songkla University, Songkhla, Thailand
| | - Sompong O-Thong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand.,International College, Thaksin University, Songkhla, Thailand
| |
Collapse
|
8
|
Fan NS, Qi R, Huang BC, Jin RC, Yang M. Factors influencing Candidatus Microthrix parvicella growth and specific filamentous bulking control: A review. CHEMOSPHERE 2020; 244:125371. [PMID: 31835053 DOI: 10.1016/j.chemosphere.2019.125371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Candidatus Microthrix parvicella has been frequently detected as the dominant filamentous bacteria in bulking sludge and thus seriously affects the stable operation of activated sludge processes. The extremely low growth rate of Ca. M. parvicella and its sensitivity to environmental variations greatly limit the development of effective techniques to control filamentous bulking. Based on previous investigations, a variety of restrictive substrates, operating and culture conditions, environmental factors and other potential inhibitors have varying degrees of impact on the growth of this microorganism. This review systematically summarizes the key factors affecting Ca. M. parvicella growth with a focus on the influencing mechanism. Recent filamentous bulking control strategies are also critically reviewed and discussed. Additionally, research needs for the next few years are proposed with the aim of establishing effective and specific control strategies for filamentous sludge bulking.
Collapse
Affiliation(s)
- Nian-Si Fan
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Rong Qi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Min Yang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Process validation of integrated bioelectrochemical and membrane reactor for synchronous bioenergy extraction and sustainable wastewater treatment at a semi-pilot scale. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Suaisom P, Pholchan P, Aggarangsi P. Holistic determination of suitable conditions for biogas production from Pennisetum purpureum x Pennisetum americanum liquor in anaerobic baffled reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 247:730-737. [PMID: 31279804 DOI: 10.1016/j.jenvman.2019.06.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Holistic approach had been undertaken to determine the suitable conditions for biogas production from Pennisetum purpureum x Pennisetum americanum (Napier Pak Chong1) liquor using the anaerobic baffled reactor (ABR). Effects of factors, i.e. organic loading rates (OLRs), feeding schemes, trace element additions and effluent recirculation rates, on ABR performance were systematically investigated. Increase of OLRs and effluent recirculation rates adversely affected methane yields when capability of ABR in containing microorganisms was deteriorated. High stability of ABR performance was detected under the semi-continuous feeding scheme with trace element additions. The suitable condition for ABR was found at the OLR of 4.0 kg COD/m3.d under the semi-continuous feeding scheme with trace element additions at the effluent recirculation rate of 0.5 (QR/Q). At this condition, high methane yield (0.49 ± 0.05 Nm3/kg VSadded) could be achieved using the economical ABR at relatively high OLR of 4.0 kg COD/m3.d.
Collapse
Affiliation(s)
- Pitchaya Suaisom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand; Energy Research and Development Institute-Nakornping, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patiroop Pholchan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Pruk Aggarangsi
- Energy Research and Development Institute-Nakornping, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
11
|
Tanikawa D, Watari T, Mai TC, Fukuda M, Syutsubo K, Nguyen NB, Yamaguchi T. Characteristics of greenhouse gas emissions from an anaerobic wastewater treatment system in a natural rubber processing factory. ENVIRONMENTAL TECHNOLOGY 2019; 40:2954-2961. [PMID: 29619881 DOI: 10.1080/09593330.2018.1459872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Greenhouse gas (GHG) emissions from both open-type and closed anaerobic wastewater treatment systems in a natural rubber processing factory in Vietnam were surveyed. In this factory, wastewater was treated by an open-type anaerobic baffled reactor (OABR) that comprised 60 compartments. A part of the wastewater was fed to a pilot-scale up-flow anaerobic sludge blanket (UASB) reactor to enable a comparison of the process performance and GHG emission characteristics with those of the OABR. In the OABR, 94.4% of the total chemical oxygen demand (COD) and 18.1% of ammonia nitrogen was removed. GHGs emitted from the OABR included both methane and nitrous oxide. The total GHGs emitted from the OABR was 0.153 t-CO2eq/m3-wastewater. Nitrous oxide accounted for approximately 65% of the total GHGs emitted from the OABR. By contrast, 99.6% of the methane emission and 99.9% of nitrous oxide emission were reduced by application of the UASB. However, the ammonia removal efficiency of the UASB was only 2.2%. Furthermore, Acinetobacter johnsonii, which is known as a heterotrophic ammonia remover, was detected only in the OABR. These results indicated that high nitrous oxide emissions were caused by denitrification in the OABR and that application of the closed anaerobic system could drastically reduce the emissions of both methane and nitrous oxide.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- a Department of Civil and Environmental Engineering, National Institute of Technology, Kure College , Kure , Japan
| | - Takahiro Watari
- b Department of Civil and Environmental Engineering, Nagaoka University of Technology , Nagaoka , Japan
- c Department of Chemical Engineering, Hanoi University of Science and Technology , Hanoi , Vietnam
| | - Trung Cuong Mai
- d Technology Center, Rubber Research Institute of Vietnam , Binh Duong , Vietnam
| | - Masao Fukuda
- e Department of Bioengineering, Nagaoka University of Technology , Nagaoka , Japan
| | - Kazuaki Syutsubo
- f Center for Regional Environmental Research, National Institute for Environmental Studies , Tsukuba , Japan
| | - Ngoc Bich Nguyen
- d Technology Center, Rubber Research Institute of Vietnam , Binh Duong , Vietnam
| | - Takashi Yamaguchi
- g Department of Science of Technology Innovation, Nagaoka University of Technology , Nagaoka , Japan
| |
Collapse
|
12
|
Magnetic biochar derived from sewage sludge of concentrated natural rubber latex (CNRL) for the removal of Al3+ and Cu2+ ions from wastewater. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03956-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Yin C, Shen Y, Yu Y, Yuan H, Lou Z, Zhu N. In-situ biogas upgrading by a stepwise addition of ash additives: Methanogen adaption and CO 2 sequestration. BIORESOURCE TECHNOLOGY 2019; 282:1-8. [PMID: 30844515 DOI: 10.1016/j.biortech.2019.02.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Biogas from anaerobic digestion (AD) of waste activated sludge (WAS) limited its utilization due to low value-added. In this study, an innovative addition mode for ash known as stepwise addition was developed to enhance methane production and improve CO2 scavenge from AD of sludge. Experimental results confirmed stepwise addition of ash improved methane content to 79.4%, compared to control group (69.1%). Compared to Pulse addition and Control, the cumulative CH4 production was promoted by 39.2% and 35.4%, respectively. Investigation of the mechanism indicated that stepwise addition of ash could decrease hydrolytic and acidifying enzyme activities but increase activity of coenzyme F420, compared to pulse addition group. Furthermore, stepwise addition of ash not only increased the abundance of Methanomassiliicoccus (34.48%), but also promoted amounts of CO2 capture. This method ameliorate utilization availability of sludge ash for sludge anaerobic digestion through promoting cumulative methane production and increasing CO2 storage capacity.
Collapse
Affiliation(s)
- Changkai Yin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yamei Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Simultaneous Biological and Chemical Removal of Sulfate and Fe(II)EDTA-NO in Anaerobic Conditions and Regulation of Sulfate Reduction Products. MINERALS 2019. [DOI: 10.3390/min9060330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the simultaneous flue gas desulfurization and denitrification by biological combined with chelating absorption technology, SO2 and NO are converted into sulfate and Fe(II)EDTA-NO which need to be reduced in biological reactor. Increasing the removal loads of sulfate and Fe(II)EDTA-NO and converting sulfate to elemental sulfur will benefit the application of this process. A moving-bed biofilm reactor was adopted for sulfate and Fe(II)EDTA-NO biological reduction. The removal efficiencies of the sulfate and Fe(II)EDTA-NO were 96% and 92% with the influent loads of 2.88 kg SO42−·m−3·d−1 and 0.48 kg NO·m−3·d−1. The sulfide produced by sulfate reduction could be reduced by increasing the concentrations of Fe(II)EDTA-NO and Fe(III)EDTA. The main reduction products of sulfate and Fe(II)EDTA-NO were elemental sulfur and N2. It was found that the dominant strain of sulfate reducing bacteria in the system was Desulfomicrobium. Pseudomonas, Sulfurovum and Arcobacter were involved in the reduction of Fe(II)EDTA-NO.
Collapse
|
15
|
Pirsaheb M, Mohamadi S, Rahmatabadi S, Hossini H, Motteran F. Simultaneous wastewater treatment and biogas production using integrated anaerobic baffled reactor granular activated carbon from baker's yeast wastewater. ENVIRONMENTAL TECHNOLOGY 2018; 39:2724-2735. [PMID: 28793836 DOI: 10.1080/09593330.2017.1365939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
In this study, simultaneous degradation of organic matter and color removal from food processing industries wastewater using an integrated anaerobic baffled reactor granular activated carbon (IABRGAC) was investigated. Theretofore, effective parameters such as hydraulic retention time (HRT) and granular activated carbon (GAC) filling ratio were studied. The bioreactor was operated at 3, 4 and 5 d of HRT and GAC filling ratio of 20%, 35% and 50%. To analyze and optimize the independent operating variables, response surface methodology was applied. Operating condition was optimized for HRT (4 d) and GAC filling ratio (50%). Better COD (94.6%) and BOD (93.7%) removal efficiency occurred with loading COD of 15,000 mg/L, with diminished wastewater color around 54% and turbidity to 54 NTU. In addition, methane production, methane yielding rate (Ym) and specific methanogenic activity (SMA) test in an integrated system were investigated. The system IABRGAC was able to generate a volumetric rate about 0.31 and 0.44 L/g CODremoved d at the experimental condition. The Ym was between 0.31 and 0.44 L/g CODremoved.d and SMA was between 0.13 and 0.38 g COD/g volatile suspended solid. Based on results it can be concluded that the IABRGAC to be a successful pretreatment for highstrength wastewater before discharging the final effluent to sewerage and aerobic treating processes.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- a Department of Environmental Health Engineering, Faculty of Health , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Samira Mohamadi
- b Students Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Sama Rahmatabadi
- b Students Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Hooshyar Hossini
- a Department of Environmental Health Engineering, Faculty of Health , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Fabrício Motteran
- c Department of Hydraulics and Sanitation, Engineering School of São Carlos , University of São Paulo (USP) , São Paulo , Brazil
| |
Collapse
|
16
|
Sayedin F, Kermanshahi-Pour A, He SQ. Anaerobic digestion of thin stillage of corn ethanol plant in a novel anaerobic baffled reactor. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:541-552. [PMID: 32559943 DOI: 10.1016/j.wasman.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 06/11/2023]
Abstract
In this study, the performance of a conventional anaerobic baffled reactor (ABR) and a novel configuration of hybrid ABR for the treatment of thin stillage was evaluated. The hybrid ABR achieved the chemical oxygen demand (COD) removal, sulfate removal and methane yield of 97-94%, 94-97% and 294-310 mL CH4 g-1 CODremoved, respectively at organic loading rate (OLR) of 1-3.5 kg COD m-3 d-1. On the other hand, the value of COD and sulfate removal and methane yield for the conventional ABR were 75-94%, 67-76% and 140-240 mL CH4 g-1 CODremoved, respectively at OLR range of 1.1-1.8 kg COD m-3 d-1. The enhanced performance and robustness of the novel ABR was demonstrated to be the result of incorporation of solid/liquid/gas separators into the configuration of the conventional ABR, leading to reduced biomass washout, higher solid retention time and significantly improved phase separation.
Collapse
Affiliation(s)
- Farid Sayedin
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| | - Sophia Quan He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
17
|
Saber A, Tafazzoli M, Mortazavian S, James DE. Investigation of kinetics and absorption isotherm models for hydroponic phytoremediation of waters contaminated with sulfate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 207:276-291. [PMID: 29179117 DOI: 10.1016/j.jenvman.2017.11.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Two common wetland plants, Pampas Grass (Cortaderia selloana) and Lucky Bamboo (Dracaena sanderiana), were used in hydroponic cultivation systems for the treatment of simulated high-sulfate wastewaters. Plants in initial experiments at pH 7.0 removed sulfate more efficiently compared to the same experimental conditions at pH 6.0. Results at sulfate concentrations of 50, 200, 300, 600, 900, 1200, 1500 and 3000 mg/L during three consecutive 7-day treatment periods with 1-day rest intervals, showed decreasing trends of both removal efficiencies and uptake rates with increasing sulfate concentrations from the first to the second to the third 7-day treatment periods. Removed sulfate masses per unit dry plant mass, calculated after 23 days, showed highest removal capacity at 600 mg/L sulfate for both plants. A Langmuir-type isotherm best described sulfate uptake capacity of both plants. Kinetic studies showed that compared to pseudo first-order kinetics, pseudo-second order kinetic models slightly better described sulfate uptake rates by both plants. The Elovich kinetic model showed faster rates of attaining equilibrium at low sulfate concentrations for both plants. The dimensionless Elovich model showed that about 80% of sulfate uptake occurred during the first four days' contact time. Application of three 4-day contact times with 2-day rest intervals at high sulfate concentrations resulted in slightly higher uptakes compared to three 7-day contact times with 1-day rest intervals, indicating that pilot-plant scale treatment systems could be sized with shorter contact times and longer rest-intervals.
Collapse
Affiliation(s)
- Ali Saber
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Milad Tafazzoli
- Department of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Soroosh Mortazavian
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - David E James
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
18
|
Efficacies of Various Anaerobic Starter Seeds for Biogas Production from Different Types of Wastewater. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2782850. [PMID: 28932741 PMCID: PMC5592398 DOI: 10.1155/2017/2782850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 12/04/2022]
Abstract
Various anaerobic starter seeds from different sources were investigated for their efficacies in treatment of different types of wastewater. Six combinations of starter seeds and wastewaters were selected out of 25 combination batch experiments and operated in semicontinuous reactors. It was noticed that the efficacies of various anaerobic starter seeds for biogas production from different types of wastewater in terms of reactor performance and stability were depended on wastewater characteristics and F/M ratio affecting microbial community and their microbial activities. However, exogenous starter seed can be used across different types of wastewater with or without acclimatization. Four reactors reached the targeted OLR of 2 kg COD/m3·d with high performance and stability except for concentrated rubber wastewater (RBw), even using high active starter seeds of cassava starch (CSs) and palm oil (POs). The toxic compounds in RBw such as ammonia and sulfate might also adversely affect methanogenic activity in CSsRBw and POsRBw reactors. DGGE analysis showed that propionate utilizers, Smithella propionica strain LYP and Syntrophus sp., were detected in all samples. For Archaea domain, methylotrophic, hydrogenotrophic, and acetoclastic methanogens were also detected. Syntrophic relationships were assumed between propionate utilizers and methanogens as acetate/H2 producers and utilizers, respectively.
Collapse
|
19
|
|
20
|
Zhao J, Fang D, Zhang P, Zhou L. Long-term effects of increasing acidity on low-pH sulfate-reducing bioprocess and bacterial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4067-4076. [PMID: 27933494 DOI: 10.1007/s11356-016-8147-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
An ethanol-fed, sulfate-reducing anaerobic baffled reactor was operated over a period of 260 days to assess the effects of sequentially more acidic conditions (pH 4.5-2.5) on sulfate reduction and bacterial community. Results showed that the reactor could reduce sulfate and generate alkalinity at progressively lower pH values of 4.5, 3.5, and 2.5 in a synthetic wastewater containing 2500 mg/L sulfate. About 93.9% of the influent sulfate was removed at a rate of 4691 mg/L/day, and the effluent pH was increased to 6.8 even when challenged with influent pH as low as 2.5. Illumina MiSeq sequencing revealed that a step decrease in influent pH from 4.5 to 2.5 resulted in noticeable decrease in the biodiversity inside the sulfidogenic reactor. Additionally, complete and incomplete organic oxidizers Desulfobacter and Desulfovibrio were observed to be the most dominant sulfate reducers at pH 2.5, sustaining the low-pH, high-rate sulfate removal and alkalinity generation.
Collapse
Affiliation(s)
- Jing Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Pengfei Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Watari T, Thanh NT, Tsuruoka N, Tanikawa D, Kuroda K, Huong NL, Tan NM, Hai HT, Hatamoto M, Syutsubo K, Fukuda M, Yamaguchi T. Development of a BR-UASB-DHS system for natural rubber processing wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2016; 37:459-465. [PMID: 26593041 DOI: 10.1080/09593330.2015.1117042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Natural rubber processing wastewater contains high concentrations of organic compounds, nitrogen, and other contaminants. In this study, a treatment system composed of a baffled reactor (BR), an upflow anaerobic sludge blanket (UASB) reactor, and a downflow hanging sponge (DHS) reactor was used to treat natural rubber processing wastewater in Vietnam. The BR showed good total suspended solids (TSS) removal of 47.6%, as well as acidification of wastewater. The UASB reactor achieved a high chemical oxygen demand (COD) removal efficiency of 92.7 ± 2.3% and energy recovery in the form of methane with an organic loading rate of 12.2 ± 6.6 kg-COD m-3 day-1. The DHS reactor showed high performance in residual organic matter removal from UASB effluent. In total, the system achieved high-level total COD removal of 98.6% ± 1.2% and TSS removal of 98.0% ± 1.4%. Massive parallel 16S rRNA gene sequencing of the retained sludge in the UASB reactor showed the predominant microbial phyla to be Bacteroidetes, Firmicutes, Proteobacteria, WWE1, and Euryarchaeota. Uncultured bacteria belonging to the phylum Bacteroidetes and Phylum WWE1 were predominant in the UASB reactor. This microbial assemblage utilizes the organic compounds contained in natural rubber processing wastewater. In addition, the methane-producing archaea Methanosaeta sp. and Methanolinea sp. were detected.
Collapse
Affiliation(s)
- Takahiro Watari
- a Department of Environmental Systems Engineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Nguyen Thi Thanh
- b Department of Biotechnology , Hanoi University of Science and Technology , Hanoi , Vietnam
| | - Natsumi Tsuruoka
- a Department of Environmental Systems Engineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Daisuke Tanikawa
- c Department of Civil and Environmental Engineering , National Institute of Technology, Kure College , Kure , Japan
| | - Kyohei Kuroda
- a Department of Environmental Systems Engineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Nguyen Lan Huong
- b Department of Biotechnology , Hanoi University of Science and Technology , Hanoi , Vietnam
| | - Nguyen Minh Tan
- d Department of Chemical Engineering , Hanoi University of Science and Technology , Hanoi , Vietnam
| | - Huynh Trung Hai
- e School for Environmental Science and Technology , Hanoi University of Science and Technology , Hanoi , Vietnam
| | - Masashi Hatamoto
- a Department of Environmental Systems Engineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Kazuaki Syutsubo
- f Center for Regional Environmental Research , National Institute for Environmental Studies , Tsukuba , Japan
| | - Masao Fukuda
- g Department of Bioengineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| | - Takashi Yamaguchi
- a Department of Environmental Systems Engineering , Nagaoka University of Technology , Nagaoka , Niigata , Japan
| |
Collapse
|
22
|
Tanikawa D, Syutsubo K, Hatamoto M, Fukuda M, Takahashi M, Choeisai PK, Yamaguchi T. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 73:1777-1784. [PMID: 27120630 DOI: 10.2166/wst.2016.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.
Collapse
Affiliation(s)
- D Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology, Kure College, 2-2-11 Aga-minami, Kure 731-4331, Japan E-mail:
| | - K Syutsubo
- Center for Regional Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - M Hatamoto
- Department of Environmental System Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - M Fukuda
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| | - M Takahashi
- Department of Civil and Environmental Engineering, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan
| | - P K Choeisai
- Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand
| | - T Yamaguchi
- Department of Environmental System Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Japan
| |
Collapse
|
23
|
Cheng JR, Liu XM, Chen ZY. Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge. Appl Biochem Biotechnol 2015; 178:9-20. [PMID: 26378012 DOI: 10.1007/s12010-015-1854-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/10/2015] [Indexed: 11/27/2022]
Abstract
The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid-treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %.
Collapse
Affiliation(s)
- Jing-Rong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China. .,Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 133 Yihenglu, Dongguanzhuang, Tianhe District, Guangzhou, 510640, People's Republic of China.
| | - Xue-Ming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
| | - Zhi-Yi Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, People's Republic of China
| |
Collapse
|
24
|
Malakahmad A, Lahin FA, Yee W. Biodegradation of High-Strength Palm Oil Mill Effluent (POME) through Anaerobes Partitioning in an Integrated Baffled Reactor Inoculated with Anaerobic Pond Sludge. WATER, AIR, & SOIL POLLUTION 2014; 225:1883. [DOI: 10.1007/s11270-014-1883-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Zuo Z, Wu S, Zhang W, Dong R. Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. BIORESOURCE TECHNOLOGY 2013; 146:556-561. [PMID: 23973975 DOI: 10.1016/j.biortech.2013.07.128] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
The effects of organic loading rates (OLR) and effluent recirculation on dynamics of acidogenic and methanogenic processes in two-stage anaerobic digestion of vegetable waste were investigated. Two systems were performed at OLRs of 1.3, 1.7, 2.1 and 2.6 g VS/L/d. One system recirculated the effluent from the methanogenic reactor to acidogenic reactor. With increasing OLRs, total volatile fatty acid (VFA) concentration increased to approximately 8500 mg/L in acidogenic digester, where pH decreased from 6.4 to 5.2. Daily biogas production and methane content in methanogenic reactor increased from 1.2 to 4.4 L/d and from 27.4% to 60.5%, respectively. However, inhibition of hydrolysis in acidogenic reactor was demonstrated under the OLR of 2.6 g VS/L/d without recirculation, thus indicating system overloading. Effluent recirculation shown a considerable positive effect on alleviating VFA inhibition and improving biogas production in acidogenic reactor because of the effect of dilution and pH adjustment, particularly at high OLRs.
Collapse
Affiliation(s)
- Zhuang Zuo
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Shubiao Wu
- Key Laboratory of Clean Utilization Technology for Renewable Energy in Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Wanqin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, PR China
| | - Renjie Dong
- Key Laboratory of Clean Utilization Technology for Renewable Energy in Ministry of Agriculture, College of Engineering, China Agricultural University, Beijing 100083, PR China
| |
Collapse
|
26
|
Dechrugsa S, Kantachote D, Chaiprapat S. Effects of inoculum to substrate ratio, substrate mix ratio and inoculum source on batch co-digestion of grass and pig manure. BIORESOURCE TECHNOLOGY 2013; 146:101-108. [PMID: 23916981 DOI: 10.1016/j.biortech.2013.07.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/09/2013] [Accepted: 07/13/2013] [Indexed: 06/02/2023]
Abstract
Biochemical methane potential (BMP) assay was conducted at 35 °C to evaluate the effects of inoculum to substrate ratio (ISR) and substrate mix ratio between para-grass and pig manure co-digesting using different inocula. Rubber latex digester (RLD) inoculum showed higher methanogenic activity (41.4 mL CH4/gVS) than pig farm digester (PFD) inoculum (37.3 mL CH4/gVS). However, the maximum methane yields, occurred at the highest para-grass mix ratio (G), were 369.6, 437.6, 465.9 and 442.6 mL CH4/gTSadded for RLD inoculum, versus 332.4, 475.0, 519.5 and 521.9 mL/gTSadded for PFD inoculum at ISR 1, 2, 3, and 4, respectively. HPr, HBu and HVa appeared at higher G, corresponding to substrate's higher biodegradability. Response surface indicated that higher ISR and G had a significantly positive impact on methane yield. It suggested the use of higher ISR, i.e. 3 or 4, for BMP assay of these co-substrates. Dominant species of fermentative bacteria in each inoculum was tested by DGGE.
Collapse
Affiliation(s)
- Sumeth Dechrugsa
- International Postgraduate Program in Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand
| | - Sumate Chaiprapat
- Energy Technology Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand; Center of Excellence for Environmental and Hazardous Waste Management (EHWM), Southern University Consortium, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
27
|
Podmirseg SM, Seewald MSA, Knapp BA, Bouzid O, Biderre-Petit C, Peyret P, Insam H. Wood ash amendment to biogas reactors as an alternative to landfilling? A preliminary study on changes in process chemistry and biology. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2013; 31:829-842. [PMID: 23831776 DOI: 10.1177/0734242x13497077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Wood ash addition to biogas plants represents an alternative to commonly used landfilling by improving the reactor performance, raising the pH and alleviating potential limits of trace elements. This study is the first on the effects of wood ash on reactor conditions and microbial communities in cattle slurry-based biogas reactors. General process parameters [temperature, pH, electrical conductivity, ammonia, volatile fatty acids, carbon/nitrogen (C/N), total solids (TS), volatile solids, and gas quantity and quality] were monitored along with molecular analyses of methanogens by polymerase chain reaction- denaturing gradient gel electrophoresis and modern microarrays (archaea and bacteria). A prompt pH rise was observed, as was an increase in C/N ratio and volatile fatty acids. Biogas production was inhibited, but recovered to even higher production rates and methane concentration after single amendment. High sulphur levels in the wood ash generated hydrogen sulphide and potentially hampered methanogenesis. Methanosarcina was the most dominant methanogen in all reactors; however, diversity was higher in ash-amended reactors. Bacterial groups like Firmicutes, Proteobacteria and Acidobacteria were favoured, which could improve the hydrolytic efficiency of the reactors. We recommend constant monitoring of the chemical composition of the used wood ash and suggest that ash amendment is adequate if added to the substrate at a rate low enough to allow adaptation of the microbiota (e.g. 0.25 g g(-1) TS). It could further help to enrich digestate with important nutrients, for example phosphorus, calcium and magnesium, but further experiments are required for the evaluation of wood ash concentrations that are tolerable for anaerobic digestion.
Collapse
|
28
|
Charnnok B, Suksaroj T, Boonswang P, Chaiprapat S. Oxidation of hydrogen sulfide in biogas using dissolved oxygen in the extreme acidic biofiltration operation. BIORESOURCE TECHNOLOGY 2013; 131:492-499. [PMID: 23384778 DOI: 10.1016/j.biortech.2012.12.114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
This work aimed to investigate the interactive effects of empty bed retention time (EBRT), specific hydraulic loading rate (q) and initial pH (pHi) of the aerated recirculating liquid to remove H2S in extreme acidic biofiltration. Biogas containing H2S 6395±2309ppm and CH4 79.8±2.5% was fed to the biofilter as pH of the high dissolved oxygen recirculating liquid swung between pHi to 0.5. Response surface methodology was employed that gave the H2S removal relationship model with R(2) 0.882. The predicted highest H2S removal within the studied parameter ranges was 94.7% at EBRT 180.0s, q 4.0m(3)/m(2)/h and pHi 3.99. Results from separate runs at a random condition were not statistically different from the model prediction, signifying a validity of the model. Additionally, CH4 content in the exit biogas increased by 4.7±0.4%. Acidithiobacullus sp. predominance in the consortia of this extreme acidic condition was confirmed by DGGE.
Collapse
Affiliation(s)
- Boonya Charnnok
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai Campus, Hat Yai, Songkhla 90110, Thailand
| | | | | | | |
Collapse
|
29
|
Yilmaz T, Erdirencelebi D, Berktay A. Effect of COD/SO4(2-) ratio on anaerobic treatment of landfill leachate during the start-up period. ENVIRONMENTAL TECHNOLOGY 2012; 33:313-320. [PMID: 22519117 DOI: 10.1080/09593330.2011.572920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study investigates the performance of an anaerobic baffled reactor (ABR) during the start-up period of raw young landfill leachate treatment at two chemical oxygen demand (COD) to SO4(2-) ratios of 20 and 4. The reactor was operated at ambient temperature and low organic loading rates (0.52, 0.76 and 1.05 kg COD/m3 per day). During the study, sulfate-reducing bacteria (SRB) activity increased at the lower ratio of COD/SO4(2-) producing higher levels of sulfide and alkalinity. The dissolved sulfide concentration reached an inhibitory level above 250 mg/L, which caused a sharp reduction in the total COD removal efficiency from 77-80% to 32%. Total volatile fatty acid (TVFA) production proceeded at a constant level despite increased organic loading. As the effluent total and organic COD concentrations increased, the inhibitory effect of the inborn sulfide was correlated to the limitation experienced in the hydrolysis/acidogenesis stages, and thus VFA production and organic matter removal.
Collapse
Affiliation(s)
- Tuba Yilmaz
- Department of Environmental Engineering, Selcuk University, Konya, Turkey.
| | | | | |
Collapse
|
30
|
Zheng S, Sun J, Han H. Effect of dissolved oxygen changes on activated sludge fungal bulking during lab-scale treatment of acidic industrial wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8928-8934. [PMID: 21902169 DOI: 10.1021/es2018169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The cloning and sequencing of fungal 18S rRNA genes followed by the identification of filamentous fungal species by fluorescent in situ hybridization (FISH) and the enumeration of filamentous fungal cells by flow cytometry-FISH (FC-FISH) were used to investigate the effect of dissolved oxygen (DO) changes on activated sludge (AS) fungal bulking during a lab-scale treatment of acidic industrial wastewater. By increasing DO levels from < .5 to > 2 mg L⁻¹, bulking started to occur due to the outbreak of fungal filaments, whereas the chemical oxygen demand (COD) removals sharply increased from < 40 to > 70%. Clone library analyses revealed that all clonal fungal sequences were of yeast origin, and that only one and four yeast species were individually detected in AS at two DO levels. Subsequent FISH identification of filamentous yeast species within bulking sludge using self-designed oligonucleotide probes suggested that all probe-reactive cells of Trichosporon asahii had a filamentous morphology and were the dominating filamentous microorganism in the AS. The FC-FISH analyses of bacteria and two main yeast species showed that the DO shift resulted in a sharp increase of T. asahii, by a factor of 48-60, which caused filamentous yeast bulking. Subsequently, the restoration of DO levels to <0.5 mg L⁻¹ effectively restored the sludge settlement and yeast community, as well as unacceptable COD removals.
Collapse
Affiliation(s)
- Shaokui Zheng
- School of Environment, MOE Key Laboratory of Water and Sediment Sciences/State Key Lab of Water Environment Simulation, Beijing Normal University, Beijing 100875, People's Republic of China.
| | | | | |
Collapse
|
31
|
Kobayashi T, Li YY. Performance and characterization of a newly developed self-agitated anaerobic reactor with biological desulfurization. BIORESOURCE TECHNOLOGY 2011; 102:5580-5588. [PMID: 21398119 DOI: 10.1016/j.biortech.2011.01.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 05/30/2023]
Abstract
The continuous operation of a newly developed methane fermentation reactor, which requires no electricity for the agitation of the fermentation liquid was investigated, and the extent of the biological desulfurization was monitored. Inside the reactor, the continual change in the liquid level and the self-agitation, occurring between 5 and 16 times every day, distributed the organic load near the inlet port of the reactor, as well as providing a nutrient supply to the hydrogen sulfide oxidizing bacteria. At different COD(Cr) loading rates (5, 7, 10 kg m(3)d(-1)), the reactor achieved a biogas production yield of 0.72-0.82 m(3)g(-1)-TS, a COD(Cr) reduction of 79.4-85.5% and an average of 99% hydrogen sulfide removal. This investigation demonstrated that the self-agitated reactor is comparable in digestion performance to the completely stirred tank reactor (CSTR) investigated in a previous study, and that the desulfurization performance was significantly enhanced compared to the CSTR.
Collapse
Affiliation(s)
- Takuro Kobayashi
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-0053, Japan
| | | |
Collapse
|
32
|
|
33
|
|
34
|
Damianovic MHRZ, Foresti E. Dynamics of sulfidogenesis associated to methanogenesis in horizontal-flow anaerobic immobilized biomass reactor. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.04.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Ji GD, Sun TH, Ni JR, Tong JJ. Anaerobic baffled reactor (ABR) for treating heavy oil produced water with high concentrations of salt and poor nutrient. BIORESOURCE TECHNOLOGY 2009; 100:1108-14. [PMID: 18793845 DOI: 10.1016/j.biortech.2008.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/02/2008] [Accepted: 08/05/2008] [Indexed: 05/16/2023]
Abstract
The start-up and operational performance (total 212 days, including the start-up of 164 days) of an anaerobic baffled reactor (ABR), which is used to treat heavy oil produced water, was studied without the temperature control. Inoculums were mixtures of acclimated sediment taken from a heavy oil produced water treatment plant and digested sludge from a sewage wastewater treatment plant. The rod-shaped and spherical granules with colors of henna and black, in which Clostridia, Methanosarcina and Methanothrx sp. were main populations, were observed in each compartment of ABR after the reactor's successful start-up (day 164). Rhodopseudomonas with the activity of lipase and halotolerant, as a kind of photosynthetic bacteria, was also observed in the first five compartments. X-ray diffraction (XRD) showed that the spherical granule sludge was compact and contained a large amount of organics, amorphous materials, and crystals of Fe(2)O(3), FeS, and CaCO(3), whereas the rod-shaped granule sludge was incompact without crystals of Fe(2)O(3), FeS, and CaCO(3). Scanning electron microscope (SEM) showed that the skeleton construction of this rod-shaped granule was filamentous bacteria and amount of extracellular polymeric substances (EPS). The ABR, after successful start up, can achieve high average chemical oxygen demand (COD) and oil removals of 65% and 88% for heavy oil produced water with poor nutrient (COD:TN:TP, 1200:15:1) and high salt concentration (1.15-1.46%), respectively. Furthermore, ABR kept stable during 2.5 times the COD level shock load (0.50 kg COD m-3 d-1) for four days.
Collapse
Affiliation(s)
- G D Ji
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China.
| | | | | | | |
Collapse
|