1
|
Ferrer Campos R, Bachimanchi H, Volpe G, Villa K. Bubble-propelled micromotors for ammonia generation. NANOSCALE 2023; 15:15785-15793. [PMID: 37740381 PMCID: PMC10551873 DOI: 10.1039/d3nr03804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Micromotors have emerged as promising tools for environmental remediation, thanks to their ability to autonomously navigate and perform specific tasks at the microscale. In this study, we present the development of MnO2 tubular micromotors modified with laccase for enhanced oxidation of organic pollutants by providing an additional oxidative catalytic pathway for pollutant removal. These modified micromotors exhibit efficient ammonia generation through the catalytic decomposition of urea, suggesting their potential application in the field of green energy generation. Compared to bare micromotors, the MnO2 micromotors modified with laccase exhibit a 20% increase in rhodamine B degradation. Moreover, the generation of ammonia increased from 2 to 31 ppm in only 15 min, evidencing their high catalytic activity. To enable precise tracking of the micromotors and measurement of their speed, a deep-learning-based tracking system was developed. Overall, this work expands the potential applicability of bio-catalytic tubular micromotors in the energy field.
Collapse
Affiliation(s)
- Rebeca Ferrer Campos
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, Tarragona E-43007, Spain.
| | - Harshith Bachimanchi
- Department of Physics, University of Gothenburg, Origovägen 6B, Gothenburg 41296, Sweden.
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Origovägen 6B, Gothenburg 41296, Sweden.
| | - Katherine Villa
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans, 16, Tarragona E-43007, Spain.
| |
Collapse
|
2
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
3
|
Wang Q, Fu H, Qi X, Zhang L, Ma H. Immobilization of horseradish peroxidase with zwitterionic polymer material for industrial phenolic removal. Biointerphases 2023; 18:041001. [PMID: 37410499 DOI: 10.1116/6.0002657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
Horseradish peroxidase (HRP) is a hemoglobin composed of a single peptide chain that catalyzes the oxidation of various substrates such as phenol and aniline in the presence of hydrogen peroxide via its iron-porphyrin catalytic center. This enzyme is widely used in industrial phenol removal, food additives, biomedicine, and clinical test reagents due to its rapid reaction rate and obvious reaction outcomes. However, the large-scale use of HRP in industrial applications still faces numerous challenges, including activity, stability, and sustainability. This study demonstrates that when peroxidase is immobilized in zwitterionic polymer hydrogels, polycarboxybetaine (PCB) and polysulfobetaine (PSB), the properties of the enzyme are improved. PCB and PSB-embedded HRP exhibit a 6.11 and 1.53 times increase in Kcat/Km value, respectively, compared to the free enzyme. The immobilized enzyme also experiences increased activity over a range of temperatures and better tolerance to extreme pH and organic solvents, including formaldehyde. In addition, immobilized HRP exhibits excellent performance in storage and reproducibility. Remarkably, PCB-HRP still retains 80% of the initial activity after a 6-week storage period and can still attain the initial catalytic level of the free enzyme after six repeated cycles. It also removes 90% of phenol within 12 min, surpassing the current pharmacy on the market. These experimental results indicated that we have successfully designed a set of stable and efficient support substrates for horseradish peroxidase, which enhances its suitability for deployment in industrial applications.
Collapse
Affiliation(s)
- Qi Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Hao Fu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaoyu Qi
- Department of Biochemical Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Lei Zhang
- Department of Biochemical Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hongyan Ma
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
4
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
5
|
Bai H, Yang Y, Yuan H, Liu X, Ni C. Preparation of Fe 3O 4@Fe(0) immobilized enzyme to enhance the efficient degradation of methoxychlor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:917-929. [PMID: 35908032 DOI: 10.1007/s11356-022-22265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The presence of methoxychlor (MXC) in soil and wastewater is considered a nonnegligible environmental threat. Herein, Fe3O4@Fe(0) was obtained by NaBH4 reduction of Fe3O4 nanoparticles and served as a carrier for laccase to construct catalyst. The catalyst was evaluated for the degradation of MXC in treated wastewater and soil with 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) being used as cocatalyst. The removal rate of MXC in wastewater and soil was found to be 89% and 88% in optimum conditions, and the influences of initial MXC concentration, pH, and temperature on the degradation rate were evaluated. The metabolites including 2-methylpentane, 3-methylpentane, and n-pentane of MXC were identified, and possible degradation mechanisms were proposed. Overall, this work successfully demonstrates not only the ability to degrade MXC in different circumstances but also provides a new idea for environmental remediation in the future.
Collapse
Affiliation(s)
- He Bai
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
6
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Birhanlı E, Noma SAA, Boran F, Ulu A, Yeşilada Ö, Ateş B. Design of laccase-metal-organic framework hybrid constructs for biocatalytic removal of textile dyes. CHEMOSPHERE 2022; 292:133382. [PMID: 34954196 DOI: 10.1016/j.chemosphere.2021.133382] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
This study aims to present a simple and effective carrier matrix to immobilize laccase as opposed to complex and tedious immobilization processes and also to use it in the removal of textile dyes. For this purpose, Cobalt (Co) and Copper (Cu) based metal-organic frameworks (MOFs) were prepared and laccase was immobilized on two different MOFs via encapsulation. The characterization outcomes showed that laccase was well immobilized into MOF supports. Optimum pH and temperature were found for Lac/Co-MOF (pH 4.5 at 50 °C) and Lac/Cu-MOF (pH 5.0 at 50 °C). The Km (0.03 mM) and Vmax (97.4 μmol/min) values of Lac/Cu-MOF were lower than those of Lac/Co-MOF (Km = 0.13 mM, Vmax = 230.7 μmol/min). The immobilized laccases showed good reusability as well as improved resistance to temperature denaturation and high storage stability. For instance, the Lac/Co-MOF and Lac/Cu-MOF retained more than 58% activity after 4 weeks of storage at room temperature. Meanwhile, Lac/Co-MOF and Lac/Cu-MOF maintained 56.5% and 55.8% of their initial activity, respectively, after 12 reuse cycles. Moreover, thermal deactivation kinetic studies of immobilized laccases displayed lower k value, higher t1/2, and enhancement of thermodynamic parameters, which means better thermostability. Finally, the decolorization activities for the Lac/Co-MOF were 78% and 61% at the 5th cycle for Reactive Blue 171 and Reactive Blue 198, respectively. In conclusion, it can be inferred that the MOFs are more sustainable and beneficial support for laccase immobilization and they can be efficient for removing textile dyes from industrial wastes.
Collapse
Affiliation(s)
- Emre Birhanlı
- Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
| | - Samir Abbas Ali Noma
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey; Department of Chemistry, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey
| | - Filiz Boran
- Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
| | - Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey.
| | - Özfer Yeşilada
- Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey.
| |
Collapse
|
8
|
Pekgenc E, Yavuzturk Gul B, Vatanpour V, Koyuncu I. Biocatalytic membranes in anti-fouling and emerging pollutant degradation applications: Current state and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jatinder Kaur
- Department of Chemistry, Fergusson College, Pune 411004, India
| | | | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
10
|
Yadav D, Ranjan B, Mchunu N, Le Roes-Hill M, Kudanga T. Enzymatic treatment of phenolic pollutants by a small laccase immobilized on APTES-functionalised magnetic nanoparticles. 3 Biotech 2021; 11:302. [PMID: 34194895 DOI: 10.1007/s13205-021-02854-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/19/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, we have successfully synthesized magnetic nanoparticles (MNPs), functionalised them by silanization and used them for the covalent immobilization of a recombinant small laccase (rSLAC) from Streptomyces coelicolor. The immobilized recombinant laccase (MNP-rSLAC) was subsequently used for the treatment of phenol, 4-chlorophenol (4-CP) and 4-fluorophenol (4-FP). The enzyme completely degraded 80 µg/mL of the selected phenolic compounds within 2 h in the presence of a natural mediator, acetosyringone. The MNP-rSLAC retained > 73% of initial activity (2,6-dimethoxyphenol as substrate) after 10 catalytic cycles and could be easily recovered from the reaction mixture by the application of magnetic field. Furthermore, immobilised rSLAC exhibited better storage stability than its free counterpart. The Michaelis constant (Km) value for the immobilised rSLAC was higher than free rSLAC, however the maximum velocity (Vmax) of the immobilised SLAC was similar to that of the free rSLAC. Growth inhibition studies using Escherichia coli showed that rSLAC-mediated treatment of phenolic compounds reduced the toxicity of phenol, 4-CP and 4-FP by 90, 60 and 55%, respectively. Interestingly, the presence of selected metal ions (Co2+, Cu2+, Mn2+) greatly enhanced the catalytic activity of rSLAC and MNP-rSLAC. This study indicates that immobilized small laccase (MNP-rSLAC) has potential for treating wastewater contaminated with phenolic compounds. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02854-0.
Collapse
Affiliation(s)
- Deepti Yadav
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
| | - Bibhuti Ranjan
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Nokuthula Mchunu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110 South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville Campus, Symphony Way, PO Box 1906, Bellville, 7535 South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. BOX 1334, Durban, 4000 South Africa
| |
Collapse
|
11
|
Ran F, Xiang Y, Liu D, Sun H, Shi X, Liu X, Zhang H. One-step self-assembly of magnetic supramolecular metal-organic coordination functionalized MoS 2 complex as nanoenzyme-reactor. Colloids Surf B Biointerfaces 2021; 205:111879. [PMID: 34058690 DOI: 10.1016/j.colsurfb.2021.111879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In the present study, a kind of magnetic supramolecular metal-organic coordination complex (SMOCC) functionalized MoS2 was prepared with one-step in aqueous solution for enzyme immobilization. As possessing a protective nanocoating of PDA/PEI/Cu2+ (polydopamine: PDA, polyethyleneimine: PEI), the proposed material can provide biocompatible microenvironment and flexible adhesion force on particle interface, which is conductive to loading laccase (170.0 ± 1.8 mg/g) with high activity (93.0 ± 1.1 %). Compared with the free laccase, the immobilized laccase has higher stability in a broader range of pH (3-10), temperature (20-80 °C), storage time (1-18 days) and reusability (1-16 cycles). The removal of carcinogenic persistent organic pollutant malachite green in the water with the immobilized laccase shows a higher efficiency (89.4 ± 1.2 %) than free laccase (16.2 ± 0.2 %). The Fe3O4@MoS2@(PDA/PEI/Cu2+) nanocomposites can also be used successfully to immobilize trypsin, lipase and catalase respectively, showing a satisfactory enzyme loading (157.0 ± 0.1 mg/g, 151.6 ± 1.4 mg/g, 162.6 ± 1.6 mg/g, respectively) and activity (95.0 ± 0.5 %, 90.0 ± 0.8 %, 91.0 ± 0.9 %, respectively). The MoS2 can be replaced by carbon material and similar results can be obtained.
Collapse
Affiliation(s)
- Fanpeng Ran
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yueci Xiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Di Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huipeng Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xuerong Shi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyan Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Magnetic Metal Organic Framework Immobilized Laccase for Wastewater Decolorization. Processes (Basel) 2021. [DOI: 10.3390/pr9050774] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The laccase enzyme was successfully immobilized over a magnetic amino-functionalized metal–organic framework Fe3O4-NH2@MIL-101(Cr). Different techniques were used for the characterization of the synthesized materials. The Fe3O4-NH2@MIL-101(Cr) laccase showed excellent resistance to high temperatures and low pH levels with a high immobilization capacity and large activity recovery, due to the combination of covalent binding and adsorption advantages. The long-term storage of immobilized laccase for 28 days indicated a retention of 88% of its initial activity, due to the high stability of the immobilized system. Furthermore, a residual activity of 49% was observed at 85 °C. The immobilized laccase was effectively used for the biodegradation of Reactive Black 5 (RB) and Alizarin Red S (AR) dyes in water. The factors affecting the RB and AR degradation using the immobilized laccase (dye concentration, temperature and pH) were investigated to determine the optimum treatment conditions. The optimum conditions for dye removal were a 5 mg/L dye concentration, temperature of 25 °C, and a pH of 4. At the optimum conditions, the biodegradation and sorption-synergistic mechanism of the Fe3O4-NH2@MIL-101(Cr) laccase system caused the total removal of AR and 81% of the RB. Interestingly, the reusability study of this immobilized enzyme up to five cycles indicated the ability to reuse it several times for water treatment.
Collapse
|
13
|
Yavaşer R, Karagözler AA. Laccase immobilized polyacrylamide-alginate cryogel: A candidate for treatment of effluents. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Sun H, Wei Y, Kong XZ, Jiang X. Preparation of uniform polyurea microspheres at high yield by precipitation polymerization and their use for laccase immobilization. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Zdarta J, Staszak M, Jankowska K, Kaźmierczak K, Degórska O, Nguyen LN, Kijeńska-Gawrońska E, Pinelo M, Jesionowski T. The response surface methodology for optimization of tyrosinase immobilization onto electrospun polycaprolactone–chitosan fibers for use in bisphenol A removal. Int J Biol Macromol 2020; 165:2049-2059. [DOI: 10.1016/j.ijbiomac.2020.10.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/03/2020] [Accepted: 10/12/2020] [Indexed: 01/15/2023]
|
16
|
Combination of Adsorption and Cellulose Derivative Membrane Coating for Efficient Immobilization of Laccase. Appl Biochem Biotechnol 2020; 193:446-462. [PMID: 33025567 DOI: 10.1007/s12010-020-03446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Immobilization of enzyme based on combination of adsorption and cellulose derivative membrane coating was established in this work for the first time. Laccase, a commonly used enzyme in varied fields, was chosen as the model enzyme to demonstrate this method. After investigating operational conditions, the optimal process was obtained as follows: diatomite or HPD-417 as the adsorption carrier, 0.5% (w/v) methylcellulose (40,000~50,000) acetone solution as the coating solution, 0.75% (w/v) polyethylene glycol or maltose as the protective agent, and drying at 4 °C for 9 h. Under the optimal conditions, the residual activities of diatomite and HPD-417 immobilized laccase reached 99.33% and 94.15%, respectively. The study on properties showed that the immobilized laccases held high pH tolerance and thermal stability. The immobilized laccases were further applied to the indigo decolorization and 2, 4-dichlorophenol degradation. They showed high catalytic efficiency and could be reused for several batches. On the whole, the immobilization method developed in this work can effectively avoid the inactivation of laccase during immobilization and improve the stability of immobilized laccase. The laccase immobilized by this method shows obvious potential for environmental governance.
Collapse
|
17
|
Althuri A, Tiwari ON, Gowda VTK, Moyong M, Venkata Mohan S. Small/Medium scale textile processing industries: case study, sustainable interventions and remediation. Chem Ind 2020. [DOI: 10.1080/00194506.2020.1821795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Avanthi Althuri
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Onkar Nath Tiwari
- Department of Biotechnology, Ministry of Science & Technology, New Delhi, India
| | - Vanitha T. K. Gowda
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Miyon Moyong
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| |
Collapse
|
18
|
Immobilization of laccase on Sepharose-linked antibody support for decolourization of phenol red. Int J Biol Macromol 2020; 161:78-87. [PMID: 32505629 DOI: 10.1016/j.ijbiomac.2020.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Laccases which are considered as "green tools" in biotechnology have potential to degrade toxic contaminants/synthetic dyes present in industrial effluents. The loss in activity and stability of laccases are key challenges faced in their potential industrial applications. Here, laccase from Trametes versicolor (polypore mushroom) was immobilized on Sepharose-linked antibody support to carry out the decolourization of phenol red. This support was prepared by covalent linking of anti-laccase antibodies to CNBr activated Sepharose at pH 8.5, and then laccase was immobilized on this affinity support at pH 5.0. The amount of laccase immobilized was approximately 33 mg per gram of the affinity support, giving an immobilization yield of 83.4%. The immobilized enzyme displayed an activity of 3.88 U with an effectiveness factor (η) of 0.90. Immobilization of laccase led to significant enhancement in thermal and storage stability. The immobilized enzyme retained 44% of its activity after 10 cycles of continuous use. The decolourization of phenol red dye obtained by immobilized and soluble laccase after 6 h of incubation at 50 °C was 80 and 56%, respectively. Thus, immobilization of laccase on Sepharose-linked antibody support leads to remarkable improvement in its various properties, making it more versatile for industrial applications.
Collapse
|
19
|
Banerjee S, Arora A, Vijayaraghavan R, Patti AF. Extraction and crosslinking of bromelain aggregates for improved stability and reusability from pineapple processing waste. Int J Biol Macromol 2020; 158:318-326. [PMID: 32353500 DOI: 10.1016/j.ijbiomac.2020.04.220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/01/2023]
Abstract
The present study is first of its kind that focuses upon the extraction of bromelain from pineapple core waste and stabilising it as insoluble cross-linked aggregates. The influence of process variables such as the choice of precipitant, type of cross-linker, concentration of cross-linker and the reaction time for cross-linking step was investigated upon the activity recovery of bromelain cross-linked aggregates. The optimization of this biocatalyst preparation specifically recovered 87% of the enzymatic activity available in pineapple core waste by ammonium sulphate (60%, w/v) precipitation followed by cross-linking for 4 h with 80 mM glutaraldehyde. Cross-linked bromelain aggregates were thermally more stable and exhibited higher pH stability in comparison to free bromelain. The cross-linked bromelain aggregates exhibited higher operational stability in different organic solvents at 4 °C. The highest operational stability (% stability given in parenthesis) was observed in acetone (100%) followed by hexane (53.6%), ethyl acetate (39.6%), ethanol (32.5%) and chloroform (14.9%). The kinetic studies revealed higher Km value (5.45 mM) after the formation of cross-linked bromelain aggregates as compared to free bromelain (5.04 mM) with almost similar Vmax values. Cross-linked bromelain aggregates also showed significant reusability characteristics with an activity retention of >85% after 5-time cycles. Such recyclability of bromelain cross-linked aggregates could lead to potential industrial applications in both food and non-food sector. In addition, the present extraction method avoids costs related to purification and expensive immobilization carriers.
Collapse
Affiliation(s)
- Shivali Banerjee
- IITB - Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Bio-Processing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Amit Arora
- IITB - Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Bio-Processing Laboratory, Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - R Vijayaraghavan
- School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Antonio F Patti
- School of Chemistry, Green Chemical Futures, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.
| |
Collapse
|
20
|
Wastewater Treatment by Novel Polyamide/Polyethylenimine Nanofibers with Immobilized Laccase. WATER 2020. [DOI: 10.3390/w12020588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endocrine-disrupting chemicals are highly resistant organic compounds, commonly occurring in the aquatic environment, that can interfere with the endocrine system of animals and humans, causing serious chronic diseases. In recent decades, enzymes from oxidoreductases have been studied for their potential to degrade these compounds effectively. In order to use such enzymes repeatedly, it is necessary to ensure their insolubility in water, a method termed enzyme immobilization. We developed novel polyamide/polyethylenimine (PA/PEI) nanofibers as a promising support material for the immobilization of various biomolecules. Our nanofibers are highly suitable due to a unique combination of mechanical endurance provided by polyamide 6 and their affinity toward biomolecules, ensured by numerous PEI amino groups. Enzyme laccase was successfully immobilized onto PA/PEI nanofibers using a simple and fast method, providing exceptional activity and stability of the attached enzyme. We then tested the degradation ability of the PA/PEI-laccase samples on a highly concentrated mixture of endocrine-disrupting chemicals in real wastewater with adjusted pH. The results indicate that the samples were a suitable material for wastewater treatment by degrading a highly concentrated mixture of bisphenol A, 17α-ethinylestradiol, triclosan, and diclofenac, in real wastewater effluent.
Collapse
|
21
|
Zhang Y, Li X, Li D, Wei Q. A laccase based biosensor on AuNPs-MoS2 modified glassy carbon electrode for catechol detection. Colloids Surf B Biointerfaces 2020; 186:110683. [DOI: 10.1016/j.colsurfb.2019.110683] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
|
22
|
Mansurnezhad R, Ghasemi-Mobarakeh L, Coclite AM, Beigi MH, Gharibi H, Werzer O, Khodadadi-Khorzoughi M, Nasr-Esfahani MH. Fabrication, characterization and cytocompatibility assessment of gelatin nanofibers coated with a polymer thin film by initiated chemical vapor deposition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110623. [PMID: 32204065 DOI: 10.1016/j.msec.2019.110623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/22/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
The presence of various functional groups in the structure of gelatin nanofibers (GNFs) has made it a suitable candidate for biomedical applications, yet its fast dissolution in aqueous media has been a real challenge for years. In the present work, we propose an efficient procedure to improve the durability of the GNFs. The electrospun GNFs were coated with poly(ethylene glycol dimethacrylate) (pEGDMA) using initiated chemical vapor deposition (iCVD) as a completely dry polymerization method. Morphological and chemical analysis revealed that an ultrathin layer formed around nanofibers (iCVD-GNFs) which has covalently bonded to gelatin chains. Against the instant dissolution of GNFs, the in vitro biodegradability test showed the iCVD-GNFs, to a large extent, preserve their morphology after 14 days of immersion and did not lose its integrity even after 31 days. In vitro cell culture studies, also, revealed cytocompatibility of the iCVD-GNFs for human fibroblast cells (hFC), as well as higher cell proliferation on the iCVD-GNFs compared to control made from tissue culture plate (TCP). Furthermore, contact angle measurements indicated that the hydrophilic GNFs became hydrophobic after the iCVD, yet FE-SEM images of cell-seeded iCVD-GNFs showed satisfactory cell adhesion. Taken together, the proposed method paves a promising way for the production of water-resistant GNFs utilized in biomedical applications; for instance, tissue engineering scaffolds and wound dressings.
Collapse
Affiliation(s)
- Reza Mansurnezhad
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Laleh Ghasemi-Mobarakeh
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Anna Maria Coclite
- Institute for Solid State Physics, NAWI Graz, Graz University of Technology, 8010, Graz, Austria; BioTechMed, Graz, Austria.
| | - Mohammad-Hossein Beigi
- Silicon Hall: Micro/Nano Manufacturing Facility, Faculty of Engineering and Applied Science, Ontario Tech University, Ontario, Canada; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamidreza Gharibi
- Innovation management and Technology Commercialization Center, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Oliver Werzer
- Institute of Pharmaceutical Science, Department of Pharmaceutical Technology, University of Graz, 8010, Graz, Austria
| | | | - Mohammad-Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
23
|
Liao L, Meng Y, Wang R, Jia B, Li P. Coupling and Regulation of Porous Carriers Using Plasma and Amination to Improve the Catalytic Performance of Glucose Oxidase and Catalase. Front Bioeng Biotechnol 2019; 7:426. [PMID: 31921828 PMCID: PMC6923177 DOI: 10.3389/fbioe.2019.00426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple enzyme systems are being increasingly used for their high-efficiency and co-immobilization is a key technology to lower the cost and improve the stability of enzymes. In this study, poly glycidyl methacrylate (PGMA) spheres were synthesized using suspension polymerization, and were used as a support to co-immobilize glucose oxidase (GOx) and catalase (CAT). Surface modification was carried out via a combination of plasma and amination to promote the properties of the catalyzer. The co-immobilized enzymes showed a more extensive range of optimum pH and temperature from 5.5 to 7.5 and 25 to 40°C, respectively, compared to free enzymes. Furthermore, the maximum activity and protein adsorption quantity of the co-immobilized enzymes reached 25.98 U/g and 6.07 mg/g, respectively. The enzymatic activity of the co-immobilized enzymes was maintained at ~70% after storage for 5 days and at 82% after three consecutive cycles, indicating that the immobilized material could be applied industrially.
Collapse
Affiliation(s)
- Lingtong Liao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yuling Meng
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Baolei Jia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Piwu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Biobased Material & Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
24
|
Wu E, Li Y, Huang Q, Yang Z, Wei A, Hu Q. Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. CHEMOSPHERE 2019; 233:327-335. [PMID: 31176895 DOI: 10.1016/j.chemosphere.2019.05.150] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
An amino-functionalized magnetic metal organic framework (MOF), Fe3O4-NH2@MIL-101(Cr), was employed for laccase immobilization for the first time. The immobilized laccase was synthesized by the adsorption and covalent binding method, thus exhibited high activity recovery, large immobilization capacity and good tolerance to low pH and high temperature conditions. The excellent stability enabled the immobilized laccase to retain 89% of its initial activity after storage for 28 days. When the ambient temperature reached 85 °C, the immobilized laccase showed 49.1% residual activity even after 6 h preservation. The stability of laccase in organic solvents such as methanol was also greatly improved. Application of the immobilized laccase for 2,4-dichlorophenol removal was also investigated. The adsorption by Fe3O4-NH2@MIL-101(Cr) contributed to a quick removal in the first hour, and the removal efficiency reached 87% eventually. When the reaction was completed, the immobilized laccase could be separated from the solution by a magnet. The results introduced a novel support for laccase immobilization, and the immobilized laccase had great potential in wastewater treatment.
Collapse
Affiliation(s)
- Enhui Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Yuexian Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Qing Huang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Zhenkai Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Anyu Wei
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China.
| |
Collapse
|
25
|
High efficiency biotransformation of bisphenol A in a fluidized bed reactor using stabilized laccase in porous silica. Enzyme Microb Technol 2019; 126:1-8. [DOI: 10.1016/j.enzmictec.2019.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/12/2023]
|
26
|
Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.156] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Bayramoglu G, Arica MY. Biodegradation of methylene blue and carbaryl by Trametes versicolor laccase preparations in the presence of a mediator compound. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1565549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Gulay Bayramoglu
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, Ankara, Teknikokullar, Turkey
- Department of Chemistry, Gazi University, Ankara, Teknikokullar, Turkey
| | - Mehmet Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Gazi University, Ankara, Teknikokullar, Turkey
| |
Collapse
|
28
|
Asgher M, Bashir F, Iqbal HMN. Protease-based cross-linked enzyme aggregates with improved catalytic stability, silver removal, and dehairing potentials. Int J Biol Macromol 2018; 118:1247-1256. [PMID: 29944942 DOI: 10.1016/j.ijbiomac.2018.06.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023]
Abstract
Proteases have gained special research place due to their broader activity spectrum and applied perspectives for different industrial sectors. The present research focused on three aims, i.e., (1) to identify the best protease producer strain among three different Aspergillus strains, (2) the development of protease-based cross-linked enzyme aggregates (CLEAs) and (3) silver removal and dehairing potentialities of developed CLEAs. A. flavus gave optimum activity (98.50 U/mL) with the culture conditions (pH -7.5, 35 °C, inoculum 2.5 mL and fermentation time 48 h) by applying RSM under CCD. The protease-CLEAs were developed with recovery activity (37.45%) by optimizing conditions through RSM under CCD (80% ammonium sulfate, 65 mM glutaraldehyde, and 0.15 mM BSA). The adequacy of the model was checked by ANOVA, and the interactions among different variables were plotted using 3-D graphs. The characterization profile revealed high pH and thermal stability at pH -9 and 60 °C, respectively. The kinetic study revealed lower KM and higher Vmax values (31.02 μM and 91.16 U/mL, respectively) after CLEAs formation, as compared to the free protease (61.42 μM and 84.45 U/mL, respectively). By applying on X-ray film and animal hides, protease-CLEAs showed the best activity with minimum time as compared to free protease.
Collapse
Affiliation(s)
- Muhammad Asgher
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan.
| | - Fareeha Bashir
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| |
Collapse
|
29
|
Reda FM, Hassan NS, El-Moghazy AN. Decolorization of synthetic dyes by free and immobilized laccases from newly isolated strain Brevibacterium halotolerans N11 (KY883983). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
30
|
Development and characterization of cross-linked enzyme aggregates of thermotolerant alkaline protease from Bacillus licheniformis. Int J Biol Macromol 2018; 113:944-951. [DOI: 10.1016/j.ijbiomac.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/22/2018] [Accepted: 03/02/2018] [Indexed: 01/30/2023]
|
31
|
Laccase Immobilization onto Magnetic β-Cyclodextrin-Modified Chitosan: Improved Enzyme Stability and Efficient Performance for Phenolic Compounds Elimination. Macromol Res 2018. [DOI: 10.1007/s13233-018-6095-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
Bayramoglu G, Karagoz B, Arica MY. Cyclic-carbonate functionalized polymer brushes on polymeric microspheres: Immobilized laccase for degradation of endocrine disturbing compounds. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Li G, Pang S, Wu Y, Ouyang J. Enhanced removal of hydroquinone by graphene aerogel-Zr-MOF with immobilized laccase. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1412313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Gaoping Li
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shilong Pang
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanwen Wu
- Beijing Center for Physical and Chemical Analysis, Beijing Food Safety Analysis and Testing Engineering Research Center, Beijing, China
| | - Jie Ouyang
- Beijing Key Laboratory of Forest Food Process and Safety, Department of Food Science and Engineering, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Zhu Y, Song J, Zhang J, Yang J, Zhao W, Guo H, Xu T, Zhou X, Zhang L. Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01460d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulation of laccase within zwitterionic PCB hydrogels for improved activity, affinity and stability.
Collapse
Affiliation(s)
- Yingnan Zhu
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jiayin Song
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jiamin Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jing Yang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Weiqiang Zhao
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Hongshuang Guo
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Tong Xu
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Lei Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| |
Collapse
|
35
|
Arica MY, Salih B, Celikbicak O, Bayramoglu G. Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–ToF-MS. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.09.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Lin J, Lai Q, Liu Y, Chen S, Le X, Zhou X. Laccase – methacrylyol functionalized magnetic particles: Highly immobilized, reusable, and efficacious for methyl red decolourization. Int J Biol Macromol 2017; 102:144-152. [DOI: 10.1016/j.ijbiomac.2017.03.169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
|
37
|
Removal of metal complexed azo dyes from aqueous solution using tris(2-aminoethyl)amine ligand modified magnetic p(GMA-EGDMA) cationic resin: Adsorption, isotherm and kinetic studies. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Torrinha Á, Montenegro MCBSM, Araújo AN. Implementation of a Simple Nanostructured Bio-electrode with Immobilized Rhus Vernicifera
Laccase for Oxygen Sensing Applications. ELECTROANAL 2017. [DOI: 10.1002/elan.201600738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Álvaro Torrinha
- LAQV-REQUIMTE, Lab. Química Aplicada; Fac. Farmácia (U.P.); Porto Portugal
| | | | - Alberto N. Araújo
- LAQV-REQUIMTE, Lab. Química Aplicada; Fac. Farmácia (U.P.); Porto Portugal
| |
Collapse
|
39
|
Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HMN. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 576:646-659. [PMID: 27810752 DOI: 10.1016/j.scitotenv.2016.10.137] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 02/08/2023]
Abstract
In the twenty-first century, chemical and associated industries quest a transition prototype from traditional chemical-based concepts to a greener, sustainable and environmentally-friendlier catalytic alternative, both at the laboratory and industrial scale. In this context, bio-based catalysis offers numerous benefits along with potential biotechnological and environmental applications. The bio-based catalytic processes are energy efficient than conventional methodologies under moderate processing, generating no and negligible secondary waste pollution. Thanks to key scientific advances, now, solid-phase biocatalysts can be economically tailored on a large scale. Nevertheless, it is mandatory to recover and reprocess the enzyme for their commercial feasibility, and immobilization engineering can efficiently accomplish this challenge. The first part of the present review work briefly outlines the immobilization of lignin-modifying enzymes (LMEs) including lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase of white-rot fungi (WRF). Whereas, in the second part, a particular emphasis has been given on the recent achievements of carrier-immobilized LMEs for the degradation, decolorization, or detoxification of industrial dyes and dye-based industrial wastewater effluents.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Roberto Parra-Saldivar
- ENCIT - Science, Engineering and Technology School, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M N Iqbal
- ENCIT - Science, Engineering and Technology School, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| |
Collapse
|
40
|
Dai Y, Yao J, Song Y, Liu X, Wang S, Yuan Y. Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:485-493. [PMID: 27341377 DOI: 10.1016/j.jhazmat.2016.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/24/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) were used as modified materials to improve the performance of laccase-carrying electrospun fibrous membranes (LCEFMs). The MWCNTs modified LCEFMs (MWCNTs-LCEFMs) were successfully fabricated via emulsion electrospinning, with active laccase and MWCNTs encapsulated inside the fibers. After modified by an optimal amount (1.5wt%, vs. polymer) of MWCNTs, the obtained MWCNTs-LCEFMs showed not only higher activity recovery (85.3%, vs. free laccase) than LCEFMs (71.2%), but also better storage and operational stability, which were mainly attributed to the promoted electron transfer in laccase-catalytic reaction. Furthermore, the specific surface area and tensile strength of MWCNTs-LCEFMs have also been enhanced nearly 2 and 3 times than those of LCEFMs, respectively. The MWCNTs-LCEFMs were applied to remove the widespread bisphenol A from water, where their removal efficiency reached above 90%, with the degradation efficiency accounting for over 80%, and their adsorption efficiency increased about 45% than that of LCEFMs. In addition, the endurances of MWCNTs-LCEFMs to environmental factors such as pH and temperature were also improved.
Collapse
Affiliation(s)
- Yunrong Dai
- School of Water Resources and Environment, School of Scientific Research, China University of Geosciences (Beijing), 100083, Beijing, PR China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Jun Yao
- School of Water Resources and Environment, School of Scientific Research, China University of Geosciences (Beijing), 100083, Beijing, PR China.
| | - Yonghui Song
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Xiaoling Liu
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Siyu Wang
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Yu Yuan
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| |
Collapse
|
41
|
Liu J, Tan L, Wang J, Wang Z, Ni H, Li L. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. CHEMOSPHERE 2016; 157:200-207. [PMID: 27231878 DOI: 10.1016/j.chemosphere.2016.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/08/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
The long-term abuse use of chlorpyrifos-like pesticides in agriculture and horticulture has resulted in significant soil or water contamination and a worldwide ecosystem threat. In this study, the ability of a solvent-tolerant bacterium, Pseudomonas putida MB285, with surface-displayed bacterial laccase, to biodegrade chlorpyrifos was investigated. The results of compositional analyses of the degraded products demonstrate that the engineered MB285 was capable of completely eliminating chlorpyrifos via direct biodegradation, as determined by high-performance liquid chromatography and gas chromatography-mass spectrometry assays. Two intermediate metabolites, namely 3,5,6-trichloro-2-pyridinol (TCP) and diethyl phosphate, were temporarily detectable, verifying the joint and stepwise degradation of chlorpyrifos by surface laccases and certain cellular enzymes, whereas the purified free laccase incompletely degraded chlorpyrifos into TCP. The degradation reaction can be conducted over a wide range of pH values (2-7) and temperatures (5-55 °C) without the need for Cu(2+). Bioassays using Caenorhabditis elegans as an indicator organism demonstrated that the medium was completely detoxified of chlorpyrifos by degradation. Moreover, the engineered cells exhibited a high capacity of repeated degradation and good performance in continuous degradation cycles, as well as a high capacity to degrade real effluents containing chlorpyrifos. Therefore, the developed system exhibited a high degradation capacity and performance and constitutes an improved approach to address chlorpyrifos contamination in chlorpyrifos-remediation practice.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luming Tan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Ni
- College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
42
|
Chang YT, Lee JF, Liu KH, Liao YF, Yang V. Immobilization of fungal laccase onto a nonionic surfactant-modified clay material: application to PAH degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4024-35. [PMID: 25739840 DOI: 10.1007/s11356-015-4248-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 05/22/2023]
Abstract
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.
Collapse
Affiliation(s)
- Yi-Tang Chang
- Department of Microbiology, Soochow University, 70, Linhsi Rd., Shinlin District, Taipei, 11102, Taiwan.
| | - Jiunn-Fwu Lee
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan County, 32001, Taiwan.
| | - Keng-Hua Liu
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan County, 32001, Taiwan
| | - Yi-Fen Liao
- Department of Microbiology, Soochow University, 70, Linhsi Rd., Shinlin District, Taipei, 11102, Taiwan
| | - Vivian Yang
- School of Medicine, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
43
|
Pang S, Wu Y, Zhang X, Li B, Ouyang J, Ding M. Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.033] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
|
45
|
Chen L, Zou M, Hong FF. Evaluation of Fungal Laccase Immobilized on Natural Nanostructured Bacterial Cellulose. Front Microbiol 2015; 6:1245. [PMID: 26617585 PMCID: PMC4639605 DOI: 10.3389/fmicb.2015.01245] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to assess the possibility of using native bacterial nanocellulose (BC) as a carrier for laccase immobilization. BC was synthesized by Gluconacetobacter xylinus, which was statically cultivated in a mannitol-based medium and was freeze-dried to form BC sponge after purification. For the first time, fungal laccase from Trametes versicolor was immobilized on the native nanofibril network-structured BC sponge through physical adsorption and cross-linking with glutaraldehyde. The properties including morphologic and structural features of the BC as well as the immobilized enzyme were thoroughly investigated. It was found that enzyme immobilized by cross-linking exhibited broader pH operation range of high catalytic activity as well as higher running stability compared to free and adsorbed enzyme. Using ABTS as substrate, the optimum pH value was 3.5 for the adsorption-immobilized laccase and 4.0 for the crosslinking-immobilized laccase. The immobilized enzyme retained 69% of the original activity after being recycled seven times. Novel applications of the BC-immobilized enzyme tentatively include active packaging, construction of biosensors, and establishment of bioreactors.
Collapse
Affiliation(s)
- Lin Chen
- Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering, and Biotechnology, Donghua UniversityShanghai, China
- Key Laboratory of High Performance Fibers and Products, Ministry of Education, Donghua UniversityShanghai, China
| | - Min Zou
- Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering, and Biotechnology, Donghua UniversityShanghai, China
| | - Feng F. Hong
- Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering, and Biotechnology, Donghua UniversityShanghai, China
- Key Laboratory of High Performance Fibers and Products, Ministry of Education, Donghua UniversityShanghai, China
| |
Collapse
|
46
|
Bilal M, Asgher M. Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads. Chem Cent J 2015; 9:47. [PMID: 26379768 PMCID: PMC4570624 DOI: 10.1186/s13065-015-0125-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/01/2015] [Indexed: 12/07/2022] Open
Abstract
Background Fungal manganese peroxidases (MnPs) have great potential as bio-remediating agents and can be used continuously in the immobilized form like many other enzymes. Results In the present study, purified manganese peroxidase (MnP) enzyme isolated from Ganoderma lucidum IBL-05 was immobilized onto polyvinyl alcohol-alginate beads and investigated its potential for the decolorization and detoxification of new class of reactive dyes and textile wastewater. The optimal conditions for MnP immobilization were 10 % (w/v) PVA, 1.5 % sodium alginate, 3 % boric acid and 2 % CaCl2 solution. The optimum pH, temperature and kinetic parameters (Km and Vmax) for free and immobilized MnP were found to be significantly altered after immobilization. The immobilized MnP showed high decolorization efficiency for Sandal reactive dyes (78.14–92.29 %) and textile wastewater (61–80 %). Reusability studies showed that after six consecutive dye decolorization cycles, the PVA coupled MnP retained more than 60 % of its initial activity (64.9 % after 6th cycle form 92.29 % in 1st cycle) for Sandal-fix Foron Blue E2BLN dye. The water quality assurance parameters (BOD, COD and TOC) and cytotoxicity (haemolytic and brine shrimp lethality tests) studies before and after treatment were employed and results revealed that both the dyes aqueous solution and textile wastewater were cytotoxic that reduced significantly after treatment. Conclusions The decolorization and cytotoxicity outcomes indicated that immobilized MnP in PVA–alginate beads can be efficiently exploited for industrial and environmental applications, especially for remediation of textile dyes containing wastewater effluents. Dye decolorizing potential of immobilized MnP ![]()
Collapse
Affiliation(s)
- Muhammad Bilal
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
47
|
Melo CF, Dezotti M, Marques MRC. A comparison between the oxidation with laccase and horseradish peroxidase for triclosan conversion. ENVIRONMENTAL TECHNOLOGY 2015; 37:335-343. [PMID: 26165135 DOI: 10.1080/09593330.2015.1069897] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Triclosan is a broad-spectrum biocide used in personal-care products that is suspected to be linked to the emergence of antibiotic-resistant bacteria. In the present work, the enzymes horseradish peroxidase and laccase from Trametes versicolor were evaluated for the conversion of triclosan in an aqueous matrix. The removal of antibacterial activity by the enzymatic processes was evaluated by an assay based on the growth inhibition of Escherichia coli K12. The horseradish peroxidase (HRP) process appears more advantageous than the laccase process in removing triclosan from an aqueous matrix, considering the reaction parameters pH, temperature, catalytic efficiency, and enzyme concentration. The highest conversion of triclosan catalysed by laccase was observed at pH 5.0, that is, lower than the typical pH range (6.5-7.5) of sewage treatment plants' effluents. The efficiency of laccase process was much more impacted by variations in the temperature in the range of 10-40°C. Kinetic studies showed that triclosan is a substrate more specific for HRP than for laccase. The protein content for the HRP-catalysed process was 14 times lower than that for the laccase process. Decay kinetics suggest that reaction mechanisms depend on enzyme concentration and its concentration. Both processes were able to reduce the antibacterial activity, and the residual activity of the treated solution is probably due to non-converted triclosan and not due to the reaction products. The laccase-catalysed conversion of triclosan in an environmental relevant concentration required a higher amount of enzyme than that required in the HRP process.
Collapse
Affiliation(s)
- C F Melo
- a Chemistry Institute , Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
- b COPPE, Chemical Engineering Program , Federal University of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - M Dezotti
- b COPPE, Chemical Engineering Program , Federal University of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - M R C Marques
- a Chemistry Institute , Rio de Janeiro State University , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
48
|
Covalently Immobilized Laccase for Decolourization of Glucose-Glycine Maillard Products as Colourant of Distillery Wastewater. Appl Biochem Biotechnol 2015; 177:76-89. [DOI: 10.1007/s12010-015-1729-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/22/2015] [Indexed: 12/07/2022]
|
49
|
Lin J, Fan L, Miao R, Le X, Chen S, Zhou X. Enhancing catalytic performance of laccase via immobilization on chitosan/CeO 2 microspheres. Int J Biol Macromol 2015; 78:1-8. [DOI: 10.1016/j.ijbiomac.2015.03.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 01/25/2023]
|
50
|
Immobilized lipase on micro-porous biosilica for enzymatic transesterification of algal oil. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2014.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|