1
|
Tang J, Hu Z, Pu Y, Wang XC, Abomohra A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122372. [PMID: 39241596 DOI: 10.1016/j.jenvman.2024.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid (LA) is a crucial chemical which has been widely used for industrial application. Microbial fermentation is the dominant pathway for LA production and has been regarded as the promising technology. In recent years, many studies on LA production from various organic wastes have been published, which provided alternative ways to reduce the LA production cost, and further recycle organic wastes. However, few researchers focused on industrial application of this technology due to the knowledge gap and some uncertainties. In this review, the recent advances, basic knowledge and limitations of LA fermentation from organic wastes are discussed, the challenges and suitable envisaged solutions for enhancing LA yield and productivity are provided to realize industrial application of this technology, and also some perspectives are given to further valorize the LA fermentation processes from organic wastes. This review can be a useful guidance for industrial LA production from organic wastes on a sustainable view.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| | - Zongkun Hu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
2
|
Repurposing anaerobic digestate for economical biomanufacturing and water recovery. Appl Microbiol Biotechnol 2022; 106:1419-1434. [PMID: 35122155 DOI: 10.1007/s00253-022-11804-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/02/2022]
Abstract
Due to mounting impacts of climate change, particularly increased incidence of drought, hence water scarcity, it has become imperative to develop new technologies for recovering water from nutrient-rich, water-replete effluents other than sewage. Notably, anaerobic digestate could be harnessed for the purpose of water recovery by repurposing digestate-borne minerals as nutrients in fermentative processes. The high concentrations of ammonium, phosphate, sulfate, and metals in anaerobic digestate are veritable microbial nutrients that could be harnessed for bio-production of bulk and specialty chemicals. Tethering nutrient sequestration from anaerobic digestate to bio-product accumulation offers promise for concomitant water recovery, bio-chemical production, and possible phosphate recovery. In this review, we explore the potential of anaerobic digestate as a nutrient source and as a buffering agent in fermentative production of glutamine, glutamate, fumarate, lactate, and succinate. Additionally, we discuss the potential of synthetic biology as a tool for enhancing nutrient removal from anaerobic digestate and for expanding the range of products derivable from digestate-based fermentations. Strategies that harness the nutrients in anaerobic digestate with bio-product accumulation and water recovery could have far-reaching implications on sustainable management of nutrient-rich manure, tannery, and fish processing effluents that also contain high amounts of water. KEY POINTS: • Anaerobic digestate may serve as a source of nutrients in fermentation. • Use of digestate in fermentation would lead to the recovery of valuable water.
Collapse
|
3
|
Sun Y, Liu H, Yang Y, Zhou X, Xiu Z. High-efficient L-lactic acid production from inedible starchy biomass by one-step open fermentation using thermotolerant Lactobacillus rhamnosus DUT1908. Bioprocess Biosyst Eng 2021; 44:1935-1941. [PMID: 33890154 DOI: 10.1007/s00449-021-02573-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to establish a simplified operational process for lactic acid (LA) production from inedible starchy biomass by open fermentation using thermotolerant Lactobacillus rhamnosus DUT1908. One step simultaneous liquefaction, saccharification and fermentation (SLSF) was proposed to produce LA using aging paddy rice with hull (APRH) as feedstock. First, a robust microbial strain was obtained by adaptive laboratory evolution under high temperature stress. As a result, L. rhamnosus DUT1908 showed high thermotolerance up to 50 °C and high efficiency of substrate utilization. Then, the performance of this thermotolerant L-lactic acid producing strain was demonstrated. Finally, various fermentation strategies were compared for LA production from APRH, including simultaneous saccharification and fermentation (SSF) and SLSF. In one-step open SLSF process, 107.8 g/L lactic acid was obtained with a productivity of 3.4 g/(L.h) and a yield to theoretical glucose of 0.89 g/g. This is the highest yield and productivity of lactic acid reported on starchy residues, and provides an efficient route for the development of high value-added products.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China
| | - Huihui Liu
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China
| | - Yong Yang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China
| | - Xu Zhou
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, 116024, People's Republic of China.
| |
Collapse
|
4
|
Din NAS, Lim SJ, Maskat MY, Mutalib SA, Zaini NAM. Lactic acid separation and recovery from fermentation broth by ion-exchange resin: A review. BIORESOUR BIOPROCESS 2021; 8:31. [PMID: 38650212 PMCID: PMC10991309 DOI: 10.1186/s40643-021-00384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Lactic acid has become one of the most important chemical substances used in various sectors. Its global market demand has significantly increased in recent years, with a CAGR of 18.7% from 2019 to 2025. Fermentation has been considered the preferred method for producing high-purity lactic acid in the industry over chemical synthesis. However, the recovery and separation of lactic acid from microbial fermentation media are relatively complicated and expensive, especially in the process relating to second-generation (2G) lactic acid recovery. This article reviews the development and progress related to lactic acid separation and recovery from fermentation broth. Various aspects are discussed thoroughly, such as the mechanism of lactic acid production through fermentation, the crucial factors that influence the fermentation process, and the separation and recovery process of conventional and advanced lactic acid separation methods. This review's highlight is the recovery of lactic acid by adsorption technique using ion-exchange resins with a brief focus on the potential of in-site separation strategies alongside the important factors that influenced the lactic acid recovery process by ion exchange. Apart from that, other lactic acid separation techniques, such as chemical neutralization, liquid-liquid extraction, membrane separation, and distillation, are also thoroughly reviewed.
Collapse
Affiliation(s)
- Nur Akmal Solehah Din
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Mohamad Yusof Maskat
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Sahilah Abd Mutalib
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Nurul Aqilah Mohd Zaini
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
5
|
|
6
|
Vishnu Prasad J, Sahoo TK, Naveen S, Jayaraman G. Evolutionary engineering of Lactobacillus bulgaricus reduces enzyme usage and enhances conversion of lignocellulosics to D-lactic acid by simultaneous saccharification and fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:171. [PMID: 33088341 PMCID: PMC7566127 DOI: 10.1186/s13068-020-01812-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/06/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Simultaneous saccharification and fermentation (SSF) of pre-treated lignocellulosics to biofuels and other platform chemicals has long been a promising alternative to separate hydrolysis and fermentation processes. However, the disparity between the optimum conditions (temperature, pH) for fermentation and enzyme hydrolysis leads to execution of the SSF process at sub-optimal conditions, which can affect the rate of hydrolysis and cellulose conversion. The fermentation conditions could be synchronized with hydrolysis optima by carrying out the SSF at a higher temperature, but this would require a thermo-tolerant organism. Economically viable production of platform chemicals from lignocellulosic biomass (LCB) has long been stymied because of the significantly higher cost of hydrolytic enzymes. The major objective of this work is to develop an SSF strategy for D-lactic acid (D-LA) production by a thermo-tolerant organism, in which the enzyme loading could significantly be reduced without compromising on the overall conversion. RESULTS A thermo-tolerant strain of Lactobacillus bulgaricus was developed by adaptive laboratory evolution (ALE) which enabled the SSF to be performed at 45 °C with reduced enzyme usage. Despite the reduction of enzyme loading from 15 Filter Paper Unit/gLCB (FPU/gLCB) to 5 FPU/gLCB, we could still achieve ~ 8% higher cellulose to D-LA conversion in batch SSF, in comparison to the conversion by separate enzymatic hydrolysis and fermentation processes at 45 °C and pH 5.5. Extending the batch SSF to SSF with pulse-feeding of 5% pre-treated biomass and 5 FPU/gLCB, at 12-h intervals (36th-96th h), resulted in a titer of 108 g/L D-LA and 60% conversion of cellulose to D-LA. This is one among the highest reported D-LA titers achieved from LCB. CONCLUSIONS We have demonstrated that the SSF strategy, in conjunction with evolutionary engineering, could drastically reduce enzyme requirement and be the way forward for economical production of platform chemicals from lignocellulosics. We have shown that fed-batch SSF processes, designed with multiple pulse-feedings of the pre-treated biomass and enzyme, can be an effective way of enhancing the product concentrations.
Collapse
Affiliation(s)
- J. Vishnu Prasad
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| | - Tridweep K. Sahoo
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| | - S. Naveen
- Present Address: Indian Institute of Technology, BHU, Varanasi, India
| | - Guhan Jayaraman
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036 India
| |
Collapse
|
7
|
Liang S, Jiang W, Song Y, Zhou SF. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Lactobacillus delbrueckii Submitted to Adaptive Laboratory Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7660-7669. [PMID: 32603099 DOI: 10.1021/acs.jafc.0c00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To decrease d-lactic acid production cost, sugarcane molasses and soybean meal, low-cost agro-industrial wastes, were selected as feedstock. First, sugarcane molasses was used directly by Lactobacillus delbrueckii S-NL31, and the nutrients were released from soybean meal by protease hydrolysis. Subsequently, to ensure intensive substrate utilization and enhanced d-lactic acid production from sugarcane molasses and soybean meal, adaptation of L. delbrueckii S-NL31 to substrates was performed through adaptive laboratory evolution. After two-phase adaptive laboratory evolution, the evolved strain L. delbrueckii S-NL31-CM3-SBM with improved cell growth and d-lactic acid production on sugarcane molasses and soybean meal was obtained. To decipher the potential reasons for improved fermentation performance, a metabolomics-based approach was developed to profile the differences of intracellular metabolism between initial and evolved strain. The in-depth analysis elucidated how the key factors exerted influence on d-lactic acid biosynthesis. The results revealed that the enhancement of glycolysis pathway and cofactor supply was directly associated with increased lactic acid production, and the reinforcement of pentose phosphate pathway, amino acid metabolism, and oleic acid uptake improved cell survival and growth. These might be the main reasons for significantly improved d-lactic acid production by adaptive laboratory evolution. Finally, fed-batch simultaneous enzymatic hydrolysis of soybean meal and fermentation process by evolved strain resulted in d-lactic acid levels of 112.3 g/L, with an average production efficiency of 2.4 g/(L × h), a yield of 0.98 g/g sugar, and optical purity of 99.6%. The results show the applicability of d-lactic acid production in L. delbrueckii fed on agro-industrial wastes through adaptive laboratory evolution.
Collapse
Affiliation(s)
- Shaoxiong Liang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Yibo Song
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
8
|
Sun Y, Yang Y, Liu H, Wei C, Qi W, Xiu Z. Simultaneous liquefaction, saccharification, and fermentation of L-lactic acid using aging paddy rice with hull by an isolated thermotolerant Enterococcus faecalis DUT1805. Bioprocess Biosyst Eng 2020; 43:1717-1724. [PMID: 32388689 DOI: 10.1007/s00449-020-02364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/25/2020] [Indexed: 11/24/2022]
Abstract
Simultaneous liquefaction, saccharification, and fermentation (SLSF) has attracted much attention for the production of bio-based chemicals, including L-lactic acid, due to its high efficiency and low cost. In this study, a lactic acid-producing bacterium with high tolerance of temperature up to 55 °C was isolated and characterized as Enterococcus faecalis DUT1805. Various strategies of stepwise controlled temperature were proposed and investigated for glucose utilization. The results indicated that E. faecalis DUT 1805 exhibited an optimal temperature at 50 °C, which could achieve temperature compatibility of enzyme, saccharification, and fermentation, and decrease the possibility of contamination by the other microorganisms during the large-scale fermentation. To reduce the cost of raw material and operation for lactic acid production, aging paddy rice with hull (APRH) was used in L-lactic acid production by simultaneous liquefaction, saccharification, and fermentation (SLSF). An open SLSF operation at 50 °C and pH 6.5, and 17% (w/v) solid loading in 5 L bioreactors was demonstrated with the lactic acid titer, yield, and productivity of 73.75 g/L, 87% to initial starch, and 2.17 g/(L h), respectively.
Collapse
Affiliation(s)
- Yaqin Sun
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Yong Yang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Huihui Liu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Chuanxiang Wei
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Wenbin Qi
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116024, Liaoning, P. R. China.
| |
Collapse
|
9
|
Romo-Buchelly J, Rodríguez-Torres M, Orozco-Sánchez F. Biotechnological valorization of agro industrial and household wastes for lactic acid production. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n1.69284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lactic acid (LA) is an organic compound used in several industries, such as food, textile, chemical, and pharmaceutical. The global interest in this product is due to its use for the synthesis of numerous chemical compounds, including polylactic acid, a biode-gradable thermoplastic and substitute for petroleum-derived plastics. An in-depth overview of the use of industrial and household wastes as inexpensive substrates in order to reduce the cost of LA production is presented. A review is carried out of the biotech-nological aspects that must be taken into account when using some wastes with high transformation potential to produce LA in a submerged culture, as well recommendations for their use. The advantages and disadvantages of different types of treatments used for the transformation of waste into suitable substrates are considered. Several methods of fermentation, as well as genetic strategies for increasing the production, are summarized and compared. It is expected that in a few years there will be many ad-vances in these areas that will allow greater large-scale production of LA using agroindustrial or household wastes, with potential positive economic and environmental impact in some regions of the planet.
Collapse
|
10
|
Zaini NABM, Chatzifragkou A, Charalampopoulos D. Microbial production of d-lactic acid from dried distiller's grains with solubles. Eng Life Sci 2018; 19:21-30. [PMID: 32624952 DOI: 10.1002/elsc.201800077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/10/2018] [Accepted: 10/02/2018] [Indexed: 11/11/2022] Open
Abstract
d-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly-d-lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d-lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate-rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d-lactic acid production (27.9 g/L, 99.9% optical purity of d-lactic acid), with a higher glucose to d-lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d-lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed-batch SSF approach, where it was shown that the d-lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d-lactic acid from DDGS as it reduced the overall processing time and yielded high d-lactic acid concentrations.
Collapse
Affiliation(s)
- Nurul Aqilah Binti Mohd Zaini
- Department of Food and Nutritional Sciences University of Reading Whiteknights UK.,Centre of Biotechnology and Functional Food Faculty of Science and Technology Universiti Kebangsaan Malaysia Selangor Malaysia
| | | | | |
Collapse
|
11
|
Production of D-lactic acid by Lactobacillus delbrueckii ssp. delbrueckii from orange peel waste: techno-economical assessment of nitrogen sources. Appl Microbiol Biotechnol 2018; 102:10511-10521. [PMID: 30324487 DOI: 10.1007/s00253-018-9432-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
In this study, the effect of several organic nitrogen sources (namely peptone, meat extract-ME, yeast extract-YE, and corn steep liquor-CSL) on D-lactic acid production by Lactobacillus delbrueckii ssp. delbrueckii has been studied. While lactic acid bacteria (LAB) are well-known for their complex nutritional requirements, organic nitrogen source-related cost can be as high as 38% of total operational costs (OPEX), being its nature and concentration critical factors in the growth and productivity of the selected strain. Corn steep liquor (CSL) has been chosen for its adequacy, on the grounds of the D-lactic acid yield, productivity, and its cost per kilogram of product. Finally, orange peel waste hydrolysate supplemented with 37 g/l CSL has been employed for D-lactic acid production, reaching a final yield of 88% and a productivity of 2.35 g/l h. CSL cost has been estimated at 90.78$/ton of D-lactate.
Collapse
|
12
|
Liu P, Zheng Z, Xu Q, Qian Z, Liu J, Ouyang J. Valorization of dairy waste for enhanced D-lactic acid production at low cost. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R. Challenges and opportunities in lactic acid bioprocess design—From economic to production aspects. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.03.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production. Appl Microbiol Biotechnol 2018; 102:4765-4772. [DOI: 10.1007/s00253-018-8985-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 10/17/2022]
|
15
|
Shi S, Li J, Guan W, Blersch D. Nutrient value of fish manure waste on lactic acid fermentation by Lactobacillus pentosus. RSC Adv 2018; 8:31267-31274. [PMID: 35548205 PMCID: PMC9085642 DOI: 10.1039/c8ra06142d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/25/2018] [Indexed: 11/27/2022] Open
Abstract
The aim of this work was to study the feasibility of using fish manure waste as a nutrient source for lactic acid fermentation. Fish waste contains nitrogen and minerals that could support the growth of lactic acid bacteria (LAB), making it a good candidate as the nutrient source for lactic acid fermentation. Two different fish manure wastes, from Nile tilapia and channel catfish aquaculture, were investigated for their performance on different sugar substrates. Both fish waste types showed low efficiency in the direct fermentation of glucose, but satisfactory efficiencies in simultaneous saccharification and fermentation (SSF) of cellulosic materials, such as pure cellulose and paper sludge. The highest lactic acid yield obtained was 87% and 91%, with a corresponding volumetric productivity of 1.006 and 0.580 g L−1 h−1, and corresponding lactic acid concentration of 96 and 56 g L−1 for cellulose and paper sludge, respectively. Fish waste concentrations did not show much impact on lactic acid production for the SSF process, where increasing fish waste from 10 to 30 g L−1 resulted in less than a 10% yield increase. In the present study, fish manure waste was shown to be an effective and economic nutrient source for lactic acid production by SSF. Fish manure wastes are an effective nutrient source for lactic acid production using simultaneous saccharification and fermentation.![]()
Collapse
Affiliation(s)
- Suan Shi
- Department of Biosystems Engineering
- Auburn University
- USA
| | - Jing Li
- The Alabama Center for Paper and Bioresource Engineering
- Auburn University
- USA
| | - Wenjian Guan
- John A Paulson School of Engineering and Applied Sciences
- Harvard University
- USA
| | - David Blersch
- Department of Biosystems Engineering
- Auburn University
- USA
| |
Collapse
|
16
|
Li J, Sun J, Wu B, He B. Combined utilization of nutrients and sugar derived from wheat bran for d-Lactate fermentation by Sporolactobacillus inulinus YBS1-5. BIORESOURCE TECHNOLOGY 2017; 229:33-38. [PMID: 28092734 DOI: 10.1016/j.biortech.2016.12.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
To decrease d-Lactate production cost, wheat bran, a low-cost waste of milling industry, was selected as the sole feedstock. First, the nutrients were recovered from wheat bran by acid protease hydrolysis. Then, cellulosic hydrolysates were prepared from protease-treated samples after acid pretreatment and enzymatic saccharification. The combined use of nutrients and hydrolysates as nitrogen and carbon sources for fermentation by S. inulinus YB1-5 resulted in d-Lactate levels of 99.5g/L, with an average production efficiency of 1.94g/L/h and a yield of 0.89g/g glucose. Moreover, fed-batch simultaneous saccharification and fermentation process at 40°C, 20% (w/v) solid loading and 20FPU/g solid cellulase concentration was obtained. d-Lactate concentrations, yield, productivity, and optical purity were 87.3g/L, 0.65g/g glucose, 0.81g/L/h and 99.1%, respectively. This study provided a feasible procedure that can help produce cellulosic d-Lactate using agricultural waste without external nutrient supplementation.
Collapse
Affiliation(s)
- Jiahuang Li
- School of Life Sciences, Nanjing University, 163 Xianlin Road, Nanjing 210023, Jiangsu, China
| | - Junfei Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China.
| | - Bingfang He
- Jiangsu National Synergetic Innovation Center for Advanced Materials, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China; School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| |
Collapse
|
17
|
Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 2016; 100:9423-9437. [DOI: 10.1007/s00253-016-7843-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
|
18
|
Engineered biosynthesis of biodegradable polymers. ACTA ACUST UNITED AC 2016; 43:1037-58. [DOI: 10.1007/s10295-016-1785-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Abstract
Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.
Collapse
|
19
|
Bai Z, Gao Z, Sun J, Wu B, He B. D-Lactic acid production by Sporolactobacillus inulinus YBS1-5 with simultaneous utilization of cottonseed meal and corncob residue. BIORESOURCE TECHNOLOGY 2016; 207:346-352. [PMID: 26897413 DOI: 10.1016/j.biortech.2016.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
d-Lactic acid, is an important organic acid produced from agro-industrial wastes by Sporolactobacillus inulinus YBS1-5 was investigated to reduce the raw material cost of fermentation. The YBS1-5 strain could produce d-lactic acid by using cottonseed meal as the sole nitrogen source. For efficient utilization, the cottonseed meal was enzymatically hydrolyzed and simultaneously utilized during d-lactic acid fermentation. Corncob residues are rich in cellulose and can be enzymatically hydrolyzed without pretreatment. The hydrolysate of this lignocellulosic waste could be utilized by strain YBS1-5 as a carbon source for d-lactic acid production. Under optimal conditions, a high d-lactic acid concentration (107.2g/L) was obtained in 7-L fed-batch fermenter, with an average productivity of 1.19g/L/h and a yield of 0.85g/g glucose. The optical purity of d-lactic acid in the broth was 99.2%. This study presented a new approach for low-cost production of d-lactic acid for an industrial application.
Collapse
Affiliation(s)
- Zhongzhong Bai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Zhen Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Junfei Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China.
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, Jiangsu, China
| |
Collapse
|
20
|
Cho HD, Lee JH, Jeong JH, Kim JY, Yee ST, Park SK, Lee MK, Seo KI. Production of novel vinegar having antioxidant and anti-fatigue activities from Salicornia herbacea L. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1085-1092. [PMID: 25800973 DOI: 10.1002/jsfa.7180] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Salicornia herbacea L. is a halophyte that grows in salt marshes and contains significant amounts of salts and minerals. Because it is known as a folk medication to treat diseases, various processed products such as powder, globular type of powder, laver and extract have been developed. However, it is difficult to process as a drink because of its high salinity. In the present study, glasswort vinegar (GV) containing high amounts of organic acids and minerals was developed via two-step fermentation with unpolished rice substrates and investigated its antioxidant and anti-fatigue activities. RESULTS GV showed various free radical scavenging effects, reducing power, oxidized-LDL inhibition and superoxide dismutase-like activities. Compared with the control group (orally administered 7 g kg(-1) distilled water), the GV supplementation group showed increased running endurance and had higher glycogen accumulation in liver and muscles of rats exhausted by exercise. Furthermore, the GV-administered group demonstrated significantly elevated lactate and ATP metabolism, promoting enzyme activities such as muscle creatine kinase and lactate dehydrogenase, whereas serum fatigue biomarkers such as ammonia, lactate and inorganic acid were markedly decreased. CONCLUSION These results indicate that GV can be used as a functional food for the development of a dietary beverage to alleviate fatigue.
Collapse
Affiliation(s)
- Hyun-Dong Cho
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Ju-Hye Lee
- Research Institute of Basic Science, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Ji-Hye Jeong
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Jae-Yong Kim
- Jeonnam Institute of natural resources research, Jangheung, 529-851, Republic of Korea
| | - Sung-Tae Yee
- Department of Pharmacy, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Seok-Kyu Park
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, Republic of Korea
| | - Kwon-Il Seo
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, Republic of Korea
| |
Collapse
|
21
|
Highly stereoselective biosynthesis of (R)-α-hydroxy carboxylic acids through rationally re-designed mutation of D-lactate dehydrogenase. Sci Rep 2013; 3:3401. [PMID: 24292439 PMCID: PMC4070498 DOI: 10.1038/srep03401] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/15/2013] [Indexed: 12/02/2022] Open
Abstract
An NAD-dependent d-lactate dehydrogenase (d-nLDH) of Lactobacillus bulgaricus ATCC 11842 was rationally re-designed for asymmetric reduction of a homologous series of α-keto carboxylic acids such as phenylpyruvic acid (PPA), α-ketobutyric acid, α-ketovaleric acid, β-hydroxypyruvate. Compared with wild-type d-nLDH, the Y52L mutant d-nLDH showed elevated activities toward unnatural substrates especially with large substitutes at C-3. By the biocatalysis combined with a formate dehydrogenase for in situ generation of NADH, the corresponding (R)-α-hydroxy carboxylic acids could be produced at high yields and highly optical purities. Taking the production of chiral (R)-phenyllactic acid (PLA) from PPA for example, 50 mM PPA was completely reduced to (R)-PLA in 90 min with a high yield of 99.0% and a highly optical purity (>99.9% e.e.) by the coupling system. The results presented in this work suggest a promising alternative for the production of chiral α-hydroxy carboxylic acids.
Collapse
|
22
|
Wei M, Bai Y, Ao M, Jin W, Yu P, Zhu M, Yu L. Novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW). BIORESOURCE TECHNOLOGY 2013; 146:549-555. [PMID: 23973974 DOI: 10.1016/j.biortech.2013.07.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
A novel method utilizing microbial treatment for cleaner production of diosgenin from Dioscorea zingiberensis C.H. Wright (DZW) was presented. A new Bacillus pumilus HR19, which has the great ability to secrete pectinase, was screened and applied in the microbial treatment. Low-pressure steam expansion pretreatment (LSEP) was employed in advance to assist microbial treatment efficiently in releasing saponins, which are the precursors of diosgenin. Compared with the traditional process of acid hydrolysis, this novel process reduced the consumptions of water, acid and organic solvent by more than 92.5%, 97.0%, 97.0%, respectively, while simultaneously increasing the diosgenin yield by 6.21%. In addition, the microbial treatment was more efficient than enzymatic treatment, which arised from that microorganisms could be induced to secrete related enzymes by the compositions of DZW and relieve product inhibition by utilizing enzyme hydrolysates.
Collapse
Affiliation(s)
- Mi Wei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun Bai
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingzhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwen Jin
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Panpan Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China; Wuhan Institute of Biotechnology, Wuhan 430075, China.
| |
Collapse
|
23
|
Pagana I, Morawicki R, Hager TJ. Lactic acid production using waste generated from sweet potato processing. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irene Pagana
- Department of Food Science; University of Arkansas; 2650 N Young Ave Fayetteville AR 72702 USA
| | - Ruben Morawicki
- Department of Food Science; University of Arkansas; 2650 N Young Ave Fayetteville AR 72702 USA
| | - Tiffany J. Hager
- Department of Food Science; University of Arkansas; 2650 N Young Ave Fayetteville AR 72702 USA
| |
Collapse
|
24
|
l(+)-Lactic acid production from furfural residues and corn kernels with treated yeast as nutrients. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-012-1865-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
|
26
|
Nolasco-Hipolito C, Zarrabal OC, Kamaldin RM, Teck-Yee L, Lihan S, Bujang KB, Nitta Y. Lactic acid production by Enteroccocus faecium in liquefied sago starch. AMB Express 2012; 2:53. [PMID: 23021076 PMCID: PMC3492075 DOI: 10.1186/2191-0855-2-53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 09/17/2012] [Indexed: 11/25/2022] Open
Abstract
Enterococcus faecium No. 78 (PNCM-BIOTECH 10375) isolated from puto, a type of fermented rice in the Philippines was used to produce lactic acid in repeated batch fermentation mode. Enzymatically liquefied sago starch was used as the sole carbon source, since sago (Metroxylon spp) is a sustainable crop for industrial exploitation. Liquefied sago starch was inoculated with E. faecium to perform the saccharification and fermentation processes simultaneously. Results demonstrated that E. faecium was reused for 11 fermentation cycles with an average lactic acid yield of 36.3 ± 4.71 g/l. The lactic acid production was superior to that of simple batch mode and continuous fermentation in terms of lactic acid concentration. An un-dissociated lactic acid concentration of 1.15 mM affected the productivity of the cells. Work is in progress to maintain and increase the usability of the cells over higher fermentation cycles.
Collapse
Affiliation(s)
- Cirilo Nolasco-Hipolito
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
- SpeCorp, Sdn Bhd, Level 2 Block 218 KNLD., Jln Tun Ahmad Zaidi Adruce, Sarawak, Kuching, 93200, Malaysia
| | - Octavio Carvajal Zarrabal
- Biochemical and Nutrition Chemistry Area, University of Veracruz, SS Juan Pablo II s/n, Boca del Río, CP 94294, Veracruz, Mexico
| | - Rubena Malfia Kamaldin
- SpeCorp, Sdn Bhd, Level 2 Block 218 KNLD., Jln Tun Ahmad Zaidi Adruce, Sarawak, Kuching, 93200, Malaysia
| | - Ling Teck-Yee
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Samuel Lihan
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Kopli Bin Bujang
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Youji Nitta
- The College of Agriculture, Ibaraki University, 3-21-1, Chuuo, Ami, Inashiki, Ibaraki, 300-0393, Japan
| |
Collapse
|
27
|
Wu CS. Polylactide-based renewable composites from natural products residues by encapsulated film bag: Characterization and biodegradability. Carbohydr Polym 2012; 90:583-91. [DOI: 10.1016/j.carbpol.2012.05.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 04/03/2012] [Accepted: 05/22/2012] [Indexed: 11/30/2022]
|
28
|
Separation of d-lactic acid from aqueous solutions based on the adsorption technology. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Gao C, Zhang W, Huang Y, Ma C, Xu P. Efficient conversion of 1,2-butanediol to (R)-2-hydroxybutyric acid using whole cells of Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2012; 115:75-78. [PMID: 22126977 DOI: 10.1016/j.biortech.2011.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 05/31/2023]
Abstract
(R)-2-Hydroxybutyric acid ((R)-2-HBA) is an important building block for azinothricin family of antitumour antibiotics and biodegradable poly(2-hydroxybutyric acid). However, optically active (R)-2-HBA could not be produced through microbial fermentation or chemical synthesis. Several biocatalytic methods have been reported for the production of (R)-2-HBA. Those processes used expensive and scarce substrates and would not be suitable for practical application. In this work, Gluconobacter oxydans DSM 2003 was confirmed to have the ability to produce (R)-2-HBA from 1,2-butanediol, a non-toxic and inexpensive compound that had a great potential for biotechnological processes. Under the optimal conditions, the biocatalytic process produced (R)-2-HBA at a high concentration (18.5 g l(-1)) and a high enantiomeric excess (99.7%). The biocatalysis process introduced in this study may provide a technically and economically interesting route for production of (R)-2-HBA.
Collapse
Affiliation(s)
- Chao Gao
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | | | | | | | | |
Collapse
|
30
|
Sasaki C, Okumura R, Asakawa A, Asada C, Nakamura Y. Production of D-lactic acid from sugarcane bagasse using steam-explosion. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/352/1/012054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Lu Z, Wei M, Yu L. Enhancement of pilot scale production of l(+)-lactic acid by fermentation coupled with separation using membrane bioreactor. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Relative catalytic efficiency of ldhL- and ldhD-encoded products is crucial for optical purity of lactic acid produced by lactobacillus strains. Appl Environ Microbiol 2012; 78:3480-3. [PMID: 22344644 DOI: 10.1128/aem.00058-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NAD-dependent l- and d-lactate dehydrogenases coexist in Lactobacillus genomes and may convert pyruvic acid into l-lactic acid and d-lactic acid, respectively. Our findings suggest that the relative catalytic efficiencies of ldhL- and ldhD-encoded products are crucial for the optical purity of lactic acid produced by Lactobacillus strains.
Collapse
|
33
|
Abdel-Rahman MA, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 2011; 156:286-301. [PMID: 21729724 DOI: 10.1016/j.jbiotec.2011.06.017] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
Lactic acid is an industrially important product with a large and rapidly expanding market due to its attractive and valuable multi-function properties. The economics of lactic acid production by fermentation is dependent on many factors, of which the cost of the raw materials is very significant. It is very expensive when sugars, e.g., glucose, sucrose, starch, etc., are used as the feedstock for lactic acid production. Therefore, lignocellulosic biomass is a promising feedstock for lactic acid production considering its great availability, sustainability, and low cost compared to refined sugars. Despite these advantages, the commercial use of lignocellulose for lactic acid production is still problematic. This review describes the "conventional" processes for producing lactic acid from lignocellulosic materials with lactic acid bacteria. These processes include: pretreatment of the biomass, enzyme hydrolysis to obtain fermentable sugars, fermentation technologies, and separation and purification of lactic acid. In addition, the difficulties associated with using this biomass for lactic acid production are especially introduced and several key properties that should be targeted for low-cost and advanced fermentation processes are pointed out. We also discuss the metabolism of lignocellulose-derived sugars by lactic acid bacteria.
Collapse
Affiliation(s)
- Mohamed Ali Abdel-Rahman
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
34
|
D-lactic acid production by a genetically engineered strain Corynebacterium glutamicum. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0675-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
John RP, Anisha GS, Pandey A, Nampoothiri KM. REVIEW: Genome shuffling: A new trend in improved bacterial production of lactic acid. Ind Biotechnol (New Rochelle N Y) 2010. [DOI: 10.1089/ind.2010.6.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rojan P. John
- Institut National de la Recherche Scientifique-Eau Terre Environnement, 490, rue de la Couronne, Québec, Canada G1K 9A9
| | - GS Anisha
- Department of Zoology, Government College, Chittur, Palakkad, Kerala, India
| | - Ashok Pandey
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram, Kerala, India
| | - K. Madhavan Nampoothiri
- Biotechnology Division, National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Thiruvananthapuram, Kerala, India
| |
Collapse
|
36
|
Silveira MS, Fontes CPML, Guilherme AA, Fernandes FAN, Rodrigues S. Cashew Apple Juice as Substrate for Lactic Acid Production. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0382-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Strain improvement of Lactobacillus lactis for d-lactic acid production. Biotechnol Lett 2009; 32:517-20. [DOI: 10.1007/s10529-009-0187-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/25/2022]
|