1
|
Liu H, Long J, Zhang K, Li M, Zhao D, Song D, Zhang W. Agricultural biomass/waste-based materials could be a potential adsorption-type remediation contributor to environmental pollution induced by pesticides-A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174180. [PMID: 38936738 DOI: 10.1016/j.scitotenv.2024.174180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The widespread use of pesticides that are inevitable to keep the production of food grains brings serious environmental pollution problems. Turning agricultural biomass/wastes into materials addressing the issues of pesticide contaminants is a feasible strategy to realize the reuse of wastes. Several works summarized the current applications of agricultural biomass/waste materials in the remediation of environmental pollutants. However, few studies systematically take the pesticides as an unitary target pollutant. This critical review comprehensively described the remediation effects of crop-derived waste (cereal crops, cash crops) and animal-derived waste materials on pesticide pollution. Adsorption is considered a superior and highlighted effect between pesticides and materials. The review generalized the sources, preparation, characterization, condition optimization, removal efficiency and influencing factors analysis of agricultural biomass/waste materials. Our work mainly emphasized the promising results in lab experiments, which helps to clarify the current application status of these materials in the field of pesticide remediation. In the meantime, rigorous pros and cons of the materials guide to understand the research trends more comprehensively. Overall, we hope to achieve a large-scale use of agricultural biomass/wastes.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jun Long
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Kexin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Miqi Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, PR China.
| | - Danyang Zhao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Dongkai Song
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China.
| | - Weiyin Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
2
|
Aziz K, Mamouni R, Kaya S, Aziz F. Low-cost materials as vehicles for pesticides in aquatic media: a review of the current status of different biosorbents employed, optimization by RSM approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39907-39944. [PMID: 37227639 DOI: 10.1007/s11356-023-27640-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Water contamination by pesticides is increasing dramatically due to population growth and the extensive use of pesticides in agriculture, leading to grave environmental and health concerns. Thus, efficient processes and the design and development of effective treatment technologies are required due to the enormous demand for fresh water. The adsorption approach has been widely used to remove organic contaminants such as pesticides because of its performance, less expense, high selectivity, and simplicity of operation compared to other treatment technologies. Among alternative adsorbents, biomaterials abundantly available for pesticide sorption from water resources have attracted the attention of researchers worldwide. The main objective of this review article is to (i) present studies on a wide range of raw or chemically modified biomaterials potentially effective in removing pesticides from aqueous media; (ii) indicating the effectiveness of biosorbents as green and low-cost materials for removing pesticides from wastewater; and (iii) furthermore, report the application of response surface methodology (RSM) for modeling and optimizing adsorption.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Rachid Mamouni
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140, Sivas, Turkey
| | - Faissal Aziz
- Laboratory of Water, Biodiversity & Climate Changes, Faculty of Science Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco.
- National Centre for Research and Study On Water and Energy (CNEREE), University Cadi Ayyad, BP 511, 40000, Marrakech, Morocco.
| |
Collapse
|
3
|
Soleimani H, Sharafi K, Amiri Parian J, Jaafari J, Ebrahimzadeh G. Acidic modification of natural stone for Remazol Black B dye adsorption from aqueous solution- central composite design (CCD) and response surface methodology (RSM). Heliyon 2023; 9:e14743. [PMID: 37025793 PMCID: PMC10070669 DOI: 10.1016/j.heliyon.2023.e14743] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigated the adsorption capacity of Remazol Black B (RBB) from aqueous solutions using a pumice stone as a cheap, high-frequent, and available adsorbent. The raw pumice was modified using five acids: Acetic, Sulfuric, Phosphoric, Nitric, and Hydrochloric acid. Fourier transform infrared spectrograph (FTIR), x-ray fluorescence (XRF), and scanning electron microscopy (SEM) were used to analyze the morphological and chemical properties of raw and modified adsorbents. The adsorption capacity equilibrium was investigated using the Langmuir, Freundlich, Temkin, and Dubinin - Radushkevich isotherms. The results indicated that the data are well-fitted with Langmuir isotherm. The maximum adsorption capacity was observed when pumice modified with H2SO4 (qm = 10.00 mg/g) was used, and the RBB removal efficiency was higher than that for raw pumice (qm = 5.26 mg/g). Also, the results were best fitted with pseudo-second-order kinetic. The experiments indicated that increasing the RBB concentration reduces the efficiency of adsorbents while increasing the contact time and adsorbent doses improved the RBB removal efficiency. Accordingly, it can be concluded that pumice stone modified with various acids can be considered a cheap adsorbent with high efficiency in removing RBB from industry effluent.
Collapse
Affiliation(s)
- Hamed Soleimani
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiomars Sharafi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jafar Amiri Parian
- Biosystems Engineering Department, Bu-Ali Sina University, Hamedan, Iran
- Corresponding author.
| | - Jalil Jaafari
- Department of Environmental Health Engineering, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran
| | - Gholamreza Ebrahimzadeh
- Department of Environmental Health Engineering, School of Public Health, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
4
|
Aziz K, Aziz F, Mamouni R, Aziz L, Anfar Z, Azrrar A, Kjidaa B, Saffaj N, Laknifli A. High thiabendazole fungicide uptake using Cellana tramoserica shells modified by copper: characterization, adsorption mechanism, and optimization using CCD-RSM approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86020-86035. [PMID: 34490581 DOI: 10.1007/s11356-021-16340-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In this paper, Cellana tramoserica (CT) shells were modified by copper and used as an adsorbent to remove thiabendazole (TBZ) from aqueous media. The removal efficiency of TBZ onto CT shells and modified Cellana tramoserica (CT-Cu) shells was investigated by considering the following parameters: initial pesticide concentration, solution pH, agitation time, temperature, and adsorbent mass. The experimental results show that the pseudo-first-order and Langmuir models well describe the adsorption process. The maximum adsorption amount for CT and CT-Cu is 319.68 mg/g and 376.12 mg/g, respectively. CT-Cu showed higher TBZ removal efficiency than CT, explained by the ligand exchange between the water and the pesticide molecules in the metal coordination sphere. Response surface methodology combined with central composite design (RSM-CCD) was used to optimize the adsorption conditions. Optimized values were obtained at 5 for pH, 50 ppm, 120 min, and 20 mg of CT-Cu adsorbent. Under these optimal conditions, 91% of TBZ was removed by adsorption onto CT-Cu. Graphical abstract.
Collapse
Affiliation(s)
- Khalid Aziz
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco.
| | - Rachid Mamouni
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Layla Aziz
- Laboratory, Computer Science Department (LAROSERI), Faculty of Sciences, Chouaib Doukkali University, El Jadida, Morocco
| | - Zakaria Anfar
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
- Institute of Sciences and Materials of Mulhouse - CNRS, Haute Alsace University, Mulhouse, France
| | - Ahmed Azrrar
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Bouthayna Kjidaa
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Nabil Saffaj
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Abdellatif Laknifli
- Laboratory of Biotechnology, Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
5
|
Sanz-Santos E, Álvarez-Torrellas S, Larriba M, Calleja-Cascajero D, García J. Enhanced removal of neonicotinoid pesticides present in the Decision 2018/840/EU by new sewage sludge-based carbon materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115020. [PMID: 35398643 DOI: 10.1016/j.jenvman.2022.115020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/03/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Due to the increasingly strict legislation about the disposal of sewage sludge, it is necessary to find sustainable solutions to manage this waste at low-cost conditions. In addition, priority contaminants are now attracting much attention since they are usually detected in WWTP effluents. In this work, five sludge have been used as precursors for the synthesis of activated carbons subsequently tested in the removal by adsorption of three neonicotinoid pesticides listed in the EU Watch List: acetamiprid (ACT), thiamethoxam (THM), and imidacloprid (IMD). Generally, the activated carbons were prepared by chemical activation using ZnCl2 as an activating agent and then the resulting materials were pyrolyzed at 800 °C for 2 h. The synthesized activated carbons showed different textural properties; thus, the best adsorption results were found for AC-Industrial activated carbon, obtained from an industrial origin sewage sludge, with high equilibrium adsorption capacities (qe = 104.2, 137.0, and 119.9 mg g-1), for ACT, THM, and IMD, respectively. Furthermore, it was elucidated that the use of CO2 in the synthesis generated an opening, followed by widening, of the narrowest microporosity, increasing the specific surface area of the carbon materials. The kinetic and isotherm adsorption experimental data were obtained for each of the pesticide-activated carbon systems; thus, the kinetic curves were well-fitted to the pseudo-second-order kinetic model, as well as, Freundlich and Guggenheim-Anderson-de Boer (GAB) empirical models were used for the fitting of the equilibrium adsorption isotherms, finding that GAB model best fitted the experimental data. Additionally, the regeneration of the activated carbons using methanol as a regenerating agent and the single and simultaneous adsorption of a hospital wastewater effluent, fortified with the three studied pesticides have been explored.
Collapse
Affiliation(s)
- Eva Sanz-Santos
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Silvia Álvarez-Torrellas
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/n, 28040, Madrid, Spain.
| | - Marcos Larriba
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/n, 28040, Madrid, Spain
| | - David Calleja-Cascajero
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/n, 28040, Madrid, Spain
| | - Juan García
- Catalysis and Separation Processes Group, Chemical Engineering and Materials Department, Faculty of Chemistry, Complutense University, Avda. Complutense S/n, 28040, Madrid, Spain
| |
Collapse
|
6
|
A review on the physicochemical properties and utilization of date seeds in value-added engineering products. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Abbas T, Wadhawan T, Khan A, McEvoy J, Khan E. Iron turning waste: Low cost and sustainable permeable reactive barrier media for remediating dieldrin, endrin, DDT and lindane in groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117825. [PMID: 34330012 DOI: 10.1016/j.envpol.2021.117825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The feasibility and effectiveness of iron turning waste as low cost and sustainable permeable reactive barrier (PRB) media for remediating dieldrin, endrin, dichlorodiphenyltrichloroethane (DDT), and lindane individually (batch system) and combined (continuous flow column) in water were investigated. After 10 min of reaction in a batch system, removal of endrin, dieldrin, and DDT was higher (86-91 %) than lindane (41 %) using 1 g of iron turning waste in 200 mL of pesticide solution (20 μg/L for each pesticide). Among the studied pesticides, only lindane removal decreased substantially in the presence of nitrate (37 %) and magnesium (18 %). Acidic water environment (pH = 4) favored the pesticide removal than neutral and basic environments. For the column experiments, sand alone as PRB media was ineffective for remediating the pesticides in water. When only iron turning was used, the removal efficiencies of lindane, endrin, and dieldrin were 83-88 % and remained stable during 60 min of the experiments. DDT removal was less than other pesticides (58 %). Sandwiching the iron turning waste media between two sand layers improved DDT removal (79 %) as well as limited the iron content below a permissible level in product water. In a long-term PRB column performance evaluation, iron turning waste (150 g) removed all pesticides in water (initial concentration of each pesticide = 2 μg/L) effectively (≥94 %) at a hydraulic retention time of 1.6 h. Iron turning waste, which was mainly in the form of zerovalent iron (Fe0), was oxidized to ferrous (Fe2+) and ferric (Fe3+) iron during its reaction with pesticides, and electrons donated by Fe0 and Fe2+ were responsible for complete dechlorination of all the pesticides. Therefore, it can be used as inexpensive and sustainable PRB media for groundwater remediation especially in developing countries where groundwater contamination with pesticides is more prevalent.
Collapse
Affiliation(s)
- Tauqeer Abbas
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108-6050, USA; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| | | | - Asad Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, USA, 89154-4015.
| |
Collapse
|
8
|
Extraction of Chlorobenzenes and PCBs from Water by ZnO Nanoparticles. Processes (Basel) 2021. [DOI: 10.3390/pr9101764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Metal oxide nanoparticles have great potential for selective adsorption and catalytic degradation of contaminants from aqueous solutions. In this study, we employ mass spectrometry and molecular dynamics simulations to better understand the chemical and physical mechanisms determining the affinity of chlorobenzenes and polychlorinated biphenyls (PCBs) for zinc oxide nanoparticles (ZnO NPs). The experiments and simulations both demonstrate that the adsorption coefficients for chlorobenzenes increase steadily with the number of chlorine atoms, while, for PCBs, the relation is more complex. The simulations link this complexity to chlorine atoms at ortho positions hindering coplanar conformations. For a given number of chlorine atoms, the simulations predict decreasing adsorption affinity with increasing numbers of ortho substitutions. Consequently, the simulations predict that some of the highest adsorption affinities for ZnO NPs are exhibited by dioxin-like PCBs, suggesting the possibility of selective sequestration of these most acutely toxic PCBs. Remarkably, the experiments show that the PCB adsorption coefficients of ZnO NPs with diameters ≤ 80 nm exceed those of a soil sample by 5–7 orders of magnitude, meaning that a single gram of ZnO NPs could sequester low levels of PCB contamination from as much as a ton of soil.
Collapse
|
9
|
Sahmarani R, Net S, Chbib C, Baroudi M, Ouddane B. Elimination of organochlorine pesticides from water by a new activated carbon prepared from Phoenix dactylifera date stones. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10140-10154. [PMID: 33169280 DOI: 10.1007/s11356-020-11445-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
This work focused on the characterization of activated carbon (AC) prepared by pyrolysis-chemical activation with phosphoric acid (60%) from date stones derived from three categories of date palm Phoenix dactylifera (Ajwa, Anbari, Khudri), and on its feasibility of elimination of organochlorine pesticides (OCPs) in water samples. The obtained results showed that the three-produced AC date stone had developed a porous structure, large specific surface area, and acidic property. Due to the high SBET (> 1200 m2/g), Ajwa stones activated coal was considered as the best AC that can be used for the adsorption of environmental contaminants. The effects of several parameters such as the Ajwa AC dose, the time of contact, the initial concentration of pesticides, and the pH were evaluated. The results showed that the adsorption balance of organochlorine pesticides on this AC was reached after a contact time of 60 min at an optimal pHzpc equal to 2. In addition, 0.4 g of AC was the best quantity found to retain the largest quantity of pesticides while considering the economic part.
Collapse
Affiliation(s)
- Rayane Sahmarani
- Université Libanaise, Faculté de santé publique section III, Laboratoire des Sciences de l'Eau et de l'Environnement (L.S.E.E), Tripoli, Lebanon
- Université de Lille, Equipe Physico-Chimie de l'Environnement, LASIR UMR CNRS 8516, Bâtiment C8, 59655, Villeneuve d'Ascq Cedex, France
| | - Sopheak Net
- Université de Lille, Equipe Physico-Chimie de l'Environnement, LASIR UMR CNRS 8516, Bâtiment C8, 59655, Villeneuve d'Ascq Cedex, France.
| | - Chaza Chbib
- Université Libanaise, Faculté de santé publique section III, Laboratoire des Sciences de l'Eau et de l'Environnement (L.S.E.E), Tripoli, Lebanon
| | - Moomen Baroudi
- Université Libanaise, Faculté de santé publique section III, Laboratoire des Sciences de l'Eau et de l'Environnement (L.S.E.E), Tripoli, Lebanon
| | - Baghdad Ouddane
- Université de Lille, Equipe Physico-Chimie de l'Environnement, LASIR UMR CNRS 8516, Bâtiment C8, 59655, Villeneuve d'Ascq Cedex, France
| |
Collapse
|
10
|
Williams NE, Aydinlik NP. KOH ratio effect, characterization, and kinetic modeling of methylene blue from aqueous medium using activated carbon from Thevetia peruviana shell. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1765161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ndifreke Etuk Williams
- Department of Basic Sciences and Humanities, Faculty of Arts and Science, Cyprus International University, Turkey
| | - Nur Pasaoglulari Aydinlik
- Department of Basic Sciences and Humanities, Faculty of Arts and Science, Cyprus International University, Turkey
| |
Collapse
|
11
|
Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Taweekun J, Azad AK. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1080/25765299.2020.1766799] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Md Sumon Reza
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, Brunei Darussalam
| | - Cheong Sing Yun
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, Brunei Darussalam
| | - Shammya Afroze
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, Brunei Darussalam
| | - Nikdalila Radenahmad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, Brunei Darussalam
| | - Muhammad S. Abu Bakar
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, Brunei Darussalam
| | - Rahman Saidur
- Research Center for Nano-Materials and Energy Technology (RCNMET), School of Science and Technology, Sunway University, Selangor, Darul Ehsan, Malaysia
| | - Juntakan Taweekun
- Department of Mechanical Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkla, Thailand
| | - Abul K. Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, Brunei Darussalam
| |
Collapse
|
12
|
Sofi IR, Bhat RA, Quadir R, Manzoor J. Occurrence of Pesticides and Their Removal From Aquatic Medium by Adsorption. ADVANCES IN ENVIRONMENTAL ENGINEERING AND GREEN TECHNOLOGIES 2019. [DOI: 10.4018/978-1-5225-6111-8.ch015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large amounts of pesticides are used annually, and in some cases, a part of the pesticide enters the water bodies by surface runoff to form long-term residues. In the recent past, the adverse effects of pesticides on the environment and human health received serious attention by the public and the competent authorities. Various conventional methods are used to remove these pesticides from water, but those methods are either costly or typical in operation. Therefore, adsorption is considered as an ecofriendly method. The adsorbent derived from biomaterial is considered an encouraging adsorbent due to its cost-effective and high adsorption capacity. In this chapter, detailed information on different types of pesticides, their metabolites, environmental concerns, and present status on degradation methods using adsorbents will be reviewed. This chapter presents a comprehensive overview on the recent advancement in the utilization of different adsorbents for the removal of pesticides. Overall, this study assists researchers to move forward in exploring a simple and economically viable technique to produce adsorbents with outstanding physiochemical properties and excellent adsorption capacity, so that the pesticides can be removed from aquatic ecosystem.
Collapse
|
13
|
Ndifreke WE, Pasaoglulari Aydinlik N. KOH modified Thevetia peruviana shell activated carbon for sorption of dimethoate from aqueous solution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 54:1-13. [PMID: 30285582 DOI: 10.1080/03601234.2018.1501143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Modified Thevetia peruviana shell activated carbon for sorption of dimethoate from aqueous solution derived with potassium hydroxide (KOH) was studied at different concentrations for its potential application in water treatment. The batch sorption was investigated using dimethoate solution of 10-100 mg/L concentrations. Proximate analysis was determined and changes on the surfaces and structure of the TPS were characterized after chemical activation with KOH using XRD, FTIR, SEM-EDAX, pHpzc, BET. The quantum chemical calculation for dimethoate yielded molecule associated energies of -9.8421 (HOMO) and -2.3879 (LUMO) and a total energy of -53,376.2. The kinetic of the sorption was modeled which indicated the sorption equilibrium time as 90 min and pseudo-first order kinetics model showing R2 = 0.994 provided a better description of the process. Analysis of sorption equilibrium revealed that the data fitted well to Freundlich sorption isotherm model (R2 = 0.966), indicating multi-layer sorption of dimethoate on the surface of sorbent. The sorption of dimethoate onto KOHTPS shows 92.60% removal efficiency.
Collapse
Affiliation(s)
- Williams Etuk Ndifreke
- a Faculty of Engineering, Department of Environmental Science , Cyprus International University , Nicosia , Turkey
- b Environmental Research Centre , Cyprus International University , Nicosia , Turkey
| | - Nur Pasaoglulari Aydinlik
- a Faculty of Engineering, Department of Environmental Science , Cyprus International University , Nicosia , Turkey
- b Environmental Research Centre , Cyprus International University , Nicosia , Turkey
| |
Collapse
|
14
|
Nanofiber-Based Materials for Persistent Organic Pollutants in Water Remediation by Adsorption. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Rezgui A, Guibal E, Boubakera T. Sorption of Hg(II) and Zn(II) ions using lignocellulosic sorbent (date pits). CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22728] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amina Rezgui
- Laboratoire C.H.P.N.R; Faculté des Sciences; Université de Monastir; Avenue de l'Environnement 5019 Monastir, Tunisie
| | - Eric Guibal
- Ecole des mines d'Alès, Centre des Matériaux des Mines d'Alès; C2MA/MPA/BCI; 6, Avenue de Clavières F-30319 Alès cedex France
| | - Taoufik Boubakera
- Laboratoire C.H.P.N.R; Faculté des Sciences; Université de Monastir; Avenue de l'Environnement 5019 Monastir, Tunisie
| |
Collapse
|
16
|
Pap S, Radonić J, Trifunović S, Adamović D, Mihajlović I, Vojinović Miloradov M, Turk Sekulić M. Evaluation of the adsorption potential of eco-friendly activated carbon prepared from cherry kernels for the removal of Pb 2+, Cd 2+ and Ni 2+ from aqueous wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 184:297-306. [PMID: 27729179 DOI: 10.1016/j.jenvman.2016.09.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Development, characterization and evaluation of the efficiency of cost-effective medium for the removal of Pb2+, Cd2+ and Ni2+ from aqueous systems, as a novel, eco-friendly solution for wastewater remediation were done. The precursors for low-cost adsorbent were lignocellulosic raw materials (sweet/sour cherry kernels), as industrial byproducts and components of organic solid waste. Activated carbon synthesis was carried out by thermochemical conversion (H3PO4, 500 °C) in the complete absence of inert atmosphere. Characterization of the activated carbon was performed by elemental analysis, FTIR, SEM, EDX and BET. BET surface area corresponds to 657.1 m2 g-1. The evaluation also included the influence of pH, contact time, solute concentration and adsorbent dose on the separation efficiency in the batch operational mode. The equilibrium and kinetic studies of adsorption were done. The maximum adsorption capacity of the activated carbon for Cd2+ ions was calculated from the Langmuir isotherm and found to be 198.7 mg g-1. Adsorption of Pb2+ and Ni2+ were better suitable to Freundlich model with the maximum adsorption capacity of 180.3 mg g-1 and 76.27 mg g-1, respectively. The results indicate that the pseudo-second-order model best describes adsorption kinetic data. Based on desorption study results, activated carbon was successfully regenerated with HNO3 for 3 cycles. In order to provide the results for basic cost-effective analysis, competing ion-effects in a real sample have been evaluated.
Collapse
Affiliation(s)
- Sabolč Pap
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Trg Dositeja Obradovića 6, 21 000 Novi Sad, Serbia
| | - Jelena Radonić
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Trg Dositeja Obradovića 6, 21 000 Novi Sad, Serbia
| | - Snežana Trifunović
- Faculty of Chemistry, Chair of Applied Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Dragan Adamović
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Trg Dositeja Obradovića 6, 21 000 Novi Sad, Serbia
| | - Ivana Mihajlović
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Trg Dositeja Obradovića 6, 21 000 Novi Sad, Serbia
| | - Mirjana Vojinović Miloradov
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Trg Dositeja Obradovića 6, 21 000 Novi Sad, Serbia
| | - Maja Turk Sekulić
- Faculty of Technical Sciences, Department of Environmental Engineering and Occupational Safety and Health, University of Novi Sad, Trg Dositeja Obradovića 6, 21 000 Novi Sad, Serbia.
| |
Collapse
|
17
|
Al-Saidi H. The fast recovery of gold(III) ions from aqueous solutions using raw date pits: Kinetic, thermodynamic and equilibrium studies. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2013.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Shirzad-Siboni M, Khataee A, Hassani A, Karaca S. Preparation, characterization and application of a CTAB-modified nanoclay for the adsorption of an herbicide from aqueous solutions: Kinetic and equilibrium studies. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Dwivedi C, Gupta A, Chaudhary A, Nandi CK. Gold nanoparticle chitosan composite hydrogel beads show efficient removal of methyl parathion from waste water. RSC Adv 2014. [DOI: 10.1039/c4ra03870c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Rojas R, Vanderlinden E, Morillo J, Usero J, El Bakouri H. Characterization of sorption processes for the development of low-cost pesticide decontamination techniques. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 488-489:124-135. [PMID: 24830926 DOI: 10.1016/j.scitotenv.2014.04.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/21/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
The adsorption/desorption behavior of four pesticides (atrazine, alachlor, endosulfan sulfate and trifluralin) in aqueous solutions onto four adsorbents (sunflower seed shells, rice husk, composted sewage sludge and soil) was investigated. Pesticide determination was carried out using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. Maximum removal efficiency (73.9%) was reached using 1 g of rice husk and 50 mL of pesticide solution (200 μg L(-1)). The pseudo adsorption equilibrium was reached with 0.6 g organic residue, which was used in subsequent experiments. The pseudo-first-order, pseudo-second-order kinetics and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated. The first model was more suitable for the sorption of atrazine and alachlor while the pseudo-second-order best described endosulfan sulfate and trifluralin adsorption, which showed the fastest sorption rates. 4h was considered as the equilibrium time for determining adsorption isotherms. Experimental data were modeled by Langmuir and Freundlich models. In most of the studied cases both models can describe the adsorption process, although the Freundlich model was applicable in all cases. The sorption capacity increased with the hydrophobic character of the pesticides and decreased with their water solubility. Rice husk was revealed as the best adsorbent for three of the four studied pesticides (atrazine, alachlor and endosulfan sulfate), while better results were obtained with composted sewage sludge and sunflower seed shell for the removal of trifluralin. Although desorption percentages were not high (with the exception of alachlor, which reached a desorption rate of 57%), the Kfd values were lower than the Kf values for adsorption and all H values were below 100, indicating that the adsorption was weak.
Collapse
Affiliation(s)
- Raquel Rojas
- Department of Chemical and Environmental Engineering, University of Seville, 41092 Seville, Spain.
| | - Eva Vanderlinden
- Department of Chemical and Environmental Engineering, University of Seville, 41092 Seville, Spain
| | - José Morillo
- Department of Chemical and Environmental Engineering, University of Seville, 41092 Seville, Spain
| | - José Usero
- Department of Chemical and Environmental Engineering, University of Seville, 41092 Seville, Spain
| | - Hicham El Bakouri
- Department of Chemical and Environmental Engineering, University of Seville, 41092 Seville, Spain
| |
Collapse
|
21
|
El-Kady AA, Abdel Ghafar HH, Ibrahim MB, Abdel-Wahhab MA. Utilization of activated carbon prepared from agricultural waste for the removal of organophosphorous pesticide from aqueous media. DESALINATION AND WATER TREATMENT 2013; 51:7276-7285. [DOI: 10.1080/19443994.2013.792137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
22
|
Rojas R, Morillo J, Usero J, Delgado-Moreno L, Gan J. Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 458-460:614-623. [PMID: 23707867 DOI: 10.1016/j.scitotenv.2013.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/04/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
Abstract
This study evaluated the ability of three unmodified organic residues (composted sewage sludge, RO1; chicken manure, RO2; and a residue from olive oil production called 'orujillo', RO3) and a soil to sorb six pesticides (atrazine, lindane, alachlor, chlorpyrifos, chlorfenvinphos and endosulfan sulfate) and thereby explored the potential environmental value of these organic residues for mitigating pesticide pollution in agricultural production and removing contaminants from wastewater. Pesticide determination was carried out using gas chromatography coupled with mass spectrometry. Adsorption data were analyzed by the Langmuir and Freundlich adsorption approaches. Experimental results showed that the Freundlich isotherm model best described the adsorption process and that Kf values increased with an increase in organic matter (OM) content of the amended soil. The order of adsorption of pesticides on soils was: chlorpyrifos≥endosulfan sulfate>chlorfenvinphos≥lindane>alachlor≥atrazine. The sorption was greater for the most hydrophobic compounds and lower for the most polar ones, as corroborated by a negative correlation between Kf values and solubility. Sorption increased with an increase in organic matter. Sorption capacity was positively correlated with the organic carbon (OC) content. The organic amendment showing the maximum sorption capacity was RO3 in all cases, except for chlorfenvinphos, in which it was RO2. The order of adsorption capacity of the amendments depended on the pesticide and the organic dosage. In the case of the 10% amendment the order was RO3>RO2>RO1>soil, except for chlorfenvinphos, in which it was RO2>RO3>RO1>soil, and atrazine, where RO2 and RO3 amendments had the same effect on the soil sorption capacity (RO2≥RO3>RO1>soil).
Collapse
Affiliation(s)
- Raquel Rojas
- Department of Chemical and Environmental Engineering, University of Seville, 41092, Seville, Spain.
| | | | | | | | | |
Collapse
|
23
|
Albadarin AB, Mangwandi C, Walker GM, Allen SJ, Ahmad MNM, Khraisheh M. Influence of solution chemistry on Cr(VI) reduction and complexation onto date-pits/tea-waste biomaterials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 114:190-201. [PMID: 23134975 DOI: 10.1016/j.jenvman.2012.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
Tea waste (TW) and Date pits (DP) were investigated for their potential to remove toxic Cr(VI) ions from aqueous solution. Investigations showed that the majority of the bound Cr(VI) ions were reduced to Cr(III) after biosorption at acidic conditions. The electrons for the reduction of Cr(VI) may have been donated from the TW and DP biomasses. The experimental data obtained for Cr(VI)-TW and Cr(VI)-DP at different solution temperatures indicate a multilayer type biosorption, which explains why the Sips isotherm accurately represents the experimental data obtained in this study. The Sips maximum biosorption capacities of Cr(VI) onto TW and DP were 5.768 and 3.199 mmol/g at 333 K, respectively, which is comparatively superior to most other low-cost biomaterials. Fourier transform infrared spectroscopic analysis of the metal loaded biosorbents confirmed the participation of -COOH, -NH(2) and O-CH(3) groups in the reduction and complexation of chromium. Thermodynamic parameters demonstrated that the biosorption of Cr(VI) onto TW and DP biomass was endothermic, spontaneous and feasible at 303-333 K. The results evidently indicated that tea waste and date pits would be suitable biosorbents for Cr(VI) in wastewater under specific conditions.
Collapse
Affiliation(s)
- Ahmad B Albadarin
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Chattoraj S, Sadhukhan B, Mondal NK. Predictability by Box-Behnken model for carbaryl adsorption by soils of Indian origin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2013; 48:626-636. [PMID: 23638889 DOI: 10.1080/03601234.2013.777283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study was undertaken to investigate the adsorption capacity of carbaryl on four Indian soils with different physiochemical properties. A batch adsorption study was carried out in order to evaluate the maximum adsorption capacity of carbaryl using a Response Surface Methodology (RSM). The effects of operating parameter such as initial carbaryl concentration (1-20 mgL⁻¹), adsorbent dosage (0.5-6 g) and contact time (10-180 min) were examined. The proposed quadratic model for Box-Behnken design fits very well to the experimental data because it may be used to navigate design space according to ANOVA results. The regression co-efficient (R²) of the models developed and the results of validation experiments conducted at optimal conditions strongly suggests that the predicted values are in good agreement with experimental results. Contour and response surface plots are used to determine the interactions effects of main factors and optimal conditions of the process. The experiment can be utilized as a guideline for better understanding of carbaryl adsorption onto soil under different operating conditions. The results show that the forest soil is most efficient in binding carbaryl (Sevin) than the other types of soil tested.
Collapse
Affiliation(s)
- Soumya Chattoraj
- Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | | | | |
Collapse
|
25
|
Daniel VV, Gulyani BB, Prakash Kumar BG. Usage of Date Stones as Adsorbents: A Review. J DISPER SCI TECHNOL 2012. [DOI: 10.1080/01932691.2011.620532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Khoshnood M, Azizian S. Adsorption of 2,4-dichlorophenoxyacetic acid pesticide by graphitic carbon nanostructures prepared from biomasses. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2012.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Ozcan S, Tor A, Aydin ME. An investigation on the sorption behaviour of montmorillonite for selected organochlorine pesticides from water. ENVIRONMENTAL TECHNOLOGY 2012; 33:1239-1245. [PMID: 22856295 DOI: 10.1080/09593330.2011.618936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The sorption behaviour of montmorillonite towards organochlorine pesticides (OCPs) from aqueous solutions is reported. After preliminary investigation of the sorption capability of clay for selected OCPs, aldrin was used as a model compound for further experiments. The batch sorption experiments were carried out as functions of contact time, pH of the solution, initial aldrin concentration and dosage of the montmorillonite. After traditional liquid-liquid extraction, the determination of OCPs was carried out by gas chromatography coupled with a micro-electron capture detector (GC-microECD). The results indicated that sorption of aldrin followed the second-order kinetic model and that the equilibrium time depended on the initial aldrin concentration. The film diffusion was found to be a main sorption rate control mechanism. The removal was explained according to the electrostatic bonding mechanism. The Freundlich isotherm model better represented the sorption data than the Langmuir model. The montmorillonite was also used efficiently for the removal of OCPs from fortified tap and surface (lake) water samples.
Collapse
Affiliation(s)
- Senar Ozcan
- Environmental Engineering, Selcuk University, Konya, Turkey.
| | | | | |
Collapse
|
28
|
Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ibrahim MNM. The use of date palm as a potential adsorbent for wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2012; 19:1464-1484. [PMID: 22207239 DOI: 10.1007/s11356-011-0709-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/15/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND In tropical countries, the palm tree is one of the most abundant and important trees. Date palm is a principal fruit grown in many regions of the world. It is abundant, locally available and effective material that could be used as an adsorbent for the removal of different pollutants from aqueous solution. REVIEW This article presents a review on the role of date palm as adsorbents in the removal of unwanted materials such as acid and basic dyes, heavy metals, and phenolic compounds. Many studies on adsorption properties of various low cost adsorbent, such as agricultural waste and activated carbons based on agricultural waste have been reported in recent years. CONCLUSION Studies have shown that date palm-based adsorbents are the most promising adsorbents for removing unwanted materials. No previous review is available where researchers can get an overview of the adsorption capacities of date palm-based adsorbent used for the adsorption of different pollutants. This review provides the recent literature demonstrating the usefulness of date palm biomass-based adsorbents in the adsorption of various pollutants.
Collapse
Affiliation(s)
- Tanweer Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen YX, Zhong BH, Fang WM. Adsorption characterization of lead(II) and cadmium(II) on crosslinked carboxymethyl starch. J Appl Polym Sci 2011. [DOI: 10.1002/app.35607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Zhang XL, Cai ZS, Zhao YP, Sun G. Adsorption kinetics and isotherms of a pesticide on polyester fibers by carrier finishing. J Appl Polym Sci 2011. [DOI: 10.1002/app.33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, Ahmad A. Removal of pesticides from water and wastewater by different adsorbents: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2010; 28:231-271. [PMID: 21069614 DOI: 10.1080/10590501.2010.525782] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this review article, the use of various low-cost adsorbents for the removal of pesticides from water and wastewater has been reviewed. Pesticides may appear as pollutants in water sources, having undesirable impacts to human health because of their toxicity, carcinogenicity, and mutagenicity or causing aesthetic problems such as taste and odors. These pesticides pollute the water stream and it can be removed very effectively using different low-cost adsorbents. It is evident from a literature survey of about 191 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for pesticides.
Collapse
Affiliation(s)
- Tanweer Ahmad
- School of Industrial Technology, Universiti Sains Malaysia, Malaysia
| | | | | | | | | | | |
Collapse
|
32
|
Khan MA, Kim SW, Rao RAK, Abou-Shanab RAI, Bhatnagar A, Song H, Jeon BH. Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions. JOURNAL OF HAZARDOUS MATERIALS 2010; 178:963-972. [PMID: 20211523 DOI: 10.1016/j.jhazmat.2010.02.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/01/2010] [Accepted: 02/10/2010] [Indexed: 05/28/2023]
Abstract
The objective of this work was to compare the effectiveness of four commercially available granular activated carbons (GACs); coconut (CGAC), wood (WGAC), lignite (LGAC) and bituminous (BGAC) for the removal of dichloromethane (DCM) from aqueous solution by batch process. Various parameters such as thermodynamics, kinetics, pH, concentration of adsorbate, dosages of adsorbent and competitive ions effect on DCM adsorption were investigated. Maximum adsorption capacity (45.5mg/g for CGAC) was observed at pH 6.0-8.0. The kinetics data indicate better applicability of pseudo-second-order kinetics model at 25 and 35 degrees C. Freundlich model was better obeyed on CGAC, WGAC, and BGAC, while LGAC followed Langmuir model. The adsorption process for 100mg/L initial DCM concentration on CGAC was exothermic in nature. The adsorption of DCM on various adsorbents involves physical adsorption process. The adsorption of DCM over a large range of initial concentration on CGAC and LGAC is effective even in presence of ionic salts.
Collapse
Affiliation(s)
- Moonis Ali Khan
- Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do 220-710, South Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
El Bakouri H, Usero J, Morillo J, Ouassini A. Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium, kinetic and thermodynamic modeling studies. BIORESOURCE TECHNOLOGY 2009; 100:4147-4155. [PMID: 19409776 DOI: 10.1016/j.biortech.2009.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 05/27/2023]
Abstract
The adsorption behavior of drin pesticides from aqueous solution onto acid treated olive stones (ATOS) was investigated using stir bar sorptive extraction and gas chromatography coupled with mass spectroscopy. The effects of sorbent particle size, adsorbent dose, contact time, concentration of pesticide solution and temperature on the adsorption processes were systematically studied in batch shaking sorption experiments. Maximum removal efficiency (94.8%) was reached for aldrin (0.5 mg L(-1)) using the fraction 63-100 microm of ATOS (solid/liquid ratio: 1 g L(-1)). Experimental data were modeled by Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The Freundlich isotherm model (R(2)=0.98-0.99) fitted the equilibrium data better than the Langmuir and D-R isotherm models, with low sum of error values (SE=1.4-9.2%). The mean adsorption free energy derived from the D-R isotherm model (R(2)=0.95-0.99) showed that the adsorption of drin pesticides was taken place by weak physical forces, such as van der Waals forces and hydrogen bonding. The calculated thermodynamic parameters, DeltaH, DeltaS and DeltaG prove that drin pesticides adsorption on ATOS was feasible, spontaneous and exothermic under examined conditions. The pseudo first order, pseudo second order kinetic and the intra-particle diffusion models were used to describe the kinetic data and rate constants were evaluated.
Collapse
Affiliation(s)
- Hicham El Bakouri
- Department of Chemical and Environmental Engineering, University of Seville, 41092 Seville, Spain.
| | | | | | | |
Collapse
|