1
|
Hemsinli A, Gurkok S. Evaluation of a novel purified and characterized alkaline protease from the extremophile Exiguobacterium alkaliphilum VLP1 as a detergent additive. Biotechnol J 2024; 19:e2300441. [PMID: 38010865 DOI: 10.1002/biot.202300441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
This study focused on the isolation and identification of a novel alkaline protease-producing strain from Lake Van, the largest soda lake on Earth. The objective was to purify, characterize, and investigate the potential application of protease in the detergent industry. Through a combination of classical and molecular methods, the most potent protease producer was identified as Exiguobacterium alkaliphilum VLP1. The purification process, involving ammonium sulfate precipitation, ultrafiltration, and anion exchange chromatography, resulted in a 45-fold purification with a yield of 6.4% and specific activity of 1169 U mg-1 protein. The enzyme exhibited a molecular weight of 69 kDa, a Km value of 0.4 mm, and a maximal velocity (Vmax ) value of 2000 U mg-1 . The optimum activity was observed at 40°C and potential of hydrogen (pH) 9, while the enzyme also exhibited remarkable stability in the ranges of 30-60°C and pH 9-12. Notably, this study represents the first report of an alkaline protease isolated and characterized from E. alkaliphilum. This study also highlighted the potential of the enzyme as a detergent additive, as it showed compatibility with commercial detergents and effectively removed blood and chocolate stains from fabrics.
Collapse
Affiliation(s)
- Asiye Hemsinli
- Institute of Natural and Applied Sciences, Atatürk University, Erzurum, Turkey
| | - Sumeyra Gurkok
- Department of Biology, Science Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
2
|
Abuhena M, Al-Rashid J, Azim MF, Khan MNM, Kabir MG, Barman NC, Rasul NM, Akter S, Huq MA. Optimization of industrial (3000 L) production of Bacillus subtilis CW-S and its novel application for minituber and industrial-grade potato cultivation. Sci Rep 2022; 12:11153. [PMID: 35778426 PMCID: PMC9249890 DOI: 10.1038/s41598-022-15366-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
A commercial plant probiotic product was developed employing Bacillus subtilis CW-S in submerged fermentation. The effects of molasses and urea on cell growth were investigated with the goal of low-cost manufacturing. Plackett–Burman and Central-Composite Design (CCD) were utilized to optimize production parameters to maximize productivity. The stability of the formulated product and its efficacy in cultivating minituber in aeroponics and industrial-grade potatoes in the field were assessed. The results showed that the medium BS10 (molasses and urea) produced satisfactory cell density (7.19 × 108 CFU/mL) as compared to the control (1.51 × 107 CFU/mL) and BS1-BS9 (expensive) media (1.84 × 107–1.37 × 109 CFU/mL). According to validated CCD results, optimized parameters fitted well in pilot (300 L; 2.05 × 109 CFU/mL) and industrial (3000 L; 2.01 × 109 CFU/mL) bioreactors, resulting in a two-fold increase in cell concentration over laboratory (9.84 × 108 CFU/mL) bioreactors. In aeroponics, CW-S produced excellent results, with a significant increase in the quantity and weight of minitubers and the survival rate of transplanted plantlets. In a field test, the yield of industrial-grade (> 55 mm) potatoes was increased with a reduction in fertilizer dose. Overall, the findings suggest that CW-S can be produced commercially utilizing the newly developed media and optimized conditions, making plant probiotics more cost-effective and accessible to farmers for crop cultivation, particularly in aeroponic minituber and industrial-grade potato production.
Collapse
Affiliation(s)
- Md Abuhena
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh
| | - Jubair Al-Rashid
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.,Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Md Faisal Azim
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.
| | - Md Niuz Morshed Khan
- Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Md Golam Kabir
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.,Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Nirmal Chandra Barman
- Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Noorain Munim Rasul
- Department of Research and Development, Apex Biofertilizers and Biopesticides Limited, Gobindaganj, Gaibandha, 5740, Bangladesh.,Apex Biotechnology Laboratory, Apex Holdings Ltd., East Chandora, Shafipur, Kaliakoir, Gazipur, 1751, Bangladesh
| | - Shahina Akter
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 461-701, Republic of Korea.
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
3
|
Hou J, Liu W, Hu W, Chen J, Wang J, Li P, Li Y. Isolation, production and optimization of endogenous alkaline protease from in-situ sludge and its evaluation as sludge hydrolysis enhancer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2700-2713. [PMID: 34115624 DOI: 10.2166/wst.2021.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioconversion (e.g. anaerobic fermentation and compost) is the common recycling method of waste activated sludge (WAS) and its hydrolysis, as the rate-limiting step of fermentation, could be accelerated by protease. However, the commercial protease was unstable in a sludge environment, which increased the cost. An endogenous alkaline protease stable in sludge environment was screened in this study and its suitability for treating the sludge was analyzed. The optimal production medium was determined by Response Surface Methodology as starch 20 g/L, KH2PO4 4 g/L, MgSO4·7H2O 1 g/L, sodium carboxy-methyl-cellulose 4 g/L, casein 4 g/L and initial pH 11.3, which elevated the yield of protease by up to 15 times (713.46 U/mL) compared with the basal medium. The obtained protease was active and stable at 35 °C-50 °C and pH 7.0-11.0. Furthermore, it was highly tolerant to sludge environment and maintained high efficiency of sludge hydrolysis for a long time. Thus, the obtained protease significantly hydrolyzed WAS and improved its bioavailability. Overall, this work provided a new insight for enzymatic treatment of WAS by isolating the endogenous and stable protease in a sludge environment, which would promote the resource utilization of WAS by further bioconversion.
Collapse
Affiliation(s)
- Jie Hou
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Wenbin Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Wanrong Hu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Jinqiong Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Yonghong Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| |
Collapse
|
4
|
Optimization of Collagenase Production by Pseudoalteromonas sp. SJN2 and Application of Collagenases in the Preparation of Antioxidative Hydrolysates. Mar Drugs 2017; 15:md15120377. [PMID: 29207560 PMCID: PMC5742837 DOI: 10.3390/md15120377] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/06/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Collagenases are the most important group of commercially-produced enzymes. However, even though biological resources are abundant in the sea, very few of these commercially popular enzymes are from marine sources, especially from marine bacteria. We optimized the production of marine collagenases by Pseudoalteromonas sp. SJN2 and investigated the antioxidant activities of the hydrolysates. Media components and culture conditions associated with marine collagenase production by Pseudoalteromonas sp. SJN2 were optimized by statistical methods, namely Plackett–Burman design and response surface methodology (RSM). Furthermore, the marine collagenases produced by Pseudoalteromonas sp. SJN2 were seen to efficiently hydrolyze marine collagens extracted from fish by-products, and remarkable antioxidant capacities of the enzymatic hydrolysates were shown by DPPH radical scavenging and oxygen radical absorbance capacity (ORAC) tests. The final optimized fermentation conditions were as follows: soybean powder, 34.23 g·L−1; culture time, 3.72 d; and temperature, 17.32 °C. Under the optimal fermentation conditions, the experimental collagenase yield obtained was 322.58 ± 9.61 U·mL−1, which was in agreement with the predicted yield of 306.68 U·mL−1. Collagen from Spanish mackerel bone, seabream scale and octopus flesh also showed higher DPPH radical scavenging rates and ORAC values after hydrolysis by the collagenase. This study may have implications for the development and use of marine collagenases. Moreover, seafood waste containing beneficial collagen could be used to produce antioxidant peptides by proteolysis.
Collapse
|
5
|
Li H, Cui Y, Zhang L, Zhang L, Liu H, Yu J. Optimization of recombinant Zea mays transglutaminase production and its influence on the functional properties of yogurt. Food Sci Biotechnol 2017; 26:723-730. [PMID: 30263597 DOI: 10.1007/s10068-017-0083-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/01/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
The requirements for the production of optimized Zea mays transglutaminase (TGZo) using Pichia pastoris GS115 (pPIC9K-tgzo) were optimized in this study. Plackett-Burman design was used to screen variables that significantly influence TGZo production. Oleic acid, methanol, and loading volume were identified as the most significant parameters. Central composite design was employed to determine the optimal level of these three parameters for TGZo production. Results showed that 1078 mU/mL of TGZo activity and 7.6 mg/L of TGZo production were obtained under conditions of 0.07% oleic acid, 1.31% methanol, and 7.36% loading volume. To explore the functional characteristics of TGZo, it was used in yogurt. It was found that the addition of TGZo could produce yogurt with stronger acid gel and higher consistency, cohesiveness, index of viscosity, and apparent viscosity than the untreated product. Therefore, TGZo can be used as a substitute for microbial transglutaminase in the yogurt, even in the food industry.
Collapse
Affiliation(s)
- Hongbo Li
- 1School of Food and Engineering and Biological Technology, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - Yanhua Cui
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Lanwei Zhang
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Lili Zhang
- 3College of Food Science, Northeast Agricultural University, Harbin, 150030 Heilongjiang China
| | - Hui Liu
- 2School of Food Science and Engineering, Harbin Institute of Technology, Harbin, 150090 Heilongjiang China
| | - Jinghua Yu
- 1School of Food and Engineering and Biological Technology, Tianjin University of Science & Technology, Tianjin, 300457 China
| |
Collapse
|
6
|
Chuprom J, Bovornreungroj P, Ahmad M, Kantachote D, Enomoto T. Statistical optimization for the improved production of an extracellular alkaline nuclease by halotolerant Allobacillus halotolerans MSP69: Scale-up approach and its potential as flavor enhancer of fish sauce. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Han SJ, Park H, Kim S, Kim D, Park HJ, Yim JH. Enhanced production of protease by Pseudoalteromonas arctica PAMC 21717 via statistical optimization of mineral components and fed-batch fermentation. Prep Biochem Biotechnol 2016; 46:328-35. [PMID: 25830556 DOI: 10.1080/10826068.2015.1031390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of this study was to statistically optimize the mineral components of the nutritional medium required for enhancing the production of a cold-active extracellular serine-type protease, W-Pro21717, by the Antarctic bacterium Pseudoalteromonas arctica PAMC 21717. Skim milk was identified as the major efficient inducer. Among the 12 components included in the unoptimized medium, skim milk, NaCl, Na2SO4, Fe(C6H5O7) (ferric citrate), and KCl were determined, by the Plackett-Burman and Box-Behnken design, to have a major effect on W-Pro21717 production. Fed-batch fermentation (5 L scale) using the mineral-optimized medium supplemented with concentrated skim milk (critical medium component) resulted in a W-Pro21717 activity of 53.4 U/L, a 15-fold increment in production over that obtained using unoptimized flask culture conditions. These findings could be applied to scale up the production of cold-active protease.
Collapse
Affiliation(s)
- Se Jong Han
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea.,b Department of Polar Sciences , University of Science and Technology , Incheon , South Korea
| | - Heeyong Park
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Sunghui Kim
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Dockyu Kim
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Ha Ju Park
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| | - Joung Han Yim
- a Division of Polar Life Sciences , Korea Polar Research Institute , Incheon , South Korea
| |
Collapse
|
8
|
Hepziba Suganthi S, Ramani K. Microbial assisted industrially important multiple enzymes from fish processing waste: purification, characterization and application for the simultaneous hydrolysis of lipid and protein molecules. RSC Adv 2016. [DOI: 10.1039/c6ra11867d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fish processing waste (FPW) was evaluated as the substrate for the concomitant production of industrially important alkaline lipase and protease byStreptomyces thermolineatusfor the hydrolysis of lipid and protein rich FPW.
Collapse
Affiliation(s)
- S. Hepziba Suganthi
- Biomolecules and Biocatalysis Laboratory
- Department of Biotechnology
- SRM University
- India
| | - K. Ramani
- Biomolecules and Biocatalysis Laboratory
- Department of Biotechnology
- SRM University
- India
| |
Collapse
|
9
|
Manivasagan P, Oh J. Production of a Novel Fucoidanase for the Green Synthesis of Gold Nanoparticles by Streptomyces sp. and Its Cytotoxic Effect on HeLa Cells. Mar Drugs 2015; 13:6818-37. [PMID: 26569267 PMCID: PMC4663555 DOI: 10.3390/md13116818] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/04/2022] Open
Abstract
Marine actinobacteria-produced fucoidanases have received considerable attention as one of the major research topics in recent years, particularly for the medical exploitation of fucoidans and their degradation products. The present study describes the optimization and production of a novel fucoidanase for the green synthesis of gold nanoparticles and its biological applications. The production of fucoidanase was optimized using Streptomyces sp. The medium components were selected in accordance with the Plackett-Burman design and were further optimized via response surface methodology. The fucoidanase was statistically optimized with the most significant factors, namely wheat bran 3.3441 g/L, kelp powder 0.7041 g/L, and NaCl 0.8807 g/L, respectively. The biosynthesized gold nanoparticles were determined by UV-vis spectroscopy and were further characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis, and high-resolution transmission electron microscopy. Furthermore, the biosynthesized gold nanoparticles exhibited a dose-dependent cytotoxicity against HeLa cells and the inhibitory concentration (IC50) was found to be 350 µg/mL at 24 h and 250 µg/mL at 48 h. Therefore, the production of novel fucoidanase for the green synthesis of gold nanoparticles has comparatively rapid, less expensive and wide application to anticancer therapy in modern medicine.
Collapse
Affiliation(s)
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 608-737, Korea.
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus), Pukyong National University, Busan 608-737, Korea.
| |
Collapse
|
10
|
Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess Biosyst Eng 2015; 38:1879-88. [PMID: 26135004 DOI: 10.1007/s00449-015-1428-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.
Collapse
|
11
|
Zhang J, Zhu C, Fan D, Ma X, Mi Y, Xue W. A Two-Step Protocol to Remove Endotoxins from Human-Like Collagen. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2014.978467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Use of aiiA gene amplification for AHL-lactonase production from endophytic bacterium Enterobacter species. Int J Biol Macromol 2015; 72:1013-9. [DOI: 10.1016/j.ijbiomac.2014.09.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/18/2022]
|
13
|
Priya JDA, Divakar K, Prabha MS, Selvam GP, Gautam P. Isolation, purification and characterisation of an organic solvent-tolerant Ca2+-dependent protease from Bacillus megaterium AU02. Appl Biochem Biotechnol 2014; 172:910-32. [PMID: 24122712 DOI: 10.1007/s12010-013-0589-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/03/2013] [Indexed: 11/26/2022]
Abstract
A new organic solvent-tolerant strain Bacillus megaterium AU02 which secretes an organic solvent-tolerant protease was isolated from milk industry waste. Statistical methods were employed to achieve optimum protease production of 43.6 U/ml in shake flask cultures. The productivity of the protease was increased to 53 U/ml when cultivated under controlled conditions in a 7-L fermentor. The protease was purified to homogeneity by a three-step process with 24 % yield and specific activity of 5,375 U/mg. The molecular mass of the protease was found to be 59 kDa. The enzyme was active over a wide range of pH (6.0–9.0), with an optimum activity at pH 7.0 and temperature from 40 to 70 °C having an optimum activity at 50 °C. The thermal stability of the enzyme increased significantly in the presence of CaCl2, and it retained 90 % activity at 50 °C for 3 h. The Km and Vmax values were determined as 0.722 mg/ml and 0.018 U/mg respectively. The metalloprotease exhibited significant stability in the presence of organic solvents with log P values more than 2.5, nonionic detergents and oxidising agent. An attempt was made to test the synthesis of aspartame precursor (Cbz-Asp-Phe-NH2) which was catalysed by AU02 protease in the presence of 50 % DMSO. These properties of AU02 protease make it an ideal choice for enzymatic peptide synthesis in organic media.
Collapse
|
14
|
Zhang Y, Ng IS, Yao C, Lu Y. Orthogonal array deciphering MRS medium requirements for isolated Lactobacillus rhamnosus ZY with cell properties characterization. J Biosci Bioeng 2014; 118:298-304. [DOI: 10.1016/j.jbiosc.2014.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/29/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
15
|
Sequential Statistical Optimization of Media Components for the Production of Glucoamylase by Thermophilic Fungus Humicola grisea MTCC 352. Enzyme Res 2014; 2014:317940. [PMID: 25120926 PMCID: PMC4120784 DOI: 10.1155/2014/317940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/25/2014] [Accepted: 06/28/2014] [Indexed: 11/17/2022] Open
Abstract
Glucoamylase is an industrially important enzyme which converts soluble starch into glucose. The media components for the production of glucoamylase from thermophilic fungus Humicola grisea MTCC 352 have been optimized. Eight media components, namely, soluble starch, yeast extract, KH2PO4, K2HPO4, NaCl, CaCl2, MgSO4 ·7H2O, and Vogel's trace elements solution, were first screened for their effect on the production of glucoamylase and only four components (soluble starch, yeast extract, K2HPO4, and MgSO4 ·7H2O) were identified as statistically significant using Plackett-Burman design. It was fitted into a first-order model (R (2) = 0.9859). Steepest ascent method was performed to identify the location of optimum. Central composite design was employed to determine the optimum values (soluble starch: 28.41 g/L, yeast extract: 9.61 g/L, K2HPO4: 2.42 g/L, and MgSO4 ·7H2O: 1.91 g/L). The experimental activity of 12.27 U/mL obtained was close to the predicted activity of 12.15. High R (2) value (0.9397), low PRESS value (9.47), and AARD values (2.07%) indicate the accuracy of the proposed model. The glucoamylase production was found to increase from 4.57 U/mL to 12.27 U/mL, a 2.68-fold enhancement, as compared to the unoptimized medium.
Collapse
|
16
|
Govarthanan M, Park SH, Kim JW, Lee KJ, Cho M, Kamala-Kannan S, Oh BT. Statistical optimization of alkaline protease production from brackish environment Bacillus sp. SKK11 by SSF using horse gram husk. Prep Biochem Biotechnol 2014; 44:119-31. [PMID: 24152099 DOI: 10.1080/10826068.2013.792277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Protease production by Bacillus sp. SKK11 isolated from brackish environment was studied by solid-state fermentation with horse gram husk. Response surface methodology-based Box-Behnken design (BBD) was used to optimize the variables such as pH, maltose, and MgSO₄. The BBD design analysis showed a reasonable adjustment of the quadratic model with the experimental data. Statistics-based contour and three-dimensional (3-D) plots were generated to evaluate the changes in the response surface and to understand the relationship between the enzyme yield and the culture conditions. The maximum yield of the enzyme was observed at pH 9.0.
Collapse
Affiliation(s)
- Muthusamy Govarthanan
- a Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University , Iksan , South Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Vaishnav D, Suthar J, Oza T, Dave G, Sheth N, Sanghvi G. A statistical approach for the enhanced production of thermostable alkaline protease showing detergent compatibility activity fromBacillus circulans. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2014.913579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Li Y, Wang H, Hua F, Su M, Zhao Y. Trans-membrane transport of fluoranthene by Rhodococcus sp. BAP-1 and optimization of uptake process. BIORESOURCE TECHNOLOGY 2014; 155:213-219. [PMID: 24457306 DOI: 10.1016/j.biortech.2013.12.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/25/2013] [Accepted: 12/27/2013] [Indexed: 06/03/2023]
Abstract
The mechanism of transport of (14)C-fluoranthene by Rhodococcus sp. BAP-1, a Gram-positive bacterium isolated from crude oil-polluted soil, was examined. Our finding demonstrated that the mechanism for fluoranthene travel across the cell membrane in Rhodococcus sp. BAP-1 requires energy. Meanwhile, the transport of fluoranthene involves concurrent catabolism of (14)C, that leading to the generation of significant amount of (14)CO2. Combined with trans-membrane transport dynamic and response surface methodology, a significant influence of temperature, pH and salinity on cellular uptake rate was screened by Plackett-Burman design. Then, Box-Behnken design was employed to optimize and enhanced the trans-membrane transport process. The results predicted by Box-Behnken design indicated that the maximum cellular uptake rate of fluoranthene could be achieve to 0.308μmolmin(-1)mg(-1)·protein (observed) and 0.304μmolmin(-1)mg(-1)·protein (predicted) when the initial temperature, pH and salinity were set at 20°C, 9% and 1%, respectively.
Collapse
Affiliation(s)
- Yi Li
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, Beijing, China.
| | - Fei Hua
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Mengyuan Su
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yicun Zhao
- College of Water Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
19
|
Su X, Liu Y, Hu J, Ding L, Shen C. Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria. SPRINGERPLUS 2014; 3:117. [PMID: 24616844 PMCID: PMC3945202 DOI: 10.1186/2193-1801-3-117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
The screening of pollutant-degrading bacteria are limited due to most of bacteria in the natural environment cannot be cultivated. For the purpose of resuscitating and stimulating "viable but non-culturable" (VBNC) or uncultured bacteria, Micrococcus luteus proteins are more convenient and cost-effective than purified resuscitation-promoting factor (Rpf) protein. In this study, medium composition and culture conditions were optimized by using statistical experimental design and analysis to enhance protein production by M. luteus. The most important variables influencing protein production were determined using the Plackett-Burman design (PBD) and then central composite design (CCD) was adopted to optimize medium composition and culture conditions to achieve maximum protein yield. Results showed that the maximum protein yield of 25.13 mg/L (vs. 25.66 mg/L predicted) was obtained when the mineral solution, Lithium L-lactate, initial pH and incubation time were set at 1.5 ml/L, 8.75 g/L, 7.5 and 48 h, respectively. The predicated values calculated with the model were very close to the experimental values. Protein production was obviously increased with optimization fitting well with the observed fluorescence intensity. These results verified the feasibility and accuracy of this optimization strategy. This study provides promising information for exploring highly desirable pollutant-degrading microorganisms.
Collapse
Affiliation(s)
- Xiaomei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058 China
| | - Yindong Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058 China
| | - Jinxing Hu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058 China
| | - Linxian Ding
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004 China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866#, Hangzhou, 310058 China
| |
Collapse
|
20
|
Selvam K, Govarthanan M, Kamala-Kannan S, Govindharaju M, Senthilkumar B, Selvankumar T, Sengottaiyan A. Process optimization of cellulase production from alkali-treated coffee pulp and pineapple waste using Acinetobacter sp. TSK-MASC. RSC Adv 2014. [DOI: 10.1039/c4ra00066h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to assess the mixed combination of coffee pulp waste (CPW) and pineapple waste (PW) residues for cellulase production using newly isolated Acinetobacter sp.
Collapse
Affiliation(s)
- Kandasamy Selvam
- Centre for Biotechnology
- Muthayammal College of Arts and Science
- Namakkal – 637 408, India
| | - Muthusamy Govarthanan
- PG & Research Department of Biotechnology
- Mahendra Arts and Science College
- Namakkal – 637501, India
- Division of Biotechnology
- College of Environmental and Bioresource Sciences
| | - Seralathan Kamala-Kannan
- Division of Biotechnology
- College of Environmental and Bioresource Sciences
- Chonbuk National University
- Iksan – 570752, South Korea
| | - Munisamy Govindharaju
- Department of Environmental Biotechnology
- Bharathidasan University
- Tiruchirappalli – 620 024, India
| | | | - Thangasamy Selvankumar
- PG & Research Department of Biotechnology
- Mahendra Arts and Science College
- Namakkal – 637501, India
- Department of Environmental Biotechnology
- Bharathidasan University
| | - Arumugam Sengottaiyan
- PG & Research Department of Biotechnology
- Mahendra Arts and Science College
- Namakkal – 637501, India
| |
Collapse
|
21
|
Statistical studies on high molecular weight pullulan production in solid state fermentation using jack fruit seed. Carbohydr Polym 2013; 98:854-60. [DOI: 10.1016/j.carbpol.2013.06.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/20/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022]
|
22
|
Production of enzymes by Alteromonas sp. A321 to degrade polysaccharides from Enteromorpha prolifera. Carbohydr Polym 2013; 98:988-94. [DOI: 10.1016/j.carbpol.2013.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022]
|
23
|
Bessa LJ, Correia DM, Cellini L, Azevedo NF, Rocha I. Optimization of culture conditions to improve Helicobacter pylori growth in Ham's F-12 medium by response surface methodology. Int J Immunopathol Pharmacol 2013; 25:901-9. [PMID: 23298481 DOI: 10.1177/039463201202500408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Helicobacter pylori is a gastroduodenal pathogen that colonizes the human stomach and is the causal agent of gastric diseases. From the clinical and epidemiological point of view, enhancing and improving the growth of this bacterium in liquid media is an important goal to achieve in order to allow the performance of accurate physiological studies. The aim of this work was to optimize three culture conditions that influence the growth of H. pylori in the defined medium Ham s F-12 supplemented with 5 percent fetal bovine serum by using response surface methodology as a statistical technique to obtain the optimal conditions. The factors studied in this experimental design (Box-Behnken design) were the pH of the medium, the shaking speed (rpm) and the percentage of atmospheric oxygen, in a total of 17 experiments. The biomass specific growth rate was the response measured. The model was validated for pH and shaking speed. The percentage of atmospheric oxygen did not influence the growth for the range of values studied. At the optimal values found for pH and shaking speed, 8 and 130 rpm, respectively, a specific growth rate value of 0.164 h-1, corresponding to a maximal concentration of approximately 1.5x108 CFU/ml, was reached after 8 h. The experimental design strategy allowed, for the first time, the optimization of H. pylori growth in a semi-synthetic medium, which may be important to improve physiological and metabolic studies of this fastidious bacterium.
Collapse
Affiliation(s)
- L J Bessa
- Department of Biomedical Sciences, University of Chieti-Pescara, Italy
| | | | | | | | | |
Collapse
|
24
|
Jayakumar R, Jayashree S, Annapurna B, Seshadri S. Characterization of Thermostable Serine Alkaline Protease from an Alkaliphilic Strain Bacillus pumilus MCAS8 and Its Applications. Appl Biochem Biotechnol 2012; 168:1849-66. [DOI: 10.1007/s12010-012-9902-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
|
25
|
Wang Q, Hou Y, Yan P. Optimization of cold-adapted lysozyme production from the psychrophilic yeast Debaryomyces hansenii using statistical experimental methods. J Food Sci 2012; 77:M337-42. [PMID: 22583004 DOI: 10.1111/j.1750-3841.2012.02711.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Statistical experimental designs were employed to optimize culture conditions for cold-adapted lysozyme production of a psychrophilic yeast Debaryomyces hansenii. In the first step of optimization using Plackett-Burman design (PBD), peptone, glucose, temperature, and NaCl were identified as significant variables that affected lysozyme production, the formula was further optimized using a four factor central composite design (CCD) to understand their interaction and to determine their optimal levels. A quadratic model was developed and validated. Compared to the initial level (18.8 U/mL), the maximum lysozyme production (65.8 U/mL) observed was approximately increased by 3.5-fold under the optimized conditions. PRACTICAL APPLICATION Cold-adapted lysozymes production was first optimized using statistical experimental methods. A 3.5-fold enhancement of microbial lysozyme was gained after optimization. Such an improved production will facilitate the application of microbial lysozyme. Thus, D. hansenii lysozyme may be a good and new resource for the industrial production of cold-adapted lysozymes.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Marine and Technology, Harbin Inst of Technology, Weihai 264209, PR China
| | | | | |
Collapse
|
26
|
Queiroga AC, Pintado ME, Malcata FX. Search for novel proteolytic enzymes aimed at textile and agro-industrial applications: An overview of current and novel approaches. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.650856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Grbavčić S, Bezbradica D, Izrael-Živković L, Avramović N, Milosavić N, Karadžić I, Knežević-Jugović Z. Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance. BIORESOURCE TECHNOLOGY 2011; 102:11226-11233. [PMID: 22004595 DOI: 10.1016/j.biortech.2011.09.076] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/31/2023]
Abstract
An indigenous Pseudomonas aeruginosa strain has been studied for lipase and protease activities for their potential application in detergents. Produced enzymes were investigated in order to assess their compatibility with several surfactants, oxidizing agents and commercial detergents. The crude lipase appeared to retain high activity and stability in the presence of several surfactants and oxidizing agents and it was insusceptible to proteolysis. Lutensol® XP80 and Triton® X-100 strongly activated the lipase for a long period (up to 40 and 30% against the control after 1h) while the protease activity was enhanced by the addition of Triton® WR1339 and Tween® 80. The washing performance of the investigated surfactants was significantly improved with the addition of the crude enzyme preparation. Studies were further undertaken to improve enzymes production. The optimization of fermentation conditions led to an 8-fold increase of lipase production, while the production of protease was enhanced by 60%.
Collapse
Affiliation(s)
- Sanja Grbavčić
- Innovation Center, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11001 Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang Q, Qu Y, Zhou J, Zhang X, Zhou H, Ma Q, Li X. Optimization of 2,3-dihydroxybiphenyl 1,2-dioxygenase expression and its application for biosensor. BIORESOURCE TECHNOLOGY 2011; 102:10553-10560. [PMID: 21924604 DOI: 10.1016/j.biortech.2011.08.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/14/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
In this study, two statistical experimental designs, Plackett-Burman design (PBD) and response surface methodology (RSM), were employed to enhance the expression of 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC_LA-4), which was subsequently used for the construction of catechol biosensor. Ten important factors were evaluated by PBD, and four significant parameters were then optimized by RSM. Under the favorable fermentation conditions, the maximal specific activity of BphC_LA-4 was about 0.58U/mg with catechol as substrate. Meanwhile, homology modeling and molecular docking were utilized to help understand the interaction between BphC_LA-4 and catecholic substrates, which illustrated that BphC_LA-4 presented lower binding affinity towards 4-methylcatechol in comparison with 3-methylcatechol and catechol. Interestingly, the BphC_LA-4 enzyme electrode prepared by SiO2 sol-gel showed good response to all these three catecholic compounds. The differences of selectivity to 4-methylcatechol between free and immobilized enzyme implied that the introduction of electro-catalysis might have an effect on the enzyme-catalysis process.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Fine Chemicals and Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | | | | | | | | | | | | |
Collapse
|