1
|
Dubey N, Chandra S. Miniaturized Biosensors Based on Lanthanide-Doped Upconversion Polymeric Nanofibers. BIOSENSORS 2024; 14:116. [PMID: 38534223 DOI: 10.3390/bios14030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
Electrospun nanofibers possess a large surface area and a three-dimensional porous network that makes them a perfect material for embedding functional nanoparticles for diverse applications. Herein, we report the trends in embedding upconversion nanoparticles (UCNPs) in polymeric nanofibers for making an advanced miniaturized (bio)analytical device. UCNPs have the benefits of several optical properties, like near-infrared excitation, anti-Stokes emission over a wide range from UV to NIR, narrow emission bands, an extended lifespan, and photostability. The luminescence of UCNPs can be regulated using different lanthanide elements and can be used for sensing and tracking physical processes in biological systems. We foresee that a UCNP-based nanofiber sensing platform will open opportunities in developing cost-effective, miniaturized, portable and user-friendly point-of-care sensing device for monitoring (bio)analytical processes. Major challenges in developing microfluidic (bio)analytical systems based on UCNPs@nanofibers have been reviewed and presented.
Collapse
Affiliation(s)
- Neha Dubey
- Department of Chemistry, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Sudeshna Chandra
- Hanse-Wissenschaftskolleg-Institute for Advanced Study (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany
| |
Collapse
|
2
|
Naseem S, Rawal RS, Pandey D, Suman SK. Immobilized laccase: an effective biocatalyst for industrial dye degradation from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84898-84917. [PMID: 37369903 DOI: 10.1007/s11356-023-28275-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Environmental concerns due to the release of industrial wastewater contaminated with dyes are becoming more and more intense with the increasing industrialization. Decolorization of industrial effluents has become the top priority due to the continuous demand for color-free discharge into the receiving water bodies. Different dye removal techniques have been developed, among which biodegradation by laccase enzyme is competitive. Laccase, as a green catalyst, has a high catalytic activity, generates less toxic by-products, and has been extensively researched in the field of remediation of dyes. However, laccase's significant catalytic activity could only be achieved after an effective immobilization step. Immobilization helps strengthen and stabilize the protein structure of laccase, thus enhancing its functional properties. Additionally, the reusability of immobilized laccase makes it an attractive alternative to traditional dye degradation technologies and in the realistic applications of water treatment, compared with free laccase. This review has elucidated different methods and the carriers used to immobilize laccase. Furthermore, the role of immobilized laccase in dye remediation and the prospects have been discussed.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
| | - Raja Singh Rawal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248005, Uttarakhand, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, 248005, Uttarakhand, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
4
|
Giraldi V, Focarete ML, Giacomini D. Laccase-Carrying Polylactic Acid Electrospun Fibers, Advantages and Limitations in Bio-Oxidation of Amines and Alcohols. J Funct Biomater 2022; 14:25. [PMID: 36662071 PMCID: PMC9866953 DOI: 10.3390/jfb14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Laccases are oxidative enzymes that could be good candidates for the functionalization of biopolymers with several applications as biosensors for the determination of bioactive amine and alcohols, for bioremediation of industrial wastewater, and for greener catalysts in oxidation reactions in organic synthesis, especially used for non-phenolic compounds in combination with redox mediators in the so-called Laccase Mediator System (LMS). In this work, we describe the immobilization of Laccase from Trametes versicolor (LTv) in poly-L-lactic acid (PLLA) nanofibers and its application in LMS oxidation reactions. The PLLA-LTv catalysts were successfully produced by electrospinning of a water-in-oil emulsion with an optimized method. Different enzyme loadings (1.6, 3.2, and 5.1% w/w) were explored, and the obtained mats were thoroughly characterized. The actual amount of the enzyme in the fibers and the eventual enzyme leaching in different solvents were evaluated. Finally, the PLLA-LTv mats were successfully applied as such in the oxidation reaction of catechol, and in the LMS method with TEMPO as mediator in the oxidation of amines with the advantage of easier work-up procedures by the immobilized enzyme. However, the PLLA-LTv failed the oxidation of alcohols with respect to the free enzyme. A tentative explanation was provided.
Collapse
Affiliation(s)
- Valentina Giraldi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
| | - Daria Giacomini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
5
|
Huang Y, Tan L, Chen M, Jiao Y, Tian J, Li L, Zhou C, Lu L. Laccase immobilization on hierarchical micro/nano porous chitin/graphene oxide beads prepared via Pickering emulsion template for dye decolorization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Sutaoney P, Pandya S, Gajarlwar D, Joshi V, Ghosh P. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86499-86527. [PMID: 35771325 DOI: 10.1007/s11356-022-21565-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The worldwide increase in metropolitan cities and rise in industrialization have resulted in the assimilation of hazardous pollutants into the ecosystems. Different physical, chemical and biological techniques have been employed to remove these toxins from water bodies. Several bioprocess applications using microbes and their enzymes are utilized to achieve the goal. Biocatalysts, such as laccases, are employed explicitly to deplete a variety of organic pollutants. However, the degradation of contaminants using biocatalysts has many disadvantages concerning the stability and activity of the enzyme. Hence, they are immobilized on different supports to improve the enzyme kinetics and recyclability. Furthermore, standard wastewater treatment methods are not effective in eliminating all the contaminants. As a result, membrane separation technologies have emerged to overcome the limitations of traditional wastewater treatment methods. Moreover, enzymes immobilized onto these membranes have generated new avenues in wastewater purification technology. This review provides the latest information on laccases from diverse sources, their molecular framework and their mode of action. This report also gives information about various immobilization techniques and the application of membrane bioreactors to eliminate and biotransform hazardous contaminants. In a nutshell, laccases appear to be the most promising biocatalysts for green and cost-efficient wastewater treatment technologies.
Collapse
Affiliation(s)
- Priya Sutaoney
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Srishti Pandya
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Devashri Gajarlwar
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Veenu Joshi
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Department of Chemical Engineering, NIT Raipur, Raipur, Chhattisgarh, India.
| |
Collapse
|
7
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
8
|
Hosseini A, Ramezani S, Tabibiazar M, Mohammadi M, Golchinfar Z, Mahmoudzadeh M, Jahanban-Esfahlan A. Immobilization of α-amylase in ethylcellulose electrospun fibers using emulsion-electrospinning method. Carbohydr Polym 2022; 278:118919. [PMID: 34973738 DOI: 10.1016/j.carbpol.2021.118919] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/15/2022]
Abstract
α-Amylase encapsulated in water in oil (W/O) emulsion was prepared using poly ethylene glycol (PEG 10000) (2%w/v) as water phase and ethylcellulose (EC) in ethyl acetate as oil phase at the ratio of 10:90 v/v. Next, the electrospun fibers were prepared by mixing enzyme loaded emulsion with EC solution (20%w/v) in acetic acid/ethyl acetate (20:80 v/v) at the 2:1 ratio. The emulsion showed good physical stability. The immobilized enzyme showed high activity across a board range of pHs and temperatures. The storage stability of the immobilized enzyme was 2 fold of free enzyme activity after 45 days. The residual activity of immobilized α-amylase onto of fibers after 10 and 15 repeated cycles, was approximately 100% and 50%, respectively. The results of this study indicated that the α-amylase loaded EC fibers have acceptable activity against harsh conditions and excellent reusability.
Collapse
Affiliation(s)
- Asad Hosseini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Soghra Ramezani
- Trita Nanomedicine Research Center, Trita Pharmaceuticals, Zanjan, Iran
| | - Mahnaz Tabibiazar
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Mohammadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zahra Golchinfar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran and Faculty of Nutrition and Food Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
9
|
Özen İ, Wang X. Biomedicine: electrospun nanofibrous hormonal therapies through skin/tissue—a review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- İlhan Özen
- Textile Engineering Department, Erciyes University, Melikgazi, Kayseri, Turkey
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, Australia
| |
Collapse
|
10
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Castillo-Zacarías C, Sosa-Hernández JE, Barceló D, Iqbal HMN, Parra-Saldívar R. Exploring current tendencies in techniques and materials for immobilization of laccases - A review. Int J Biol Macromol 2021; 181:683-696. [PMID: 33798577 DOI: 10.1016/j.ijbiomac.2021.03.175] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Nanotechnology has transformed the science behind many biotechnological sectors, and applied bio-catalysis is not the exception. In 2017, the enzyme industry was valued at more than 7 billion USD and projected to 10.5 billion by 2024. The laccase enzyme is an oxidoreductase capable of oxidizing phenolic and non-phenolic compounds that have been considered an essential tool in the fields currently known as white biotechnology and green chemistry. Laccase is one of the most robust biocatalysts due to its wide applications in different environmental processes such as detecting and treating chemical pollutants and dyes and pharmaceutical removal. However, these biocatalytic processes are usually limited by the lack of stability of the enzyme, the half-life time, and the application feasibility at an industrial scale. Physical or chemical approaches have performed different laccase's immobilization methods to improve its catalytic properties and reuse. Emerging technologies have been proven to reduce the manufacturing process cost and increase application feasibility while looking for ecological and economical materials that can be used as support. Therefore, this review discusses the trends of enzyme immobilization recently studied, analyzing biomaterials and agro-industrial waste used for that intention, their advantages, and disadvantages. Finally, the work also highlights the performance obtained with these materials and current challenges and potential alternatives.
Collapse
Affiliation(s)
| | | | | | | | | | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
11
|
Sun K, Li S, Si Y, Huang Q. Advances in laccase-triggered anabolism for biotechnology applications. Crit Rev Biotechnol 2021; 41:969-993. [PMID: 33818232 DOI: 10.1080/07388551.2021.1895053] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, USA
| |
Collapse
|
12
|
Zhao K, Kang SX, Yang YY, Yu DG. Electrospun Functional Nanofiber Membrane for Antibiotic Removal in Water: Review. Polymers (Basel) 2021; 13:E226. [PMID: 33440744 PMCID: PMC7827756 DOI: 10.3390/polym13020226] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
As a new kind of water pollutant, antibiotics have encouraged researchers to develop new treatment technologies. Electrospun fiber membrane shows excellent benefits in antibiotic removal in water due to its advantages of large specific surface area, high porosity, good connectivity, easy surface modification and new functions. This review introduces the four aspects of electrospinning technology, namely, initial development history, working principle, influencing factors and process types. The preparation technologies of electrospun functional fiber membranes are then summarized. Finally, recent studies about antibiotic removal by electrospun functional fiber membrane are reviewed from three aspects, namely, adsorption, photocatalysis and biodegradation. Future research demand is also recommended.
Collapse
Affiliation(s)
| | | | | | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, 516 Jun-Gong Road, Shanghai 200093, China; (K.Z.); (S.-X.K.); (Y.-Y.Y.)
| |
Collapse
|
13
|
Fungal Laccases to Where and Where? Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Radacsi N, Williams GR. Protein encapsulation by electrospinning and electrospraying. J Control Release 2020; 329:1172-1197. [PMID: 33127450 DOI: 10.1016/j.jconrel.2020.10.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.
Collapse
Affiliation(s)
| | - Dan Lawson
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Lesley Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
15
|
Tanikawa Y, Ido Y, Ando R, Obata A, Nagata K, Kasuga T, Mizuno T. Coaxial Electrospun Fibermat of Poly(AM/DAAM)/ADH and PCL: Versatile Platform for Functioning Active Enzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuji Tanikawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yuya Ido
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Ren Ando
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Akiko Obata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Kenji Nagata
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Toshihiro Kasuga
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Toshihisa Mizuno
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
16
|
Ning Y, Shen W, Ao F. Application of blocking and immobilization of electrospun fiber in the biomedical field. RSC Adv 2020; 10:37246-37265. [PMID: 35521229 PMCID: PMC9057162 DOI: 10.1039/d0ra06865a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The fiber obtained by electrospinning technology is a kind of biomaterial with excellent properties, which not only has a unique micro-nanostructure that gives it a large specific surface area and porosity, but also has satisfactory biocompatibility and degradability (if the spinning material used is a degradable polymer). These biomaterials provide a suitable place for cell attachment and proliferation, and can also achieve immobilization. On the other hand, its large porosity and three-dimensional spatial structure show unique blocking properties in drug delivery applications in order to achieve the purpose of slow release or even controlled release. The immobilization effect or blocking effect of these materials is mainly reflected in the hollow or core-shell structure. The purpose of this paper is to understand the application of the electrospun fiber based on biodegradable polymers (aliphatic polyesters) in the biomedical field, especially the immobilization or blocking effect of the electrospun fiber membrane on cells, drugs or enzymes. This paper focuses on the performance of these materials in tissue engineering, wound dressing, drug delivery system, and enzyme immobilization technology. Finally, based on the existing research basis of the electrospun fiber in the biomedical field, a potential research direction in the future is put forward, and few suggestions are also given for the technical problems that urgently need to be solved.
Collapse
Affiliation(s)
- Yuanlan Ning
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Wen Shen
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Fen Ao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| |
Collapse
|
17
|
Preparation and Characterization of Electrospun Collagen Based Composites for Biomedical Applications. MATERIALS 2020; 13:ma13183961. [PMID: 32906790 PMCID: PMC7559754 DOI: 10.3390/ma13183961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 01/22/2023]
Abstract
Electrospinning is a widely used technology for obtaining nanofibers from synthetic and natural polymers. In this study, electrospun mats from collagen (C), polyethylene terephthalate (PET) and a blend of the two (C-PET) were prepared and stabilized through a cross-linking process. The aim of this research was to prepare and characterize the nanofiber structure by Fourier-transform infrared with attenuated total reflectance spectroscopy (FTIR-ATR) in close correlation with dynamic vapor sorption (DVS). The studies indicated that C-PET nanofibrous mats shows improved mechanical properties compared to collagen samples. A correlation between morphological, structural and cytotoxic proprieties of the studied samples were emphasized and the results suggest that the prepared nanofiber mats could be a promising candidate for tissue-engineering applications, especially dermal applications.
Collapse
|
18
|
Lopez-Barbosa N, Campaña AL, Cruz JC, Ornelas-Soto N, Osma JF. Enhanced Catalytic Dye Decolorization by Microencapsulation of Laccase from P. Sanguineus CS43 in Natural and Synthetic Polymers. Polymers (Basel) 2020; 12:polym12061353. [PMID: 32560036 PMCID: PMC7362170 DOI: 10.3390/polym12061353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Polymeric microcapsules with the fungal laccase from Pycnoporus sanguineus CS43 may represent an attractive avenue for the removal or degradation of dyes from wastewaters. Microcapsules of alginate/chitosan (9.23 ± 0.12 µm) and poly(styrenesulfonate) (PSS) (9.25 ± 0.35 µm) were synthesized and subsequently tested for catalytic activity in the decolorization of the diazo dye Congo Red. Successful encapsulation into the materials was verified via confocal microscopy of labeled enzyme molecules. Laccase activity was measured as a function of time and the initial reaction rates were recovered for each preparation, showing up to sevenfold increase with respect to free laccase. The ability of substrates to diffuse through the pores of the microcapsules was evaluated with the aid of fluorescent dyes and confocal microscopy. pH and thermal stability were also measured for encapsulates, showing catalytic activity for pH values as low as 4 and temperatures of about 80 °C. Scanning electron microscope (SEM) analyses demonstrated the ability of PSS capsules to avoid accumulation of byproducts and, therefore, superior catalytic performance. This was corroborated by the direct observation of substrates diffusing in and out of the materials. Compared with our PSS preparation, alginate/chitosan microcapsules studied by others degrade 2.6 times more dye, albeit with a 135-fold increase in units of enzyme per mg of dye. Similarly, poly(vinyl) alcohol microcapsules from degrade 1.7 times more dye, despite an eightfold increase in units of enzyme per mg of dye. This could be potentially beneficial from the economic viewpoint as a significantly lower amount of enzyme might be needed for the same decolorization level achieved with similar encapsulated systems.
Collapse
Affiliation(s)
- Natalia Lopez-Barbosa
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia;
| | - Ana Lucía Campaña
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia;
| | - Nancy Ornelas-Soto
- Laboratorio de Nanotecnología Ambiental, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico;
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá D.C. 111711, Colombia; (N.L.-B.); (A.L.C.)
- Correspondence: ; Tel.: +57-1-339-4949
| |
Collapse
|
19
|
A promising laccase immobilization using electrospun materials for biocatalytic degradation of tetracycline: Effect of process conditions and catalytic pathways. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Zhang J, Ge Y, Li Z, Wang Y. Facile fabrication of a low-cost and environmentally friendly inorganic-organic composite membrane for aquatic dye removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109969. [PMID: 31989986 DOI: 10.1016/j.jenvman.2019.109969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/28/2019] [Accepted: 12/06/2019] [Indexed: 05/12/2023]
Abstract
This study reports a new inorganic-organic composite membrane fabricated by an electrostatic self-assembling method. The low-cost and eco-friendly porous geopolymer (PG) was chosen as a support, on which chitosan (CS), a "green" biomaterial, was used to form an active layer. With optimum dosage of CS (2.0 mL of 1.0% CS solution), the obtained CS/PG membrane exhibited a high porosity of 50.97% with an average pore diameter of 13.93 nm as well as a high water flux of 1663.82 ± 22.46 L/m2·h·bar. The effects of initial concentration, pH, flow rate and temperature of the feed solution on crystal violet (CV) removal by the CS/PG were evaluated in a continuous mode. The results indicated ~95% CV could be removed from water during continuous treating of 14 h. The effectiveness in CV removal by the CS/PG membrane was attributed to the synergistic effect of rejection and adsorption. Furthermore, the composite membrane could be easily regenerated for prolonged use. Overall, this work opens a new possibility of building cost-saving and eco-friendly composite membranes for practical applications in water purification.
Collapse
Affiliation(s)
- Jiubing Zhang
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Ge
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Zhili Li
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yipin Wang
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
21
|
Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf 2020; 19:479-502. [DOI: 10.1111/1541-4337.12536] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cen Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Yang Li
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Peng Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Hui Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang University Hangzhou China
- Ningbo Research InstituteZhejiang University Ningbo China
| |
Collapse
|
22
|
Bilal M, Iqbal HMN, Barceló D. Mitigation of bisphenol A using an array of laccase-based robust bio-catalytic cues - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:160-177. [PMID: 31271985 DOI: 10.1016/j.scitotenv.2019.06.403] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a known endocrine disruptor that poses concerning environmental and human-health related issues and ecological risks. It has been largely used as an intermediate in the manufacture of epoxy resins and polycarbonate plastics. Traces of BPA can reach into the environment through inadequate or inefficient removal during wastewater treatment, uncontrolled landfill leachates, and leaching out from the discarded BPA-based materials. Several physicochemical treatment methods including adsorption, Fenton, ozonation, electrochemical and photochemical degradation, and membrane filtration, have been applied for BPA elimination. However, these methods are not adequate for large-scale treatment due to some inherent limitations. Benefiting from high catalytic efficiency and specificity, enzyme-based bio-catalytic degradation strategies are considered quite meaningful alternative for efficient and effective BPA removal from different routes. Among various oxidoreductases, i.e., laccases exhibited a superior potential for the remediation of BPA-containing wastewater. Enzymatic oxidation of BPA can be boosted by using various natural or synthetic redox mediators. Immobilized enzymes can expand their applicability to continuous bioprocessing and facilitates process intensification. Therefore, optimized formulations of insolubilized biocatalysts are of strategic interest in the environmental biotechnology. In this review, recent research studies dealing with BPA removal by the laccase-catalyzed system are presented. At first, the presence of BPA in the ecosystem, sources, exposure, and its impact on the living organisms and human beings is summarized. Then, we highlighted the use of crude as well as immobilized laccases for the degradation of BPA. In addition to toxicity and estrogenicity removal studies, the unresolved challenges, concluding remarks, and possible future direction is proposed in this important research area. It is palpable from the literature reviewed that free as well as immobilized forms of laccases have displayed noteworthy potential for BPA removal from wastewater.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico.
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
23
|
Modulation of protein activity and assembled structure by polymer conjugation: PEGylation vs glycosylation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Okano C, Murota D, Nasuno E, Iimura KI, Kato N. Effective quorum quenching with a conformation-stable recombinant lactonase possessing a hydrophilic polymeric shell fabricated via electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:437-444. [PMID: 30813045 DOI: 10.1016/j.msec.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) in Gram-negative bacteria is frequently regulated by the diffusible signal N-acylhomoserine lactone (AHL) along with the production of virulence factors in pathogens. To inhibit QS, we fabricated heat-resistant, long-term-stable AHL-lactonase AiiM by electrospinning (ES) aqueous polyvinyl alcohol (PVA) solution containing genetically engineered AiiM with a maltose-binding protein (MBP) tag. MBP-AiiM was immobilized via its inclusion within a dense PVA shell formed during the drying process of ES, followed by cross-linking between hydroxyl groups on PVA. Secondary structure analysis via circular dichroism suggested no conformational change in the MBP-AiiM during ES. Even after pre-heating of MBP-AiiM/PVA fiber mats at 70 °C for 24 h, QS-dependent prodigiosin production in the model pathogen Serratia marcescens AS-1 was effectively inhibited to 0.13% that of the control. Additionally, relative prodigiosin production was reduced to ~20% that of the control after 5-month storage in buffer solution. These results suggest that a shear-thinning process using an entangled PVA aggregate during elongational changes to fibrous domains and a drying process during ES contributes not to enzymatic inactivation caused by conformational changes, but rather to the fabrication of a dense PVA shell around the MBP-AiiM molecules to protect them from disruptors including heating. The developed quorum-quenching enzyme has high potential to inhibit AHL-mediated QS frequently appearing in various Gram-negative bacteria.
Collapse
Affiliation(s)
- Chigusa Okano
- Creative Department for Innovation, Collaboration Center for Research and Development, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Daichi Murota
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Eri Nasuno
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Ken-Ichi Iimura
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Norihiro Kato
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan.
| |
Collapse
|
25
|
Extracellular Fungal Peroxidases and Laccases for Waste Treatment: Recent Improvement. RECENT ADVANCEMENT IN WHITE BIOTECHNOLOGY THROUGH FUNGI 2019. [DOI: 10.1007/978-3-030-25506-0_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Zhang C, Zhang H. Formation and Stability of Core-Shell Nanofibers by Electrospinning of Gel-Like Corn Oil-in-Water Emulsions Stabilized by Gelatin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11681-11690. [PMID: 30296080 DOI: 10.1021/acs.jafc.8b04270] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Core-shell nanofibers were fabricated by electrospinning of gel-like corn oil emulsions stabilized by gelatin. The oil-in-water (O/W) emulsions satisfied the Herschel-Bulkley rheological model and showed shear-thinning and predominantly elastic gel behaviors. The increasing oil fractions (φ) ranging from 0 to 0.6 remarkably increased the apparent viscosity and then led to an increase in the average diameter and encapsulation efficiency of electrospun fibers. Core-shell structured fibers by emulsion electrospinning were observed in transmission electron microscopy (TEM) images. The encapsulated oil was found to randomly distribute as core, especially inside the beads. The binding of corn oil to gelatin was mainly driven by noncovalent forces. These core-shell fibers at various φ values (φ = 0.2, 0.4, 0.6, and 0.8) showed a high thermal decomposition stability upon heating to 250 °C, and the denaturation temperatures were 85.32 °C, 77.97 °C, 82.99 °C, and 87.25 °C, respectively. The corn oil encapsulated in emulsion-based fiber mats had good storage stability during 5 days. These results contributed to a good understanding of emulsion electrospinning of food materials for potential applications in bioactive encapsulation, enzyme immobilization, and active food packaging.
Collapse
Affiliation(s)
- Cen Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| | - Hui Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
27
|
|
28
|
Dammak I, José do Amaral Sobral P. Formulation optimization of lecithin-enhanced pickering emulsions stabilized by chitosan nanoparticles for hesperidin encapsulation. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Wang D, Ding W, Zhou K, Guo S, Zhang Q, Haddleton DM. Coating Titania Nanoparticles with Epoxy-Containing Catechol Polymers via Cu(0)-Living Radical Polymerization as Intelligent Enzyme Carriers. Biomacromolecules 2018; 19:2979-2990. [DOI: 10.1021/acs.biomac.8b00544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Donghao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wenyi Ding
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Kaiyue Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Shutong Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
30
|
Cao D, Cheng W, Tao K, Liang Y. Preparation of Polydopamine-Modified 3D Interconnected Macroporous Silica for Laccase Immobilization. Macromol Res 2018. [DOI: 10.1007/s13233-018-6087-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Bao C, Yin Y, Zhang Q. Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry. Biomacromolecules 2018; 19:1539-1551. [PMID: 29562131 DOI: 10.1021/acs.biomac.8b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covalent coupling of hydrophobic polymers to the exterior of hydrophilic proteins would mediate unique macroscopic assembly of bioconjugates to generate amphiphilic superstructures as novel nanoreactors or biocompatible drug delivery systems. The main objective of this study was to develop a novel strategy for the synthesis of protein-polymer giant amphiphiles by the combination of copper-mediated living radical polymerization and azide-alkyne cycloaddition reaction (CuAAC). Azide-functionalized succinimidyl ester was first synthesized for the facile introduction of azide groups to proteins such as albumin from bovine serum (BSA) and laccase from Trametes versicolor. Alkyne-terminal polymers with varied hydrophobicity were synthesized by using commercial copper wire as the activators from a trimethylsilyl protected alkyne-functionalized initiator in DMSO under ambient temperature. The conjugation of alkyne-functionalized polymers to the azide-functionalized laccase could be conducted even without additional copper catalyst, which indicated a successful self-catalyzed CuAAC reaction. The synthesized amphiphiles were found to aggregate into spherical nanoparticles in water and showed strong relevance to the hydrophobicity of coupled polymers. The giant amphiphiles showed decreased enzyme activity yet better stability during storage after chemical modification and self-assembly. These findings will deepen our understanding on protein folding, macroscopic self-assembly, and support potential applications in bionanoreactor, enzyme immobilization, and water purification.
Collapse
|
32
|
Zdarta J, Antecka K, Frankowski R, Zgoła-Grześkowiak A, Ehrlich H, Jesionowski T. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:784-795. [PMID: 28992503 DOI: 10.1016/j.scitotenv.2017.09.213] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 05/02/2023]
Abstract
Due to the rapid growth in quantities of phenolic compounds in wastewater, the development of efficient and environmentally friendly methods for their removal becomes a necessity. Thus, in a presented work, for the first time, a novel material, Hippospongia communis spongin-based scaffold, was used as a biopolymeric support for the immobilization of laccase from Trametes versicolor. The resulting biocatalytic systems were used for the biodegradation of three bisphenols: bisphenol A (BPA), bisphenol F (BPF) and bioremoval-resistant bisphenol S (BPS). Optimization of the immobilization and biodegradation methodologies was performed to increase bisphenols removal. The effect of temperature, pH and initial pollutant concentration was evaluated. It was shown that under optimal conditions, almost 100% of BPA (pH5, 30°C) and BPF (pH5, 40°C), and over 40% of BPS (pH4, 30°C) was removed from the solution at a concentration of 2mg/mL. Furthermore, the immobilized laccase exhibited good reusability and storage stability, retaining over 80% of its initial activity after 50days of storage. In addition, the main biodegradation products of BPA and BPF were identified. It was shown that mainly dimers and trimers were formed following the oxidation of bisphenols by the immobilized laccase.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Katarzyna Antecka
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Robert Frankowski
- Institute of Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| |
Collapse
|
33
|
Zhu Y, Song J, Zhang J, Yang J, Zhao W, Guo H, Xu T, Zhou X, Zhang L. Encapsulation of laccase within zwitterionic poly-carboxybetaine hydrogels for improved activity and stability. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01460d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Encapsulation of laccase within zwitterionic PCB hydrogels for improved activity, affinity and stability.
Collapse
Affiliation(s)
- Yingnan Zhu
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jiayin Song
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jiamin Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Jing Yang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Weiqiang Zhao
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Hongshuang Guo
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Tong Xu
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin
- PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Lei Zhang
- Department of Biochemical Engineering
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- PR China
| |
Collapse
|
34
|
Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor. Biosens Bioelectron 2018; 99:637-645. [DOI: 10.1016/j.bios.2017.08.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 11/20/2022]
|
35
|
McNamara MC, Sharifi F, Wrede AH, Kimlinger DF, Thomas DG, Vander Wiel JB, Chen Y, Montazami R, Hashemi NN. Microfibers as Physiologically Relevant Platforms for Creation of 3D Cell Cultures. Macromol Biosci 2017; 17. [PMID: 29148617 DOI: 10.1002/mabi.201700279] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/15/2017] [Indexed: 12/28/2022]
Abstract
Microfibers have received much attention due to their promise for creating flexible and highly relevant tissue models for use in biomedical applications such as 3D cell culture, tissue modeling, and clinical treatments. A generated tissue or implanted material should mimic the natural microenvironment in terms of structural and mechanical properties as well as cell adhesion, differentiation, and growth rate. Therefore, the mechanical and biological properties of the fibers are of importance. This paper briefly introduces common fiber fabrication approaches, provides examples of polymers used in biomedical applications, and then reviews the methods applied to modify the mechanical and biological properties of fibers fabricated using different approaches for creating a highly controlled microenvironment for cell culturing. It is shown that microfibers are a highly tunable and versatile tool with great promise for creating 3D cell cultures with specific properties.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Farrokh Sharifi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Daniel F Kimlinger
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Deepak-George Thomas
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | - Yuanfen Chen
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Center of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
36
|
Li G, Nandgaonkar AG, Wang Q, Zhang J, Krause WE, Wei Q, Lucia LA. Laccase-immobilized bacterial cellulose/TiO2 functionalized composite membranes: Evaluation for photo- and bio-catalytic dye degradation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2016.10.033] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Nikmaram N, Roohinejad S, Hashemi S, Koubaa M, Barba FJ, Abbaspourrad A, Greiner R. Emulsion-based systems for fabrication of electrospun nanofibers: food, pharmaceutical and biomedical applications. RSC Adv 2017. [DOI: 10.1039/c7ra00179g] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Encapsulation of bioactive materials and drugs using the emulsion electrospinning method.
Collapse
Affiliation(s)
- Nooshin Nikmaram
- Young Researches and Elite Club
- Sabzevar Branch
- Islamic Azad University
- Sabzevar
- Iran
| | - Shahin Roohinejad
- Department of Food Technology and Bioprocess Engineering
- Max Rubner-Institut
- Federal Research Institute of Nutrition and Food
- 76131 Karlsruhe
- Germany
| | - Sara Hashemi
- Burn and Wound Healing Research Center
- Division of Food and Nutrition
- Shiraz University of Medical Sciences
- Shiraz
- Iran
| | - Mohamed Koubaa
- Sorbonne Universités
- Université de Technologie de Compiègne
- Laboratoire Transformations Intégrées de la Matière Renouvelable (UTC/ESCOM, EA 4297 TIMR)
- Centre de Recherche de Royallieu
- 60203 Compiègne Cedex
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health
- Food Science, Toxicology and Forensic Medicine Department Faculty of Pharmacy
- Universitat de València
- València
- Spain
| | | | - Ralf Greiner
- Department of Food Technology and Bioprocess Engineering
- Max Rubner-Institut
- Federal Research Institute of Nutrition and Food
- 76131 Karlsruhe
- Germany
| |
Collapse
|
38
|
Dai Y, Yao J, Song Y, Liu X, Wang S, Yuan Y. Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:485-493. [PMID: 27341377 DOI: 10.1016/j.jhazmat.2016.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/24/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) were used as modified materials to improve the performance of laccase-carrying electrospun fibrous membranes (LCEFMs). The MWCNTs modified LCEFMs (MWCNTs-LCEFMs) were successfully fabricated via emulsion electrospinning, with active laccase and MWCNTs encapsulated inside the fibers. After modified by an optimal amount (1.5wt%, vs. polymer) of MWCNTs, the obtained MWCNTs-LCEFMs showed not only higher activity recovery (85.3%, vs. free laccase) than LCEFMs (71.2%), but also better storage and operational stability, which were mainly attributed to the promoted electron transfer in laccase-catalytic reaction. Furthermore, the specific surface area and tensile strength of MWCNTs-LCEFMs have also been enhanced nearly 2 and 3 times than those of LCEFMs, respectively. The MWCNTs-LCEFMs were applied to remove the widespread bisphenol A from water, where their removal efficiency reached above 90%, with the degradation efficiency accounting for over 80%, and their adsorption efficiency increased about 45% than that of LCEFMs. In addition, the endurances of MWCNTs-LCEFMs to environmental factors such as pH and temperature were also improved.
Collapse
Affiliation(s)
- Yunrong Dai
- School of Water Resources and Environment, School of Scientific Research, China University of Geosciences (Beijing), 100083, Beijing, PR China; Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Jun Yao
- School of Water Resources and Environment, School of Scientific Research, China University of Geosciences (Beijing), 100083, Beijing, PR China.
| | - Yonghui Song
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Xiaoling Liu
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Siyu Wang
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| | - Yu Yuan
- Department of Urban Water Environmental Research, Chinese Research Academy of Environmental Sciences, 100012, Beijing, PR China.
| |
Collapse
|
39
|
Plothe R, Sittko I, Lanfer F, Fortmann M, Roth M, Kolbach V, Tiller JC. Poly(2-ethyloxazoline) as matrix for highly active electrospun enzymes in organic solvents. Biotechnol Bioeng 2016; 114:39-45. [DOI: 10.1002/bit.26043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Ramona Plothe
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Ina Sittko
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Franziska Lanfer
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Maximilian Fortmann
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Meike Roth
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Vivien Kolbach
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| | - Joerg C. Tiller
- Department of Bio- and Chemical Engineering; TU Dortmund; Emil-Figge-Str. 66 D-44227 Dortmund Germany
| |
Collapse
|
40
|
Polyamide 6/chitosan nanofibers as support for the immobilization of Trametes versicolor laccase for the elimination of endocrine disrupting chemicals. Enzyme Microb Technol 2016; 89:31-8. [DOI: 10.1016/j.enzmictec.2016.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 01/01/2023]
|
41
|
Koeda S, Ichiki K, Iwanaga N, Mizuno K, Shibata M, Obata A, Kasuga T, Mizuno T. Construction and Characterization of Protein-Encapsulated Electrospun Fibermats Prepared from a Silica/Poly(γ-glutamate) Hybrid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:221-229. [PMID: 26681447 DOI: 10.1021/acs.langmuir.5b02862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein-encapsulated fibermats are an attractive platform for protein-based bioactive materials. However, the choice of methods is still limited and not applicable to a wide range of proteins. In this study, we studied new polymeric materials for constructing protein-encapsulated fibermats, in which protein molecules are encapsulated within the nanofibers of fibermats without causing deleterious changes to protein structure or function. We constructed a protein-encapsulated fibermat using the poly(γ-glutamate) (PGA)/(3-glycidyloxypropyl)-trimethoxysilane (GPTMS) hybrid as a precursor for electrospinning. Because the PGA/GPTMS hybrid is water-soluble, protein molecules can be added to the precursor in an aqueous solution, significantly enhancing protein stability. Polycondensation during electrospinning (in-flight polycondensation) makes the obtained fibermats water-insoluble, which stabilizes the fibermat structure such that it is resistant to degradation in aqueous buffer. The molecular structure of the PGA/GPTMS hybrid gives rise to unique molecular permeability, which alters the selectivity and specificity of biochemical reactions involving the encapsulated enzymes; lower molecular-weight (MW) substrates can permeate the nanofibers, promoting enzyme activity, but higher MW substrates such as inhibitor peptides cannot permeate the nanofibers, suppressing enzyme activity. We present an effective method of encapsulating bioactive molecules while maintaining their structure and function, increasing the versatility of electrospun fibermats for constructing various bioactive materials.
Collapse
Affiliation(s)
- Shuhei Koeda
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Kentaro Ichiki
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Norihiko Iwanaga
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Koji Mizuno
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Masahide Shibata
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Akiko Obata
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Toshihiro Kasuga
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Toshihisa Mizuno
- Graduate School of Engineering, Nagoya Institute of Technology , Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
42
|
Pinto SC, Rodrigues AR, Saraiva JA, Lopes-da-Silva JA. Catalytic activity of trypsin entrapped in electrospun poly(ϵ-caprolactone) nanofibers. Enzyme Microb Technol 2015; 79-80:8-18. [DOI: 10.1016/j.enzmictec.2015.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/15/2015] [Accepted: 07/02/2015] [Indexed: 11/26/2022]
|
43
|
Xu R, Si Y, Li F, Zhang B. Enzymatic removal of paracetamol from aqueous phase: horseradish peroxidase immobilized on nanofibrous membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3838-3846. [PMID: 25269844 DOI: 10.1007/s11356-014-3658-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/24/2014] [Indexed: 06/03/2023]
Abstract
Paracetamol is a widely used as an analgesic and an antipyretic that can easily accumulate in aquatic environments. This study aimed to enhance paracetamol removal efficiency from water by combining the biocatalytic activity of horseradish peroxidase (HRP) with the adsorption of nanofibrous membrane. Poly(vinyl alcohol)/poly(acrylic acid)/SiO2 electrospinning nanofibrous membrane was prepared with fiber diameters of 200 to 300 nm. The membrane was made insoluble by the thermal cross-linking process. HRP, which was previously activated by 1,1'-carbonyldiimidazole, was covalently immobilized on the surface of nanofibers. Immobilized HRP retained 79.4 % of the activity of free HRP. The physical, chemical, and biochemical properties of the immobilized HRP and its application in paracetamol removal were comprehensively investigated. Immobilized HRP showed better storage capability and higher tolerance to the changes in pH and temperature than free HRP. Paracetamol removal rate by immobilized HRP (83.5 %) was similar to that of free HRP (84.4 %), but immobilized HRP showed excellent reusability. The results signify that enzyme immobilized on nanofibers has great application potential in water treatment.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China,
| | | | | | | |
Collapse
|
44
|
Murase SK, Lv LP, Kaltbeitzel A, Landfester K, del Valle LJ, Katsarava R, Puiggali J, Crespy D. Amino acid-based poly(ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Adv 2015. [DOI: 10.1039/c5ra06267e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel enzyme loaded scaffolds with enzyme-responsive degradable properties for drug delivery are prepared by an original inverse-miniemulsion electrospinning method.
Collapse
Affiliation(s)
- S. K. Murase
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - L.-P. Lv
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - A. Kaltbeitzel
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - K. Landfester
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| | - L. J. del Valle
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - R. Katsarava
- Institute of Chemistry and Molecular Engineering
- Agricultural University of Georgia
- Tblisi 0159
- Georgia
| | - J. Puiggali
- Department of Chemical Engineering
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - D. Crespy
- Max Planck Institute for Polymer Research
- 55128 Mainz
- Germany
| |
Collapse
|
45
|
Hu J, Prabhakaran MP, Ding X, Ramakrishna S. Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 26:57-75. [DOI: 10.1080/09205063.2014.982241] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Ifegwu OC, Anyakora C, Chigome S, Torto N. Application of Nanofiber-packed SPE for Determination of Urinary 1-Hydroxypyrene Level Using HPLC. ANALYTICAL CHEMISTRY INSIGHTS 2014; 9:17-25. [PMID: 24812483 PMCID: PMC3999818 DOI: 10.4137/aci.s13560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 11/05/2022]
Abstract
It is always desirable to achieve maximum sample clean-up, extraction, and pre-concentration with the minimum possible organic solvent. The miniaturization of sample preparation devices was successfully demonstrated by packing 10 mg of 11 electrospun polymer nanofibers into pipette tip micro column and mini disc cartridges for efficient pre-concentration of 1-hydroxypyrene in urine samples. 1-hydroxypyrene is an extensively studied biomarker of the largest class of chemical carcinogens. Excretory 1-hydroxypyrene was monitored with HPLC/fluorescence detector. Important parameters influencing the percentage recovery such as fiber diameter, fiber packing amount, eluent, fiber packing format, eluent volume, surface area, porosity, and breakthrough parameters were thoroughly studied and optimized. Under optimized condition, there was a near perfect linearity of response in the range of 1-1000 μg/L with a coefficient of determination (r (2)) between 0.9992 and 0.9999 and precision (% RSD) ≤7.64% (n = 6) for all the analysis (10, 25, and 50 μg/L). The Limit of detection (LOD) was between 0.022 and 0.15 μg/L. When compared to the batch studies, both disc packed nanofiber sorbents and pipette tip packed sorbents exhibited evident dominance based on their efficiencies. The experimental results showed comparable absolute recoveries for the mini disc packed fibers (84% for Nylon 6) and micro columns (80% for Nylon 6), although the disc displayed slightly higher recoveries possibly due to the exposure of the analyte to a larger reacting surface. The results also showed highly comparative extraction efficiencies between the nanofibers and conventional C-18 SPE sorbent. Nevertheless, miniaturized SPE devices simplified sample preparation, reducing back pressure, time of the analysis with acceptable reliability, selectivity, detection levels, and environmental friendliness, hence promoting green chemistry.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria. ; Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Chimezie Anyakora
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Samuel Chigome
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Nelson Torto
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
47
|
Puppi D, Zhang X, Yang L, Chiellini F, Sun X, Chiellini E. Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: a review. J Biomed Mater Res B Appl Biomater 2014; 102:1562-79. [PMID: 24678016 DOI: 10.1002/jbm.b.33144] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/29/2014] [Accepted: 03/06/2014] [Indexed: 01/04/2023]
Abstract
Nano/microfibrous polymeric constructs present various inherent advantages, such as highly porous architecture and high surface to volume ratio, making them attractive for tissue engineering purposes. Electrospinning is the most preferred technique for the fabrication of polymeric nanofibrous assemblies that can mimic the physical functions of native extracellular matrix greatly favoring cells attachment and thus influencing their morphology and activities. Different approaches have been developed to apply polymeric microfiber fabrication techniques (e.g. wet-spinning) for the obtainment of scaffolds with a three-dimensional network of micropores suitable for effective cells migration. Progress in additive manufacturing technology has led to the development of complex scaffold's shapes and microfibrous structures with a high degree of automation, good accuracy and reproducibility. Various loading methods, such as direct blending, coaxial electrospinning and microparticles incorporation, are enabling to develop customized strategies for the biofunctionalization of nano/microfibrous scaffolds with a tailored kinetics of release of different bioactive agents, ranging from small molecules, such as antibiotics, to protein drugs, such as growth factors, and even cells. Recent activities on the combination of different processing techniques and loading methods for the obtainment of biofunctionalized polymeric constructs with a complex multiscale structure open new possibilities for the development of biomimetic scaffolds endowed with a hierarchical architecture and a sophisticated release kinetics of different bioactive agents. This review is aimed at summarizing current advances in technologies and methods for manufacturing nano/microfibrous polymeric constructs suitable as tissue engineering scaffolds, and for their combination with different bioactive agents to promote tissue regeneration and therapeutic effects.
Collapse
Affiliation(s)
- Dario Puppi
- Department of Chemistry and Industrial Chemistry, Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), University of Pisa, 56010, San Piero a Grado (Pi), Italy
| | | | | | | | | | | |
Collapse
|
48
|
Laccase immobilization on cellulose nanofiber: The catalytic efficiency and recyclic application for simulated dye effluent treatment. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.12.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Xu R, Chi C, Li F, Zhang B. Laccase-polyacrylonitrile nanofibrous membrane: highly immobilized, stable, reusable, and efficacious for 2,4,6-trichlorophenol removal. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12554-12560. [PMID: 24245853 DOI: 10.1021/am403849q] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Increasing attention has been given to nanobiocatalysis for commercial applications. In this study, laccase was immobilized on polyacrylonitrile (PAN) nanofibrous membranes through ethanol/HCl method of amidination reaction and successfully applied for removal of 2,4,6-trichlorophenol (TCP) from water. PAN membranes with fiber diameters from 200 nm to 300 nm were fabricated via electrospinning and provided a large surface area for enzyme immobilization and catalytic reactions. Images of scanning electron microscope demonstrated the enzyme molecules were aggregated on the nanofiber surface. The immobilized laccase exhibited 72% of the free enzyme activity and kept 60% of its initial activity after 10 operation cycles. Moreover, the storage stability of the immobilized laccase was considered excellent because they maintained more than 92% of the initial activity after 18 days of storage, whereas the free laccase retained only 20%. The laccase-PAN nanofibrous membranes exhibited high removal efficiency of TCP under the combined actions of biodegradation and adsorption. More than 85% of the TCP was removed under optimum conditions. Effects of various factors on TCP removal efficiency of the immobilized laccase were analyzed. Results suggest that laccase-PAN nanofibrous membranes can be used in removing TCP from aqueous sources and have potential for use in other commercial applications.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University , Shanghai 200092, P. R. China
| | | | | | | |
Collapse
|
50
|
Xu R, Chi C, Li F, Zhang B. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. BIORESOURCE TECHNOLOGY 2013; 149:111-116. [PMID: 24096278 DOI: 10.1016/j.biortech.2013.09.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 06/02/2023]
Abstract
Horseradish peroxidase (HRP) from roots of horseradish (Amoracia rusticana) was successfully immobilized on novel enzyme carriers, poly(methyl methacrylate-co-ethyl acrylate) (PMMA CEA) microfibrous membranes, and used for removal of bisphenol A from water. PMMA CEA fibrous membranes (PFM) with fiber diameters of 300-500 nm, were fabricated by electrospinning. HRP was covalently immobilized on the surface of microfibers previously activated by polyethylenimine and glutaraldehyde. HRP loading reached 285 mg/g, and enzyme activity was 70% of free HRP after immobilization. Both stabilities and reusability of HRP were greatly improved after immobilization. After six repeated runs, immobilized HRP retained about 50% of its initial activity. Immobilized HRP exhibited significantly higher removal efficiency for bisphenol A (BPA) in 3h (93%) compared with free HRP (61%) and PFM alone (42%). The high BPA removal can be resulted by improvement of catalytic activity of immobilized HPR with adsorption on modified PMMA CEA support.
Collapse
Affiliation(s)
- Ran Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | | | | | | |
Collapse
|