1
|
Fahim R, Cheng L, Mishra S. Structural and functional perspectives of carbon filter media in constructed wetlands for pollutants abatement from wastewater. CHEMOSPHERE 2023; 345:140514. [PMID: 37879377 DOI: 10.1016/j.chemosphere.2023.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Constructed wetlands (CWs) represent the most viable artificial wastewater treatment system that works on the principles of natural wetlands. Filter media are integrally linked to CWs and have substantial impacts on their performance for pollutant removal. Carbon-derived substrates have been in the spotlight for decades due to their abundance, sustainability, reusability, and potential to treat complex contaminants. However, the efficiency and feasibility of carbon substrates have not been fully explored, and there are only a few studies that have rigorously analyzed their performance for wastewater treatment. This critical synthesis of the literature review offers comprehensive insights into the utilization of carbon-derived substrates in the context of pollutant removal, intending to enhance the efficiency and sustainability of CWs. It also compares several carbon-based substrates with non-carbon substrates with respect to physiochemical properties, pollutant removal efficiency, and cost-benefit analysis. Furthermore, it addresses the concerns and possible remedies about carbon filtration materials such as configuration, clogging minimization, modification, and reusability to improve the efficacy of substrates and CWs. Recommendations made to address these challenges include pretreatment of wastewater, use of a substrate with smaller pore size, incorporation of multiple filter media, the introduction of earthworms, and cultivation of plants. A current scientific scenario has been presented for identifying the research gaps to investigate the functional mechanisms of modified carbon substrates and their interaction with other CW components.
Collapse
Affiliation(s)
- Raana Fahim
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liu Cheng
- Key Laboratory of Integrated Regulation and Resource Development Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
2
|
Li C, Feng L, Lian J, Yu X, Fan C, Hu Z, Wu H. Enhancement of organics and nutrient removal and microbial mechanism in vertical flow constructed wetland under a static magnetic field. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117192. [PMID: 36621318 DOI: 10.1016/j.jenvman.2022.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Low and unstable pollutant removal is regarded as the bottleneck problem in constructed wetlands (CWs) for wastewater treatment. This study investigated the effect of static magnetic field (MF) on enhancing the purification efficiency and microbial mechanism in vertical flow CW systems for treating domestic wastewater. The results showed that MF-CWs outperformed control systems in terms of treatment performance, with average removal efficiencies of COD, NH4+-N, TN, and TP reaching 92.58%, 73.58%, 72.53%, and 95.83%, respectively. The change of malondialdehyde (MDA), catalase (CAT), and superoxide dismutase (SOD) activity indicated that MF application was beneficial for plant health. Additionally, higher ammonia monooxygenase (AMO) activity in MF-CWs suggested the removal of NH4+-N was facilitated. The high-throughput sequencing results demonstrated that MF application could enrich the functional bacteria such as Patescibacteria phylum, mainly, including Gammaproteobacteria, Betaproteobacteria, and Alphaproteobacteria, which further accelerated pollutants transformation. These findings would be beneficial in understanding pollutant removal processes and their mechanism in CWs with MF application.
Collapse
Affiliation(s)
- Cong Li
- School of Geography and Environment, Liaocheng University, Liaocheng 252059, PR China
| | - Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, PR China
| | - Xiaoting Yu
- Liaocheng City Ecological Environment Bureau, Liaocheng 252000, PR China
| | - Chunzhen Fan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Key Laboratory of Zhejiang Province for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
3
|
Diffuse Water Pollution from Agriculture: A Review of Nature-Based Solutions for Nitrogen Removal and Recovery. WATER 2021. [DOI: 10.3390/w13141893] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The implementation of nature-based solutions (NBSs) can be a suitable and sustainable approach to coping with environmental issues related to diffuse water pollution from agriculture. NBSs exploit natural mitigation processes that can promote the removal of different contaminants from agricultural wastewater, and they can also enable the recovery of otherwise lost resources (i.e., nutrients). Among these, nitrogen impacts different ecosystems, resulting in serious environmental and human health issues. Recent research activities have investigated the capability of NBS to remove nitrogen from polluted water. However, the regulating mechanisms for nitrogen removal can be complex, since a wide range of decontamination pathways, such as plant uptake, microbial degradation, substrate adsorption and filtration, precipitation, sedimentation, and volatilization, can be involved. Investigating these processes is beneficial for the enhancement of the performance of NBSs. The present study provides a comprehensive review of factors that can influence nitrogen removal in different types of NBSs, and the possible strategies for nitrogen recovery that have been reported in the literature.
Collapse
|
4
|
Saeed T, Miah MJ, Khan T. Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30908-30928. [PMID: 33594561 DOI: 10.1007/s11356-021-12700-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
This study reports organics and nutrient removal performances of the intensified constructed wetlands, i.e., tidal flow-based microbial fuel cell (MFC) and tidal flow wetlands that received municipal wastewater. The wetland systems were filled with organic (coco peat, biochar) or waste (Jhama brick, steel slag) materials, planted with Phragmites australis or Chrysopogon zizanioides (Vetiver) species, and operated under three flood periods: 8, 16, 24 h. Input ammonia nitrogen (NH3-N), total nitrogen (TN), phosphorus (P), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) load across the wetland systems ranged between 3-27, 12-78, 0.1-23, 36-1130, and 11-281 g/m2day, respectively; mean removal percentages were 60-83, 74-84, 95-100, 94-98, and 93-97%, respectively, throughout the experimental run. The wetland systems achieved similar organics and P removals; operational and media variation did not influence removal kinetics. All wetland systems achieved the highest TN removal (76-87%) when subjected to 24-h flood period. TN removal performances of waste material-based wetlands were comparable to organic media-based systems. Tidal flow-based MFC wetlands achieved better TN removal than tidal flow wetlands because of supplementary electron production through fuel cell-based organics degradation kinetics. Maximum power production rates across the tidal flow-based MFC wetlands ranged between 53 and 57 mW/m2. Monod kinetics-based continuous stirred tank reactor (CSTR) models predicted NH3-N, TN, and COD removals (in wetland systems) more accurately. Kinetic models confirmed the influence of substrate (i.e., pollutant) and environmental parameters on pollutant removal routes.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh.
| | - Md Jihad Miah
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| | - Tanbir Khan
- Department of Civil Engineering, University of Asia Pacific, Dhaka, 1205, Bangladesh
| |
Collapse
|
5
|
Kataki S, Chatterjee S, Vairale MG, Dwivedi SK, Gupta DK. Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 283:111986. [PMID: 33486195 DOI: 10.1016/j.jenvman.2021.111986] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/12/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Constructed wetland (CW) represents an efficient eco-technological conglomerate interweaving water security, energy possibility and environmental protection. In the context of wastewater treatment technologies requiring substantial efficiency at reduced cost, chemical input and low environmental impact, applications of CW is being demonstrated at laboratory and field level with reasonably high contaminant removal efficiency and ecological benefits. However, along with the scope of applications, role of individual wetland component has to be re-emphasized through related research interventions. Hence, this review distinctively explores the concerns for extracting maximum benefit of macrophyte (focusing on interface of pollutant removal, root radial oxygen loss, root iron plaque, endophyte-macrophyte assisted treatment in CW, and prospects of energy harvesting from macrophyte) and role of biofilm (effect on treatment efficiency, composition and factors affecting) in a CW. Another focus of the review is on recent advances and developments in alternative low-cost substrate materials (including conventional type, industrial by-products, organic waste, mineral based and hybrid type) and their effect on target pollutants. The remainder of this review is organized to discuss the concerns of CW with respect to wastewater type (municipal, industrial, agricultural and farm wastewater). Attempt is made to analyze the practical relevance and significance of these aspects incorporating all recent developments in the areas to help making informed decisions about future directions for research and development related to CW.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change (MoEFCC), Indira Paryavaran Bhavan, New Delhi, India
| |
Collapse
|
6
|
Tao Z, Jing Z, Wang Y, Tao M, Luo H. Higher nitrogen removal achieved in constructed wetland with polyethylene fillers and NaOH-heating pre-treated corn stalks for advanced treatment of low C/N sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13829-13841. [PMID: 33200385 DOI: 10.1007/s11356-020-11652-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Advanced processing of low C/N sewage faces the carbon sources shortage, while quantities of agricultural biomass wastes need to be disposed. This study investigated the potential of quantitative modified biomass addition in constructed wetlands (CWs) filled with polyethylene fillers. Results showed that the lignin in NaOH-heating pretreated corn stalks (NH-CSs) was destroyed, and the wrinkles on the stalks increased and became more soft after pretreatment, which was more conducive to the utilization of carbon sources and attachment of microorganisms. Compared with glucose and sodium acetate, the denitrification with mixed carbon source (glucose and NH-CSs) had the highest effective utilization percentage (61.37%) and NH-CSs were expected to become stable and fast-release carbon sources. After adding 30 g NH-CSs to the rear unit of CW with polyethylene fillers (CW-A), TN removal efficiency was increased by 18.21%, and the average removal efficiency of COD, NH4+-N, TN, and TP reached 54.83%, 89.95%, 64.11%, and 45.04%, respectively. Compared with the traditional CW (CW-B), CW-A had a significant denitrification advantage (P < 0.05), but the removal efficiency and effluent stability of phosphorus were inferior to CW-B. These results indicate that the biomass carbon sources such as corn stalks and polyethylene fillers have a good potential to improve the denitrification in CWs.
Collapse
Affiliation(s)
- Zhengkai Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaoqian Jing
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yin Wang
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengni Tao
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Luo
- College of Civil Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
7
|
Saeed T, Hossain N. Organics and nutrients removal in vertical flow wetlands: loading fluctuation and alternative media. ENVIRONMENTAL TECHNOLOGY 2021; 42:1104-1118. [PMID: 31401944 DOI: 10.1080/09593330.2019.1655592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Two wetland systems (conventional and structurally modified) were studied for the removal of organics and nutrients from municipal wastewater. Each system consisted of three vertical flow (VF) wetlands, which were filled with agricultural, construction waste materials and planted with Phragmites australis and Canna indica. The wetland units were operated under constant and consecutive shock hydraulic load (HL). Input nutrients and organics load across the wetland units ranged between 4.0-116.0 g N/m2d, 0.5-23.0 g P/m2d, 1.0-527.0 g biochemical oxygen demand (BOD)/m2d and 16.0-686.0 g chemical oxygen demand (COD)/m2d. Nitrification and organic carbon availability controlled nitrogen (N) removals in first and third stage VF wetlands, respectively, during constant load phase; organics removals were influenced by dissolved oxygen concentration of municipal wastewater. Second stage VF wetlands (of both systems) were inefficient in terms of COD removals during shock load periods, which were counter-balanced by first and third stages. First stage VF wetlands achieved higher N removal rates than following stages during shock load periods. Wetland maturation provided a buffer against substantial HL increment and sharp input load decrease in latter shock and recovery phases, respectively. Agricultural waste (sugarcane bagasse) provided carbon to support denitrification; construction materials (recycled brick and crushed mortar) removed phosphorus (P) from wastewater through adsorption. Coliform removal in VF wetlands was achieved through media filtration. Structurally modified system achieved higher removals than the conventional system. BOD, COD, total nitrogen and NH4-N removal percentage across two systems ranged between 76-79%, 59-63%, 73-77% and 90-95%, respectively. In general, this study enlightens potential application of appropriate waste materials for wastewater treatment.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| | - Nadim Hossain
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
8
|
Huong M, Costa DT, Van Hoi B. Enhanced removal of nutrients and heavy metals from domestic-industrial wastewater in an academic campus of Hanoi using modified hybrid constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1995-2006. [PMID: 33263578 DOI: 10.2166/wst.2020.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vietnam, like many developing countries, is facing serious water quality issues due to discharging wastewaters without treatment or with improper treatment, which can constitute a potential risk for aquatic ecosystems, food safety and human health. Hybrid constructed wetlands with four substrate layers (HCW) and modified hybrid constructed wetland (MHCW-1 and MHCW-2) with seven substrate layers were designed to evaluate the enhanced treatment capacity for wastewaters. To this end, we carried out an outdoor experiment at the Vietnam Academy of Science and Technology, Vietnam to treat its wastewaters from April to August 2019. All constructed wetland units were planted with reed Phragmites australis and cyperus Cyperus alternifolius; and specifically wetland MHCW-2 was cultured with earthworm Perionys excavates. Results indicated that MHCW-1 and MHCW-2 with seven substrate layers had higher removal efficiencies of NO3 --N, TKN and TP than HCW system. More substrate layers in MHCW-1 and MHCW-2 also resulted in increase of Cu and Pb removal efficiencies, with 73.5%, 79.4%, 71.5% and 67.8%, respectively. Particularly, earthworm addition in MHCW-2 was more efficient in decreasing the concentrations of biochemical oxygen demand (BOD5), with removal efficiency over 70%.
Collapse
Affiliation(s)
- Mai Huong
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam E-mail:
| | - Dan-Tam Costa
- Epurtek Company, 81 chemin de Mange Pommes, 31520 Ramonville-Saint-Agne, Toulouse, France
| | - Bui Van Hoi
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam E-mail:
| |
Collapse
|
9
|
Shen S, Li X, Cheng F, Zha X, Lu X. Review: recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29837-29855. [PMID: 32472508 DOI: 10.1007/s11356-020-08808-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Substrates are the main factor influencing the performance of constructed wetlands (CWs), and especially play an important role in enhancing the removal of nitrogen and phosphorus from CWs. In the recent 10 years, based on the investigation of emerged substrates used in CWs, this paper summarizes the removal efficiency and mechanism of nitrogen and phosphorus by a single substrate in detail. The simultaneous removal efficiency of nitrogen and phosphorus by different combined substrates is emphatically analyzed. Among them, the reuse of industrial and agricultural wastes as water treatment substrates is recommended due to the efficient pollutant removal efficiency and the principle of waste minimization, also more studies on the environmental impact and risk assessment of the application, and the subsequent disposal of saturated substrates are needed. This work serves as a basis for future screening and development of substrates utilized in CWs, which is helpful to enhance the synchronous removal of nitrogen and phosphorus, as well as improve the sustainability of substrates and CWs. Moreover, further studies on the interaction between different types of substrates in the wetland system are desperately needed.
Collapse
Affiliation(s)
- Shuting Shen
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiang Li
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Fangkui Cheng
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiao Zha
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China
| | - Xiwu Lu
- School of Energy & Environment, Southeast University, 2 Sipailou Rd, Nanjing, 210096, Jiangsu, People's Republic of China.
- ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi, 214135, People's Republic of China.
| |
Collapse
|
10
|
Multistage Horizontal Subsurface Flow vs. Hybrid Constructed Wetlands for the Treatment of Raw Urban Wastewater. SUSTAINABILITY 2020. [DOI: 10.3390/su12125102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, pilot-scale hybrid constructed wetlands (CWs) and multistage horizontal subsurface flow CWs (HF CWs) have been studied and compared for the treatment of raw urban wastewater. In the hybrid CWs, the first stage was a mulch-based horizontal subsurface flow CW and the second stage was a vertical subsurface flow CW (VF CW). The VF CWs were used to determine if sand could improve the performance of the hybrid CW with respect to the mulch. In the multistage HFs, mulch, gravel and sand were used as substrates. The effect of water height (HF10: 10 cm vs. HF40: 40 cm) and surface loading rate (SLR: 12 vs. 24 g Chemical Oxygen Demand (COD)/m2d) has been studied. The results show that the use of sand in the vertical flow stage of the hybrid CW did not improve the average performance. Additionally, the sand became clogged, while the mulch did not. The effect of water height on average pollutant removal was not determined but HF10 performed better regarding compliance with legal regulations. With a SLR of 12 g COD/m2d, removals of HF10 were: 79% for COD, 75% for NH4+-N, 53% for dissolved molybdate-reactive phosphate-P (DRP), 99% for turbidity and 99.998% for E. coli and total coliforms. When SLR was doubled, removals decreased for NH4+-N: 49%, DRP: −20%, E coli and total coliforms: 99.5–99.9%, but not for COD (85%) and turbidity (99%). Considering the obtained results and the simplicity of the construction and operation of HFs, HF10 would be the most suitable choice for the treatment of raw urban wastewater without clogging problems.
Collapse
|
11
|
Constructed Wetlands for Sustainable Wastewater Treatment in Hot and Arid Climates: Opportunities, Challenges and Case Studies in the Middle East. WATER 2020. [DOI: 10.3390/w12061665] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many countries and regions around the world are facing a continuously growing pressure on their limited freshwater resources, particularly those under hot and arid climates. Higher water demand than availability led to over-abstraction and deterioration of the available freshwater resources’ quality. In this context, wastewater, if properly treated, can represent a new water source added in the local water balance, particularly in regions of Colorado, California, Australia, China and in the wide region of the Middle East, which is characterized as one of most water-stressed regions in the world. This article summarizes the status of wastewater treatment and management in the Middle East and discusses the challenges, the various barriers and also the opportunities that arise by introducing the sustainable technology of Constructed Wetlands in the region. Furthermore, the aim of the article is to provide a better insight into the possibility and feasibility of a wider implementation of this green technology under the hot and arid climate of Middle East by presenting several successful case studies of operating Constructed Wetlands facilities in the region for the treatment of various wastewater sources.
Collapse
|
12
|
John Y, Langergraber G, Adyel TM, Emery David V. Aeration intensity simulation in a saturated vertical up-flow constructed wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134793. [PMID: 31780147 DOI: 10.1016/j.scitotenv.2019.134793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Simulation and performance results of a saturated vertical up-flow constructed wetland (SVU CW) operated under different operational conditions are presented. The SVU CW consists of two different systems planted with Cyperus alternifolius and Iris pseudacorus, and each system consists of three SVU beds operated in series. The SVU CW operates in continuous aeration (CA) mode using different air-water ratios from 0.5:1 to 4:1. The aerated SVU CW achieves a high (more than 85%) removal of chemical oxygen demand (COD), ammonium (NH4+-N), total nitrogen (TN) and total phosphorus (TP). Furthermore, we simulate the SVU CW using the HYDRUS Wetland Module using the CWM1 biokinetic model under CA mode. According to the simulation results, aeration intensity controls the substrate distribution and growth of bacteria with depth in the SVU CW. Organic matter (OM) and nitrogen are removed in the top region (0-30 cm) of the SVU CW. The root mean square error for COD and NH4+-N is >1.5, whereas R2 is >0.99. A good match between observed and simulated data suggests that the CWM1 model is a suitable tool for simulating various processes and bacterial dynamics in aerated SVU CWs.
Collapse
Affiliation(s)
- Yasinta John
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China.
| | - Guenter Langergraber
- Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, Vienna A-1190, Austria
| | - Tanveer M Adyel
- Department of Civil Engineering, Monash University, 23 College Walk, Clayton 3800, VIC, Australia
| | - Victor Emery David
- Chongqing University, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing 400045, China
| |
Collapse
|
13
|
Xiong C, Tam NF, Dai Y, Zhang X, Li R, Zheng Y, Wang L, Yang Y. Enhanced performance of pilot-scale hybrid constructed wetlands with A/O reactor in raw domestic sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110026. [PMID: 31929064 DOI: 10.1016/j.jenvman.2019.110026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to improve the nutrient removal efficiency by optimizing aeration time, hydraulic loading rate (HLR) and combination type in hybrid constructed wetlands (HCWs) with anoxic/oxic (A/O) reactor. The results showed that, the highest removal percentages of TN, NH4-N, TP, PO4-P and COD were 87.9%, 98.1%, 86.1%, 85.3% and 95.2%, respectively, in horizontal subsurface flow (HF) - surface flow - vertical subsurface flow CW with A/O reactor at 0.1 m/d HLR and 2 h aeration. HLR, aeration time and combination type had a significant impact on the removal of nutrients, though plant diversity did not have any significant influence. Presence of the A/O reactor improved the removal of TN in the HCWs by reducing influent loading and changing influent characteristics, thereby affecting the role of nitrification, anammox, and denitrification processes. The anammox process was the dominant pathway in the 1st HF CWs during the aeration period, where the highest removal of phosphorus was observed.
Collapse
Affiliation(s)
- Chunhui Xiong
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Nora Fungyee Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yunv Dai
- Department of Ecology, Jinan University, Guangzhou, 510632, China.
| | - Xiaomeng Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Rui Li
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yu Zheng
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Lin Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, China
| | - Yang Yang
- Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, China.
| |
Collapse
|
14
|
Biotreatment of Winery Wastewater Using a Hybrid System Combining Biological Trickling Filters and Constructed Wetlands. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10020619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this work was to determine the ability of a pilot-scale hybrid system to treat real (non-synthetic) winery wastewater. The experimental treatment system consisted of two stages: An attached growth pilot-scale bioreactor (biological trickling filter with plastic support material) was initially used to remove a significant amount of dissolved chemical oxygen demand (d-COD) from winery wastewater, and then a pilot-scale, horizontal subsurface flow constructed wetland (CW) was examined as a post-treatment step for further d-COD removal. Results from the biofilter revealed that the recirculation rate of 1.0 L/min lead to higher d-COD removal rates than that of 0.5 L/min for all feed d-COD concentrations tested (3500, 7500, 9000 and 18,000 mg d-COD/L). Experiments in the CW were performed using feed d-COD concentrations of about 1500 mg/L (equivalent to biofilter effluent when initial filter feed d-COD concentrations are 18,000 mg/L). The wetland polishing stage managed to further remove d-COD and produced effluent concentrations below current legislation limits for safe disposal. Furthermore, the presence of zeolite in CW (one third of the length of CW) enhanced ammonium removal. The experimental results indicate that the combination of a biological trickling filter and a constructed wetland could effectively treat effluents originating from small wineries typical of the Mediterranean region.
Collapse
|
15
|
Xu P, Xiao E, He F, Xu D, Zhang Y, Wang Y, Wu Z. High performance of integrated vertical-flow constructed wetland for polishing low C/N ratio river based on a pilot-scale study in Hangzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22431-22449. [PMID: 31154652 DOI: 10.1007/s11356-019-05508-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
We investigated the treatment efficiency of micro-polluted NO3--dominated river water with low C/N ratio by five parallel pilot-scale IVCWs with different plant and substrate collocation. When the mean concentration was 2.24 and 0.193 mg L-1 in influent, IVCWs achieved an average (mass) removal rate of (0.09 g m-2 day-1) 46.8% and (0.77 g m-2 day-1) 62.3% for TN and TP, respectively, during 1 year of operation. Water quality was significantly improved from grade V to meet the criterion of grade IV of surface water. Through the comparison of removal rate by different IVCWs, we found that lack of carbon sources in influent limited the denitrification in the middle and bottom layers (ML, BL) of IVCW. Zeolites deployed in the upper layer (UL) of IVCW reduced the overall N removal efficiency compared with gravels, due to a stronger nitrification but weaker denitrification. Canna indica (C. indica) was superior to Arundo donax (A. donax) and Thalia dealbata (T. dealbata) for N removal in the UL of IVCW due to higher aboveground biomass accumulation and microbial removal during the first 10 months. Stronger nitrification and denitrification were simultaneously facilitated near the rhizosphere of C. indica. When entered into Dec., A. donax performed higher N removal efficiency than the other two species. The internal replenishment of peats in the ML as carbon sources significantly improved N and P removal efficiency. Zeolites with stronger capacity of ammonium (NH4+) adsorption was more in favor of anammox in the BL, when compared with roseites, but both of them were not conducive to the growth of denitrifiers. However, the deployment of shale ceramisites obtained an opposite result. Gemmata and Pirellula as anammox bacteria were more enriched in the zeolite layer, whereas some anaerobic denitrifiers (Corynebacterium and Paludibacter) and heterotrophic denitrifiers including Bacillus, Geobacter, Pseudomonas, and Lactococcus were more found in shale ceramisite. Supply of peats as carbon sources in the ML was beneficial for the adhesion of anammox bacteria and denitrifiers in the BL of shale ceramisites. An ideal model composed of C. indica + A. donax (DFU)-gravel (UL)-anthracite+peat (ML)-zeolite+shale ceramsite (BL)-Acorus calamus (UFU) was proposed for treating this type of river water to achieve high efficiency.
Collapse
Affiliation(s)
- Peng Xu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Enrong Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Feng He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yafen Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
16
|
Huang J, Xiao J, Chen M, Cao C, Yan C, Ma Y, Huang M, Wang M. Fate of silver nanoparticles in constructed wetlands and its influence on performance and microbiome in the ecosystems after a 450-day exposure. BIORESOURCE TECHNOLOGY 2019; 281:107-117. [PMID: 30807995 DOI: 10.1016/j.biortech.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 05/25/2023]
Abstract
Great controversy still exists on the ecological effects of silver nanoparticles (AgNPs) especially at relatively low concentrations. The performance, fate of AgNPs and microbiome in CWs were evaluated under a long-term exposure to AgNPs (0, 50 and 200 µg/L) for 450 days. Results showed that AgNPs (50, 200 µg/L) caused no obviously negative effects on COD removal whereas nitrogen and phosphorus removals were slightly stimulated. AgNPs could be removed efficiently from wastewater attributed to the accumulations of soil and plant tissues. Mass balance of AgNPs was analysed and soil layer of CWs was the major sink of nanoparticles. High-throughput sequencing further revealed the impact of AgNPs on the ecological structure of CWs. Moreover, the presence of AgNPs altered the relative abundances of key functional bacteria. The ecological risks of persistent exposure to low concentrations AgNPs should not be ignored, even though it did not result in deterioration of the CWs' operating performance in our studies.
Collapse
Affiliation(s)
- Juan Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Ming Chen
- Nanjing Research Institute of Environmental Protection, Nanjing, Jiangsu 210042, PR China
| | - Chong Cao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Chunni Yan
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yixuan Ma
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Minjie Huang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Mingyu Wang
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
17
|
Tan X, Yang Y, Liu Y, Li X, Fan X, Zhou Z, Liu C, Yin W. Enhanced simultaneous organics and nutrients removal in tidal flow constructed wetland using activated alumina as substrate treating domestic wastewater. BIORESOURCE TECHNOLOGY 2019; 280:441-446. [PMID: 30802748 DOI: 10.1016/j.biortech.2019.02.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
A tidal flow constructed wetland (TFCW), a commonly applied system to clean wastewater, contains a substrate to assist pollutants removal, while the choice of substrate affects the formation of bacterial biofilms. Herein, activated alumina-TFCW (A-TFCW) with hydraulic load of 1.35 m3/(m2·d) parallel with shale ceramisite (S-TFCW) was investigated for treating domestic wastewater, aiming to enhance simultaneous long-term removal of organics, nitrogen and phosphorus. A-TFCW achieved significantly higher COD, NH4+-N, TN and TP removal efficiency than S-TFCW, with the removal efficiency of 85.9% COD, 85.4% NH4+-N, 72.8% TN and 96.4% TP respectively. Denitrifying bacteria dominated in both formed biofilms, with higher relative abundance of nitrifying bacteria and denitrifying bacteria in A-TFCW. These results demonstrated that AA substrate was more suitable to be applied in enhancing the removal performance in TFCW for the treatment of domestic wastewater.
Collapse
Affiliation(s)
- Xu Tan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yanling Yang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongwang Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; China Architecture Design & Research Group, Beijing 100044, China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiaoyan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhiwei Zhou
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Changjian Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Wenchao Yin
- China Architecture Design & Research Group, Beijing 100044, China.
| |
Collapse
|
18
|
Saeed T, Yasmin N, Sun G, Hasnat A. The use of biochar and crushed mortar in treatment wetlands to enhance the removal of nutrients from sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:586-599. [PMID: 30411289 DOI: 10.1007/s11356-018-3637-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
An experimental study was carried out using in pilot-scale constructed wetland systems, operated in parallel to treat raw sewage. Each system consisted of a vertical flow (VF) unit that was filled with biochar as the main media, followed by a horizontal flow (HF) unit filled with crushed cement mortar. Hydraulic loading (HL) ranged 340-680 mm/day was applied on the VF wetland units, where high total nitrogen (TN) mass removal rate (20-23 g N/m2 d) was obtained, demonstrating that biochar media had a beneficial effect on the degradation of nitrogenous pollutants. Total phosphorus (TP) removal percentage (concentration based) was ≥ 86% in HF wetlands packed with mortar materials. In one system, the flow direction of the sewage was directed by the deployment of downflow pipes and vertical baffles, aiming to facilitate the formation of aerobic and anaerobic zones in the wetland matrices. The effects of such arrangement were analyzed by comparing pollutant removal efficiencies in the two systems. On average, 99, 96, 93, and 86 percentage removals were obtained for ammonia (NH4-N), TN, biochemical oxygen demand (BOD), and TP, respectively, during the experiments. Biochar and crushed mortar proved to be a highly effective combination as media in subsurface flow constructed wetlands for wastewater treatment.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh.
| | - Nilufar Yasmin
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| | - Guangzhi Sun
- School of Engineering, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Ariful Hasnat
- Department of Civil Engineering, University of Asia Pacific, Dhaka, Bangladesh
| |
Collapse
|
19
|
Yang Y, Zhao Y, Liu R, Morgan D. Global development of various emerged substrates utilized in constructed wetlands. BIORESOURCE TECHNOLOGY 2018; 261:441-452. [PMID: 29627204 DOI: 10.1016/j.biortech.2018.03.085] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/12/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Substrate selection is one of the key technical issues for constructed wetlands (CWs), which works for wastewater treatment based mainly on the biofilm principle. In recent years, many alternative substrates have been studied and applied in CWs, and a review is conducive to providing updated information on CW R&D. Based on the intensive research work especially over the last 10 years on the development of emerged substrates (except for the three conventional substrates of soil, sand, and gravel) in CWs, this review was made. The substrates are categorized depending on their main roles in pollutant removal as ion-exchange substrates, P-sorption substrates, and electron donor substrates. Among these, reuse of various waste products as substrates was suggested due to their competitive pollutant removal efficiency and minimized waste disposal. Regarding substrate development, future research on avoiding substrate clogging to extend their lifetime in CWs is needed.
Collapse
Affiliation(s)
- Yan Yang
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland; Department of Environmental Engineering, Anhui Jianzhu University, Hefei 230601, Anhui, PR China
| | - Yaqian Zhao
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland; State Key Laboratory of Eco-Hydraulic Engineering in Arid Area, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Ranbin Liu
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Morgan
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, Newstead Building, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
20
|
Nitrogen removal by modified zeolites coated with Zn-layered double hydroxides (Zn-LDHs) prepared at different molar ratios. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Effect of Substrate, Feeding Mode and Number of Stages on the Performance of Hybrid Constructed Wetland Systems. WATER 2018. [DOI: 10.3390/w10010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hybrid constructed wetland mesocosm has been used for the treatment of raw urban wastewater. The first stage was a mulch-based, subsurface, horizontal flow constructed wetland (HF). The HF achieved good removals of COD (61%; 54 g/m2·day) and Total Suspended Solids (84%; 29 g/m2·day). The second stage was composed of vertical flow constructed wetlands (VF) that were employed to study the effect of substrate (gravel vs. mulch), feeding mode (continuous vs. intermittent) and the number of stages (1 vs. 2) on performance. High hydraulic and organic surface loadings (513–583 L/m2·day and 103–118 g/m2·day of COD) were applied to the reactors. The mulch was more efficient than gravel for all the parameters analyzed. The continuous feeding allowed a 3 to 6-fold reduction of the surface area required.
Collapse
|
22
|
Tatoulis T, Akratos CS, Tekerlekopoulou AG, Vayenas DV, Stefanakis AI. A novel horizontal subsurface flow constructed wetland: Reducing area requirements and clogging risk. CHEMOSPHERE 2017; 186:257-268. [PMID: 28780453 DOI: 10.1016/j.chemosphere.2017.07.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
The use of Constructed Wetlands (CWs) has been nowadays expanded from municipal to industrial and agro-industrial wastewaters. The main limitations of CWs remain the relatively high area requirements compared to mechanical treatment technologies and the potential occurrence of the clogging phenomenon. This study presents the findings of an innovative CW design where novel materials were used. Four pilot-scale CW units were designed, built and operated for two years. Each unit consisted of two compartments, the first of which (two thirds of the total unit length) contained either fine gravel (in two units) or random type high density polyethylene (HDPE) (in the other two units). This plastic media type was tested in a CW system for the first time. The second compartment of all four units contained natural zeolite. Two units (one with fine gravel and one with HDPE) were planted with common reeds, while the other two were kept unplanted. Second cheese whey was introduced into the units, which were operated under hydraulic residence times (HRT) of 2 and 4 days. After a two-year operation and monitoring period, pollutant removal rates were approximately 80%, 75% and 90% for COD, ammonium and ortho-phosphate, respectively, while temperature and HRT had no significant effect on pollutant removal. CWs containing the plastic media achieved the same removal rates as those containing gravel, despite receiving three times higher hydraulic surface loads (0.08 m/d) and four times higher organic surface loads (620 g/m2/d). This reveals that the use of HDPE plastic media could reduce CW surface area requirements by 75%.
Collapse
Affiliation(s)
- Triantafyllos Tatoulis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Christos S Akratos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece.
| | | | - Dimitrios V Vayenas
- Department of Chemical Engineering, University of Patras, Patras, Greece; Institute of Chemical Engineering Sciences, Foundation of Research and Technology (FORTH), Patras, Greece
| | - Alexandros I Stefanakis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| |
Collapse
|
23
|
Lopez-Ponnada EV, Lynn TJ, Peterson M, Ergas SJ, Mihelcic JR. Application of denitrifying wood chip bioreactors for management of residential non-point sources of nitrogen. J Biol Eng 2017; 11:16. [PMID: 28469703 PMCID: PMC5410704 DOI: 10.1186/s13036-017-0057-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/28/2017] [Indexed: 11/10/2022] Open
Abstract
Two important and large non-point sources of nitrogen in residential areas that adversely affect water quality are stormwater runoff and effluent from on-site treatment systems. These sources are challenging to control due to their variable flow rates and nitrogen concentrations. Denitrifying bioreactors that employ a lignocellulosic wood chip medium contained within a saturated (anoxic) zone are relatively new technology that can be implemented at the local level to manage residential non-point nitrogen sources. In these systems, wood chips serve as a microbial biofilm support and provide a constant source of organic substrate required for denitrification. Denitrifying wood chip bioreactors for stormwater management include biofilters and bioretention systems modified to include an internal water storage zone; for on-site wastewater, they include upflow packed bed reactors, permeable reactive barriers, and submerged wetlands. Laboratory studies have shown that these bioreactors can achieve nitrate removal efficiencies as high as 80-100% but could provide more fundamental insight into system design and performance. For example, the type and size of the wood chips, hydraulic loading rate, and dormant period between water applications affects the hydrolysis rate of the lignocellulosic substrate, which in turn affects the amount and bioavailability of dissolved organic carbon for denitrification. Additional field studies can provide a better understanding of the effect of varying environmental conditions such as ambient temperature, precipitation rates, household water use rates, and idle periods on nitrogen removal performance. Long-term studies are also essential for understanding operations and maintenance requirements and validating mathematical models that integrate the complex physical, chemical, and biological processes occurring in these systems. Better modeling tools could assist in optimizing denitrifying wood chip bioreactors to meet nutrient reduction goals in urban and suburban watersheds.
Collapse
Affiliation(s)
- E V Lopez-Ponnada
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave./ENB 118, Tampa, FL 33620 USA
| | - T J Lynn
- Texas A&M University-Kingsville, 700 University Blvd./MSC 213, Kingsville, TX 78363 USA
| | - M Peterson
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave./ENB 118, Tampa, FL 33620 USA
| | - S J Ergas
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave./ENB 118, Tampa, FL 33620 USA
| | - J R Mihelcic
- Department of Civil & Environmental Engineering, University of South Florida, 4202 E. Fowler Ave./ENB 118, Tampa, FL 33620 USA
| |
Collapse
|
24
|
Guo L, He K, Wu S, Sun H, Wang Y, Huang X, Dong R. Optimization of high-rate TN removal in a novel constructed wetland integrated with microelectrolysis system treating high-strength digestate supernatant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 178:42-51. [PMID: 27136616 DOI: 10.1016/j.jenvman.2016.04.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 06/05/2023]
Abstract
The potential of high-rate TN removal in three aerated horizontal subsurface-flow constructed wetlands to treat high-strength anaerobic digestate supernatant was evaluated. Different strategies of intermittent aeration and effluent recirculation were applied to compare their effect on nitrogen depuration performance. Additional glucose supply and iron-activated carbon based post-treatment systems were established and examined, respectively, to further remove nitrate that accumulated in the effluents from aerated wetlands. The results showed that intermittent aeration (1 h on:1 h off) significantly improved nitrification with ammonium removal efficiency of 90% (18.1 g/(m(2)·d)), but limited TN removal efficiency (53%). Even though effluent recirculation (a ratio of 1:1) increased TN removal from 53% to 71%, the effluent nitrate concentration was still high. Additional glucose was used as a post-treatment option and further increased the TN removal to 82%; however, this implementation caused additional organic pollution. Furthermore, the iron-activated carbon system stimulated with a microelectrolysis process achieved greater than 85% effluent nitrate removal and resulted in 86% TN removal. Considering the high TN removal rate, aerated constructed wetlands integrated with a microelectrolysis-driven system show great potential for treating high-strength digestate supernatant.
Collapse
Affiliation(s)
- Luchen Guo
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Keli He
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Shubiao Wu
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China.
| | - Hao Sun
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Yanfei Wang
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| | - Xu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, PR China
| | - Renjie Dong
- Key Laboratory of Clean Utilization Technology for Renewable Energy, Ministry of Agriculture, College of Engineering, China Agricultural University, 100083, Beijing, PR China
| |
Collapse
|
25
|
Jong VSW, Tang FE. The use of palm kernel shell (PKS) as substrate material in vertical-flow engineered wetlands for septage treatment in Malaysia. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:84-91. [PMID: 26114275 DOI: 10.2166/wst.2015.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study, the treatment of septage (originating from septic tanks) was carried out in a pilot-scale, two-staged, vertical-flow engineered wetland (VFEW). Palm kernel shells (PKS) were incorporated as part of the VFEW's substrate (B-PKS), to compare its organic matter (OM) and nitrogen (N) removal efficiency against wetlands with only sand substrates (B-SD). The results revealed satisfactory OM removal with >90% reduction efficiencies at both wetlands B-PKS and B-SD. No increment of chemical oxygen demand (COD) concentration was observed in the effluent of B-PKS. Ammonia load removal efficiencies were comparable (>91% and 95% in wetland B-PKS and B-SD, respectively). However, nitrate accumulation was observed in the effluent of B-SD where PKS was absent. This was due to the limited denitrification in B-SD, as sand is free of carbon. A lower nitrate concentration was associated with higher COD concentration in the effluent at B-PKS. This study has shown that the use of PKS was effective in improving the N removal efficiency in engineered wetlands.
Collapse
Affiliation(s)
| | - Fu Ee Tang
- Curtin University Sarawak Campus, CDT 250, 98009 Miri, Sarawak, Malaysia E-mail:
| |
Collapse
|
26
|
Shen Z, Zhou Y, Liu J, Xiao Y, Cao R, Wu F. Enhanced removal of nitrate using starch/PCL blends as solid carbon source in a constructed wetland. BIORESOURCE TECHNOLOGY 2015; 175:239-44. [PMID: 25459828 DOI: 10.1016/j.biortech.2014.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 05/06/2023]
Abstract
Cornstarch/polycaprolactone (SPCL) blends were prepared and used as external carbon source for biological denitrification in a constructed wetland. The denitrification performances, components of dissolved organic matter (DOM) and microbial diversity were investigated. The results showed that nitrate was removed mainly in the layer filled with SPCL, and the average denitrification rate was 0.069kg/m(3)d (nitrate removal efficiency was 98.23%). The major component of DOM was polysaccharides which mainly consisted of reducing sugar. Besides, the concentrations of polysaccharides and reducing sugar decreased along the height of the constructed wetland. Therefore, the dissolved organic carbon (DOC) of effluent decreased to 6.54mg/L. Denitrifying bacteria Bacillus (24.25%) and Thauera (9.36%) were the most abundant genera in the biofilm attached on the surface of SPCL.
Collapse
Affiliation(s)
- Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jia Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Urban Construction, Hebei University of Engineering, Handan 056038, PR China
| | - Yu Xiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environmental and Municipal Engineering, LanZhou JiaoTong University, Lanzhou 730070, PR China
| | - Rong Cao
- School of Urban Construction, Hebei University of Engineering, Handan 056038, PR China
| | - Fuping Wu
- School of Environmental and Municipal Engineering, LanZhou JiaoTong University, Lanzhou 730070, PR China
| |
Collapse
|
27
|
Ding Y, Wang W, Song XS, Wang G, Wang YH. Effect of spray aeration on organics and nitrogen removal in vertical subsurface flow constructed wetland. CHEMOSPHERE 2014; 117:502-505. [PMID: 25259785 DOI: 10.1016/j.chemosphere.2014.08.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
The objective of present study was to assess the simultaneous removal of organics and nitrogen by four lab-scale vertical subsurface flow constructed wetlands (V-SFCWs). The emergent plants employed were Canna indica. Five-month experiments showed that the planted and aerated system largely reduced the COD by 95%, NH4 by 88% and total inorganic nitrogen (TIN) by 83%. It outperformed the unplanted or simple aerated system and was much better than non-aerated system. The study provided a strong evidence to support widespread research and application of spray aeration as a low-cost and energy-efficient aeration technology in V-SFCWs.
Collapse
Affiliation(s)
- Yi Ding
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Wei Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Xin-Shan Song
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Gang Wang
- China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yu-Hui Wang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| |
Collapse
|
28
|
Vera I, Araya F, Andrés E, Sáez K, Vidal G. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration. ENVIRONMENTAL TECHNOLOGY 2014; 35:1639-1649. [PMID: 24956754 DOI: 10.1080/09593330.2013.877984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phosphorus (P) contained in sewage maybe removed by mesocosm-scale constructed wetlands (MCW), although removal efficiency is only between 20% and 60%. P removal can be enhanced by increasing wetland adsorption capacity using special media, like natural zeolite, operating under aerobic conditions (oxidation-reduction potential (ORP) above +300 mV). The objective of this study was to evaluate P removal in sewage treated by MCW with artificial aeration and natural zeolite as support medium for the plants. The study compared two parallel lines of MCW: gravel and zeolite. Each line consisted in two MCW in series, where the first MCW of each line has artificial aeration. Additionally, four aeration strategies were evaluated. During the operation, the following parameters were measured in each MCW: pH, temperature, dissolved oxygen and ORP. Phosphate (PO4(-3) - P) and chemical oxygen demand (COD), five-day biological oxygen demand (BOD5), total suspended solids (TSS) and ammonium. (NH4(+) - N) were evaluated in influents and effluents. Plant growth (biomass) and proximate analysis for P content into Schoenoplectus californicus were also performed. The results showed that PO4(-3) - P removal efficiency was 70% in the zeolite medium, presenting significant differences (p < .05) with the results obtained by the gravel medium. Additionally, aeration was found to have a significant effect (p < .05) only in the gravel medium with an increase in up to 30% for PO43 - P removal. Thus, S. californicus contributed to 10-20% of P removal efficiency.
Collapse
|
29
|
Meng P, Pei H, Hu W, Shao Y, Li Z. How to increase microbial degradation in constructed wetlands: influencing factors and improvement measures. BIORESOURCE TECHNOLOGY 2014; 157:316-326. [PMID: 24559743 DOI: 10.1016/j.biortech.2014.01.095] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/19/2014] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
Microorganisms play a vital role in degradation of multiple pollutants in constructed wetlands (CWs). Thus, the search for methods to improve microbial degradation in CWs is crucial. This study provides a review of critical parameters including availability of organic carbon, redox condition, temperature, pH, presence of plants, media characteristics and their influences on microbial processes. Current strategies focusing on regulation of carbon source, redox condition, and choice of substrates to enhance microbial activity in CWs are also described. A special emphasis is given to the application of bioaugmentation to enhance microbial activities in wetland in future research.
Collapse
Affiliation(s)
- Panpan Meng
- School of Environmental Science and Engineering, Shandong University, Jinan, China; College of Biological and Brewing Engineering, Taishan University, Taian, China
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Jinan, China; Shandong Provincial Engineering Centre on Environmental Science and Technology, Jinan, Shandong Province, China.
| | - Wenrong Hu
- School of Environmental Science and Engineering, Shandong University, Jinan, China; Shandong Provincial Engineering Centre on Environmental Science and Technology, Jinan, Shandong Province, China
| | - Yuanyuan Shao
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Zheng Li
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| |
Collapse
|
30
|
Saeed T, Al-Muyeed A, Afrin R, Rahman H, Sun G. Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands. J Environ Sci (China) 2014; 26:726-736. [PMID: 25079402 DOI: 10.1016/s1001-0742(13)60476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 06/03/2023]
Abstract
This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD/(m(2)·day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efficiencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh.
| | - Abdullah Al-Muyeed
- Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh
| | - Rumana Afrin
- Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka 1208, Bangladesh
| | - Habibur Rahman
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Guangzhi Sun
- School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
31
|
Comparative Study of Three Two-Stage Hybrid Ecological Wastewater Treatment Systems for Producing High Nutrient, Reclaimed Water for Irrigation Reuse in Developing Countries. WATER 2014. [DOI: 10.3390/w6020213] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Fan J, Wang W, Zhang B, Guo Y, Ngo HH, Guo W, Zhang J, Wu H. Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios. BIORESOURCE TECHNOLOGY 2013; 143:461-6. [PMID: 23831745 DOI: 10.1016/j.biortech.2013.06.038] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 05/03/2023]
Abstract
The performance response of eight vertical flow constructed wetlands (VFCWs) to different influent COD/N ratios and intermittent aeration in domestic wastewater treatment was investigated. Almost complete nitrification was obtained by intermittent aeration, which well developed alternate anaerobic and aerobic conditions for nitrification and denitrification. Sufficient carbon source supply resulted from influent COD/N ratio of 10 simultaneously obtained high removals of COD (96%), ammonia nitrogen (99%) and total nitrogen (90%) in intermittently aerated VFCWs. In all non-aerated VFCWs, poor nitrification was observed due to oxygen deficiency whilst high COD/N ratios further led to lower COD and nitrogen removal efficiency. The results suggest that intermittent aeration combined with high influent COD/N ratios could achieve high nitrogen removal in VFCWs.
Collapse
Affiliation(s)
- Jinlin Fan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fan J, Zhang B, Zhang J, Ngo HH, Guo W, Liu F, Guo Y, Wu H. Intermittent aeration strategy to enhance organics and nitrogen removal in subsurface flow constructed wetlands. BIORESOURCE TECHNOLOGY 2013; 141:117-22. [PMID: 23561957 DOI: 10.1016/j.biortech.2013.03.077] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 05/03/2023]
Abstract
In this study, an intermittent-aerated subsurface flow constructed wetland (SFCW) A was set up to assess its performance in decentralized rural sewage treatment. A conventional SFCW B and a subsurface wastewater infiltration system (SWIS C) were also constructed for comparison. Alternate anaerobic and aerobic conditions were well developed by intermittent aeration. High removal of organic pollutants (29.3 gm(-2) d(-1)), ammonium nitrogen (3.5 gm(-2) d(-1)) and total nitrogen (3.3 gm(-2) d(-1)) were obtained simultaneously in SFCW A compared with SFCW B and SWIS C. Fluorescence in situ hybridization analysis proved that the intermittent aeration obviously enhanced the growth of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in SFCW A. These results suggest that intermittent aeration strategy is reliable to enhance the performance of SFCWs in decentralized rural sewage treatment.
Collapse
Affiliation(s)
- Jinlin Fan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu SQ, Chang JJ, Dai Y, Wu ZB, Liang W. Treatment performance and microorganism community structure of integrated vertical-flow constructed wetland plots for domestic wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:3789-3798. [PMID: 23179215 DOI: 10.1016/j.ecoleng.2012.03.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/06/2012] [Indexed: 05/27/2023]
Abstract
In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.66 % for total nitrogen (TN), 42.50 % for NH4 (+)-N, and 68.01 % for TP. Significant positive correlations between nitrate reductase activities and TN and NH4 (+)-N removal efficiencies, along with a significant correlation between substrate enzyme activity and operation time, were observed. Redundancy analysis demonstrated gram-negative bacteria were mainly responsible for urease and phosphatase activities, and also played a major role in dehydrogenase and nitrate reductase activities. Meanwhile, anaerobic bacteria, gram-negative bacteria, and saturated FA groups, gram-positive bacteria exhibited good correlations with the removal of COD (p=0.388), N (p=0.236), and TP (p=0.074), respectively. The IVCW system can be used to treat domestic wastewater effectively.
Collapse
Affiliation(s)
- Su-qing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
35
|
Dordio AV, Carvalho AJP. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. JOURNAL OF HAZARDOUS MATERIALS 2013; 252-253:272-92. [PMID: 23542322 DOI: 10.1016/j.jhazmat.2013.03.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/07/2013] [Accepted: 03/04/2013] [Indexed: 05/16/2023]
Abstract
Constructed wetlands (CWs) are increasingly popular as an efficient and economical alternative to conventional wastewater treatment processes for removal, among other pollutants, of organic xenobiotics. In CWs, pollutants are removed through the concerted action of their components, whose contribution can be maximized by careful selection of those components. Specifically for non-biodegradable organic pollutants, the materials used as support matrix of CWs can play a major role through sorption phenomena. In this review the role played by such materials in CWs is examined with special focus on the amount of research that has been conducted to date on their sorption properties relatively to organic compounds. Where available, the reports on the utilization of some of those materials on pilot or full-scale CWs are also recognized. Greatest interest has been directed to cheaper and widely available materials. Among these, clays are generally regarded as efficient sorbents, but materials originated from agricultural wastes have also gained recent popularity. Most available studies are lab-scale batch sorption experiments, whereas assays performed in full-scale CWs are still scarce. However, the available lab-scale data points to an interesting potential of many of these materials for experimentation as support matrix of CWs targeted for organic xenobiotics removal.
Collapse
Affiliation(s)
- A V Dordio
- Chemistry Department, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal.
| | | |
Collapse
|
36
|
Fan J, Liang S, Zhang B, Zhang J. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2448-55. [PMID: 22941048 DOI: 10.1007/s11356-012-1130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/17/2012] [Indexed: 05/03/2023]
Abstract
Oxygen and carbon source supply are usually insufficient in subsurface flow constructed wetlands. Simultaneous removal of organic pollutants and nitrogen in five batch-operated vertical flow constructed wetlands under different operating conditions was investigated. Alternate aerobic and anaerobic regions were created well with intermittent aeration. Four-month experiments showed that the wetland-applied intermittent aeration combined with step feeding strategy (reactor E) greatly improved the removal of organics, ammonium nitrogen (NH4-N), and total nitrogen (TN) simultaneously, which were 97, 96, and 82%, respectively. It was much better than non-aerated reactors A and B and outperformed intermittently aerated reactor D without step feeding. Continuous aeration (reactor C) significantly enhanced the organics removal and nitrification, but it limited the TN removal (29%) seriously as a result of low denitrification level, and the high operation cost remained a question. The effect of plants was confirmed in this study, and the monitoring data showed that the plants could grow normally. Intermittent aeration as well as step feeding had no obvious influence on the growth of wetland plants in this study.
Collapse
Affiliation(s)
- Jinlin Fan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 112:429-448. [PMID: 23032989 DOI: 10.1016/j.jenvman.2012.08.011] [Citation(s) in RCA: 327] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 08/05/2012] [Accepted: 08/09/2012] [Indexed: 06/01/2023]
Abstract
With the unique advantages of lower operational and maintenance cost, the applications of subsurface flow constructed wetlands for the treatment of wastewater have been increasing rapidly throughout the world. The removal of nitrogen and organics by such systems has gained substantial attention in recent years. In subsurface flow wetlands, the removal of pollutants often relies on a diverse range of co-existing physical, chemical and biological routes, which are vitally dependent on numerous environmental and operational parameters. This paper provides a comprehensive review of wetland structures, classic and novel nitrogen and organics removal mechanisms along with the key environmental parameters and operational conditions that enhance removal in subsurface flow wetland systems. The critical exploration identifies the major environmental parameters such as: pH, DO, and temperature, operational factors i.e. organic carbon availability, loading, feed mode, retention time, recirculation, harvesting, and the complex role (of both parameters) on classical nitrogen and organics removal pathways. Subsequently, the necessity of further extensive research on such factors, for promoting novel nitrogen removal routes in wetland systems has also been highlighted. The expansion of the review on the influence of the unconventional wetland matrix indicates that, the structural differences and inherent properties of these media can support substantial nitrogen and organics removal from wastewater, under optimal operating conditions. Overall, the critical review illustrates the necessity of a profound knowledge on the complicated inter-relationship between nitrogen and organics removal routes, governing environmental and operational parameters, and wetland matrix for improving the treatment performances of subsurface flow wetlands.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh; Department of Civil Engineering, Monash University, Clayton, Australia.
| | | |
Collapse
|
38
|
Saeed T, Afrin R, Muyeed AA, Sun G. Treatment of tannery wastewater in a pilot-scale hybrid constructed wetland system in Bangladesh. CHEMOSPHERE 2012; 88:1065-1073. [PMID: 22673399 DOI: 10.1016/j.chemosphere.2012.04.055] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 06/01/2023]
Abstract
This paper reports the pollutant removal performances of a hybrid wetland system in Bangladesh for the treatment of a tannery wastewater. The system consisted of three treatment stages: a subsurface vertical flow (VF) wetland, followed by a horizontal flow (HF) and a VF wetland. The wetlands were planted with common reed (Phragmites australis), but employed different media, including organic coco-peat, cupola slag and pea gravel. In the first stage, experimental results demonstrated significant removal of ammonia (52%), nitrate (54%), BOD (78%), and COD (56%) under high organics loading rate (690 g COD m(-2)d(-1)); simultaneous nitrification, denitrification, and organics degradation were attributed to the unique characteristics of the coco-peat media, which allowed greater atmospheric oxygen transfer for nitrification and organic degradation, and supply of organic carbon for denitrification. The second stage HF wetland produced an average PO(4) removal of 61%, primarily due to adsorption by the iron-rich cupola slag media. In the third treatment stage, which was filled with gravel media, further BOD removal (78%) from the tannery wastewater depleted organic carbon, causing the accumulation of NO(3) in the wastewater. Overall, the average percentage removals of NH(3)-N, NO(3)-N, BOD, COD, and PO(4) were 86%, 50%, 98%, 98% and 87%, respectively, across the whole hybrid system. The results provided a strong evidence to support widespread research and application of the constructed wetland as a low-cost, energy-efficient, wastewater treatment technology in Bangladesh.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, Ahsanullah University of Science and Technology, Dhaka, Bangladesh.
| | | | | | | |
Collapse
|
39
|
Lizama A K, Fletcher TD, Sun G. Removal processes for arsenic in constructed wetlands. CHEMOSPHERE 2011; 84:1032-1043. [PMID: 21549410 DOI: 10.1016/j.chemosphere.2011.04.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/05/2011] [Accepted: 04/07/2011] [Indexed: 05/30/2023]
Abstract
Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems.
Collapse
Affiliation(s)
- Katherine Lizama A
- Department of Civil Engineering, Building 60, Monash University, VIC 3800, Australia.
| | | | | |
Collapse
|
40
|
Saeed T, Sun G. Kinetic modelling of nitrogen and organics removal in vertical and horizontal flow wetlands. WATER RESEARCH 2011; 45:3137-3152. [PMID: 21481434 DOI: 10.1016/j.watres.2011.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/07/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
This paper provides a comparative evaluation of the kinetic models that were developed to describe the biodegradation of nitrogen and organics removal in wetland systems. Reaction kinetics that were considered in the model development included first order kinetics, Monod and multiple Monod kinetics; these kinetics were combined with continuous-stirred tank reactor (CSTR) or plug flow pattern to produce equations to link inlet and outlet concentrations of each key pollutants across a single wetland. Using three statistical parameters, a critical evaluation of five potential models was made for vertical and horizontal flow wetlands. The results recommended the models that were developed based on Monod models, for predicting the removal of nitrogen and organics in a vertical and horizontal flow wetland system. No clear correlation was observed between influent BOD/COD values and kinetic coefficients of BOD(5) in VF and HF wetlands, illustrating that the removal of biodegradable organics was insensitive to the nature of organic matter. Higher effluent COD/TN values coincided with greater denitrification kinetic coefficients, signifying the dependency of denitrification on the availability of COD in VF wetland systems. In contrast, the trend was opposite in HF wetlands, indicating that availability of NO(3)-N was the main limiting step for nitrogen removal. Overall, the results suggested the possible application of the developed alternative predictive models, for understanding the complex biodegradation routes of nitrogen and organics removal in VF and HF wetland systems.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, Building 60, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
41
|
Saeed T, Sun G. The removal of nitrogen and organics in vertical flow wetland reactors: predictive models. BIORESOURCE TECHNOLOGY 2011; 102:1205-1213. [PMID: 20970997 DOI: 10.1016/j.biortech.2010.09.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/21/2010] [Accepted: 09/24/2010] [Indexed: 05/30/2023]
Abstract
Three kinetic models, for predicting the removal of nitrogen and organics in vertical flow wetlands, have been developed and evaluated. These models were established by combining first-order, Monod and multiple Monod kinetics with continuous stirred-tank reactor (CSTR) flow pattern. Critical evaluations of these models using three statistical parameters, coefficient of determination, relative root mean square error and model efficiency, indicated that when the Monod/multiple Monod kinetics was combined with CSTR flow pattern it allowed close match between theoretical prediction and experiment data of nitrogen and organics removal. The kinetic coefficients (derived from Monod/multiple Monod kinetics) was found to increase with pollutant loading, indicating that the coefficients may vary based on different factors, such as influent pollutant concentration, hydraulic loading, and water depth. Overall, this study demonstrated the validity of combining Monod and multiple Monod kinetics with CSTR flow pattern for the modelling and design of vertical flow wetland systems.
Collapse
Affiliation(s)
- Tanveer Saeed
- Department of Civil Engineering, Building 60, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|