1
|
Costafreda JL, Martín DA, Sanjuán MA, Costafreda-Velázquez JL. New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4430. [PMID: 39274819 PMCID: PMC11396205 DOI: 10.3390/ma17174430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and lapilli, which were later altered to form deposits of zeolites and bentonites. This work has focused on an area located on the northern flank of the San José-Los Escullos zeolite deposit, the only one of its kind with industrial capacity in Spain. The main objective of this research is to characterize the zeolite (SZ) of this new area from the mineral, chemical, and technical points of view and establish its possible use as a natural pozzolan. In the first stage, a study of the mineralogical and chemical composition of the selected samples was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and thermogravimetric analysis (TGA); in the second stage, chemical-qualitative and pozzolanicity technical tests were carried out at 8 and 15 days. In addition, a chemical analysis was performed using XRF on the specimens of mortars made with a standardized mixture of Portland cement (PC: 75%) and natural zeolite (SZ: 25%) at the ages of 7, 28, and 90 days. The results of the mineralogical analyses indicated that the samples are made up mainly of mordenite and subordinately by smectite, plagioclase, quartz, halloysite, illite, and muscovite. Qualitative chemical assays indicated a high percentage of reactive silica and reactive CaO and also negligible contents of insoluble residues. The results of the pozzolanicity test indicate that all the samples analyzed behave like natural pozzolans of good quality, increasing their pozzolanic reactivity from 8 to 15 days of testing. Chemical analyses of PC/SZ composite mortar specimens showed how a significant part of SiO2 and Al2O3 are released by zeolite while it absorbs a large part of the SO3 contained in the cement. The results presented in this research could be of great practical and scientific importance as they indicate the continuation of zeolitic mineralization beyond the limits of the San José-Los Escullos deposit, which would result in an increase in geological reserves and the extension of the useful life of the deposit, which is of vital importance to the local mining industry.
Collapse
Affiliation(s)
- Jorge L Costafreda
- Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas, 21, 28003 Madrid, Spain
| | - Domingo A Martín
- Escuela Técnica Superior de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, C/Ríos Rosas, 21, 28003 Madrid, Spain
- Laboratorio Oficial Para Ensayos de Materiales de Construcción (LOEMCO), C/Eric Kandell, 1, 28906 Getafe, Spain
| | - Miguel A Sanjuán
- Department of Science and Technology of Building Materials, Civil Engineering School, Technical University of Madrid, 28040 Madrid, Spain
| | - Jorge L Costafreda-Velázquez
- Department of Constructions, University of Holguín, Avenida XX Aniversario, Vía Guardalavaca, Piedra Blanca, Holguín 80100, Cuba
| |
Collapse
|
2
|
Noor RS, Shah AN, Tahir MB, Umair M, Nawaz M, Ali A, Ercisli S, Abdelsalam NR, Ali HM, Yang SH, Ullah S, Assiri MA. Recent Trends and Advances in Additive-Mediated Composting Technology for Agricultural Waste Resources: A Comprehensive Review. ACS OMEGA 2024; 9:8632-8653. [PMID: 38434807 PMCID: PMC10905604 DOI: 10.1021/acsomega.3c06516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.
Collapse
Affiliation(s)
- Rana Shahzad Noor
- Department
of Agriculture, Biological, Environment and Energy Engineering, College
of Engineering, Northeast Agricultural University, Harbin 150030, China
- Faculty
of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Adnan Noor Shah
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Bilal Tahir
- Institute
of Physics, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Umair
- Faculty
of Agricultural Engineering and Technology, PMAS-Arid Agriculture University, Rawalpindi 46000, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Amjed Ali
- Faculty
of Agriculture, Department of Agronomy, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkiye
| | - Nader R. Abdelsalam
- Agricultural
Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Hayssam M. Ali
- Department
of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seung Hwan Yang
- Department
of Biotechnology, Chonnam National University, Yeosu 59626, South Korea
| | - Sami Ullah
- Department
of Chemistry, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| | - Mohammed Ali Assiri
- Department
of Chemistry, College of Science, King Khalid
University, Abha 61413, Saudi Arabia
| |
Collapse
|
3
|
Singh A, Sawant M, Herlekar M, Aymerich E, Starkl M. Assessing feasibility of sewage sludge composting in rotary drum reactor. BIORESOURCE TECHNOLOGY 2024; 394:130219. [PMID: 38104662 DOI: 10.1016/j.biortech.2023.130219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
In a year-long study, the efficacy of a manually operated rotary drum prototype, jointly developed by CEIT Spain and IIM Mumbai, was examined for sanitized compost production in Indian conditions. The prototype, a 200-liter horizontal plastic drum made of high-density polyethylene, incorporated a perforated polypropylene pipe for passive aeration of the composting mixture. Focused on optimizing composting of sewage sludge from a Municipal MBBR, the research targeted key process variables in the rotary drum reactor to attain the thermophilic phase. Wood shavings emerged as the optimal bulking agent, with a mixing ratio of three parts dewatered sewage sludge to one-part bulking agent. A turning frequency of every 12 h proved optimal for achieving the desired temperature of around 60 °C. The study concluded that the final sludge quality met prescribed standards, showcasing the viability of the rotary drum system for efficient compost production in Indian settings.
Collapse
Affiliation(s)
- Anju Singh
- Sustainability Management, Indian Institute of Management, Mumbai, Maharashtra 400087, India.
| | - Megha Sawant
- Sustainability Management, Indian Institute of Management, Mumbai, Maharashtra 400087, India
| | - Mihir Herlekar
- Sustainability Management, Indian Institute of Management, Mumbai, Maharashtra 400087, India
| | | | - Markus Starkl
- Competence Centre for Decision Aid in Environmental Management, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Aydın Temel F. Evaluation of the influence of rice husk amendment on compost quality in the composting of sewage sludge. BIORESOURCE TECHNOLOGY 2023; 373:128748. [PMID: 36791979 DOI: 10.1016/j.biortech.2023.128748] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to evaluate the influence of rice husk addition on compost quality and maturity in sewage sludge composting using a pilot scale aerated in-vessel reactor. During the composting process, changes in compost quality and physicochemical factors including pH, temperature, moisture content, electrical conductivity, total organic carbon (TOC), total nitrogen (TN), and carbon to nitrogen ratio (C/N) were monitored. In the pile containing 25% rice husk, the lowest losses occurred with 52.49% for TOC and 23.24% for TN, while C/N ratio in the final compost was 18.82, achieving mature and quality compost. The moisture contents of the final composts were found as 50.72% in the control group while it was 31.73% and 28.18% in the reactors containing 10% and 25% rice husk, respectively. These results suggested that rice husk addition was beneficial for reducing moisture content and balancing the C/N ratio in sewage sludge composting.
Collapse
Affiliation(s)
- Fulya Aydın Temel
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun 28200, Turkey
| |
Collapse
|
5
|
Chen L, Chen Y, Li Y, Liu Y, Jiang H, Li H, Yuan Y, Chen Y, Zou B. Improving the humification by additives during composting: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 158:93-106. [PMID: 36641825 DOI: 10.1016/j.wasman.2022.12.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Humic substances (HSs) are key indicators of compost maturity and are important for the composting process. The application of additives is generally considered to be an efficient and easy-to-master strategy to promote the humification of composting and quickly caught the interest of researchers. This review summarizes the recent literature on humification promotion by additives in the composting process. Firstly, the organic, inorganic, biological, and compound additives are introduced emphatically, and the effects and mechanisms of various additives on composting humification are systematically discussed. Inorganic, organic, biological, and compound additives can promote 5.58-82.19%, 30.61-50.92%, 2.3-40%, and 28.09-104.51% of humification during composting, respectively. Subsequently, the advantages and disadvantages of various additives in promoting composting humification are discussed and indicated that compound additives are the most promising method in promoting composting humification. Finally, future research on humification promotion is also proposed such as long-term stability, environmental impact, and economic feasibility of additive in the large-scale application of composting. It is aiming to provide a reference for future research and the application of additives in composting.
Collapse
Affiliation(s)
- Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China.
| | - Yihuan Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource and Institute of Biological and Environmental Engineering, Hunan Academy of Forestry, Changsha, 410004, China
| | - Yu Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Bin Zou
- College of Municipal and Mapping Engineering, Hunan City University, Yiyang, Hunan 413000, China
| |
Collapse
|
6
|
Liu C, Zhang X, Zhang W, Wang S, Fan Y, Xie J, Liao W, Gao Z. Mitigating gas emissions from poultry litter composting with waste vinegar residue. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156957. [PMID: 35760166 DOI: 10.1016/j.scitotenv.2022.156957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The composting process is important in the recycling of organic wastes produced in agriculture, food, and municipal waste management. This study explored the suitability of using waste vinegar residue (WVR) as an amendment in poultry litter (PL) composting. Four treatments, including poultry litter (CK), poultry litter+vinegar residue (VR), poultry litter+vinegar residue+lime (VR_Ca) and poultry litter+vinegar residue+biochar (VR_B), were conducted. During a 42-day composting period, the dynamics of carbon dioxide (CO2), ammonia (NH3), nitrous oxide (N2O) and methane (CH4) emissions, as well as the physicochemical properties and abundances of the bacteria and fungi of the feedstock were tracked to examine the potential barriers in the co-composting of WVR and PL. Compared to those of the CK, using a WVR amendment lowered the pH, increased the electrical conductivity significantly at the early stage, resulted in a strong inhibition of bacterial and fungal growth and delayed the thermophilic period of poultry litter composting while significantly reducing NH3 and N2O and GHG (CO2-e) emissions. A preadjustment of the WVR with alkaline biochar or lime lengthened the thermophilic period and increased the germination index (GI) by alleviating the inhibitory effect of the WVR on bacterial and fungal growth during composting. However, such preadjustment might reduce the mitigation effect on NH3. In conclusion, WVR can be recycled through co-composting with poultry litter, and the additional mitigation of N losses and N conservation can be achieved without halting compost quality.
Collapse
Affiliation(s)
- Chunjing Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China
| | - Xinxing Zhang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China
| | - Weitao Zhang
- General Husbandry Station of Hebei Province, Shijiazhuang 050000, PR China
| | - Shanshan Wang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China
| | - Yujing Fan
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China
| | - Jianzhi Xie
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China
| | - Wenhua Liao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China.
| | - Zhiling Gao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, PR China.
| |
Collapse
|
7
|
Li D, Manu MK, Varjani S, Wong JWC. Mitigation of NH 3 and N 2O emissions during food waste digestate composting at C/N ratio 15 using zeolite amendment. BIORESOURCE TECHNOLOGY 2022; 359:127465. [PMID: 35700892 DOI: 10.1016/j.biortech.2022.127465] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Composting of food waste digestate (FWD) is challenging as it requires more bulking agents, and the nitrogen loss is inevitable. To address these issues, FWD composting was conducted at a relatively lower C/N ratio of 15 with zeolite amendment in the dosage range of 5-15%. The impact of zeolite addition on nitrogen loss, NH3 and N2O emissions was assessed during FWD composting. The results showed that the addition of 10-15% zeolite could significantly reduce the phytotoxic nature of FWD and the compost maturity level could be reached in 10-21 days. Furthermore, ∼45% total nitrogen loss could be reduced by mitigating NH3 and N2O emissions upon 10 and 15% zeolite amendment. The outcome of the present study could be used as an effective strategy for composting FWD in any part of the world as the FWD characteristics are similar irrespective of the type of food waste.
Collapse
Affiliation(s)
- Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
8
|
Yousif Abdellah YA, Shi ZJ, Luo YS, Hou WT, Yang X, Wang RL. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119549. [PMID: 35644429 DOI: 10.1016/j.envpol.2022.119549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Collapse
Affiliation(s)
| | - Zhao-Ji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Sen Luo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rui-Long Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
9
|
Hussein L, Uren C, Rekik F, Hammami Z. A review on waste management and compost production in the Middle East-North Africa region. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2022; 40:1110-1128. [PMID: 34963395 DOI: 10.1177/0734242x211068236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last two decades, solid waste management in the Middle East-North Africa (MENA) region has been one of the major challenges due to increasing solid waste quantities and poor waste management practices. With the tremendously increasing amounts of organic waste, MENA countries are under great pressure and are facing the threats of acute air pollution, contamination of water bodies and climate change. As a result, these countries are adopting different methods to cope with this rising challenge of waste management, including composting. This review reports on the different MENA countries' organic waste quantities, disposal methods, organic waste management practices and challenges, along with the potential use and demand of compost, where information is available. The reported data are from 2009 to 2021, with the bulk of the papers being from 2014 and onwards. The total amount of municipal waste collected in the 21 countries ranged from 0.56 million tons in Mauritania to 90 million tons in Egypt, with an average of 16.42 million tons, equivalent to 1.08 kg per capita waste generation per day. Around 55% of this material is biogenous. Many treatments and repurposing methods of this material are adopted in the MENA region, mainly through composting, as it presents one of the most sustainable solutions that lead to immediate climate change mitigation. This article also presents the biotic and abiotic stressors faced by this region, which in turn affect the successful implementation of composting solutions, and proposes some solutions based on different studies conducted.
Collapse
Affiliation(s)
| | | | - Fatma Rekik
- International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Zied Hammami
- International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| |
Collapse
|
10
|
Analysis of the Effectiveness of Green Waste Composting under Hyperbaric Conditions. SUSTAINABILITY 2022. [DOI: 10.3390/su14095108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Increasing global population growth has a significant impact on waste production. The European Union (EU) focuses on waste recycling, biological treatment, and reuse. In the case of biodegradable waste, a significant problem is the long process of material decomposition so that the product meets the requirements of national regulations and EU directives. The search for a way to accelerate this process is still ongoing. This study presents the composting process of green waste under hyperbaric conditions. Eight experiments, four with air exchange frequency tAE = 4 h and four experiments with tAE = 8 h were established. The experiments were conducted in four variants: 0 (atmospheric pressure) and overpressures 50, 100, and 200 kPa. They were carried out on the same input material characterized by the initial moisture content of 60% and a mass of 2000 g. During the composting of green waste, all parameters of the obtained product (moisture content, pH, loss on ignition (LOI), C:N ratio, nutrient content (P, K), and the respiratory activity of microorganisms (AT4)) were also evaluated. The most significant weight loss of the composted material was observed in the variant of an overpressure of 200 kPa (tAE = 4 h). The compost weight in relation to the original material decreased by 23.7%. The highest organic matter removal efficiency was obtained for the overpressure variants of 50 and 100 kPa (tAE = 4 h).
Collapse
|
11
|
Jiang SJ, Sun J, Tong G, Ding H, Ouyang J, Zhou Q, Fu Y, Zhong ME. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review. CHEMOSPHERE 2022; 290:133266. [PMID: 34914959 DOI: 10.1016/j.chemosphere.2021.133266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phytoextraction is an effective approach for remediation of heavy metal (HM) contaminated soil. After the enhancement of phytoextraction efficiency has been systematically investigated and illustrated, the harmless disposal and value-added use of harmful phytoextraction biomass (HPB) become the major issue to be addressed. Therefore, in recent years, a large number of studies have focused on the disposal technologies for HPB, such as composting, enzyme hydrolysis, hydrothermal conversion, phyto-mining, and pyrolysis. The present review introduces their operation process, reaction parameters, economic/ecological advantages, and especially the migration and transformation behavior of HMs/biomass. Since plenty of plants possess comparable extraction abilities for HMs but with discrepancy constitution of biomass, the phytoextraction process should be combined with the disposal of HPB after harvested in the future, and thus a grading handling strategy for HPB is also presented. Hence, this review is significative for disposing of HPB and popularizing phytoextraction technologies.
Collapse
Affiliation(s)
- Si-Jie Jiang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jingchun Sun
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Gongsong Tong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiewei Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yunxiang Fu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
12
|
Liu H, Wang L, Zhong R, Bao M, Guo H, Xie Z. Binding characteristics of humic substances with Cu and Zn in response to inorganic mineral additives during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114387. [PMID: 34968940 DOI: 10.1016/j.jenvman.2021.114387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 05/16/2023]
Abstract
Composting is suitable for recycling livestock manure into valuable organic fertilizer, which can improve soil quality while mitigating potential risk of heavy metal pollution. Humic substances (HS) in compost have been demonstrated to play a key role in regulating the redistribution of heavy metal fractions. However, limited direct information have been reported on how different components of HS complexes with heavy metals to affect their bioavailability during composting. In this study, sequential extraction procedures (H2O, KCl, Na4P2O7, NaOH and HNO3) were used to assess the characteristics that HS bound with Cu and Zn during composting of swine manure and straw added either 5% boron waste (BW) or 5% phosphate rock (PR). Organically complexed fraction extracted by Na4P2O7 contained only 33-41% of the Cu but most of the Zn (81-87%). During composting, initially mobile fractions of Cu and Zn (extracted by H2O or KCl) changed into more stable fractions (extracted by NaOH and HNO3), and both organic matter and fulvic acids (FA) were identified as critical factors to explain this redistribution based on redundancy analysis. Over 80% of Cu and Zn were complexed with FA of HS. However, exogenous additives (phosphate rock and boron waste) enhanced Cu conversion by promoting humification (Humic acid/Fulvic acids, HA/FA) whereas they had limited influence on Zn, due to the relatively weak binding relationship between Zn and HA.
Collapse
Affiliation(s)
- Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixia Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Rongzhen Zhong
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Meiwen Bao
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; University of Chinese Academy of Sciences, Beijing, 100109, China
| | - Haonan Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100109, China
| | - Zhonglei Xie
- College of Plant Science, Jilin University, Changchun, 130062, China
| |
Collapse
|
13
|
Gaseous Emissions from the Composting Process: Controlling Parameters and Strategies of Mitigation. Processes (Basel) 2021. [DOI: 10.3390/pr9101844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Organic waste generation, collection, and management have become a crucial problem in modern and developing societies. Among the technologies proposed in a circular economy and sustainability framework, composting has reached a strong relevance in terms of clean technology that permits reintroducing organic matter to the systems. However, composting has also negative environmental impacts, some of them of social concern. This is the case of composting atmospheric emissions, especially in the case of greenhouse gases (GHG) and certain families of volatile organic compounds (VOC). They should be taken into account in any environmental assessment of composting as organic waste management technology. This review presents the relationship between composting operation and composting gaseous emissions, in addition to typical emission values for the main organic wastes that are being composted. Some novel mitigation technologies to reduce gaseous emissions from composting are also presented (use of biochar), although it is evident that a unique solution does not exist, given the variability of exhaust gases from composting.
Collapse
|
14
|
Li Y, Song J, Liu T, Lv J, Jiang J. Influence of reusable polypropylene packing on ammonia and greenhouse gas emissions during sewage sludge composting-a lab-scale investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40653-40664. [PMID: 32827119 DOI: 10.1007/s11356-020-10469-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Bulking agents are particularly important for sewage sludge composting. In this study, reusable polypropylene packing (RPP) was mixed with sawdust to improve composting. The effect of the mix ratio of sawdust and RPP on the physicochemical characteristics, nitrogen transformation, and emissions of greenhouse gas (GHG) as well as differences in the germination index values was detected in a lab-scale composting experiment. The results showed that the unique use of RPP as a bulking agent increased the moisture content over 70%, which resulted in poorer porosity and a less efficient O2 utilization environment and thus suppressed the degradation of organic matter. The highest CH4 9275.8 mg and lowest CO2 202.6 g emissions were detected after 25 days of composting in the treatment with RPP used as a bulking agent. When the mixing ratio of sawdust and RPP was 1:1, the temperature, oxygen supply, and dissolved organic carbon degradation were improved. The NH3, N2O, and CH4 emissions were reduced by 32.2, 18.3, and 90.7% compared with a treatment with RPP as a unique bulking agent. The RPP had no effect on conserving nitrogen during sludge composting; the total nitrogen loss was reduced from 29.3 to 18.2% when sawdust was mixed with RPP in a ratio of 1:1. Therefore, mixing RPP and sawdust in the dry weight ratio of 1:1 (sawdust: RPP) can be potentially used for reducing composting cost and improving the sewage sludge composting by reducing the amount of sawdust mixed and mitigating GHG and NH3 emissions.
Collapse
Affiliation(s)
- Yunbei Li
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, China.
| | - Junli Song
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China
| | - Tingting Liu
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China
| | - Jinghua Lv
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, China
| | - Jishao Jiang
- School of Environment, Henan Normal University, Xinxiang, 453003, Henan, China.
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang, China.
- Henan Key Laboratory for Environmental Pollution Control, Xinxiang, China.
| |
Collapse
|
15
|
Zhou G, Qiu X, Wu X, Lu S. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124883. [PMID: 33370695 DOI: 10.1016/j.jhazmat.2020.124883] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Livestock manure is an important reservoir of antibiotic resistance genes (ARGs). Biochar and zeolite are commonly used to improve the quality of compost, however, little is known about the impacts of these additives on the fate of ARGs during composting and the underlying mechanisms involved. In this study, zeolite (ZL), biochar (BC), or zeolite and biochar (ZB) simultaneously were added to chicken manure compost to evaluate their effects on the ARGs patterns. After composting, the abundance of ARGs reduced by 92.6% in control, while the reductions were 95.9%, 98.7% and 98.2% for ZL, BC, ZB, respectively. Co-occurrence network analysis indicated that the potential hosts for most ARGs were predominantly affiliated to Firmicutes such as Lactobacillus and Fastidiosipila. Furthermore, shifts in ARGs were significantly correlated with class 1 integrase gene (intI1), and structural equation models further revealed that intI1 gene contributed most (standardized total effect 0.92) to the ARGs-removal, which was trigged by horizontal gene transfer. Together these results suggest that the addition of zeolite and biochar mitigate the accumulation and spread of ARGs during composting, and the crucial role of horizontal gene transfer (HGT) on the behaviors of ARGs should pay more attention to in the future.
Collapse
Affiliation(s)
- Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangxi Province Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, China
| | - Xiuwen Qiu
- Jiangxi Province Key Laboratory of Industrial Ecological Simulation and Environmental Health in Yangtze River Basin, Jiujiang University, Jiujiang 332005, China; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xiaoyu Wu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shunbao Lu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
16
|
Cui H, Ou Y, Wang L, Yan B, Li Y, Bao M. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124313. [PMID: 33160789 DOI: 10.1016/j.jhazmat.2020.124313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 05/16/2023]
Abstract
Available information about the passivation effect on heavy metals (HMs) through adsorption and humification during zeolite-amended composting remains limited. Thus, this study explored the dynamic changes in HM-fractions (Zn, Cu, Cd, Cr and Pb) during aerobic composting added with different grain-size zeolite (Fine zeolite, < 0.1 mm, ZF; Coarse zeolite: 3-5 mm, ZC). Compared to the control (without zeolite, CK) and ZF treatments, ZC treatment got the highest temperature in the thermophilic phase, and significantly reduced the bioavailability factor (BF) of HMs, especially for Cu (45.13%), Cd (16.11%) and Pb (25.49%). Redundancy analysis (RDA) and structural equation models (SEMs) indicated that zeolite accelerated the passivation effect on Cd and Pb through regulating the electrical conductivity (EC) as a result of surface adsorption, and on Cu by influencing total carbon (TC) under the function of humification. These results increase our understanding of the passivation mechanisms of HMs during aerobic composting.
Collapse
Affiliation(s)
- Hu Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixia Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yingxin Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meiwen Bao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Golbaz S, Zamanzadeh MZ, Pasalari H, Farzadkia M. Assessment of co-composting of sewage sludge, woodchips, and sawdust: feedstock quality and design and compilation of computational model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12414-12427. [PMID: 33078354 DOI: 10.1007/s11356-020-11237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Composting process of sewage sludge requires a preprocessing step in order to prepare the appropriate mixture of dewatered sludge (Xs) with amendment (Xa), bulking agent (Xb), and/or recycled materials (Xr). This research aimed to develop a novel mathematical model for finding an optimal mixture ratio of dewatered sludge with the aforementioned influencing elements on co-composting process. Seven feasible scenarios were presented and the best one was selected in viewpoint of technical and economic perspectives. The optimum mixture was prepared and its quality was evaluated in the terms of physical, chemical, and microbial characteristics. The optimum mixture was loaded in an aerated static pile composting reactor in order to evaluate the quality of the final compost product. If the test results were not in compliance with the USEPA standards, the model was iteratively modified to fulfill the desired objective. The model was validated using the experimental results. The mixture of Xs:Xa:Xb:Xr with a weight ratio 7.4:1.0:1.4:2.3 allowed optimal moisture content (59.8 ± 0.5%), organic matter (80.0 ± 2.6%), dry matter (40.2 ± 0.6%), C/N ratio (28.0 ± 1.6), and free air space (> 30%) across the composting pile. The final product of compost met the heavy metal and microbial requirements for land application. It can be concluded this mathematical model is a promising method for selecting the optimal amount and type of materials for preparing the initial mixture of co-composting process.
Collapse
Affiliation(s)
- Somayeh Golbaz
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Zaman Zamanzadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasan Pasalari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Wang H, Lu Y, Xu J, Liu X, Sheng L. Effects of additives on nitrogen transformation and greenhouse gases emission of co-composting for deer manure and corn straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13000-13020. [PMID: 33097993 DOI: 10.1007/s11356-020-11302-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Compost can realize the recycling of organic waste. However, it also emits NH3 and greenhouse gases (GHGs) to the environment, which leads to nitrogen loss and global warming. Adding additives to compost can alleviate the emission of NH3 and GHGs. The mechanism of nitrogen transformation and GHGs emission was studied with deer manure and corn straw as compost substrate, and biochar and zeolite as additives. The results showed that the addition of zeolite in compost is good for prolonging high-temperature composting time. The addition of zeolite reduced the transformation of NH3-N and the N2O emission. The addition of zeolite is beneficial to reduce nitrogen loss during composting. CH4 emission is an important factor affecting the global warming potential of composting, and it is necessary to improve ventilation conditions in order to alleviate anaerobic. This study is of great significance to reduce nitrogen loss and improve composting effect.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, Jilin Province, China
| | - Yue Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, Jilin Province, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, Jilin Province, China.
| | - Xuejun Liu
- The Education Department of Jilin Province, Renmin Street 1485, Changchun, 130051, Jilin Province, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, Jilin Province, China
| |
Collapse
|
19
|
Wang X, Zheng W, Ma Y, Ma J, Gao YM, Zhang X, Li J. Gasification filter cake reduces the emissions of ammonia and enriches the concentration of phosphorous in Caragana microphylla residue compost. BIORESOURCE TECHNOLOGY 2020; 315:123832. [PMID: 32688257 DOI: 10.1016/j.biortech.2020.123832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Nutrient loss is a major problem during agricultural waste composting. This study investigated the impact of gasification filter cake (GFC) addition on gaseous emissions and nutrient loss during composting of chicken manure mixed with Caraganna microphylla straw. The GFC was added to the composting mix at dry weight rates of 0% (GFC0), 6.25% (GFC6.25), 12.5% (GFC12.5), 25% (GFC25) and 50% (GFC50). Overall, GFC12.5 and GFC25 efficiently enhanced organic matter decomposition, reduced N loss and enriched P and K concentrations during composting, as compared to GFC0. However, GFC6.25 did not show a significant effect on organic matter decomposition, while GFC50 had no effect on N loss. As a result, an overall enhancement of nutrient contents was observed in the final composts of GFC12.5 and GFC25. These results suggest that the addition of GFC at moderate-rates (i.e. 12.5% and 25%) can enhance nutrient retention and thereby result in a nutrient-rich compost.
Collapse
Affiliation(s)
- Xingyi Wang
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Wende Zheng
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Yongjie Ma
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Jiawei Ma
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Yan Ming Gao
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| | - Xueyan Zhang
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China.
| | - Jianshe Li
- College of Agriculture, Ningxia University, Helanshan Xilu No. 489, Yinchuan 750021, China
| |
Collapse
|
20
|
Zhao Y, Li W, Chen L, Meng L, Zheng Z. Effect of enriched thermotolerant nitrifying bacteria inoculation on reducing nitrogen loss during sewage sludge composting. BIORESOURCE TECHNOLOGY 2020; 311:123461. [PMID: 32417656 DOI: 10.1016/j.biortech.2020.123461] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
In the study, enriched thermotolerant nitrifying bacteria (TNB) was acquired from compost samples by domesticated cultivation under high temperature, and was inoculated into sewage sludge composting. The effect of inoculation on physical-chemical parameters, nitrogen loss and bacterial population involved in nitrogen transformation were determined. The results revealed that inoculation with enriched TNB improved the compost quality in terms of temperature, pH, organic matter degradation, C/N ratio and germination index. Compared to the control treatment, inoculation also decreased 29.7% of ammonia emission and reduced nitrogen loss by converting more NH4+-N into NO3--N in composting. In addition, inoculation increased the population of nitrifying bacteria and was not capable of inhibiting the growth of indigenous ammonifying bacteria as well. The results suggested that inoculation with enriched TNB was a feasible way to reduce nitrogen loss and promote maturity in sewage sludge composting.
Collapse
Affiliation(s)
- Yi Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Li Chen
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liqiang Meng
- Institute of Microbiology, Heilongjiang Academy of Science, Harbin 150010, China
| | - Zejia Zheng
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
21
|
Bacterial and Fungal Community Dynamics and Shaping Factors During Agricultural Waste Composting with Zeolite and Biochar Addition. SUSTAINABILITY 2020. [DOI: 10.3390/su12177082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial and fungal communities play significant roles in waste biodegradation and nutrient reservation during composting. Biochar and zeolite were widely reported to directly or indirectly promote microbial growth. Therefore, the effects of zeolite and biochar on the abundance and structure of bacterial and fungal communities and their shaping factors during the composting of agricultural waste were studied. Four treatments were carried out as follows: Run A as the control without any addition, Run B with zeolite (5%), Run C with biochar (5%), and Run D with zeolite (5%) and biochar (5%), respectively. The bacterial and fungal community structures were detected by high-throughput sequencing. Redundancy analysis was used for determining the relationship between community structure and physico-chemical parameters. The results indicated that the addition of biochar and zeolite changed the physico-chemical parameters (e.g., pile temperature, pH, total organic matter, ammonium, nitrate, and water-soluble carbon) during the composting process. Zeolite and biochar significantly changed the structure and diversity of bacterial and fungal populations. Moreover, the bacterial community rather than the fungal community was sensitive to the biochar and zeolite addition during the composting process. Community phylogenetic characteristics showed that Nocardiopsaceae, Bacillaceae, Leuconostocaceae, Phyllobacteriaceae, and Xanthomonadaceae were the predominant bacterial species at the family-level. Chaetomiaceae and Trichocomaceae were the two most dominant fungal species. The pH, total organic matter, and nitrate were the most important factors affecting the bacterial and fungal population changes during the composting process.
Collapse
|
22
|
Hermassi M, Valderrama C, Font O, Moreno N, Querol X, Batis NH, Cortina JL. Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139002. [PMID: 32417474 DOI: 10.1016/j.scitotenv.2020.139002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
The sorption of phosphate by K-zeolites synthesized from fly ash (FA) by hydrothermal conversion is investigated in this study. The aim is the synthesis of Ca bearing K-zeolites to recover phosphate from urban and industrial wastewater effluents. The loaded zeolites are considered as a by-products rich in essential nutrients such K and P (KP1) with a potential use as slow release fertilizer. A number of synthesis conditions (temperature, KOH-solution/FA ratio, KOH concentration, and activation time) were applied on two FA samples (FA-TE and FA-LB) with similar glass content but different content of crystalline phases, to optimize the synthesis of a zeolitic sorbent suitable for the subsequent phosphate uptake. Merlinoite and W rich zeolitic products synthesized from FA-LB and FA-TE were found to have sorption properties for phosphate removal. A maximum phosphate sorption capacity of 250 mgP-PO4/g and 142 mgP-PO4/g for the zeolitic products selected (KP1-LB and KP1-TE, respectively) was achieved. The dominant phosphate sorption mechanism, in the pH range (6-9) of treated wastewater effluents, indicated that sorption proceeds via a diffusion-controlled process involving phosphate ions coupled with calcium supply dissolution from K-zeolitic products and subsequent formation of brushite (CaHPO4 2H2O(s)). The phosphate loaded sorbent containing a relatively soluble phosphate mineral is appropriate for its use as a synthetic slow release fertilizer. The simultaneous valorisation of fly ash waste and the P recovery from treated wastewaters effluents, (a nutrient with scarce natural resources and low supply) by obtaining a product with high potential for land restoration and agriculture will contribute to develop one example of circularity.
Collapse
Affiliation(s)
- Mehrez Hermassi
- Cranfield Water Science Institute, Vincent Building, Cranfield University, Bedfordshire MK43 0AL, UK; Dept. Biol. Chem. Eng., National Institute of Applied Sciences and Technology (INSAT), University of Carthage (, Tunisia).
| | - Cesar Valderrama
- Chemical Engineering Department, Barcelona Research Center for Multiscale Science and Engineering Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain
| | - Oriol Font
- Environmental Geochemistry and Atmospheric Research Group (EGAR), Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Natalia Moreno
- Environmental Geochemistry and Atmospheric Research Group (EGAR), Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Xavier Querol
- Environmental Geochemistry and Atmospheric Research Group (EGAR), Institute of Environmental Assessment and Water Research-Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Narjès Harrouch Batis
- Dept. Biol. Chem. Eng., National Institute of Applied Sciences and Technology (INSAT), University of Carthage (, Tunisia)
| | - Jose Luis Cortina
- Chemical Engineering Department, Barcelona Research Center for Multiscale Science and Engineering Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, C/ Eduard Maristany 10-14, Campus Diagonal-Besòs, 08930 Barcelona, Spain.; CETaqua, Carretera d'Esplugues 75, 08940 Cornellà de Llobregat, Spain
| |
Collapse
|
23
|
Effects of Zeolite and Biochar Addition on Ammonia-Oxidizing Bacteria and Ammonia-Oxidizing Archaea Communities during Agricultural Waste Composting. SUSTAINABILITY 2020. [DOI: 10.3390/su12166336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of zeolite and biochar addition on ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities during agricultural waste composting were determined in this study. Four treatments were conducted as follows: Treatment A as the control with no additive, Treatment B with 5% of zeolite, Treatment C with 5% of biochar, and Treatment D with 5% of zeolite and 5% biochar, respectively. The AOB and AOA amoA gene abundance as well as the ammonia monooxygenase (AMO) activity were estimated by quantitative PCR and enzyme-linked immunosorbent assay, respectively. The relationship between gene abundance and AMO enzyme activity was determined by regression analysis. Results indicated that the AOB was more abundant than that of AOA throughout the composting process. Addition of biochar and its integrated application with zeolite promoted the AOB community abundance and AMO enzyme activity. Significant positive relationships were obtained between AMO enzyme activity and AOB community abundance (r2 = 0.792; P < 0.01) and AOA community abundance (r2 = 0.772; P < 0.01), indicating that both bacteria and archaea played significant roles in microbial ammonia oxidation during composting. Using biochar and zeolite might promote the nitrification activity by altering the sample properties during agricultural waste composting.
Collapse
|
24
|
Gabhane JW, Bhange VP, Patil PD, Bankar ST, Kumar S. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3121-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Awasthi MK, Duan Y, Awasthi SK, Liu T, Chen H, Pandey A, Zhang Z, Taherzadeh MJ. Emerging applications of biochar: Improving pig manure composting and attenuation of heavy metal mobility in mature compost. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122116. [PMID: 31972527 DOI: 10.1016/j.jhazmat.2020.122116] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 01/02/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
This study evaluated the effect of integrated bacterial culture and biochar on heavy metal (HM) stabilization and microbial activity during pig manure composting. High-throughput sequencing was carried out on six treatments, namely T1-T6, where T2 was single application of bacteria culture (C), T3 and T5 were supplemented with 12 % wood (WB) and wheat-straw biochar (WSB), respectively, and T4 and T6 had a combination of bacterial consortium mixed with biochar (12 % WB and 12 % WSB, respectively). T1 was used as control for the comparison. The results show that the populations of bacterial phyla were significantly greater in T6 and T4. The predominate phylum were Proteobacteria (56.22 %), Bacteroidetes (35.40 %), and Firmicutes (8.38 %), and the dominant genera were Marinimicrobium (53.14 %), Moheibacter (35.22 %), and Erysipelothrix (5.02 %). Additionally, the correlation analysis revealed the significance of T6, as the interaction of biochar and bacterial culture influenced the HM adsorption efficiency and microbial dynamics during composting. Overall, the integrated bacterial culture and biochar application promoted the immobilization of HMs (Cu and Zn) owing to improved adsorption, and enhanced the abundance and selectivity of the bacterial community to promote degradation and improving the safety and quality of the final compost product.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, Sweden.
| | - Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, Sweden
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology, Lucknow, 226 001, India; Department of Civil and Environmental Sciences, Yonsei University, Seoul, South Korea.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | | |
Collapse
|
26
|
Montalvo S, Huiliñir C, Borja R, Sánchez E, Herrmann C. Application of zeolites for biological treatment processes of solid wastes and wastewaters - A review. BIORESOURCE TECHNOLOGY 2020; 301:122808. [PMID: 31987490 DOI: 10.1016/j.biortech.2020.122808] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 06/10/2023]
Abstract
This review reports the use of zeolites in biological processes such as anaerobic digestion, nitrification, denitrification and composting, review that has not been proposed yet. It was found that aerobic processes (activated sludge, nitrification, Anammox) use zeolites as ion-exchanger and biomass carriers in order to improve the seattlebility, the biomass growth on zeolite surface and the phosphorous removal. In the case of anaerobic digestion and composting, zeolites are mainly used with the aim of retaining inhibitors such as ammonia and heavy metals through ion-exchange. The inclusion of zeolite effect on mathematical models applied in biological processes is still an area that should be improved, including also the life cycle analysis of the processes that include zeolites. At the same time, the application of zeolites at industrial or full-scale is still very scarce in anaerobic digestion, being more common in nitrogen removal processes.
Collapse
Affiliation(s)
- S Montalvo
- Universidad de Santiago de Chile, Ave. Lib. Bdo ÓHiggins 3363, Santiago de Chile, Chile
| | - C Huiliñir
- Universidad de Santiago de Chile, Ave. Lib. Bdo ÓHiggins 3363, Santiago de Chile, Chile.
| | - R Borja
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide - Edificio 46, Ctra. de Utrera, km. 1, 41013 Sevilla, Spain
| | - E Sánchez
- Ministerio de Ciencia y Tecnología, Calle 2 No 124 e/ 1ra y 3ra Miramar, La Habana, Cuba
| | - C Herrmann
- Leibniz Institute for Agricultural Engineering and Bioeconomy e.V. (ATB), Max-Eyth-Alle 100, 14469 Potsdam, Germany
| |
Collapse
|
27
|
Attia TMS, Elsheery NI. Nanomaterials: Scope, Applications, and Challenges in Agriculture and Soil Reclamation. SUSTAINABLE AGRICULTURE REVIEWS 41 2020. [DOI: 10.1007/978-3-030-33996-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Samara E, Matsi T, Zdragas A, Barbayiannis N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge's fertilization capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35387-35398. [PMID: 31020523 DOI: 10.1007/s11356-019-05132-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Preserving sewage sludge's N is important for its agronomic use and this could possibly be achieved by treating sludge with certain clay minerals. Nine clay minerals and additionally Ca(OH)2 were added to dewatered sewage sludge at 0-30 % rates (wet weight basis) (treatments). After 70 days of equilibration, all mixtures were analyzed for certain properties and the mineral-sludge mixtures which showed the highest microbial load reduction were further assayed, along with the limed and untreated sludge. From all minerals' treatments, the fecal indicators of sludge treated with 30% of two bentonites, attapulgite, saponite-attapulgite, and zeolite decreased considerably compared to the control. These treatments were performed also well regarding sludge's retention capacity of available inorganic N, with the attapulgite and zeolite treatments containing the significantly highest amounts of NO3-N and NH4-N, respectively. For the water-soluble inorganic N, similar results were obtained for the zeolite treatment, whereas the treatments with the two bentonites had the significantly highest NO3-N content. Also, considerable amounts of water-soluble P were obtained in all cases of the treated sludge with minerals. Limed sludge had the lowest content of the water-soluble inorganic N and P. As far as the micronutrients are concerned, only Zn and B were detectable in the water-soluble fraction of all five minerals' treatments. The heavy metals, which regulate sludge's agronomic use, were far below the respective permissible limits and lower than the untreated sludge, except for Ni and Cr in the attapulgite and saponite-attapulgite treatments. In conclusion, certain clay minerals, i.e., bentonite, attapulgite, mixed clay of saponite and attapulgite, and zeolite, seem promising materials for the stabilization of sewage sludge in the perspective of using them as a fertilizer. In addition, they seem to have higher fertilizing value than limed sludge. However, environmental (in respect of Ni and Cr) and agricultural (in respect of Zn and B) impacts must be considered.
Collapse
Affiliation(s)
- Eftihia Samara
- Soil Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Theodora Matsi
- Soil Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Antonios Zdragas
- Veterinary Research Institute, National Agricultural Research Foundation, 57001, Thermi, Greece
| | - Nick Barbayiannis
- Soil Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
29
|
Liu J, de Neergaard A, Jensen LS. Increased retention of available nitrogen during thermal drying of solids of digested sewage sludge and manure by acid and zeolite addition. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:306-317. [PMID: 31574459 DOI: 10.1016/j.wasman.2019.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 08/28/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Thermal drying is an increasingly common post-treatment for digestate-solids, but prone to N losses via ammonia (NH3) volatilization. Acidification with strong acids prior to drying may retain ammonium (NH4+) in the solids. Natural zeolites can provide adsorption sites for exchangeable cations as ammonium and porosity for free ammonia, which has the potential to contribute to higher N retention in the dried solids. The present study investigated whether the zeolite addition increases NH4+-N retention during thermal drying of two digestate solids (manure based, MDS; sewage sludge based, SDS), and whether any synergistic effects of combining acidification with sulfuric acid and the addition of zeolite exist. Operating conditions included four pH levels (non-acidified control, adjusted to 8.0, 7.5, 6.5 with concentrated sulfuric acid), four zeolite addition rates (0%, 1%, 5% and 10%), fixed drying temperature (130 °C) and fixed air ventilation rate (headspace exchange rate of 286 times hour-1). Zeolite addition significantly increased NH4+-N retention from 18.0% of initial NH4+-N in the non-acidified control up to a maximum of 57.4% for MDS, and from 76.6% to 94.5% for SDS. No positive synergistic effect between acidification and zeolite addition was observed, with acidification being the dominant. Nevertheless, zeolite has the potential to be a safe and easy-to-handle alternative to concentrated sulfuric acid.
Collapse
Affiliation(s)
- Jingna Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Denmark
| | | | - Lars Stoumann Jensen
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Denmark.
| |
Collapse
|
30
|
Aghili SM, Mehrdadi N, Aminzadeh B, Zazouli MA. Using of indigenous bulking agents (IBAs) in complementary stabilization and enhancing of dewatered sludge class B to class a on a full scale. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:767-777. [PMID: 32030150 PMCID: PMC6985304 DOI: 10.1007/s40201-019-00393-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Different bulking agents are used in the compost of dewatered sludge (DWS). The aim of this study has been using of indigenous bulking agents (IBAs) in the enhancing of the DWS class of municipal wastewater from class B to class A and complementary stabilization of it for production of green manure in Sari city, Iran. METHODS Three IBAs including the Saccharum Wastes (SW), Citrus Purning Wastes (CPW) and Phragmites Australis (PA) from eight IBAs were selected to be compared with the sawdust (SD) that was as a control bulking agent. Five turned windrow piles were constructed on a full scale and on base of optimal C/N equal 25.All experiments were performed on the base of the standard methods on initial mix and final compost. RESULTS Among five windrow piles, P5 was been the best pile with a weighting ratio of DWS to IBAs (DWS: SW: CPW: PA) equal 1: 0.2: 0.24: 0.28. Pile P1 with weighting ratio DWS: SW equal 1: 0.6, Pile P3 with weighting ratio DWS: PA equal 1: 0.84, Pile P2 with weighting ratio DWS: CPW equal 1: 0.73 and Pile P4 with weighting ratio DWS: SD equal 1: 0.57 were placed in the next rounds. The results showed that the class of DWS enhanced to Class A for about 80 to 97 days and complementary stabilization of DWS by IBAs was done well and produced green manure in term of organic matter, potassium, germination index, PH, C/N and electrical conductivity had reached to the Grade 1 of Iran's manure 10716 standard and in term of phosphorus and moisture had reached to the Grade 2 of this standard. Also heavy metals were below the maximum permissible of standards. CONCLUSION Using of IBAs, had a higher efficiency than the control bulking agent (sawdust) in enhancing sludge class and its stabilization, so that using of them in combination (mix of IBAs) had the highest efficiency and respectively, Saccharum Wastes (SW), Phragmites Australis (PA), Citrus pruning wastes (CPW) were placed in the next round, and sawdust was placed after them. By adding suitable IBAS, with an optimal ratio in turned windrow method, the class of DWS of sari WWTP enhanced to Class A and complementary stabilization of DWS has been well done and the produced green manure has been reached to agricultural standards and can be safely used in agriculture.
Collapse
Affiliation(s)
- Seyed Mostafa Aghili
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Nasser Mehrdadi
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Behnoush Aminzadeh
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Ali Zazouli
- Department of Environmental Health Engineerig, School of Health, Medical Science University of Mazandaran, Sari, Iran
| |
Collapse
|
31
|
Peng S, Li H, Xu Q, Lin X, Wang Y. Addition of zeolite and superphosphate to windrow composting of chicken manure improves fertilizer efficiency and reduces greenhouse gas emission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36845-36856. [PMID: 31745796 DOI: 10.1007/s11356-019-06544-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the impact of adding zeolite (F), superphosphate (G), and ferrous sulfate (L) in various combinations on reducing greenhouse gas (GHG) emission and improving nitrogen conservation during factory-scale chicken manure composting, aimed to identify the combination that optimizes the performance of the process. Chicken manure was mixed with F, G, FL, or FGL and subjected to windrow composting for 46 days. Results showed that global warming potential (GWP) was reduced by 21.9% (F), 22.8% (FL), 36.1% (G), and 39.3% (FGL). Further, the nitrogen content in the final composting product increased by 27.25%, 9.45%, and 21.86% in G, FL, and FGL amendments, respectively. The fertilizer efficiency of the compost product was assessed by measuring the biomass of plants grown in it, and it was consistent with the nitrogen content. N2O emission was negligible during composting, and 98% of the released GHGs comprised CO2 and CH4. Reduction in GHG emission was mainly achieved by reducing CH4 emission. The addition of FL, G, and FGL caused a clear shift in the abundance of dominant methanogens; particularly, the abundance of Methanobrevibacter decreased and that of Methanobacterium and Methanocella increased, which was correlated with CH4 emissions. Meanwhile, the changes in moisture content, NH4+-N content, and pH level also played an important role in the reduction of GHG emission. Based on the effects of nitrogen conservation, fertilizer efficiency improvement, and GHG emission reduction, we conclude that G and FGL are more beneficial than F or FL and suggest these additives for efficient chicken manure composting.
Collapse
Affiliation(s)
- Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
- College of Environment and Ecology, Jiangsu Open University, Nanjing, 210017, Jiangsu, China
| | - Huijie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Qianqian Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China.
- Department of Biology and Biochemistry, Institute of Soil Science, Chinese Academy of Sciences, East Road, 71, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
32
|
Application of zeolites in organic waste composting: A review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101396] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Duan Y, Awasthi SK, Liu T, Zhang Z, Awasthi MK. Evaluation of integrated biochar with bacterial consortium on gaseous emissions mitigation and nutrients sequestration during pig manure composting. BIORESOURCE TECHNOLOGY 2019; 291:121880. [PMID: 31374415 DOI: 10.1016/j.biortech.2019.121880] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This study focused on evaluate the effectiveness of biochar alone compare integrated with bacterial consortium amendment on the gaseous emissions mitigation as well as carbon and nitrogen sequestration during pig manure composting. Six additive treatments were performed based on uniform mixing pig manure with wheat straw [bacterial consortium (T2), 12%wood biochar (T3), 12%wood biochar + bacterial consortium (T4), 12%wheat straw biochar (T5), 12%wheat straw biochar + bacterial consortium (T6), while T1 without any additive]. The results obviously indicated that integrated use of biochar and bacterial consortium could remarkably relieved gaseous emissions, improved carbon and nitrogen conservation as well as accelerated maturity of composting. Notably the optimum combination was existed in T6 owing to lowest nutrient losses (nitrogen and carbon losses were 9.91 g/kg and 189.54 g/kg) and gas emissions (30.16 g/kg) as well as supreme maturity (germination index > 100%); it's an economic-practical and environmental protection novel disposal approach for solid waste.
Collapse
Affiliation(s)
- Yumin Duan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
34
|
Chen M, Wang C, Wang B, Bai X, Gao H, Huang Y. Enzymatic mechanism of organic nitrogen conversion and ammonia formation during vegetable waste composting using two amendments. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 95:306-315. [PMID: 31351616 DOI: 10.1016/j.wasman.2019.06.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
Elucidating the mechanism of nitrogen conversion during composting is crucial for controlling nutrient loss and improving the quality of compost. To explore the enzymatic mechanism of organic conversion during composting, composting experiments using vegetable waste and chicken manure mixed with wheat straw and corn stalk as two separate treatments: WS and CS, respectively, were conducted in 63 L aerated static pile reactors for 33 d. The changes in the nitrogen fractions and related-enzymes activities were analyzed during different periods. The total nitrogen content increased by 34.3% during WS and decreased by 6.22% during CS after 33d of composting. The ammounium nitrogen content decreased by 79.6% and 51.4% during WS and CS. The nitrate, nitrite, organic, acid-insoluble organic nitrogen contents increased by approximately 52.6-123.9%, 590.9-5875%, 59.1-213.8%, and 764.4-7834.1%, respectively. The amount of total hydrolysable organic nitrogen increased by 18.8% during WS and decreased by 26.7% in CS. Structural equation modeling revealed that the contributions of different types of nitrogen to the formation of NH4+ during WS composting decreased as follows: amine nitrogen (AN) > amino acid nitrogen (AAN) > amino sugar nitrogen (ASN) > hydrolysable unknown nitrogen (HUN), while the corresponding nitrogen contributions during CS decreased as follows: AAN > AN > HUN > ASN. The AN and AAN were most easily converted into NH4+ during WS and CS, respectively, while ASN was synthesized from NH4+ during vegetable waste composting. Using redundancy analysis it was revealed that nitrate reductase (50.1%), nitrite reductase (23.2%) and urease (7.1%) played leading roles in nitrogen transformation. Furthermore, total organic carbon (59.6%) was the main factor that affected enzymes activities.
Collapse
Affiliation(s)
- Mengli Chen
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Cong Wang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Baorong Wang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Xuejuan Bai
- State Key Laboratory of Soil Erosion and Dry Land Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, 712100 Shaanxi, China
| | - Han Gao
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, 712100 Shaanxi, China.
| |
Collapse
|
35
|
Waqas M, Nizami AS, Aburiazaiza AS, Barakat MA, Asam ZZ, Khattak B, Rashid MI. Untapped potential of zeolites in optimization of food waste composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:99-112. [PMID: 30986667 DOI: 10.1016/j.jenvman.2019.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/20/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
This study aims to examine the effect of zeolites in optimizing the process of food waste composting. A novel method of sequential hydrothermal was introduced to modify the natural zeolite and apply to in-vessel compost bioreactors. Raw and modified natural zeolites were applied at 10 and 15% (w/w) of the total waste and compared with un-amended control trial. Both raw and modified zeolites affected the composting process, but the notable results were observed for modified natural zeolite. The results for compost stability parameters were prominent at 15% modified natural zeolite concentration. The rapid and long-term thermophillic temperature and moisture content reduction to the optimum range was observed for modified natural zeolite. Furthermore, the total ammonium (NH4+) and nitrate (NO3-) concentration in modified natural zeolite were increased by 11.1 and 21.5% respectively as compared to raw zeolite. Compost stability against moisture contents (MC), electrical conductivity (EC), organic matters (OM), total carbon (TC), mineral nitrogen, nitrification index (NI) and germination index (GI) was achieved after 60 days of composting that was in accordance with the international compost quality standards. The findings of this study suggested the suitability of modified natural zeolite addition at 15% to the total waste as the optimum ratio for the composting of food waste in order to achieve a stable nutrient-rich compost.
Collapse
Affiliation(s)
- M Waqas
- Department of Environmental Sciences, Kohat University of Science and Technology, 26000, KPK, Pakistan.
| | - A S Nizami
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - A S Aburiazaiza
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M A Barakat
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Central Metallurgical R & D Institute, Helwan 11421, Cairo, Egypt
| | - Z Z Asam
- Department of Environmental Sciences, University of Gujrat, Gujrat, Pakistan
| | - B Khattak
- Department of Microbiology, Kohat University of Science and Technology 26000, KPK, Pakistan
| | - M I Rashid
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia; Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| |
Collapse
|
36
|
Nie E, Zheng G, Gao D, Chen T, Yang J, Wang Y, Wang X. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:664-672. [PMID: 31096396 DOI: 10.1016/j.scitotenv.2018.12.404] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Volatile organic compounds (VOCs) are the major components of the odor emitted from sewage sludge composting plants and are generally associated with odorous nuisances and health risks. However, few studies have considered the potential ozone generation caused by VOCs emitted from sewage sludge composting plants. This study investigated the VOC emissions from a full-scale composting plant. Five major treatment units of the composting plant were chosen as the monitoring locations, including the dewatered room, dewatered sludge, blender room, fermentation workshop, and product units. The fermentation workshop units displayed the highest concentration of VOC emissions at 2595.7 ± 1367.3 μg.m-3, followed by the blender room, product, dewatered sludge, and dewatered room units, whose emissions ranged from 142.2 ± 86.8 μg.m-3 to 2107.6 ± 1045.6 μg.m-3. The detected VOC families included oxygenated compounds, alkanes, alkenes, sulfide compounds, halogenated compounds, and aromatic compounds. Oxygenated compounds, particularly acetone, were the most abundant compounds in all samples. Principal component analysis revealed that the dewatered room and dewatered sludge units clustered closely, as indicated by their similar component emissions. The product units differed from the other sampling units, as their typical compounds were methanethiol, styrene, carbon disulfide, and hexane, all of which were the products of the latter stages of composting. Among the treatment units, the fermentation workshop units had the highest propylene equivalent (propy-equiv) concentration. Dimethyl disulfide and limonene were the major contributors. Limonene had the highest propy-equiv concentration, which contributed to the increased atmospheric reactivity and ozone formation potential in the surrounding air. To control the secondary environmental pollution caused by the VOC emissions during sewage sludge composting, the emission of limonene and dimethyl disulfide must be controlled from the blender room and fermentation workshop units.
Collapse
Affiliation(s)
- Erqi Nie
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ding Gao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuewei Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiankai Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Awasthi MK, Wang Q, Chen H, Wang M, Awasthi SK, Ren X, Cai H, Li R, Zhang Z. In-vessel co-composting of biosolid: Focusing on mitigation of greenhouse gases emissions and nutrients conservation. RENEWABLE ENERGY 2018; 129:814-823. [DOI: 10.1016/j.renene.2017.02.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
38
|
Wang Q, Awasthi MK, Zhao J, Ren X, Wang M, Li R, Wang Z, Zhang Z. Utilization of medical stone to improve the composition and quality of dissolved organic matter in composted pig manure. JOURNAL OF CLEANER PRODUCTION 2018; 197:472-478. [DOI: 10.1016/j.jclepro.2018.06.230] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
39
|
Ji J, Li XY, Xu J, Yang XY, Meng HS, Yan ZR. Zn-Fe-rich granular sludge carbon (GSC) for enhanced electrocatalytic removal of bisphenol A (BPA) and Rhodamine B (RhB) in a continuous-flow three-dimensional electrode reactor (3DER). Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.203] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Zhang C, Yun S, Li X, Wang Z, Xu H, Du T. Low-cost composited accelerants for anaerobic digestion of dairy manure: Focusing on methane yield, digestate utilization and energy evaluation. BIORESOURCE TECHNOLOGY 2018; 263:517-524. [PMID: 29778022 DOI: 10.1016/j.biortech.2018.05.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
To improve the methane yield and digestate utilization of anaerobic digestion (AD), low-cost composited accelerants consisting of urea (0.2-0.5%), bentonite (0.5-0.8%), active carbon (0.6-0.9%), and plant ash (0.01-0.3%) were designed and tested in batch experiments. Total biogas yield (485.7-681.9 mL/g VS) and methane content (63.0-66.6%) were remarkably enhanced in AD systems by adding accelerants compared to those of control group (361.9 mL/g VS, 59.4%). Composited accelerant addition led to the highest methane yield (454.1 mL/g VS), more than double that of control group. The TS, VS, and CODt removal rates (29.7-55.3%, 50.9-63.0%, and 46.8-69.1%) for AD with accelerants were much higher than control group (26.2%, 37.1%, and 39.6%). The improved digestate stability and enhanced fertilizer nutrient content (4.95-5.66%) confirmed that the digestate of AD systems with composited accelerants could safely serve as a potential component of bioorganic fertilizer. These findings open innovative avenues in composited accelerant development and application.
Collapse
Affiliation(s)
- Chen Zhang
- Functional Materials Laboratory (FML), School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China.
| | - Xue Li
- Functional Materials Laboratory (FML), School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Ziqi Wang
- Functional Materials Laboratory (FML), School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Hongfei Xu
- Functional Materials Laboratory (FML), School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Tingting Du
- Functional Materials Laboratory (FML), School of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
41
|
Peng S, Li H, Song D, Lin X, Wang Y. Influence of zeolite and superphosphate as additives on antibiotic resistance genes and bacterial communities during factory-scale chicken manure composting. BIORESOURCE TECHNOLOGY 2018; 263:393-401. [PMID: 29772500 DOI: 10.1016/j.biortech.2018.04.107] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Factory-scale chicken manure composting added with zeolite (F), superphosphate (G), or zeolite and ferrous sulfate (FL) simultaneously, were evaluate for their effects on the behaviors of antibiotic resistance genes (ARGs) and bacterial communities. After composting, ARGs in manure decreased by 67.3% in the control, whereas the reductions were 86.5%, 68.6% and 72.2% in F, G and FL, respectively. ARGs encoding ribosomal protection proteins (tetO, tetB(P), and tetM) were reduced to a greater extent than tetG, tetL, sul1 and sul2. Bacteria pathogens were also effectively removed by composting. Network analysis showed that Firmicutes were the important potential host bacteria for ARGs. The bacterial communities and environmental factors, as well as the intI gene, contributed significantly to the variation of ARGs. The ARGs and integrons were reduced more when zeolite was added than when superphosphate was added; thus, it may be useful for reducing the risks of ARGs in chicken manure.
Collapse
Affiliation(s)
- Shuang Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China; College of Environment and Ecology, Jiangsu Open University, Nanjing, Jiangsu 210017, China
| | - Huijie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Dan Song
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Yiming Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
42
|
Awasthi MK, Wang Q, Awasthi SK, Li R, Zhao J, Ren X, Wang M, Chen H, Zhang Z. Feasibility of medical stone amendment for sewage sludge co-composting and production of nutrient-rich compost. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 216:49-61. [PMID: 29357991 DOI: 10.1016/j.jenvman.2018.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
The feasibility of medical stone (MS) amendment as an innovative additive for dewatered fresh sewage sludge (DFSS) co-composting was assessed using a 130-L vessel-scale composter. To verify successful composting, five treatments were designed with four different dosages (2, 4, 6, and 10) % of MS with a 1:1 mixture (dry weight) of DFSS + wheat straw (WS). The WS was used as a bulking agent. A control without any amendment treatment was carried out for the purpose of comparison. For DFSS co-composting, the amendment with MS improved the mineralization efficiency and compost quality in terms of CO2 emissions, dehydrogenase enzyme (DE), electrical conductivity (EC), water-solubility, and total nutrients transformation. The DTPA-extractable Cu and Zn were also estimated to confirm the immobilization ability of the applied MS. Seed germination and plant growth tests were conducted to ensure the compost stability and phytotoxicity for Chinese cabbage (Brassica rapa chinensis L.) growth and biomass, as well as chlorophyll content. The results showed that during the bio-oxidative phase, DOC, DON, AP, NH4+-N, and NO3--N increased drastically in all the MS-blended treatments, except the application of 2% MS and the control treatment; significantly lower water-soluble nutrients were observed in the 2% MS and control treatments. A novel additive with 6-10% MS dosages considerably enhanced the organic matter conversion in the stable end-product (compost) and reduced the maturity period by two weeks compared to the 2% MS and control treatments. Consequently, the maturity parameters (e.g., EC, SGI, NH4+-N, DOC, and DON) confirmed that compost with 6-10% MS became more stable and mature within four weeks of DFSS co-composting. At the end of composting, significantly higher DTPA-extractable Cu and Zn contents were observed in the control treatment, and subsequently, in the very low application (10%) of MS. Higher MS dosage lowered the pH and EC to within the permissible limit compared to the control, while increased concentrations of water-soluble nutrients diminished the DTPA-extractable Cu and Zn contents. In addition, plant growth experiments demonstrated that the addition of compost with 150 kg ha-1 TKN improved the Chinese cabbage biomass and chlorophyll level. The highest dry weight biomass (2.78 ± 0.02 g/pot) was obtained with 6% MS-blended compost while the maximum chlorophyll content was found with application of 4% MS compost (41.84 SPAD-unit) for Chinese cabbage. Therefore, 6-10% MS can be recommended to improve DFSS composting and to reduce the period to maturity by two weeks when considering its composting effect on Chinese cabbage growth, biomass yield, and chlorophyll level. However, amendment with 6% MS is a more economically feasible approach for DFSS co-composting.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Meijing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
43
|
Wang Q, Awasthi MK, Ren X, Zhao J, Li R, Wang Z, Wang M, Chen H, Zhang Z. Combining biochar, zeolite and wood vinegar for composting of pig manure: The effect on greenhouse gas emission and nitrogen conservation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 74:221-230. [PMID: 29358021 DOI: 10.1016/j.wasman.2018.01.015] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 05/22/2023]
Abstract
The effect of enhancing wood vinegar (WV) with a mixture of biochar (B) and zeolite (Z) to compost pig manure (PM) in a 130 L reactor was evaluated to determine the levels of greenhouse gas (GHG) and ammonia emissions. Six treatments were prepared in a 2:1 ratio of PM mixed with wheat straw (WS; dry weight basis): PM + WS (control), PM + WS + 10%B, PM + WS + 10%B + 10%Z, and PM + WS with 0.5%, 1.0% and 2.0%WV combined with 10%B + 10%Z. These were composted for 50 days, and the results indicated that the combined use of B, Z, and WV could shorten the thermophilic phase and improve the maturity of compost compared to the control treatment. In addition, WV mixed with B and Z could reduce ammonia loss by 64.45-74.32% and decrease CO2, CH4, and N2O emissions by 33.90-46.98%, 50.39-61.15%, and 79.51-81.10%, respectively. Furthermore, compared to treatments in which B and B + Z were added, adding WV was more efficient to reduce the nitrogen and carbon loss, and the 10%B + 10%Z + 2%WV treatment presented the lowest loss of carbon (9.16%) and nitrogen (0.75%). Based on the maturity indexes used, nitrogen conservation, and efficiency of GHG emissions reduction, the treatment 10%B + 10%Z + 2%WV is suggested for efficient PM composting.
Collapse
Affiliation(s)
- Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India.
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zhen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Meijing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
44
|
Awasthi MK, Awasthi SK, Wang Q, Wang Z, Lahori AH, Ren X, Chen H, Wang M, Zhao J, Zhang Z. Influence of biochar on volatile fatty acids accumulation and microbial community succession during biosolids composting. BIORESOURCE TECHNOLOGY 2018; 251:158-164. [PMID: 29274855 DOI: 10.1016/j.biortech.2017.12.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
The impact of biochar amendment on volatile fatty acids (VFAs) and odor generation during the biosolids-wheat straw composting was investigated. Five treatments were design using the same mixture of biosolids-wheat straw with different dosage of biochar blending (2%, 4%, 8% and 12% on dry weight basis) and without biochar applied treatment served as control. The results of VFAs and Odour Index (OI) profile designated that compost with 8-12% biochar became more rapidly humified with less quantity of VFAs and OI generation content compared to control. Consequently, the VFAs degrading and total bacterial abundance are also significantly higher recorded in 8-12% biochar than 2% biochar and control. In addition, 8-12% biochar applied treatment has significantly maximum close correlation among the all physicochemical and gaseous emission parameters. Finally, results designated that higher dosage of biochar (8-12% biochar) was more feasible approach for biosolids composting.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Altaf Hussain Lahori
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Meijing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
45
|
Margaritis M, Psarras K, Panaretou V, Thanos AG, Malamis D, Sotiropoulos A. Improvement of home composting process of food waste using different minerals. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 73:87-100. [PMID: 29248370 DOI: 10.1016/j.wasman.2017.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/05/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
This article presents the experimental study of the process of composting in a prototype home-scale system with a special focus on process improvement by using different additives (i.e. woodchips, perlite, vermiculite and zeolite). The interventions with different bulking agents were realized through composting cycles using substrates with 10% additives in specific mixtures of kitchen waste materials. The pre-selected proportion of the mixtures examined was 3:1:1 in cellulosic:proteins:carbohydrates, in order to achieve an initial C/N ratio equal to 30. The control of the initial properties of the examined substrates aimed at the consequent improvement of the properties of the final product (compost). The results indicated that composting process was enhanced with the use of additives and especially the case of zeolite and perlite provided the best results, in terms of efficient temperature evolution (>55 °C for 4 consecutive days). Carbon to nitrogen ratios decreased by 40% from the initial values for the reactors were minerals were added, while for the bioreactor tested with woodchips the reduction was slight, showing slowest degradation rate. Moisture content of produced compost varied within the range of 55-64% d.m., while nutrient content (K, Na, Ca, Mg) was in accordance with the limit values reported in literature. Finally, the composts obtained, exhibited a satisfactory degree of maturity, fulfilling the criterion related to the absence of phytotoxic compounds.
Collapse
Affiliation(s)
- M Margaritis
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, Greece
| | - K Psarras
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, Greece
| | - V Panaretou
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, Greece
| | - A G Thanos
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, Greece
| | - D Malamis
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, Greece
| | - A Sotiropoulos
- Unit of Environmental Science and Technology, School of Chemical Engineering, National Technical University of Athens, Greece.
| |
Collapse
|
46
|
Wang S, Zeng Y. Ammonia emission mitigation in food waste composting: A review. BIORESOURCE TECHNOLOGY 2018; 248:13-19. [PMID: 28736141 DOI: 10.1016/j.biortech.2017.07.050] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Composting is a reliable technology to treat food waste (FW) and produce high quality compost. The ammonia (NH3) emission accounts for the largest nitrogen loss and leads to various environmental impacts. This review introduced the recent progresses on NH3 mitigation in FW composting. The basic characteristics of FW from various sources were given. Seven NH3 emission strategies proven effective in the literature were presented. The links between these strategies and the mechanisms of NH3 production were addressed. Application of hydrothermally treated C rich substrates, biochar or struvite salts had a broad prospect in FW composting if these strategies were proven cost-effective enough. Regulation of nitrogen assimilation and nitrification using biological additive had the potential to achieve NH3 mitigation but the existing evidence was not enough. In the end, the future prospects highlighted four research topics that needed further investigation to improve NH3 mitigation and nitrogen conservation in FW composting.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, China
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, China.
| |
Collapse
|
47
|
Awasthi MK, Wang Q, Awasthi SK, Wang M, Chen H, Ren X, Zhao J, Zhang Z. Influence of medical stone amendment on gaseous emissions, microbial biomass and abundance of ammonia oxidizing bacteria genes during biosolids composting. BIORESOURCE TECHNOLOGY 2018; 247:970-979. [PMID: 30060437 DOI: 10.1016/j.biortech.2017.09.201] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 06/08/2023]
Abstract
This study aimed to evaluate the feasibility of medical stone (MS) on microbial biomass, bacteria genes copy numbers, mitigation of gaseous emissions and its correlation with analyzed parameters during the biosolids composting. Composting of the biosolids by amendment of MS 0%, 2%, 4%, 6% and 10% (on dry weight basis) was performed using a 130-L composting reactor. The results showed that with increasing the dosage of MS, the CH4, N2O and NH3 emission were reduced by 60.5-88.3%, 46.6-82.4% and 38.2-78.5%, respectively. In addition, the 6-10% MS amendment enhanced the organic waste mineralization and prolonged the thermophilic phase. The abundance of ammonia oxidizing bacteria (AOB) and archaea (AOAB) were decreased during the first 28 days, but considerable increment was observed during the maturation phase which indicated that AOB and AOAB were liable for nitrification during the curing phase of composting. A significant correlation was observed among the all analyzed parameters in 6-10% MS blended treatments.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Meijing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
48
|
Awasthi MK, Wang Q, Chen H, Awasthi SK, Wang M, Ren X, Zhao J, Zhang Z. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting. BIORESOURCE TECHNOLOGY 2018; 247:138-146. [PMID: 28946087 DOI: 10.1016/j.biortech.2017.09.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to identify the effect of mixture of additives to improve the enzymatic activities, organic matter humification and diminished the bioavailability of heavy metals (HMs) during biosolids co-composting. In this study, zeolite (Z) (10%, 15% and 30%) with 1%lime (L) (dry weight basis of biosolids) was blended into the mixture of biosolids and wheat straw, respectively. The without any amendment and 1%lime applied treatments were run for comparison (Control). The Z+L addition resulted rapid organic matter degradation and humification with maximum enzymatic activities. In addition, higher dosage of Z+1%L amendment reduced the bioavailability of HMs (Cu and Zn) and improved the end product quality as compared to control and 1%L applied treatments. However, the 30%Z+1%L applied treatment showed maximum humification and low bioavailability of HMs but considering the economic feasibility and compost quality results, the treatment with 10%Z+1%L is recommended for biosolids co-composting.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Department of Biotechnology, Amicable Knowledge Solution University, Satna, India
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Meijing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
49
|
Malamis D, Bourka A, Stamatopoulou Ε, Moustakas K, Skiadi O, Loizidou M. Study and assessment of segregated biowaste composting: The case study of Attica municipalities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:664-669. [PMID: 27784578 DOI: 10.1016/j.jenvman.2016.09.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
This work aims to assess the operation of the first large scale segregated biowaste composting scheme in Greece to divert Household Food Waste (HFW) from landfill and produce a material which can be recovered and used as compost. The source separation and collection of HFW was deployed in selected areas in Attica Region serving about 3700 households. Sorted HFW is collected & transported to the Mechanical and Biological Treatment (MBT) plant in Attica Region that has been designed to produce Compost Like Output (CLO) from mixed MSW. The MBT facility has been adjusted in order to receive and treat aerobically HFW mixed with shredded green waste in a dedicated composting tunnel. The composting process was monitored against temperature, moisture and oxygen content indicating that the biological conditions are sufficiently developed. The product quality was examined and assessed against the quality specifications of EU End of Waste Criteria for biowaste subjected to composting aiming to specify whether the HFW that has undergone recovery ceases to be waste and can be classified as compost. More specifically, the heavy metals concentrations (Cr, Cu, Ni, Cd, Pb, Zn and Hg) are within the set limits and much lower compared to the CLO material that currently is being produced at the MBT plant. In regard to the hygienic requirements of the product it has been found that the process conditions result in a pathogen free material (i.e. E. Coli and Salmonella) which does not favor the growth of viable weeds and plant propagules, while it acquires sufficient organic matter content for soil fertilization. Noticeable physical impurities (mainly fractions of glass) have been detected exceeding the quality control threshold limit of 0.5% w/w (plastics, metals and glass). The latter is related to the missorted materials and to the limited pre-treatment configurations prior to composting. The above findings indicate that effective source separation of biowaste is prerequisite for good quality production and marketing of compost and special consideration should be made to minimize glass impurities prior composting (i.e. awareness raising and pretreatment stage). Therefore, it is feasible to gradually replace the production of questionable quality CLO in MBTs with biowaste compost which is in line with the required quality control standards especially when heavy metals concentrations is concerned.
Collapse
Affiliation(s)
- D Malamis
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece.
| | - A Bourka
- EPTA SA, 16 Iniochou Str., Halandri 15238, Greece
| | - Ε Stamatopoulou
- Association of Municipalities in the Attica Region-Solid Waste Management (EDSNA), 6 Andersen Str., 11525 Athens, Greece
| | - K Moustakas
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| | - O Skiadi
- Association of Municipalities in the Attica Region-Solid Waste Management (EDSNA), 6 Andersen Str., 11525 Athens, Greece
| | - M Loizidou
- National Technical University of Athens, School of Chemical Engineering, Unit of Environmental Science & Technology, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780 Athens, Greece
| |
Collapse
|
50
|
Immobilization of Heavy Metals in Sewage Sludge during Land Application Process in China: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9112020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The safe disposal of sewage sludge during the process of municipal wastewater treatment has become one of the major concerns of increased production. Land application was thought of as a more economical method for sewage sludge disposal than landfill and incineration. However, the presence of heavy metals in sewage sludge restricted the use of land application. The environmental risk of heavy metals was dependent on their contents, chemical speciations, and soil characteristics. Composting and chemical immobilization were the commonly used methods to immobilize the heavy metals in sewage sludge. The immobilization mechanism and speciation transformation of heavy metals during the composting process were presented. Aluminosilicate, phosphorus-bearing materials, basic compounds, and sulfides were reviewed as the commonly used chemical immobilizing agents. The problems that occur during the immobilization process were also discussed. The combination of different methods and the modification of chemical immobilizing agents both improved the fixation effect on heavy metals.
Collapse
|