1
|
Wu X, Yang G, Guo J, Zhuang L. Redox potential shapes spatial heterogeneity of mixed-cultured electroactive biofilm treating wastewater. Bioelectrochemistry 2025; 161:108836. [PMID: 39454420 DOI: 10.1016/j.bioelechem.2024.108836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
The core of bioelectrochemical systems (BESs) is electrochemically active microorganisms (EAMs), which exert spatial heterogeneity on electrode surface and influences BESs performance. Setting an optimal potential is an effective strategy for improving and optimizing BESs performance, however, how the electrode potential affects spatial structure of microbial community within anode biofilm is not known. Using a complex substrate-fed BES with a wastewater inoculum, this study investigated the community structure and composition of the stratified biofilm developed under the potential of -0.3 V, 0 V, +0.3 V and +0.6 V (vs. saturated calomel electrode) by freezing microtome method and high-throughput sequencing analysis. The spatial heterogeneity of biofilm community was found to be dependent on the electrode potential and a less stratified community structure was observed for +0.6 V than other potentials. Within the biofilms, the inner layers selected more Geobacter and the outer layers enriched more Acinetobacter and Serratia, potentially suggested a stratification of electron transfer pathway and metabolite-based interspecies communications. The results demonstrated the response of spatial heterogeneity of anode biofilm community to the change of electrode potential, which helps to understand the selectivity and enrichment of kinetically efficient anodic microbiome by electron potential.
Collapse
Affiliation(s)
- Xian Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Guiqin Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| | - Junhui Guo
- School of Materials and Food Engineering, Jiangmen Polytechnic, Jiangmen 529000, China
| | - Li Zhuang
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
2
|
Chen YY, Yang FQ, Xu N, Wang XQ, Xie PC, Wang YZ, Fang Z, Yong YC. Engineered cytochrome fused extracellular matrix enabled efficient extracellular electron transfer and improved performance of microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154806. [PMID: 35341857 DOI: 10.1016/j.scitotenv.2022.154806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/20/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Microbial fuel cell (MFC) was a promising technology for energy harvesting from wastewater. However, inefficient bacterial extracellular electron transfer (EET) limited the performance as well as the applications of MFC. Here, a new strategy to reinforce the EET by engineering synthetic extracellular matrix (ECM) with cytochrome fused curli was developed. By genetically fusing a minimal cytochrome domain (MCD) with the curli protein CsgA and heterogeneously expressing in model exoelectrogen of Shewanella oneidensis MR-1, the cytochrome fused electroactive curli network was successfully constructed and assembled. Interestingly, the strain with the MCD fused synthetic ECM delivered about 2.4 times and 2.0 times higher voltage and power density output than these of wild type MR-1 in MFC. More impressively, electrochemical analysis suggested that this synthetic ECM not only introduced cytochrome of MCD, but also attracted more self-secreted electrochemically active substances, which might facilitate the EET and improve the MFC performance. This work demonstrated the possibility to manipulation the EET with ECM engineering, which opened up new path for exoelectrogen design and engineering.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fu-Qiao Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nuo Xu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xing-Qiang Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Peng-Cheng Xie
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan-Zhai Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Zhao C, Li Y, Li X, Huang H, Zheng G, Chen Y. Biological removal of sulfamethoxazole enhanced by S. oneidensis MR-1 via promoting NADH generation and electron transfer and consumption. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127839. [PMID: 34838361 DOI: 10.1016/j.jhazmat.2021.127839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The bio-removal efficiency of sulfamethoxazole (SMX) from wastewater is usually very poor. In this paper a new efficient method to biodegrade SMX was reported. The SMX biodegradation efficiency by Paracoccus denitrificans was observed to be remarkably enhanced from 48.9% to 94.2% after Shewanella oneidensis MR-1 addition. The mechanisms investigation revealed that P. denitrificans was the dominant microbe for SMX biodegradation. Although SMX biodegradation by S. oneidensis MR-1 alone was negligible, its presence advanced NADH generation. The proteomics assay revealed that the expression of key proteins relevant with complex I and III and cytochrome c in electron transfer chain were increased due to P. denitrificans acquiring iron from periplasm to cytoplasm being improved. In addition, the extracellular electron transfer capability was enhanced as S. oneidensis MR-1 not only produced flavin, but caused P. denitrificans to secret more extracellular polymeric substances. Further investigation indicated that the expression of key enzymes related to electron consumption in SMX biodegradation was up-regulated. Based on these findings, the pathways of S. oneidensis MR-1 promoting SMX biodegradation were proposed. As all nitrate could be removed with almost no nitrite accumulation, this study would also provide an attractive way for simultaneous bio-removal of multiple pollutants from wastewater.
Collapse
Affiliation(s)
- Chunxia Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yue Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaolu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
4
|
Kuchenbuch A, Frank R, Ramos JV, Jahnke HG, Harnisch F. Electrochemical Microwell Plate to Study Electroactive Microorganisms in Parallel and Real-Time. Front Bioeng Biotechnol 2022; 9:821734. [PMID: 35242754 PMCID: PMC8887713 DOI: 10.3389/fbioe.2021.821734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 11/26/2022] Open
Abstract
Microbial resource mining of electroactive microorganism (EAM) is currently methodically hampered due to unavailable electrochemical screening tools. Here, we introduce an electrochemical microwell plate (ec-MP) composed of a 96 electrochemical deepwell plate and a recently developed 96-channel multipotentiostat. Using the ec-MP we investigated the electrochemical and metabolic properties of the EAM models Shewanella oneidensis and Geobacter sulfurreducens with acetate and lactate as electron donor combined with an individual genetic analysis of each well. Electrochemical cultivation of pure cultures achieved maximum current densities (j max) and coulombic efficiencies (CE) that were well in line with literature data. The co-cultivation of S. oneidensis and G. sulfurreducens led to an increased current density of j max of 88.57 ± 14.04 µA cm-2 (lactate) and j max of 99.36 ± 19.12 µA cm-2 (lactate and acetate). Further, a decreased time period of reaching j max and biphasic current production was revealed and the microbial electrochemical performance could be linked to the shift in the relative abundance.
Collapse
Affiliation(s)
- Anne Kuchenbuch
- Department of Environmental Microbiology, UFZ—Helmholtz-Centre for Environmental Research GmbH, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - José Vazquez Ramos
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Leipzig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, UFZ—Helmholtz-Centre for Environmental Research GmbH, Leipzig, Germany
| |
Collapse
|
5
|
Bai X, Lin T, Liang N, Li BZ, Song H, Yuan YJ. Engineering synthetic microbial consortium for efficient conversion of lactate from glucose and xylose to generate electricity. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Yang X, Chen S. Microorganisms in sediment microbial fuel cells: Ecological niche, microbial response, and environmental function. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144145. [PMID: 33303196 DOI: 10.1016/j.scitotenv.2020.144145] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
A sediment microbial fuel cell (SMFC) is a device that harvests electrical energy from sediments rich in organic matter. SMFCs have been attracting increasing amounts of interest in environmental remediation, since they are capable of providing a clean and inexhaustible source of electron donors or acceptors and can be easily controlled by adjusting the electrochemical parameters. The microorganisms inhabiting sediments and the overlying water play a pivotal role in SMFCs. Since the SMFC is applied in an open environment rather than in an enclosed chamber, the effects of the environment on the microbes should be intense and the microbial community succession should be extremely complex. Thus, this review aims to provide an overview of the microorganisms in SMFCs, which few previous review papers have reported. In this study, the anodic and cathodic niches for the microorganisms in SMFCs are summarized, how the microbial population and community interact with the SMFC environment is discussed, a new microbial succession strategy called the electrode stimulation succession is proposed, and recent developments in the environmental functions of SMFCs are discussed from the perspective of microorganisms. Future studies are needed to investigate the electrode stimulation succession, the environmental function and the electron transfer mechanism in order to boost the application of SMFCs for power generation and environmental remediation.
Collapse
Affiliation(s)
- Xunan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
7
|
Chen Q, Wang J, Wang X, Fan J, Liu X, Li B, Han Z, Cheng S, Zhang X. Inhibition of Tumor Progression through the Coupling of Bacterial Respiration with Tumor Metabolism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qi‐Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Jia‐Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xia‐Nan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Jin‐Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xin‐Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Zi‐Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Si‐Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
8
|
Chen QW, Wang JW, Wang XN, Fan JX, Liu XH, Li B, Han ZY, Cheng SX, Zhang XZ. Inhibition of Tumor Progression through the Coupling of Bacterial Respiration with Tumor Metabolism. Angew Chem Int Ed Engl 2020; 59:21562-21570. [PMID: 32779303 DOI: 10.1002/anie.202002649] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/23/2020] [Indexed: 12/11/2022]
Abstract
By leveraging the ability of Shewanella oneidensis MR-1 (S. oneidensis MR-1) to anaerobically catabolize lactate through the transfer of electrons to metal minerals for respiration, a lactate-fueled biohybrid (Bac@MnO2 ) was constructed by modifying manganese dioxide (MnO2 ) nanoflowers on the S. oneidensis MR-1 surface. The biohybrid Bac@MnO2 uses decorated MnO2 nanoflowers as electron receptor and the tumor metabolite lactate as electron donor to make a complete bacterial respiration pathway at the tumor sites, which results in the continuous catabolism of intercellular lactate. Additionally, decorated MnO2 nanoflowers can also catalyze the conversion of endogenous hydrogen peroxide (H2 O2 ) into generate oxygen (O2 ), which could prevent lactate production by downregulating hypoxia-inducible factor-1α (HIF-1α) expression. As lactate plays a critical role in tumor development, the biohybrid Bac@MnO2 could significantly inhibit tumor progression by coupling bacteria respiration with tumor metabolism.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xia-Nan Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zi-Yi Han
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
9
|
Gonzalez NM, Fitch A, Al-Bazi J. Development of a RP-HPLC method for determination of glucose in Shewanella oneidensis cultures utilizing 1-phenyl-3-methyl-5-pyrazolone derivatization. PLoS One 2020; 15:e0229990. [PMID: 32163461 PMCID: PMC7067395 DOI: 10.1371/journal.pone.0229990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
A method was developed and validated for low-level detection of glucose. The method involves quantitation of glucose though derivitization with 1-phenyl-3-methyl-5-pyrazolone (PMP) and HPLC-DAD analysis. The developed method was found to be accurate and robust achieving detection limits as low as 0.09 nM. The applicability of the method was tested against microbial samples with glucose acting as a carbon fuel source. The method was shown to be able to accurately discriminate and quantify PMP-glucose derivatives within Shewanella oneidensis MR-1 samples. The method proved capable at examining glucose usage during the early hours of microbial growth, with detectable usage occurring as early as two hours. S. oneidensis cultures were found to grow more effectively in the presence of oxygen which coincided with more efficient glucose usage. Glucose usage further increased in the presence of competing electron acceptors. The rate at which S. oneidensis reached exponential growth was affected by the presence of ferric iron under microaerobic conditions. Such samples reached exponential growth approximately two hours sooner than aerobic samples.
Collapse
Affiliation(s)
- Norberto M. Gonzalez
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
- * E-mail:
| | - Alanah Fitch
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
| | - John Al-Bazi
- Department of Chemistry, Northeastern Illinois University, Chicago, IL, United States of America
| |
Collapse
|
10
|
Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies. Biotechnol Adv 2019; 39:107468. [PMID: 31707076 DOI: 10.1016/j.biotechadv.2019.107468] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/31/2023]
Abstract
Electroactive microorganisms, which possess extracellular electron transfer (EET) capabilities, are the basis of microbial electrochemical technologies (METs) such as microbial fuel and electrolysis cells. These are considered for several applications ranging from the energy-efficient treatment of waste streams to the production of value-added chemicals and fuels, bioremediation, and biosensing. Various aspects related to the microorganisms, electrodes, separators, reactor design, and operational or process parameters influence the overall functioning of METs. The most fundamental and critical performance-determining factor is, however, the microorganism-electrode interactions. Modification of the electrode surfaces and microorganisms for optimizing their interactions has therefore been the major MET research focus area over the last decade. In the case of microorganisms, primarily their EET mechanisms and efficiencies along with the biofilm formation capabilities, collectively considered as microbial electroactivity, affect their interactions with the electrodes. In addition to electroactivity, the specific metabolic or biochemical functionality of microorganisms is equally crucial to the target MET application. In this article, we present the major strategies that are used to enhance the electroactivity and specific functionality of microorganisms pertaining to both anodic and cathodic processes of METs. These include simple physical methods based on the use of heat and magnetic field along with chemical, electrochemical, and growth media amendment approaches to the complex procedure-based microbial bioaugmentation, co-culture, and cell immobilization or entrapment, and advanced toolkit-based biofilm engineering, genetic modifications, and synthetic biology strategies. We further discuss the applicability and limitations of these strategies and possible future research directions for advancing the highly promising microbial electrochemistry-driven biotechnology.
Collapse
|
11
|
Gupta D, Sutherland MC, Rengasamy K, Meacham JM, Kranz RG, Bose A. Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake. mBio 2019; 10:e02668-19. [PMID: 31690680 PMCID: PMC6831781 DOI: 10.1128/mbio.02668-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 11/20/2022] Open
Abstract
Photoferrotrophy is a form of anoxygenic photosynthesis whereby bacteria utilize soluble or insoluble forms of ferrous iron as an electron donor to fix carbon dioxide using light energy. They can also use poised electrodes as their electron donor via phototrophic extracellular electron uptake (phototrophic EEU). The electron uptake mechanisms underlying these processes are not well understood. Using Rhodopseudomonas palustris TIE-1 as a model, we show that a single periplasmic decaheme cytochrome c, PioA, and an outer membrane porin, PioB, form a complex allowing extracellular electron uptake across the outer membrane from both soluble iron and poised electrodes. We observe that PioA undergoes postsecretory proteolysis of its N terminus to produce a shorter heme-attached PioA (holo-PioAC, where PioAC represents the C terminus of PioA), which can exist both freely in the periplasm and in a complex with PioB. The extended N-terminal peptide controls heme attachment, and its processing is required to produce wild-type levels of holo-PioAC and holo-PioACB complex. It is also conserved in PioA homologs from other phototrophs. The presence of PioAB in these organisms correlate with their ability to perform photoferrotrophy and phototrophic EEU.IMPORTANCE Some anoxygenic phototrophs use soluble iron, insoluble iron minerals (such as rust), or their proxies (poised electrodes) as electron donors for photosynthesis. However, the underlying electron uptake mechanisms are not well established. Here, we show that these phototrophs use a protein complex made of an outer membrane porin and a periplasmic decaheme cytochrome (electron transfer protein) to harvest electrons from both soluble iron and poised electrodes. This complex has two unique characteristics: (i) it lacks an extracellular cytochrome c, and (ii) the periplasmic decaheme cytochrome c undergoes proteolytic cleavage to produce a functional electron transfer protein. These characteristics are conserved in phototrophs harboring homologous proteins.
Collapse
Affiliation(s)
- Dinesh Gupta
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Molly C Sutherland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - J Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert G Kranz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Engel C, Schattenberg F, Dohnt K, Schröder U, Müller S, Krull R. Long-Term Behavior of Defined Mixed Cultures of Geobacter sulfurreducens and Shewanella oneidensis in Bioelectrochemical Systems. Front Bioeng Biotechnol 2019; 7:60. [PMID: 30972336 PMCID: PMC6445848 DOI: 10.3389/fbioe.2019.00060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/05/2019] [Indexed: 11/24/2022] Open
Abstract
This work aims to investigate the long-term behavior of interactions of electrochemically active bacteria in bioelectrochemical systems. The electrochemical performance and biofilm characteristics of pure cultures of Geobacter sulfurreducens and Shewanella oneidensis are being compared to a defined mixed culture of both organisms. While S. oneidensis pure cultures did not form cohesive and stable biofilms on graphite anodes and only yielded 0.034 ± 0.011 mA/cm2 as maximum current density by feeding of each 5 mM lactate and acetate, G. sulfurreducens pure cultures formed 69 μm thick, area-wide biofilms with 10 mM acetate as initial substrate concentration and yielded a current of 0.39 ± 0.09 mA/cm2. Compared to the latter, a defined mixed culture of both species was able to yield 38% higher maximum current densities of 0.54 ± 0.07 mA/cm2 with each 5 mM lactate and acetate. This increase in current density was associated with a likewise increased thickness of the anodic biofilm to approximately 93 μm. It was further investigated whether a sessile incorporation of S. oneidensis into the mixed culture biofilm, which has been reported previously for short-term experiments, is long-term stable. The results demonstrate that S. oneidensis was not stably incorporated into the biofilm; rather, the planktonic presence of S. oneidensis has a positive effect on the biofilm growth of G. sulfurreducens and thus on current production.
Collapse
Affiliation(s)
- Christina Engel
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Schattenberg
- Working Group Flow Cytometry, Department of Environmental Microbiology, Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Katrin Dohnt
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Uwe Schröder
- Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susann Müller
- Working Group Flow Cytometry, Department of Environmental Microbiology, Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Braunschweig Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Koók L, Kanyó N, Dévényi F, Bakonyi P, Rózsenberszki T, Bélafi-Bakó K, Nemestóthy N. Improvement of waste-fed bioelectrochemical system performance by selected electro-active microbes: Process evaluation and a kinetic study. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Rathinam NK, Tripathi AK, Smirnova A, Beyenal H, Sani RK. Engineering rheology of electrolytes using agar for improving the performance of bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 263:242-249. [PMID: 29751231 DOI: 10.1016/j.biortech.2018.04.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
The present study is focused on enhancing the rheological properties of the electrolyte and eliminating sedimentation of microorganisms/flocs without affecting the electron transfer kinetics for improved bioelectricity generation. Agar derived from polysaccharide agarose (0.05-0.2%, w/v) was chosen as a rheology modifying agent. Electroanalytical investigations showed that electrolytes modified with 0.15% agar display a nine-fold increase in current density (1.2 mA/cm2) by a thermophilic strain (Geobacillus sp. 44C, 60 °C) when compared with the control. Sodium phosphate buffer (0.1 M, pH 7) electrolyte with riboflavin (0.1 mM) was used as the control. Electrolytes modified with 0.15% agar significantly improved chemical oxygen demand removal rates. This developed electrolyte will aid in improving bioelectricity generation in Bioelectrochemical Systems (BES). The developed strategy avoids the use of peristaltic pumps and magnetic stirrers, thereby improving the energy efficiency of the process.
Collapse
Affiliation(s)
- Navanietha Krishnaraj Rathinam
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Abhilash K Tripathi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Alevtina Smirnova
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Haluk Beyenal
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA; BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, USA; Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD, USA
| |
Collapse
|
15
|
Limited carbon source retards inorganic arsenic release during roxarsone degradation in Shewanella oneidensis microbial fuel cells. Appl Microbiol Biotechnol 2018; 102:8093-8106. [DOI: 10.1007/s00253-018-9212-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 11/26/2022]
|
16
|
Kokko M, Epple S, Gescher J, Kerzenmacher S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 258:376-389. [PMID: 29548640 DOI: 10.1016/j.biortech.2018.01.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given.
Collapse
Affiliation(s)
- Marika Kokko
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Stefanie Epple
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany.
| |
Collapse
|
17
|
Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth. Appl Environ Microbiol 2018; 84:AEM.00415-18. [PMID: 29654176 PMCID: PMC5981069 DOI: 10.1128/aem.00415-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/05/2018] [Indexed: 02/02/2023] Open
Abstract
Shewanella oneidensis MR-1 is a metal-reducing bacterium with the ability to utilize many different terminal electron acceptors, including oxygen and solid-metal oxides. Both metal oxide reduction and aerobic respiration have been studied extensively in this organism. However, electron transport chain processes upstream of the terminal oxidoreductases have been relatively understudied in this organism, especially electron transfer from NADH to respiratory quinones. Genome annotation indicates that S. oneidensis MR-1 encodes four NADH dehydrogenases, a proton-translocating dehydrogenase (Nuo), two sodium ion-translocating dehydrogenases (Nqr1 and Nqr2), and an “uncoupling” dehydrogenase (Ndh), but none of these complexes have been studied. Therefore, we conducted a study specifically focused on the effects of individual NADH dehydrogenase knockouts in S. oneidensis MR-1. We observed that two of the single-mutant strains, the ΔnuoN and ΔnqrF1 mutants, exhibited significant growth defects compared with the wild type. However, the defects were minor and only apparent under certain growth conditions. Further testing of the ΔnuoN ΔnqrF1 double-mutant strain yielded no growth in minimal medium under oxic conditions, indicating that Nuo and Nqr1 have overlapping functions, but at least one is necessary for aerobic growth. Coutilization of proton- and sodium ion-dependent energetics has important implications for the growth of this organism in environments with varied pH and salinity, including microbial electrochemical systems. IMPORTANCE Bacteria utilize a wide variety of metabolic pathways that allow them to take advantage of different energy sources, and to do so with varied efficiency. The efficiency of a metabolic process determines the growth yield of an organism, or the amount of biomass it produces per amount of substrate consumed. This parameter has important implications in biotechnology and wastewater treatment, where low growth yields are often preferred to minimize the production of microbial biomass. In this study, we investigated respiratory pathways containing NADH dehydrogenases with varied efficiency (i.e., the number of ions translocated per NADH oxidized) in the metal-reducing bacterium Shewanella oneidensis MR-1. We observed that two different respiratory pathways are used concurrently, and at least one pathway must be functional for growth under oxic conditions.
Collapse
|
18
|
Krieg T, Phan LMP, Wood JA, Sydow A, Vassilev I, Krömer JO, Mangold KM, Holtmann D. Characterization of a membrane-separated and a membrane-less electrobioreactor for bioelectrochemical syntheses. Biotechnol Bioeng 2018; 115:1705-1716. [DOI: 10.1002/bit.26600] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Krieg
- Industrial Biotechnology; DECHEMA Forschungsinstitut; Frankfurt am Main Hessen Germany
| | - Linh M. P. Phan
- Industrial Biotechnology; DECHEMA Forschungsinstitut; Frankfurt am Main Hessen Germany
| | - Jeffery A. Wood
- Soft Matter, Fluidics and Interfaces, Faculty of Science and Technology; University of Twente; Enschede The Netherlands
| | - Anne Sydow
- Industrial Biotechnology; DECHEMA Forschungsinstitut; Frankfurt am Main Hessen Germany
| | - Igor Vassilev
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; Brisbane Australia
| | - Jens O. Krömer
- Centre for Microbial Electrochemical Systems (CEMES); The University of Queensland; Brisbane Australia
- Advanced Water Management Centre (AWMC); The University of Queensland; Brisbane Australia
- Department for Solar Materials; Helmholtz Centre for Environmental Research (UFZ); Leipzig Germany
| | | | - Dirk Holtmann
- Industrial Biotechnology; DECHEMA Forschungsinstitut; Frankfurt am Main Hessen Germany
| |
Collapse
|
19
|
Dessì P, Porca E, Haavisto J, Lakaniemi AM, Collins G, Lens PNL. Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells. RSC Adv 2018; 8:3069-3080. [PMID: 35541202 PMCID: PMC9077550 DOI: 10.1039/c7ra12316g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022] Open
Abstract
A mesophilic (37 °C) and a thermophilic (55 °C) two-chamber microbial fuel cell (MFC) were studied and compared for their power production from xylose and the microbial communities involved. The anode-attached, membrane-attached, and planktonic microbial communities, and their respective active subpopulations, were determined by next generation sequencing (Illumina MiSeq), based on the presence and expression of the 16S rRNA gene. Geobacteraceae accounted for 65% of the anode-attached active microbial community in the mesophilic MFC, and were associated to electricity generation likely through direct electron transfer, resulting in the highest power production of 1.1 W m-3. A lower maximum power was generated in the thermophilic MFC (0.2 W m-3), likely due to limited acetate oxidation and the competition for electrons by hydrogen oxidizing bacteria and hydrogenotrophic methanogenic archaea. Aerobic microorganisms, detected among the membrane-attached active community in both the mesophilic and thermophilic MFC, likely acted as a barrier for oxygen flowing from the cathodic chamber through the membrane, favoring the strictly anaerobic exoelectrogenic microorganisms, but competing with them for xylose and its degradation products. This study provides novel information on the active microbial communities populating the anodic chamber of mesophilic and thermophilic xylose-fed MFCs, which may help in developing strategies to favor exoelectrogenic microorganisms at the expenses of competing microorganisms.
Collapse
Affiliation(s)
- Paolo Dessì
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Estefania Porca
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Johanna Haavisto
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Aino-Maija Lakaniemi
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Piet N L Lens
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
- UNESCO-IHE, Institute for Water Education Westvest 7 2611AX Delft The Netherlands
| |
Collapse
|
20
|
Free A, McDonald MA, Pagaling E. Diversity-Function Relationships in Natural, Applied, and Engineered Microbial Ecosystems. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:131-189. [PMID: 30342721 DOI: 10.1016/bs.aambs.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The connection between ecosystem function and taxonomic diversity has been of interest and relevance to macroecologists for decades. After many years of lagging behind due to the difficulty of assigning both taxonomy and function to poorly distinguishable microscopic cells, microbial ecology now has access to a suite of powerful molecular tools which allow its practitioners to generate data relating to diversity and function of a microbial community on an unprecedented scale. Instead, the problem facing today's microbial ecologists is coupling the ease of generation of these datasets with the formulation and testing of workable hypotheses relating the diversity and function of environmental, host-associated, and engineered microbial communities. Here, we review the current state of knowledge regarding the links between taxonomic alpha- and beta-diversity and ecosystem function, comparing our knowledge in this area to that obtained by macroecologists who use more traditional techniques. We consider the methodologies that can be applied to study these properties and how successful they are at linking function to diversity, using examples from the study of model microbial ecosystems, methanogenic bioreactors (anaerobic digesters), and host-associated microbiota. Finally, we assess ways in which our newly acquired understanding might be used to manipulate diversity in ecosystems of interest in order to improve function for the benefit of us or the environment in general through the provision of ecosystem services.
Collapse
Affiliation(s)
- Andrew Free
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Michael A McDonald
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Eulyn Pagaling
- The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom
| |
Collapse
|
21
|
Predicting and experimental evaluating bio-electrochemical synthesis — A case study with Clostridium kluyveri. Bioelectrochemistry 2017; 118:114-122. [DOI: 10.1016/j.bioelechem.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022]
|
22
|
Uno M, Phansroy N, Aso Y, Ohara H. Starch-fueled microbial fuel cells by two-step and parallel fermentation using Shewanella oneidensis MR-1 and Streptococcus bovis 148. J Biosci Bioeng 2017; 124:189-194. [DOI: 10.1016/j.jbiosc.2017.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/27/2017] [Indexed: 12/31/2022]
|
23
|
Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community. Appl Environ Microbiol 2017; 83:AEM.03033-16. [PMID: 28087529 DOI: 10.1128/aem.03033-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/02/2017] [Indexed: 01/08/2023] Open
Abstract
Anode-associated multispecies exoelectrogenic biofilms are essential for the function of bioelectrochemical systems (BESs). The individual activities of anode-associated organisms and physiological responses resulting from coculturing are often hard to assess due to the high microbial diversity in these systems. Therefore, we developed a model multispecies biofilm comprising three exoelectrogenic proteobacteria, Shewanella oneidensis, Geobacter sulfurreducens, and Geobacter metallireducens, with the aim to study in detail the biofilm formation dynamics, the interactions between the organisms, and the overall activity of an exoelectrogenic biofilm as a consequence of the applied anode potential. The experiments revealed that the organisms build a stable biofilm on an electrode surface that is rather resilient to changes in the redox potential of the anode. The community operated at maximum electron transfer rates at electrode potentials that were higher than 0.04 V versus a normal hydrogen electrode. Current densities decreased gradually with lower potentials and reached half-maximal values at -0.08 V. Transcriptomic results point toward a positive interaction among the individual strains. S. oneidensis and G. sulfurreducens upregulated their central metabolisms as a response to cultivation under mixed-species conditions. G. sulfurreducens was detected in the planktonic phase of the bioelectrochemical reactors in mixed-culture experiments but not when it was grown in the absence of the other two organisms.IMPORTANCE In many cases, multispecies communities can convert organic substrates into electric power more efficiently than axenic cultures, a phenomenon that remains unresolved. In this study, we aimed to elucidate the potential mutual effects of multispecies communities in bioelectrochemical systems to understand how microbes interact in the coculture anodic network and to improve the community's conversion efficiency for organic substrates into electrical energy. The results reveal positive interactions that might lead to accelerated electron transfer in mixed-species anode communities. The observations made within this model biofilm might be applicable to a variety of nonaxenic systems in the field.
Collapse
|
24
|
Bursac T, Gralnick JA, Gescher J. Acetoin production via unbalanced fermentation in Shewanella oneidensis. Biotechnol Bioeng 2017; 114:1283-1289. [DOI: 10.1002/bit.26243] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Thea Bursac
- Department of Applied Biology; Institute for Applied Biosciences; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Jeffrey A. Gralnick
- BioTechnology Institute and Department of Microbiology; University of Minnesota; Twin Cities St. Paul, Minnesota
| | - Johannes Gescher
- Department of Applied Biology; Institute for Applied Biosciences; Karlsruhe Institute of Technology; Karlsruhe Germany
- Department of Microbiology of Natural and Technical Interfaces; Institute of Functional Interfaces; Karlsruhe Institute of Technology; Eggenstein-Leopoldshafen Germany
| |
Collapse
|
25
|
Li SW, Zeng RJ, Sheng GP. An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Chen S, Jia N, Ding MZ, Yuan YJ. Comparative analysis of L-sorbose dehydrogenase by docking strategy for 2-keto-L-gulonic acid production in Ketogulonicigenium vulgare and Bacillus endophyticus consortium. J Ind Microbiol Biotechnol 2016; 43:1507-1516. [PMID: 27565673 DOI: 10.1007/s10295-016-1829-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Improving the yield of 2-keto-L-gulonic acid (2-KGA), the direct precursor of vitamin C, draws more and more attention in industrial production. In this study, we try to increase the 2-KGA productivity by computer-aided selection of genes encoding L-sorbose dehydrogenases (SDH) of Ketogulonicigenium vulgare. First, six SDHs were modeled by docking strategy to predict the binding mode with co-factor PQQ. The binding energy between SSDA1-H/SSDA1-L and PQQ was the highest, followed by SSDA3/SSDA2. The binding energy between SSDA1-P/SSDB and PQQ was the lowest. Then, these genes were overexpressed, respectively, in an industrial strain K. vulgare HKv604. Overexpression of ssda1-l and ssda1-h enhanced the 2-KGA production by 7.89 and 12.56 % in mono-cultured K. vulgare, and by 13.21 and 16.86 % when K. vulgare was co-cultured with Bacillus endophyticus. When the engineered K. vulgare SyBE_Kv000116013 (overexpression of ssda1-p) or SyBE_Kv000116016 (overexpression of ssdb) was co-cultured with B. endophyticus, the 2-KGA production decreased significantly. The docking results were in accordance with the experimental data, which indicated that computer-aided modeling is an efficient strategy for screening more efficient enzymes.
Collapse
Affiliation(s)
- Si Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Nan Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education) School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| |
Collapse
|
27
|
Glycerol-fed microbial fuel cell with a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonae J2B. J Ind Microbiol Biotechnol 2016; 43:1397-403. [PMID: 27412724 DOI: 10.1007/s10295-016-1807-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
Abstract
Glycerol is an attractive feedstock for bioenergy and bioconversion processes but its use in microbial fuel cells (MFCs) for electrical energy recovery has not been investigated extensively. This study compared the glycerol uptake and electricity generation of a co-culture of Shewanella oneidensis MR-1 and Klebsiella pneumonia J2B in a MFC with that of a single species inoculated counterpart. Glycerol was metabolized successfully in the co-culture MFC (MFC-J&M) with simultaneous electricity production but it was not utilized in the MR-1 only MFC (MFC-M). A current density of 10 mA/m(2) was obtained while acidic byproducts (lactate and acetate) were consumed in the co-culture MFC, whereas they are accumulated in the J2B-only MFC (MFC-J). MR-1 was distributed mainly on the electrode in MFC-J&M, whereas most of the J2B was observed in the suspension in the MFC-J reactor, indicating that the co-culture of both strains provides an ecological driving force for glycerol utilization using the electrode as an electron acceptor. This suggests that a co-culture MFC can be applied to electrical energy recovery from glycerol, which was previously known as a refractory substrate in a bioelectrochemical system.
Collapse
|
28
|
Jia X, Liu C, Song H, Ding M, Du J, Ma Q, Yuan Y. Design, analysis and application of synthetic microbial consortia. Synth Syst Biotechnol 2016; 1:109-117. [PMID: 29062933 PMCID: PMC5640696 DOI: 10.1016/j.synbio.2016.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
The rapid development of synthetic biology has conferred almost perfect modification on single cells, and provided methodological support for synthesizing microbial consortia, which have a much wider application potential than synthetic single cells. Co-cultivating multiple cell populations with rational strategies based on interacting relationships within natural microbial consortia provides theoretical as well as experimental support for the successful obtaining of synthetic microbial consortia, promoting it into extensive research on both industrial applications in plenty of areas and also better understanding of natural microbial consortia. According to their composition complexity, synthetic microbial consortia are summarized in three aspects in this review and are discussed in principles of design and construction, insights and methods for analysis, and applications in energy, healthcare, etc.
Collapse
Affiliation(s)
- Xiaoqiang Jia
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Chang Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Jin Du
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Qian Ma
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
29
|
Yu H, Feng C, Liu X, Yi X, Ren Y, Wei C. Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:81-9. [PMID: 26745393 DOI: 10.1016/j.envpol.2015.12.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 05/20/2023]
Abstract
The application of a low-voltage electric field as an electron donor or acceptor to promote the bioremediation of chlorinated organic compounds represents a promising technology meeting the demand of developing an efficient and cost-effective strategy for in situ treatment of PCB-contaminated sediments. Here, we reported that bioanode stimulation with an anodic potential markedly enhanced dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) contained in the sediment at an electronic waste recycling site of Qingyuan, Guangdong, China. The 110-day incubation of the bioanode with a potential poised at 0.2 V relative to saturated calomel electrode enabled 58% transformation of the total PCB 61 at the initial concentration of 100 μmol kg(-1), while only 23% was reduced in the open-circuit reference experiment. The introduction of acetate to the bioelectrochemical reactor (BER) further improved PCB 61 transformation to 82%. Analysis of the bacterial composition showed significant community shifts in response to variations in treatment. At phylum level, the bioanode stimulation resulted in substantially increased abundance of Actinobacteria, Bacteroidetes, and Chloroflexi either capable of PCB dechlorination, or detected in the PCB-contaminated environment. At genus level, the BER contained two types of microorganisms: electrochemically active bacteria (EAB) represented by Geobacter, Ignavibacterium, and Dysgonomonas, and dechlorinating bacteria including Hydrogenophaga, Alcanivorax, Sedimentibacter, Dehalogenimonas, Comamonas and Vibrio. These results suggest that the presence of EAB can promote the population of dechlorinating bacteria which are responsible for PCB 61 transformation.
Collapse
Affiliation(s)
- Hui Yu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| | - Xiaoping Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
30
|
Wang EX, Ding MZ, Ma Q, Dong XT, Yuan YJ. Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microb Cell Fact 2016; 15:21. [PMID: 26809519 PMCID: PMC4727326 DOI: 10.1186/s12934-016-0418-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/11/2016] [Indexed: 11/12/2022] Open
Abstract
Background In the industry, the conventional two-step fermentation method was used to produce 2-keto-l-gulonic acid (2-KGA), the precursor of vitamin C, by three strains, namely, Gluconobacter oxydans, Bacillus spp. and Ketogulonicigenium vulgare. Despite its high production efficiency, the long incubation period and an additional second sterilization process inhibit the further development. Therefore, we aimed to reorganize a synthetic consortium of G. oxydans and K. vulgare for one-step fermentation of 2-KGA and enhance the symbiotic interaction between microorganisms to perform better. Results During the fermentation, competition for sorbose of G. oxydans arose when co-cultured with K. vulgare. In this study, the competition between the two microbes was alleviated and their mutualism was enhanced by deleting genes involved in sorbose metabolism of G. oxydans. In the engineered synthetic consortium (H6 + Kv), the yield of 2-KGA (mol/mol) against d-sorbitol reached 89.7 % within 36 h, increased by 29.6 %. Furthermore, metabolomic analysis was used to verify the enhancement of the symbiotic relationship and to provide us potential strategies for improving the synthetic consortium. Additionally, a significant redistribution of metabolism occurred by co-culturing the K. vulgare with the engineered G. oxydans, mainly reflected in the increased TCA cycle, purine, and fatty acid metabolism. Conclusions We reorganized and optimized a synthetic consortium of G. oxydans and K. vulgare to produce 2-KGA directly from d-sorbitol. The yield of 2-KGA was comparable to that of the conventional two-step fermentation. The metabolic interaction between the strains was further investigated by metabolomics, which verified the enhancement of the mutualism between the microbes and gave us a better understanding of the synthetic consortium. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0418-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- En-Xu Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Qian Ma
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Xiu-Tao Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
31
|
Friedman ES, McPhillips LE, Werner JJ, Poole AC, Ley RE, Walter MT, Angenent LT. Methane Emission in a Specific Riparian-Zone Sediment Decreased with Bioelectrochemical Manipulation and Corresponded to the Microbial Community Dynamics. Front Microbiol 2016; 6:1523. [PMID: 26793170 PMCID: PMC4707442 DOI: 10.3389/fmicb.2015.01523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Dissimilatory metal-reducing bacteria are widespread in terrestrial ecosystems, especially in anaerobic soils and sediments. Thermodynamically, dissimilatory metal reduction is more favorable than sulfate reduction and methanogenesis but less favorable than denitrification and aerobic respiration. It is critical to understand the complex relationships, including the absence or presence of terminal electron acceptors, that govern microbial competition and coexistence in anaerobic soils and sediments, because subsurface microbial processes can effect greenhouse gas emissions from soils, possibly resulting in impacts at the global scale. Here, we elucidated the effect of an inexhaustible, ferrous-iron and humic-substance mimicking terminal electron acceptor by deploying potentiostatically poised electrodes in the sediment of a very specific stream riparian zone in Upstate New York state. At two sites within the same stream riparian zone during the course of 6 weeks in the spring of 2013, we measured CH4 and N2/N2O emissions from soil chambers containing either poised or unpoised electrodes, and we harvested biofilms from the electrodes to quantify microbial community dynamics. At the upstream site, which had a lower vegetation cover and highest soil temperatures, the poised electrodes inhibited CH4 emissions by ∼45% (when normalized to remove temporal effects). CH4 emissions were not significantly impacted at the downstream site. N2/N2O emissions were generally low at both sites and were not impacted by poised electrodes. We did not find a direct link between bioelectrochemical treatment and microbial community membership; however, we did find a correspondence between environment/function and microbial community dynamics.
Collapse
Affiliation(s)
- Elliot S Friedman
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, USA
| | - Lauren E McPhillips
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, USA
| | - Jeffrey J Werner
- Department of Biological and Environmental Engineering, Cornell University, IthacaNY, USA; Department of Chemistry, State University of New York College at CortlandCortland, NY, USA
| | - Angela C Poole
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, USA
| |
Collapse
|
32
|
Zomorrodi AR, Segrè D. Synthetic Ecology of Microbes: Mathematical Models and Applications. J Mol Biol 2015; 428:837-61. [PMID: 26522937 DOI: 10.1016/j.jmb.2015.10.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/29/2022]
Abstract
As the indispensable role of natural microbial communities in many aspects of life on Earth is uncovered, the bottom-up engineering of synthetic microbial consortia with novel functions is becoming an attractive alternative to engineering single-species systems. Here, we summarize recent work on synthetic microbial communities with a particular emphasis on open challenges and opportunities in environmental sustainability and human health. We next provide a critical overview of mathematical approaches, ranging from phenomenological to mechanistic, to decipher the principles that govern the function, dynamics and evolution of microbial ecosystems. Finally, we present our outlook on key aspects of microbial ecosystems and synthetic ecology that require further developments, including the need for more efficient computational algorithms, a better integration of empirical methods and model-driven analysis, the importance of improving gene function annotation, and the value of a standardized library of well-characterized organisms to be used as building blocks of synthetic communities.
Collapse
Affiliation(s)
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, MA; Department of Biology, Boston University, Boston, MA; Department of Biomedical Engineering, Boston University, Boston, MA.
| |
Collapse
|
33
|
Zhao S, Li Y, Yin H, Liu Z, Luan E, Zhao F, Tang Z, Liu S. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. SCIENCE ADVANCES 2015; 1:e1500372. [PMID: 26702430 PMCID: PMC4681333 DOI: 10.1126/sciadv.1500372] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/01/2015] [Indexed: 05/27/2023]
Abstract
Microbial fuel cells (MFCs) are able to directly convert about 50 to 90% of energy from oxidation of organic matters in waste to electricity and have great potential application in broad fields such as wastewater treatment. Unfortunately, the power density of the MFCs at present is significantly lower than the theoretical value because of technical limitations including low bacteria loading capacity and difficult electron transfer between the bacteria and the electrode. We reported a three-dimensional (3D) graphene aerogel (GA) decorated with platinum nanoparticles (Pt NPs) as an efficient freestanding anode for MFCs. The 3D GA/Pt-based anode has a continuous 3D macroporous structure that is favorable for microorganism immobilization and efficient electrolyte transport. Moreover, GA scaffold is homogenously decorated with Pt NPs to further enhance extracellular charge transfer between the bacteria and the anode. The MFCs constructed with 3D GA/Pt-based anode generate a remarkable maximum power density of 1460 mW/m(2), 5.3 times higher than that based on carbon cloth (273 mW/m(2)). It deserves to be stressed that 1460 mW/m(2) obtained from the GA/Pt anode shows the superior performance among all the reported MFCs inoculated with Shewanella oneidensis MR-1. Moreover, as a demonstration of the real application, the MFC equipped with the freestanding GA/Pt anode has been successfully applied in driving timer for the first time, which opens the avenue toward the real application of the MFCs.
Collapse
Affiliation(s)
- Shenlong Zhao
- State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yuchen Li
- State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150080, China
| | - Huajie Yin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhouzhou Liu
- State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150080, China
| | - Enxiao Luan
- State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150080, China
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shaoqin Liu
- State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology), Harbin 150080, China
| |
Collapse
|
34
|
Yang Y, Wu Y, Hu Y, Cao Y, Poh CL, Cao B, Song H. Engineering Electrode-Attached Microbial Consortia for High-Performance Xylose-Fed Microbial Fuel Cell. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01733] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yun Yang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Yichao Wu
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- School
of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798, Singapore
| | - Yidan Hu
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Yingxiu Cao
- Key
Laboratory of Systems Bioengineering (Ministry of Education), SynBio
Research Platform, Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| | - Chueh Loo Poh
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Bin Cao
- Singapore
Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- School
of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 637798, Singapore
| | - Hao Song
- Key
Laboratory of Systems Bioengineering (Ministry of Education), SynBio
Research Platform, Collaborative Innovation Center of Chemical Science
and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
35
|
TerAvest MA, Ajo‐Franklin CM. Transforming exoelectrogens for biotechnology using synthetic biology. Biotechnol Bioeng 2015; 113:687-97. [DOI: 10.1002/bit.25723] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Michaela A. TerAvest
- California Institute for Quantitative BiosciencesUniversity of CaliforniaBerkeleyCalifornia94720
| | - Caroline M. Ajo‐Franklin
- Physical Biosciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720
- Materials Science DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720
- Synthetic Biology InstituteLawrence Berkeley National LaboratoryBerkeleyCalifornia94720
| |
Collapse
|
36
|
Prévoteau A, Geirnaert A, Arends JBA, Lannebère S, Van de Wiele T, Rabaey K. Hydrodynamic chronoamperometry for probing kinetics of anaerobic microbial metabolism--case study of Faecalibacterium prausnitzii. Sci Rep 2015; 5:11484. [PMID: 26127013 PMCID: PMC4486957 DOI: 10.1038/srep11484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 01/26/2023] Open
Abstract
Monitoring in vitro the metabolic activity of microorganisms aids bioprocesses and enables better understanding of microbial metabolism. Redox mediators can be used for this purpose via different electrochemical techniques that are either complex or only provide non-continuous data. Hydrodynamic chronoamperometry using a rotating disc electrode (RDE) can alleviate these issues but was seldom used and is poorly characterized. The kinetics of Faecalibacterium prausnitzii A2-165, a beneficial gut microbe, were determined using a RDE with riboflavin as redox probe. This butyrate producer anaerobically ferments glucose and reduces riboflavin whose continuous monitoring on a RDE provided highly accurate kinetic measurements of its metabolism, even at low cell densities. The metabolic reaction rate increased linearly over a broad range of cell concentrations (9 × 10(4) to 5 × 10(7) cells.mL(-1)). Apparent Michaelis-Menten kinetics was observed with respect to riboflavin (KM = 6 μM; kcat = 5.3 × 10(5) s(-1), at 37 °C) and glucose (KM = 6 μM; kcat = 2.4 × 10(5) s(-1)). The short temporal resolution allows continuous monitoring of fast cellular events such as kinetics inhibition with butyrate. Furthermore, we detected for the first time riboflavin reduction by another potential probiotic, Butyricicoccus pullicaecorum. The ability of the RDE for fast, accurate, simple and continuous measurements makes it an ad hoc tool for assessing bioprocesses at high resolution.
Collapse
Affiliation(s)
- Antonin Prévoteau
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Annelies Geirnaert
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Jan B A Arends
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Sylvain Lannebère
- University of Coimbra, Department of Electrical Engineering - Instituto de Telecomunicações, Coimbra 3030-290, Portugal
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| |
Collapse
|
37
|
Metabolite-enabled mutualistic interaction between Shewanella oneidensis and Escherichia coli in a co-culture using an electrode as electron acceptor. Sci Rep 2015; 5:11222. [PMID: 26061569 PMCID: PMC4462164 DOI: 10.1038/srep11222] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/19/2015] [Indexed: 01/26/2023] Open
Abstract
Mutualistic interactions in planktonic microbial communities have been extensively studied. However, our understanding on mutualistic communities consisting of co-existing planktonic cells and biofilms is limited. Here, we report a planktonic cells-biofilm mutualistic system established by the fermentative bacterium Escherichia coli and the dissimilatory metal-reducing bacterium Shewanella oneidensis in a bioelectrochemical device, where planktonic cells in the anode media interact with the biofilms on the electrode. Our results show that the transfer of formate is the key mechanism in this mutualistic system. More importantly, we demonstrate that the relative distribution of E. coli and S. oneidensis in the liquid media and biofilm is likely driven by their metabolic functions towards an optimum communal metabolism in the bioelectrochemical device. RNA sequencing-based transcriptomic analyses of the interacting organisms in the mutualistic system potentially reveal differential expression of genes involved in extracellular electron transfer pathways in both species in the planktonic cultures and biofilms.
Collapse
|
38
|
A Highly Efficient Mixed-culture Biofilm as Anodic Catalyst and Insights into Its Enhancement through Electrochemistry by Comparison with G. sulfurreducens. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.12.152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Tao L, Wang H, Xie M, Thia L, Chen WN, Wang X. Improving mediated electron transport in anodic bioelectrocatalysis. Chem Commun (Camb) 2015; 51:12170-3. [DOI: 10.1039/c5cc03188e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microbial fuel cell loaded with bio-cocatalyst beads immobilized with recombinant riboflavin-secreting Escherichia coli shows significantly enhanced performance.
Collapse
Affiliation(s)
- Le Tao
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 62 Nanyang Avenue
- Singapore
| | - Haibo Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 62 Nanyang Avenue
- Singapore
| | - Mingshi Xie
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 62 Nanyang Avenue
- Singapore
| | - Larissa Thia
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 62 Nanyang Avenue
- Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 62 Nanyang Avenue
- Singapore
| | - Xin Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- 62 Nanyang Avenue
- Singapore
| |
Collapse
|
40
|
Semenec L, E Franks A. Delving through electrogenic biofilms: from anodes to cathodes to microbes. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.222] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Koch C, Kuchenbuch A, Kretzschmar J, Wedwitschka H, Liebetrau J, Müller S, Harnisch F. Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome. RSC Adv 2015. [DOI: 10.1039/c5ra03496e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Microbiome based anaerobic digestion combined with microbial electrochemical technologies exploits biomass efficiently and flexibly by concurrent conversion to methane and electrons.
Collapse
Affiliation(s)
- Christin Koch
- Helmholtz Centre for Environmental Research – UFZ
- Department of Environmental Microbiology
- Leipzig
- Germany
| | - Anne Kuchenbuch
- Helmholtz Centre for Environmental Research – UFZ
- Department of Environmental Microbiology
- Leipzig
- Germany
| | - Jörg Kretzschmar
- Deutsches Biomasseforschungszentrum (DBFZ)
- Department Biochemical Conversion
- Leipzig
- Germany
| | - Harald Wedwitschka
- Deutsches Biomasseforschungszentrum (DBFZ)
- Department Biochemical Conversion
- Leipzig
- Germany
| | - Jan Liebetrau
- Deutsches Biomasseforschungszentrum (DBFZ)
- Department Biochemical Conversion
- Leipzig
- Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research – UFZ
- Department of Environmental Microbiology
- Leipzig
- Germany
| | - Falk Harnisch
- Helmholtz Centre for Environmental Research – UFZ
- Department of Environmental Microbiology
- Leipzig
- Germany
| |
Collapse
|
42
|
Miceli JF, Garcia-Peña I, Parameswaran P, Torres CI, Krajmalnik-Brown R. Combining microbial cultures for efficient production of electricity from butyrate in a microbial electrochemical cell. BIORESOURCE TECHNOLOGY 2014; 169:169-174. [PMID: 25048958 PMCID: PMC4284095 DOI: 10.1016/j.biortech.2014.06.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/06/2014] [Accepted: 06/25/2014] [Indexed: 05/25/2023]
Abstract
Butyrate is an important product of anaerobic fermentation; however, it is not directly used by characterized strains of the highly efficient anode respiring bacteria (ARB) Geobacter sulfurreducens in microbial electrochemical cells. By combining a butyrate-oxidizing community with a Geobacter rich culture, we generated a microbial community which outperformed many naturally derived communities found in the literature for current production from butyrate and rivaled the highest performing natural cultures in terms of current density (∼ 11A/m(2)) and Coulombic efficiency (∼ 70%). Microbial community analyses support the shift in the microbial community from one lacking efficient ARB in the marine hydrothermal vent community to a community consisting of ∼ 80% Geobacter in the anode biofilm. This demonstrates the successful production and adaptation of a novel microbial culture for generating electrical current from butyrate with high current density and high Coulombic efficiency, by combining two mixed microbial cultures containing complementing biochemical pathways.
Collapse
Affiliation(s)
- Joseph F Miceli
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Ines Garcia-Peña
- Bioprocesses Department, Unidad Profesional Interdisciplinaria de Biotecnología, IPN P.O. Box 07340, Mexico City, Mexico
| | - Prathap Parameswaran
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - César I Torres
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
43
|
Adelaja O, Keshavarz T, Kyazze G. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:211-217. [PMID: 25279757 DOI: 10.1016/j.jhazmat.2014.08.066] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 06/03/2023]
Abstract
Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20-50°C), salinity (0.5-2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40°C compared to MFC performance at 30°C but decreased sharply by 4-fold when operating temperature was raised to 50°C. The optimum reactor performance obtained at 40°C was 1.15 mW/m(2) maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m(2), 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents.
Collapse
Affiliation(s)
- Oluwaseun Adelaja
- Department of Molecular and Applied Biosciences, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Tajalli Keshavarz
- Department of Molecular and Applied Biosciences, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Godfrey Kyazze
- Department of Molecular and Applied Biosciences, Applied Biotechnology Research Group, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| |
Collapse
|
44
|
Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ. Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 2014; 43:6954-81. [PMID: 25017039 DOI: 10.1039/c4cs00114a] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic biology is an emerging research field that focuses on using rational engineering strategies to program biological systems, conferring on them new functions and behaviours. By developing genetic parts and devices based on transcriptional, translational, post-translational modules, many genetic circuits and metabolic pathways had been programmed in single cells. Extending engineering capabilities from single-cell behaviours to multicellular microbial consortia represents a new frontier of synthetic biology. Herein, we first reviewed binary interaction modes of microorganisms in microbial consortia and their underlying molecular mechanisms, which lay the foundation of programming cell-cell interactions in synthetic microbial consortia. Systems biology studies on cellular systems enable systematic understanding of diverse physiological processes of cells and their interactions, which in turn offer insights into the optimal design of synthetic consortia. Based on such fundamental understanding, a comprehensive array of synthetic microbial consortia constructed in the last decade were reviewed, including isogenic microbial communities programmed by quorum sensing-based cell-cell communications, sender-receiver microbial communities with one-way communications, and microbial ecosystems wired by two-way (bi-directional) communications. Furthermore, many applications including using synthetic microbial consortia for distributed bio-computations, chemicals and bioenergy production, medicine and human health, and environments were reviewed. Synergistic development of systems and synthetic biology will provide both a thorough understanding of naturally occurring microbial consortia and rational engineering of these complicated consortia for novel applications.
Collapse
Affiliation(s)
- Hao Song
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, and Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China.
| | | | | | | | | |
Collapse
|
45
|
Kipf E, Zengerle R, Gescher J, Kerzenmacher S. How Does the Choice of Anode Material Influence Electrical Performance? A Comparison of Two Microbial Fuel Cell Model Organisms. ChemElectroChem 2014. [DOI: 10.1002/celc.201402036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Rimboud M, Pocaznoi D, Erable B, Bergel A. Electroanalysis of microbial anodes for bioelectrochemical systems: basics, progress and perspectives. Phys Chem Chem Phys 2014; 16:16349-66. [DOI: 10.1039/c4cp01698j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over about the last ten years, microbial anodes have been the subject of a huge number of fundamental studies dealing with an increasing variety of possible application domains.
Collapse
Affiliation(s)
- M. Rimboud
- Laboratoire de Génie Chimique
- CNRS - Université de Toulouse
- 31432 Toulouse, France
| | - D. Pocaznoi
- Laboratoire de Génie Chimique
- CNRS - Université de Toulouse
- 31432 Toulouse, France
| | - B. Erable
- Laboratoire de Génie Chimique
- CNRS - Université de Toulouse
- 31432 Toulouse, France
| | - A. Bergel
- Laboratoire de Génie Chimique
- CNRS - Université de Toulouse
- 31432 Toulouse, France
| |
Collapse
|
47
|
Wang L, Wang F, Li P, Zhang L. Ferrous–tetrapolyphosphate complex induced dioxygen activation for toxic organic pollutants degradation. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
|
49
|
Feng C, Yue X, Li F, Wei C. Bio-current as an indicator for biogenic Fe(II) generation driven by dissimilatory iron reducing bacteria. Biosens Bioelectron 2012; 39:51-6. [PMID: 22794934 DOI: 10.1016/j.bios.2012.06.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Microbial reduction of insoluble iron minerals by dissimilatory iron reducing bacteria (DIRB) is an important environment process in the iron biogeochemical cycle. We reported that the bio-current generated from oxidation of organic matter by these bacteria in the presence of iron oxides can be used as an indicator for microbial dissolution of insoluble iron oxides. Bioelectrochemical experiments were conducted to investigate the effects of the specific bacteria and the phase identity of iron oxides on bio-current generation by recording the current response as a result of a poised constant potential. Experimental results indicated that the bio-current generation can be greatly enhanced by iron oxide addition under all the conditions varying in the type of pure culture or iron oxide. The increase in the bio-current was linearly correlated with the increased concentration of biogenic Fe(II) detected either by chemical analysis or cyclic voltammetry (CV) tests. This can be understood based on the proposed mechanism that the Fe(II)/Fe(III) couple functions as the electron mediator shuttling electrons from the microbes to the electrodes.
Collapse
Affiliation(s)
- Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environmental Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
| | | | | | | |
Collapse
|
50
|
Beg QK, Zampieri M, Klitgord N, Collins SB, Altafini C, Serres MH, Segrè D. Detection of transcriptional triggers in the dynamics of microbial growth: application to the respiratorily versatile bacterium Shewanella oneidensis. Nucleic Acids Res 2012; 40:7132-49. [PMID: 22638572 PMCID: PMC3424579 DOI: 10.1093/nar/gks467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The capacity of microorganisms to respond to variable external conditions requires a coordination of environment-sensing mechanisms and decision-making regulatory circuits. Here, we seek to understand the interplay between these two processes by combining high-throughput measurement of time-dependent mRNA profiles with a novel computational approach that searches for key genetic triggers of transcriptional changes. Our approach helped us understand the regulatory strategies of a respiratorily versatile bacterium with promising bioenergy and bioremediation applications, Shewanella oneidensis, in minimal and rich media. By comparing expression profiles across these two conditions, we unveiled components of the transcriptional program that depend mainly on the growth phase. Conversely, by integrating our time-dependent data with a previously available large compendium of static perturbation responses, we identified transcriptional changes that cannot be explained solely by internal network dynamics, but are rather triggered by specific genes acting as key mediators of an environment-dependent response. These transcriptional triggers include known and novel regulators that respond to carbon, nitrogen and oxygen limitation. Our analysis suggests a sequence of physiological responses, including a coupling between nitrogen depletion and glycogen storage, partially recapitulated through dynamic flux balance analysis, and experimentally confirmed by metabolite measurements. Our approach is broadly applicable to other systems.
Collapse
Affiliation(s)
- Qasim K Beg
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|